
Received 15 September 2023, accepted 16 October 2023, date of publication 23 October 2023, date of current version 7 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327199

Distributed Interval Optimization Over
Time-Varying Networks: A Numerical
Programming Perspective
YINGHUI WANG 1,2, JIUWEI WANG3,4, XIAOBO SONG1,2, AND YANPENG HU1,2
1Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of
Science and Technology Beijing, Beijing 100083, China
2Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology
Beijing, Beijing 100083, China
3Academy of Mathematics and Systems Science, University of Chinese Academy of Sciences, Beijing 100049, China
4Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author: Jiuwei Wang (waliuss@sina.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 72101026, Grant 62203045, and Grant
62173030; and in part by the Fundamental Research Fund for the Central Universities under Grant FRF-TP-22-141A1.

ABSTRACT In this study, we investigate a distributed interval optimization problem involving agents
linked by a time-varying network, optimizing interval objective functions under global convex constraints.
Through scalarization, we first reformulate the distributed interval optimization problem as a distributed
constrained optimization problem. The optimal Pareto solutions to the reformulated problem are then
illustrated. We establish a distributed subgradient-free algorithm for the distributed constrained optimization
problems by generating random differences of reformulated optimal objective functions, and the optimal
solutions of the distributed constrained optimization problem are equivalent to Pareto optimal solutions of
the distributed interval optimization problem. Moreover, we demonstrate that a Pareto optimal solution can
be reached over the time-varying network using the proposed algorithm almost surely. FInally, we conclude
with a numerical simulation to demonstrate the effectiveness of the proposed algorithm.

INDEX TERMS Distributed interval optimization, time-varying network, Pareto optimal solution,
subgradient-free algorithm.

I. INTRODUCTION
Recently, distributed optimization and control in a network
environment have attracted a growing amount of interest,
as they are more effective than centralized designs for many
large-scale problems when agents only have access to local
information and exchange data with their neighbours over
the network. In fact, distributed algorithms for a variety of
(constrained) optimization problems have been extensively
studied, with potential applications to sensor networks,
smart grids, and equation solutions (see [1], [2], [3], [4],
[5], [6], [7], [8]). Note that connectivity is an important
aspect of distributed design. Although fixed topologies are
still required for distributed optimization designs in certain
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circumstances, time-varying jointly connected networks have
been considered in a number of algorithms, including [1], [3],
[7], and [9].

Nonetheless, objective functions and constraints of some
practical optimization problems may not be described
precisely or explicitly. For instance, some conditions in
power systems may be time-varying or uncertain, and
data mining can produce inaccurate results (see [10], [11],
and [12]). Motivated by the present setting, interval opti-
mization is investigated in [13], [14], and [15], which
provides a framework for capturing the uncertainty in
optimization. In fact, interval optimization problems (IOP),
which were first proposed by [13] and further stud-
ied in [14] and [15] and references thereto, have been
extensively studied in numerous research fields, including
economic systems [16] and smart grids [17]. Objective
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functions in an interval optimization problem are interval-
valued, i.e., they are described by intervals rather than
real integers, via interval-valued maps. The well-defined
partial orderings and convexity of interval-valued maps
[16], [18], [19] guarantee the existence of solutions for
maximization and minimization of interval optimization
problems. Literature (referring to [20], [21], [22], [23]) has
provided various programming methods, particularly based
on Wolfe’s method or Lamke’s algorithm (Lingo software
provides different algorithm boxes to solve linear program-
ming problems), to address centralized interval optimization
problems.

With this background, it is nature for us to consider the
construction of effective algorithms for distributed interval
optimization problems over multi-agent networks. However,
the distributed interval optimization problems are still under
investigation. It may be because it is so simple to distribute the
ideas of Wolfe or Lamke’s algorithms, and very few papers
with related theoretical results have been published on the
subject of [24]. A further reason is that the partial order
resulting from the interval makes gradient-based methods
challenging, particularly when only local information is
available in a distributed design.

In systems and control, randomization and stochasticmeth-
ods have proven to be effective instruments. In contrast to
traditional robustness methods [25], stochastic gradients are
advantageous for controlling uncertain systems, for instance.
When developing distributed algorithms, for instance [26],
randomization and stochastic methods can enhance the
system’s overall performance as they are quite natural for the
study of network dynamics and have a close relationship with
real-world systems.

The purpose of this paper is to propose a distributed
algorithm for interval optimization problems, based on
recent results on distributed subgradient-free algorithms that
overcome the challenge of obtaining subgradient information
of local interval-valued functions. Zeroth-order/subgradient-
free algorithms have been extensively researched in [27],
[28], [29], [30], and [31] and references listed therein due
to their applications in situations where obtaining gradi-
ent/subgradient information is computationally expensive or
even impractical. Therefore, we propose a subgradient-free
stochastic algorithm for a class of interval optimization prob-
lems based on numerical programming. The contributions of
this paper are summarized as follows:
(a) In keeping with the rapid evolution of data sci-

ence and engineering systems, we extend the cen-
tralized interval optimization problem [14], [15] to
a distributed setting. Through well-defined partial
orderings and convexity [16], [18], [19] of the dis-
tributed interval optimization problem, we transform
it into a solvable distributed optimization problem
with convex global constraints. The optimal solu-
tions of the distributed constrained optimization prob-
lem are equivalent to Pareto optimal solutions of
the distributed interval optimization problem in this

reformulation. Wolfe’s and Lamke’s methods cannot
be easily extended to distributed versions; therefore,
we employ zeroth-order or subgradient-free ideas in the
distributed design.

(b) We develop a new distributed subgradient-free algorithm
with random differences for solving the reformulated
distributed constrained non-smooth optimization prob-
lem because it is challenging to acquire the sub-
gradient of the interval optimization problem. The
algorithm employs random differences to approximate
subgradients of locally reformulated objective func-
tions, which is distinct from many existing distributed
gradient/subgradient-free algorithms see, [32], [33],
[34], and [35] though consistent with them when the
local objective function is smooth.

(c) The proposed algorithm, which is related to the dis-
tributed stochastic optimization algorithm, is subjected
to both theoretical and numerical analysis. We establish
the mean-square convergence rate of O( 1

√
k
). after

establishing the consensus of estimates and accomplish-
ment of global minimization with probability one with
the proposed algorithm. With decreasing step-size, the
convergence results match the best of the first-order
stochastic algorithms [4], [36], [37]

The main contributions of this article could also be
outlined in fig. 1. The remaining sections are organized as
follows. In Section II, preliminary information regarding the
analysis and design of distributed interval optimization is
provided. The distributed interval optimization problem is
then formulated and the corresponding distributed algorithm
is presented in Section III, while Section IV analyses the
proposed algorithm. The following numerical example is
provided in Section V. The section VI concludes with some
concluding remarks.

FIGURE 1. Outline.

Notations: Let Rp be the p-dimensional Euclidean space.
Denote Rp

+ as its non-negative orthants. ∥ · ∥ denotes the
Euclidean norm. Denote the sets of all non-empty compact
intervals ofR by C(R).

II. MATHEMATICAL PRELIMINARIES
This section introduces mathematical prerequisites for con-
vex analysis [3], [38], [39], probability theory [40], [41] and
interval optimization.

A. CONVEX ANALYSIS
Here are some concepts about convex analysis [38], [39].
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Definition 1 ([38] Sub-Gradient): Let f (x) : Rp
→ R

be a non-smooth convex function. Vector-valued function
▽f (x) ∈ ∂f (x) ⊂ Rp is called the subgradient of
f (x) if for any x, y ∈ dom(f ), the following inequality
holds:

f (x) − f (y) −
〈
▽f (y), x − y

〉
⩾ 0.

Lemma 1 ([39] Lebourg’s Mean Value Theorem): Let x,
y ∈ X. Suppose f (x) : Rm

→ R is Lipschitz on an
open set containing line segment [x, y]. Then, there exists
a point u ∈ (x, y) such that f (x) − f (y) ∈ ⟨∂f (u),
x − y⟩.

Then, we summarize the Euclidean norm inequalities [3],
[39] that will be used in this paper.
Lemma 2 [4]: Let x1, x2, . . . , xn be vectors inRp. Then

n∑
i=1

∥∥∥xi − 1
n

n∑
i=1

xj
∥∥∥2 ⩽

n∑
i=1

∥∥∥xi − x
∥∥∥2, ∀x ∈ Rp.

Denote the projection of x onto set X by PX (x), i.e.,
PX (x) = argminy∈X

∥∥x − y
∥∥, where X is a closed bounded

convex set inRp. The following results are on the projection
operators in Euclidean norm:
Lemma 3 [3], [38]: Let X be a closed convex set in Rp.

Then for any x ∈ Rp, it holds that

(a)
〈
x − PX (x), y− PX (x)

〉
⩽ 0, for all y ∈ X

(b)
∥∥PX (x) − PX (y)∥ ⩽

∥∥x − y
∥∥, for all x, y ∈ Rm.

(c)
〈
x − y,PX (y) − PX (x)

〉
⩽ −

∥∥PX (x) − PX (y)
∥∥2, for all

y ∈ Rm.
(d)

∥∥x−PX (x)
∥∥2+∥∥y−PX (x)

∥∥2 ⩽
∥∥x−y

∥∥2, for any y ∈ X.

B. PROBABILITY THEORY
Denote (�,F , P) as the probability space, where � is the
whole event space,F is the σ -algebra on�, and P is the prob-
ability measure on (�,F). Then, definitions of convergence
in (�,F , P) and convergence of super-martingales theorem
is given.
Definition 2 ( [40] Convergence in (�,F , P)): (a) x1, x2,

. . . , xk . . . is a sequence of random variables (r. v.) in
(�,F , P). If P(xk → x) = 1, then xk converges x almost
surely (a. s.).

(b) x1, x2, . . . , xk . . . is a sequence of random variables
(r. v.) in (�,F , P). IfE∥xk−x∥p → 0, then xk converges
to x in Lp.

Lemma 4: [41]: In (�,F , P), denote {F(k)}k≥1 as a
sequence of increasing sub-σ -algebras on F . {h(k)}k≥1,
{v(k)}k≥1 and {w(k)}k≥1 are variable sequences in R
such that for each k, h(k), v(k) and w(k) are F(k)-
measurable. Both {v(k)}k≥1 and {w(k)}k≥1 are nonnegative
and

∑
∞

k=1 w(k) < ∞. Moreover, {h(k)}k≥1 is bounded from
below uniformly. If

E[h(k + 1)|F(k)] ⩽ (1 + η(k))h(k) − v(k) + w(k), ∀k ⩾ 1

holds almost surely, where η(k) ⩾ 0 are constants with∑
∞

k=1 η(k) < ∞, then {h(k)}k≥1 converges almost surely
with

∑
∞

k=1 v(k) < ∞.

C. INTERVAL OPTIMIZATION
1) ORDERINGS ON C(R) AND PROPERTIES OF
INTERVAL-VALUED MAP G
Define A = [aL , aR], B = [bL , bR] are two non-empty
compact intervals in P(Rq). Now, we introduce some
orderings on P(R).
Definition 3 [16], [18]: For any A,B ∈ P(R). denote:

(a) A ≦L B iff aL ⩽ bL;
(b) A ≦U B iff aR ⩽ bR;
(c) A ≦ B iff A ≦L B and A ≦U B.
Definition 4 [16], [18]: For any A,B ∈ P(R), denote:

(a) A <L B iff aL < bL;
(b) A <U B iff aR < bR;
(c) A < B iff A <L B and A <U B;
(d) A ≤ B iff A <L B and A ≦U B, or A ≦L B and A <U B.
Let G : Rp ⇒ R be any interval-valued map, where

G(·) is an interval with respect to x. We give the definition
of Lipschitz continuity and convexity of the interval-valued
map G : Rp ⇒ R as follows:
Definition 5 ([42] Lipschitz Continuity): Let G : Rp ⇒

R be any interval-valued map. G is locally Lipschitz at x if
there exist K > 0 and a neighborhood W of x such that

G(x1) ⊆ G(x2) + K∥x1 − x2∥, ∀x1, x2 ∈ W .

We say that G is locally Lipschitz at x if there exist a
neighbourhood W of x and a constant K ⩾ 0, such that

G(x1) ⊆ B
(
G(x2),K∥x1 − x2∥

)
.

We denote by B(A, ϱ) = {y|d(y,A) ⩽ ϱ}, the ball of radius ϱ

around subset A, where y is chosen from a metric space.
Definition 6 ( [19] Convexity): Let G : Rp ⇒ Rq be

any interval-valued map. G is convex (lower-convex or upper
convex) on � if, ∀x1, x2 ∈ �, ∀α ∈ [0, 1],

G
(
αx1 + (1 − α)x2

)
≦ (≦L or ≦ U )αG(x1) + (1 − α)G(x2).

Remark 1: Suppose that G is compact-valued and convex,
G(·) = [L(·),R(·)]. Then according to Definitions 3 and 4,
L(·), R(·) : Rp

→ R are convex functions with respect to
x ∈ Rp. Namely, for any x1, x2 ∈ Rp and any t ∈ [0, 1], the
following inequalities hold:

L
(
tx1 + (1 − t)x2

)
≤ slanttL(x1) + (1 − t)L(x2),

R
(
tx1 + (1 − t)x2

)
≤ slanttR(x1) + (1 − t)R(x2).

2) INTERVAL OPTIMIZATION PROBLEMS WITH
INTERVAL-VALUED MAP
Let G : Rp ⇒ R be any interval-valued map. Now we
consider the following interval optimization problem:

(IOP) min
x

G(x) s. t. x ∈ �

where G(x) = [L(x),R(x)] is any non-empty compact
interval inR.
Example 1: Motivated by the article [43], we give an

example of interval valued function. Consider a function
G : Rp ⇒ R. Without loss of generality, consider c as
an order set, which is influenced by orders maintained on
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the presence of components of G(x). If G(x1, x2) = c1x21 +

c2x1ec3x2 , then c = [c1, c2, c3]⊤. Suppose c1, c2, c3 lies
in intervals C1, C2 and C3, respectively. Ci = [ciL , c

i
R],

ci(ti) = (1 − ti)ciL + ticiR, ti ∈ [0, 1], i = 1, 2, 3. Thus
C(t) = [c1(t), c2(t), c3(t)]⊤ ∈ C3

v , where C
k
v stands for k-

dimensinal column vecter whose elements are vectors. For
the given interval vector C3

v , {Gc(t)(x1, x2) = c1(t)x21 +

c2(t)x1ec3(t)x2 : R2 ⇒ R, c(t) ∈ C3
v } is an interval, where

L(x) = mint Gc(t)(x1, x2) and R(x) = maxt Gc(t)(x1, x2).
In light of definitions of L(x) and R(x) of the example,

we see that we can not get the explicit expressions of L(x) and
R(x), and this (IOP) problem can be solved through set-valued
optimization rather than vector valued optimization.

Based on quasi orderings of compact intervals in C(R)
given in Definitions 3 and 4, we define the Parato optimal
solution to (IOP):
Definition 7 [44]: A point x∗

∈ � is said to be a Pareto
optimal solution (PO) to (IOP) iff it holds that G(x̄) ≦ G(x∗)
for some x̄ ∈ � implies G(x∗) ≦ G(x̄).
Remark 2: There is no solution to interval optimization

problem given in fig. 2. However, [x1, x2] are Pareto optimal
solutions to this given problem.
(a) For y ⩽ x1, we have R(y) ⩾ R(x1) and L(y) ⩾ L(x1),

which means that G(y) ≧ G(x1).
(b) For y ⩾ x2, we have R(y) ⩾ R(x2) and L(y) ⩾ L(x2),

which means that G(y) ≧ G(x2).
(c) For x1 ⩽ y ⩽ x2, we have R(y) ⩽ R(x1), L(y) ⩾

L(x1), R(y) ⩾ R(x2) and L(y) ⩽ L(x2) according
to Definition 7. Therefore, [x1, x2] are Pareto optimal
solutions to this given problem.

FIGURE 2. L(x) and R(x) for vector x .

Associated with (IOP), consider the following interval
optimazation problem with its scalarization:

(SIOP) min
x

λL(x) + (1 − λ)R(x)

s. t. x ∈ �

where λ ∈ [0, 1].
The following lemma holds according to [44]. We gave its

proof here just for self-reminder.

Lemma 5: We assume that G is compact-valued and
convex with respect to x:
(a) If there exists a real number λ ∈ (0, 1) such that x∗

∈ �

is an optimal solution to (SIOP), then x∗
∈ � is a Pareto

optimization to (IOP).
(b) A point x∗

∈ � is a Pareto optimization to (IOP), then
there exists a real number λ ∈ [0, 1] such that x∗

∈ � is
an optimal solution to (SIOP).
Proof:

(a) Given a real number λ ∈ (0, 1) and let x∗
∈ � be an

optimal solution to (SIOP). Suppose that there exists a
point x̄ ∈ �, such that G(x̄) ≦ G(x∗), which implies
L(x̄) ⩽ L(x∗) and R(x̄) ⩽ R(x∗). Therefore,

λL(x̄) + (1 − λ)R(x̄) ⩽ λL(x∗) + (1 − λ)R(x∗)

which contradicts that x∗ is an optimal solution to
(SIOP).

(b) Let x∗
∈ � be a Pareto optimal solution to (IOP).

Since G is compact-valued and convex with respect to
x, according to Remark 1, L(x) and U (x) are convex
functions. Following Definition 7, there exists a vector
λ = [a, b]⊤ ̸= 0, a ⩾ 0, b ⩾ 0, such that

λ⊤

[
L(x∗)
R(x∗)

]
⩽ λ⊤

[
L(x)
R(x)

]
holds for all x ∈ �. Define λ̄ = [ a

a+b ,
b

a+b ], we have

λ̄
⊤

[
L(x∗)
R(x∗)

]
⩽ λ̄

⊤

[
L(x)
R(x)

]
,

which proves that there exists a real number λ ∈ [0, 1]
such that x∗

∈ � is an optimal solution to (SIOP).

III. DISTRIBUTED INTERVAL OPTIMIZATION
Consider the following distributed interval optimization
problem over an n-agent network:

(DIOP) min
x

G(x) =

n∑
i=1

Gi(xi)

s. t. xi = xj, xi ∈ X (1)

where x =
[
x⊤

1 , x⊤

2 , . . . , x⊤
n

]⊤
∈ Rnp, xi ∈ Rp, and

Gi : Rp ⇒ R is a compact and convex interval-valued
function. In this setting, the state of an agent i is the estimate
of solution to problem (DIOP). Each agent i knows local
functions Gi and global constraint X . We first make the
following assumption on the local functions and constraints
for the distributed interval optimal problem (DIOP):
Assumption 1: (a) Gi(x) is a convex, compact, Lipschitz
continuous interval-valued function.

(b) X is a non-empty, compact, convex constraint set inRp.
Consider solving (DIOP) over a time-varying multi-

generator network. Define a directed network G(k) =(
N , E(k),W (k)

)
as the communication topology among

generators, whereN = {1, 2, . . . n} is the agent set, the edge
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set E(k) ⊂ N × N represents information communication
at time k and W (k) =

[
wij(k)

]
ij represents adjacency

matrix at time k . Each agent interacts with its neighbors
in G(k) = (N , E(k),W (k)) at time k . We make the
following assumption about communication topologyG(k) =(
N , E(k),W (k)

)
.

Assumption 2: The graph G(k) =
(
N , E(k),W (k)

)
satisfies:
(a) There exists a constant η with 0 < η < 1 such that,

∀k ⩾ 0 and ∀i, j, wii(k) ⩾ η; wij(k) ⩾ η if (j, i) ∈ E(k).
(b) W (k) is doubly stochastic, i. e.

∑m
i=1 wij(k) = 1 and∑m

j=1 wij(k) = 1.
(c) There is an integer κ ⩾ 1 such that ∀k ⩾ 0 and ∀(j, i) ∈

N ×N ,

(j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k + κ − 1).
Assumption 2 reveals that each agent i can periodically

collect data from all its neighbours. It is also a common
connectivity condition for time-varying distributed network
designs (see [1], [3]).

Define the function f : Rnp
× Rn

→ R and fi : Rp
×

[0, 1] → R as

f
(
x, λ

)
≜

n∑
i=1

fi
(
xi, λi

)
(2)

fi
(
xi, λi

)
≜ λiLi(x) + (1 − λi)Ri(x) (3)

where i = 1, 2, . . . , n, x =
[
x⊤

1 , x⊤

2 , . . . , x⊤
n

]⊤
∈ Rnq and

λ =
[
λ1, λ2, . . . , λn

]⊤
∈ Rn.

Remark 3: Note that both L(x) and R(x) are separable,
that is

L(x) =

n∑
i=1

Li(xi),

and

R(x) =

n∑
i=1

Ri(xi).

We can convert the distributed interval optimization
problem into a standard distributed optimization problem
with scalar values. Let λ = λ01n with λ0 ∈ (0, 1). To solve
problem (1), the following distributed optimization problem
is solved:

min
x

f
(
x, λ

)
=

n∑
i=1

fi
(
xi, λi

)
s. t. xi = xj, xi ∈ X

λi = λj (4)

where agent i is acquainted with the information of fi, xi, λi ∈

(0, 1), and its vicinity.
Remark 4: In Problem (4), We need λi = λj through the

design of algorithms for the following reasons:
(a) The aforementioned articles on interval optimization are

centralized. This paper provides a framework for solving
distributedly centralized interval optimization problems.

(b) The distributed interval optimization problem may also
be applied to the resolution of stochastic problems
involving distributed stripe disturbances. The iteratively
generated λ reflects the intrinsic stripe properties of
such distributed stochastic problems.

(c) The problem of distributed interval optimization could
also be applied to privacy protection problems. In cur-
rent distributed privacy protection settings, agents offer
stochastic function information with noises to other
agents. If each agent chooses to provide others with
a confidence region (interval-valued function) without
revealing λi, these methods can better protect their data.

(d) Reformulated problem (4) degenerates to a typical
distributed constrained optimization problem [4] if each
agent i chooses a common parameter λ or λis don’t not
need to be common. Due to the need for λi = λj via
iterations, the reformulated problem is more challenging
than typical distributed problems.

Remark 5: According to Definitions 5-6 and Assump-
tion 1, we have:

(a) Each fi
(
x, λ

)
is convex with respect to x, i. e. for any

x1, x2:

fi
(
αx1 + (1 − α)x2, λ

)
⩽ αfi

(
x1, λ

)
+ (1 − α)fi

(
x2, λ

)
,

where α ∈ [0, 1].
(b) Each fi

(
x, λ

)
is convex with respect to λ.

(c) Each fi
(
x, λ

)
is Lipschitz continuous with respect to x, i.

e. for all x1, x2 and λ:∥∥fi(x1, λ)
− fi

(
x2, λ

)∥∥ ⩽ L∥x1 − x2∥.

(d) Each fi
(
x, λ

)
is Lipschitz continuous with respect to λ i.

e. for all λ1, λ2 and x:∥∥fi(x, λ1) − fi
(
x, λ2

)∥∥ ⩽ K∥λ1 − λ2∥.

(e)
∥∥∂fix (x, λ)

∥∥ ⩽ L and ∂
∥∥fiλ (x, λ)∥∥ ⩽ K.

Proof of (e): Suppose there exists a vector x, such
that we can choose a subgradient▽fix (x, λ) ∈ ∂fix (x, λ),
where ∥▽fix (x, λ)∥ > L. Suppose y = x + ▽fix (x, λ),
according to the definition of subgradient given in
Definition 1, we have

fi(y, λ) − fi(x, λ) ⩾ ⟨▽fix (x, λ), y− x⟩

⩾
∥∥▽fix (x, λ)

∥∥2 > L
∥∥▽fix (x, λ)

∥∥
> L

∥∥y− x
∥∥,

which contradicts the Lipschitz continuity of fi
(
x, λ

)
with respect to x. By an analogous proof, ∂fiλ (x, λ) ⩽ K.

Lemma 6: If (x∗, λ∗) ∈ Rnp
×Rn, is an optimal solution

to problem (4), then x∗ is a Pareto solution to problem (1).
Due to the fact that the differentiability of f (x, λ) with

respect to x does not hold in general, we propose a Distributed
(sub)gradient-free inteval-valued algorithm 1 for solving
reformulated problem (4).
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Algorithm 1 Distributed (sub)Gradient-Free Inteval-Valued
Algorithm
Input: Total numbers of iteration T , step-size ι(k).
Initialize: ξi ∈ X for all i = 1, 2, . . . n.

1: for k = 0, . . .T do
2: Average of local observations xi(k):

ξi(k) =

n∑
j=1

wij(k)xj(k). (5)

3: Calculation of local measurement di(k)

di(k) =

[
y+i (k) − y−i (k)

] a
−

i (k)

2c(k)
, (6)

4: Descent Step:

ξ̂i(k) = ξi(k) − ι(k)di(k). (7)

Projection Step:

xi(k + 1) = PX
(
ξ̂i(k)

)
. (8)

5: Average of local observations λi(k):

λi(k + 1) =

n∑
j=1

wij(k)λi(k). (9)

6: end for
where di(k) is used as an estimate for ∂fiϵi(k)

(
ξi(k), λi(k)

)
.

In (6),
a
i(k) =

[ a1
i (k),

a2
i (k), . . . ,

ap
i (k)

]⊤. a
−

i (k) =[
1a1
i (k)

, 1a2
i (k)

, . . . , 1ap
i (k)

]⊤

, where
{ aq

i (k)
}
k⩾0, q =

1, 2, . . . , p, k = 1, 2, . . . is a sequence of mutually
independent and identically distributed random variables
with zeromean. Themeasurements y+i (k) and y

−

i (k) are given
by

y+i (k) = fi
(
ξi(k) + c(k)

i

i

(k), λi(k)
)
,

y−i (k) = fi
(
ξi(k) − c(k)

i

i

(k), λi(k)
)
.

Define F(k) = σ
{
xi(k), xi(k − 1), . . . , xi(0), i =

1, 2, . . . , n; λi(k), λi(k−1), . . . , λi(0), i = 1, 2, . . . , n;
a
i(k−

1),
a
i(k − 2), . . . ,

a
i(0), i = 1, 2, . . . , n

}
, where F(k)

is the σ -algebra created by the whole history of Distributed
(sub)gradient-free inteval-valued algorithm (Algorithm 1) up
to moment k (referring to [4]). We further make the following
hypotheses on the dither signal

a
i(k):

Assumption 3: (a) For any fixed (i, q), let
{ aq

i (k)
}
k⩾0

be a sequence of independent and identically distributed
(i. i. d.) random variables. For all k ⩾ 0 and for

any (i, q)

∣∣ qi

i

(k)
∣∣ < M1,

∣∣∣∣ 1
aq
i (k)

∣∣∣∣ < M2, E
[

1
aq
i (k)

]
= 0.

(b) For i ̸= j or q ̸= r,
{ aq

i (k)
}
k⩾0 and

{ ar
j (k)

}
k⩾0 are

mutually independent of each other.
Then, we introduce conditions on the step-size ι(k) of

Algorithm 1 and c(k) used in the randomized differences (6):
Assumption 4: (a) ι(k) > 0,

∑
∞

k=1 ι(k) < ∞.
(b) c(k) > 0, c(k) → 0.
(c)

∑
∞

k=1
ι(k)
c(k) = ∞,

∑
∞

k=1
ι2(k)
c2(k)

< ∞.

The chosen of unite parameter ι(k)
c(k) satisfies the stochastic

approximation stepsize condition in [27] and [36].

IV. PROPERTIES OF DISTRIBUTED (SUB)GRADIENT-FREE
STOCHASTIC ALGORITHM
In this section, we first analyse that the estimate (xi(k), λi(k))
converges to a consensus optimal point (x∗, λ∗) almost surely
of Algorithm 1. Then, the mean-square convergence rate of
Algorithm 1 is provided.

Denote the transition matrix of W (k) as 9(k, s) =

W (k)W (k − 1) · · ·W (s), k ⩾ s, where
[
9(k, s)

]
ij is the ij-th

element of9(k, s). The following lemma about9(k, s) holds
ture, given in Proposition 1 of [1].
Lemma 7: Under Assumptions 2,

∣∣∣[9(k, s)
]
ij −

1
n

∣∣∣ ⩽

δβk−s, ∀k > s, where δ = 2
(
1 + η−K0

)
/
(
1 − η−K0

)
, with

K0 =
(
n− 1

)
κ and β =

(
1 − η−K0

)1/K0 < 1.
First, we present a theorem regarding the proposed

algorithm’s convergence analysis.
Theorem 1: With Assumptions 1-4,

(a) all the sequences {λi(k)}, i ∈ N reach consensus
(which is depended by initail parameters λi(0)′s) almost
surely by Algorithm 1.

(b) all the sequences {xi(k)}, i ∈ N by Algorithm 1
converge to the same optimal point x∗ in consensus and
almost surely.

The proof of Theorem 1 relies on Lemmas 8-12. Lemma 8
provides an upper bound for the Euclidean norm of di(k)
in expection; Lemma 9 investigates the consensus in the
L1 norm of estimates xi(k) in Algorithm r1; Lemma 10
investigates the lower bound of the cross term of di(k) and
(ξi(k) − x∗)in expection and in conditional expection with
respect to F(k), where x∗ is the optimal solution of (4) for
fixed common point λ∗; Lemma 11 analyses that {xi(k)}, i ∈
N converge to the same random variable almost surely and
Lemma 12 analyses that {xi(k)}, i ∈ N converge to x∗ in L2.
The proofs for these lemmas can be found in the Appendix.
Lemma 8: Let Assumption 1 and 3 hold. Then the first

order moments and second moments of di(k) are bounded by

E
∥∥di(k)∥∥ ⩽ L, E

∥∥di(k)∥∥2 ⩽ L2,

where L is the Lipschitz constant with respect to x in
Remark 5.
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Lemma 9: With Assumptions 1-4, for given common
point λ∗, the consensus of estimate xi(k) in L1 is achieved
by Algorithm 1, that is, for i, j = 1, 2, . . . , n,

lim
k→∞

E
∥∥xi(k) − xj(k)

∥∥ = 0.

Lemma 10: With Assumptions 1 and 3, the cross term of
di(k) and ξi(k) − ξ∗ is lower bounded
(a) in conditional expection with respect to F(k) as follows:

E
[〈
di(k), xi(k) − ξ∗

〉∣∣F(k)]
⩾ fi

(
x̄(k), λ̄(k)

)
− fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥ − B

− K
∥∥λi(k)−λ̄(k)

∥∥−K∥λi(k)−λ∗
∥∥ − c(k)L

∥∥ i

i

(k)
∥∥,

(b) in expection as follows:

E
[〈
di(k), ξi(k) − x∗

〉]
⩾ E

[
fi
(
x̄(k), λ∗

)
− fi

(
x∗, λ∗

)]
− LE

∥∥ξi(k) − x̄(k)
∥∥

− 2KE∥λi(k) − λ∗
∥∥ − c(k)LE

∥∥ i

i

(k)
∥∥ − B,

where L is the Lipschitz constant with respect to x, K is the
Lipschitz constant with respect to λ given in Remark 5, B is a
positive constant.
Lemma 11: With Assumptions 1-4, for fixed common

point λ∗, all the sequences {xi(k)}, i ∈ N converge to
the same random variable consensusly and almost surely by
Algorithm 1.
Lemma 12: Set ι(k) =

1
k1+ϵ and c(k) =

1
kδ with

1
2 + ϵ >

δ ⩾ ϵ > 0. With Assumptions 1-4, we have
n∑
i=1

E
∥∥xi(k) − x∗

∥∥2 ⩽
M1

k2+2ϵ +
M2

kϵ
+

M3

kϵ+δ
,

where M1, M2 and M3 are constants.
Proof of Theorem 1:

(a) We prove that for i, j = 1, 2, . . . , n,

lim
k→∞

∥∥λi(k) − λj(k)
∥∥ = 0 a. s.

According to the definition of transition matrix 9(k, s)
and the definition of λi(k + 1) in (9), we have:

λi(k + 1) =

n∑
j=1

[
9(k, 0)

]
ijλj(0). (10)

Define λ̄(k + 1) =
1
n

∑n
i=1 λi(k + 1). According

to Assumption 1 and by an analoglous induction, the
following equality holds:

λ̄(k + 1) =
1
n

n∑
i=1

λi(0). (11)

Therefore, ∀i ∈ N ,∥∥λi(k + 1)−λ̄(k+1)
∥∥ ⩽

n∑
j=1

∣∣∣[9(k, 0)
]
ij −

1
n

∣∣∣∥∥λj(0)
∥∥.

(12)

Plugging in the estimate of9(k, s) in Lemma 7, we have∥∥λi(k + 1) − λ̄(k + 1)
∥∥ ⩽ nδβk max

1⩽i⩽n

∥∥λi(0)
∥∥. (13)

Therefore,

lim
k→∞

∥∥λi(k) − λ̄(k)
∥∥ = 0, ∀i ∈ N . (14)

(b) According to Lemma 11, limk→∞

∑n
i=1

∥∥xi(k) − x∗
∥∥2

converges to a non-negative random variable almost
surely. According to Lemma 12, we have

lim
k→∞

E
∥∥xi(k) − x∗

∥∥2 = 0,

which means that {xi(k)}, i ∈ N generated from
Algorithm 1 converge to the optimal solution x∗ in L2.
Therefore,

lim
k→∞

n∑
i=1

∥∥xi(k) − x∗
∥∥2
2 = 0, a.s. (15)

Then we give the following convergence rate result of the
proposed algorithm.
Theorem 2: Set ι(k) =

1
k1+ϵ and c(k) =

1
kδ with 1

2 +

ϵ > δ ⩾ ϵ > 0. With Assumptions 1-4, for distributed
(sub)gradient-free inteval-valued algorithm (Algorithm 1),
we have

n∑
i=1

E
∥∥xi(k) − x∗

∥∥2 ∼ O
(
max

{ 1
kϵ

,
1

k1+2ϵ−2δ

})
n∑
i=1

E
∥∥λi(k) − λ∗

∥∥2 ∼ O
(
βk

)
.

Proof: According to Lemma 12, we have
n∑
i=1

E
∥∥xi(k) − x∗

∥∥2 ∼ O
(
max

{ 1
kϵ

,
1

k1+2ϵ−2δ

})
. (16)

Following (13) in the proof of Theorem 1, we obtain
n∑
i=1

E
∥∥λi(k) − λ∗

∥∥2 ∼ O
(
βk

)
. (17)

The proof is completed.
Remark 6: It directly follows from Theorem 2 that the

optimal values for ϵ and δ are ϵ =
1
2
and δ =

1
2
, respectively,

which in turn indicate that ιk =
1

k
3
2
, ck =

1

k
1
2
, and

n∑
i=1

E
∥∥xi(k) − x∗

∥∥2 ∼ O
( 1
√
k

)
n∑
i=1

E
∥∥λi(k) − λ∗

∥∥2
2 ∼ O

( 1
√
k

)
.

Not only does the rate match the best rate for centralized
stochastic approximation algorithms, see [36] and references
therein, but it also matches the best rate given for first-order
stochastic subgradient algorithms [37] with diminishing
step-size..
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FIGURE 3. Topology of the 5-agent network.

FIGURE 4. λi (k) for agent i .

V. SIMULATION
Simulations of the distributed (sub)gradient-free inteval-
valued algorithm are presented in this section. In partic-
ular, we consider the following distributed interval-valued
quadratic problem:

min G(x) =

5∑
i=1

[υ1i, υ2i]∥x − ρi∥
2

s. t. ∥x∥ ⩽ X ,

where υ1i, υ1i ∈ R and ρi ∈ Rp. This problem is motivited
from centralized quadratic interval-valued learning [43] and
distributed optimization [45].

FIGURE 5. xi (k) for agent i .

We demonstrate the proposed algorithm with the
expression X :=

{
x
∣∣∥x∥ ⩽ 100

}
, assuming [υ1i, υ2i] =

[0.5, 2], where ρ1 = 3, ρ2 = 2, ρ3 = 1, ρ4 = 0, ρ5 = −1,
respectively. In addition, we detail the parameter choices
utilized in simulations of the proposed algorithm. Initially,
we set the step size ι(k) =

1

k
3
2
and the parameter c(k) =

1

k
1
2

for the random differences. λ1(0) = 0.1, λ2(0) = 0.3,
λ3(0) = 0.5, λ4(0) = 0.7, λ5(0) = 0.9, and xi(0)’s = 0 are
then respectively initialized.

Then, let us investigate the convergence performance of
the distributed (sub)gradient-free interval-valued algorithm.
The simulation results are based on a 5-agent time-varying
network whose communication topology is depicted in Fig. 2.
Both Fig.4 and Fig. 5 illustrate the convergence performance
of the proposed algorithm. For 500 iterations, we can attain a
(0.500, 0.996) pareto solution.

VI. CONCLUSION
This paper investigated the problem of distributed inter-
val optimization subject to local convex constraints. The
objective functions for the distributed design are compact
interval-valued functions, and the network is time-varying.
A distributed subgradient-free methodology for finding a
Pareto-optimal solution to a distributed interval optimization
problem was developed by constructing random differences.
In addition, we showed that a Pareto optimal solution can be
achieved with probability one over a time-varying network
and provided a numerical illustration of the algorithm’s
efficacy.

APPENDIX A
PROOF OF LEMMA 8
According to the definition of di(k) in (6), we have

di(k) =

[
y+i (k) − y−i (k)

] a
−

i (k)

2c(k)
(18)
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where ∥y+i (k) − y−i (k)∥ =
∥∥fi(ξi(k) + c(k)

a
i(k), λi(k)

)
−

fi
(
ξi(k) − c(k)

a
i(k), λi(k)

∥∥ ⩽ 2Lc(k)
∥∥ a

i(k)
∥∥ according to

Remark 5. Due to Assumption 3(a), we have

E
∥∥∥∥
[
y+i (k) − y−i (k)

] a
−

i (k)

2c(k)

∥∥∥∥ ⩽ L, (19)

and

E
∥∥∥∥
[
y+i (k) − y−i (k)

] a
−

i (k)

2c(k)

∥∥∥∥2 ⩽ L2. (20)

APPENDIX B
PROOF OF LEMMA 9
For all i ∈ N , k ⩾ 0, define

pi(k + 1) = xi(k + 1) − ξi(k) = xi(k + 1) −

n∑
j=1

wij(k)xj(k).

(21)

as the error between xi(k+1) and ξi(k). According to Lemma
5(b) and the fact that X is a closed, convex set, we get∥∥pi(k + 1)

∥∥
=

∥∥∥∥PX ( n∑
j=1

wij(k)xj(k) − ι(k)di(k)
)
−

n∑
j=1

wij(k)xj(k)

∥∥∥∥
⩽ ι(k)

∥∥di(k)∥∥.

(22)

Rewrite (9) compactly in terms of 9(k, s) and the definition
of pi(k + 1) as follows:

xi(k + 1) =

n∑
j=1

[
9(k, 0)

]
ijxj(0) + pi(k + 1)

+

k∑
s=1

n∑
j=1

[
9(k, s)

]
ijpj(s), (23)

for k ⩾ s. Define x̄(k + 1) =
1
n

∑n
i=1 xi(k + 1). Moreover,

with Assumption 1(b) and by an analoglous induction, the
following equality holds:

x̄(k + 1) =
1
n

n∑
i=1

xi(0) +
1
n

k+1∑
s=1

n∑
j=1

pj(s) (24)

Therefore, ∀i ∈ N ,∥∥xi(k + 1) − x̄(k + 1)
∥∥

⩽
n∑
j=1

∣∣∣[9(k, 0)
]
ij −

1
n

∣∣∣∥∥xj(0)∥∥
+

∥∥pi(k + 1)
∥∥ +

1
n

n∑
j=1

∥∥pj(k + 1)
∥∥

+

k∑
s=1

n∑
j=1

∣∣∣[9(k, s)
]
ij −

1
n

∣∣∣∥∥pj(s)∥∥. (25)

Taking the expectation of (25), we get

E
∥∥xi(k + 1) − x̄(k + 1)

∥∥ (26)

⩽
n∑
j=1

∣∣∣[9(k, 0)
]
ij −

1
n

∣∣∣∥∥xj(0)∥∥ + E
∥∥pi(k + 1)

∥∥
+

1
n

n∑
j=1

E
∥∥pj(k + 1)

∥∥ +

k∑
s=1

n∑
j=1

∣∣∣[9(k, s)
]
ij

−
1
n

∣∣∣E∥∥pj(s)∥∥. (27)

Plugging in the estimate of 9(k, s) in Lemma 7 and the
estimate of pi(k + 1) in (22), we have

E
∥∥xi(k + 1) − x̄(k + 1)

∥∥
⩽nδβk max

1⩽i⩽n

∥∥xi(0)∥∥ + ι(k)E
∥∥di(k)∥∥ +

ι(k)
n

n∑
i=1

E
∥∥di(k)∥∥

+ δ

k∑
s=1

βk−s
n∑
i=1

ι(s− 1)E
∥∥di(s− 1)

∥∥. (28)

From Theorem 1, we have E
∥∥di(k)∥∥ ⩽ L. Therefore,

E
∥∥xi(k + 1) − x̄(k + 1)

∥∥ ⩽ nδβk max
1⩽i⩽n

∥∥xi(0)∥∥ + 2ι(k)L

+ δn
k∑
s=1

ι(s− 1)βk−sL. (29)

Since
∑

∞

k=1 ι(k)2 < ∞ with Assumption 4(a) and∑
∞

k=1
ι(k)
c(k) < ∞ with Assumption 4(c), we obtain

limk→∞ ι(k) = 0 and limk→∞
ι(k)
c(k) = 0. According to

Lemma 3.1 in [4], we obtain limk→∞

∑k
s=1 ι(s − 1)βk−s =

0 and limk→∞

∑k
s=1

ι(s−1)
c(s−1)β

k−s
= 0. Therefore,

lim
k→∞

E
∥∥xi(k + 1) − x̄(k + 1)

∥∥ = 0, ∀i ∈ N . (30)

APPENDIX C
PROOF OF LEMMA 10
(a) Define [Ci(k)]1 = ξi(k) + c(k)

a
i(k) and [Ci(k)]2 =

ξi(k) − c(k)
a
i(k). According to Lemma 1:

fi
(
[Ci(k)]1, λi(k)

)
− fi

(
[Ci(k)]2, λi(k)

)
∈
〈
∂fiξi(k)+θic(k)

a
i(k)

(
ξi(k) + θic(k)

i

i

(k), λi(k)
)
,

2c(k)
i

i

(k)
〉
, (31)

where θi ∈ [−1, 1] is a constant. Therefore, there exists
ςi ∈ ∂fiξi(k)+θic(k)

a
i(k)

(
ξi(k) + θic(k)

a
i(k), λi(k)

)
such

that

fi
(
[Ci(k)]1, λi(k)

)
− fi

(
[Ci(k)]2, λi(k)

)
=

〈
ςi, 2c(k)

i

i

(k)
〉
. (32)
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By taking conditional expectation of
〈
di(k), ξi(k) − x∗

〉
with respect to F(k) and noticing (32), we obtain the
following inequality:

E
[〈
di(k), ξi(k) − x∗

〉∣∣F(k)] = Di(k), (33)

where

Di(k) = E
[
(ςi)⊤

i

i

(k)
[ i

i

(k)
]−⊤(ξi(k) − x∗)

∣∣F(k)].
We further formulate Di(k) as follows:

Di(k) = E
[
(ςi)⊤

( i

i

(k)
[ i

i

(k)
]−⊤

− I
)
(ξi(k) − x∗)

×
∣∣F(k)] + E

[〈
ςi, ξi(k) − x∗

〉∣∣F(k)]. (34)

By Definition 1 and Remark 5, we obtain

E[
〈
ςi, ξi(k) − x∗

〉
|F(k)]

= E[
〈
ςi, ξi(k)+θic(k)

i

i

(k)−θic(k)
i

i

(k)−x∗
〉
|F(k)]

⩾ E[fi
(
ξi(k)+θic(k)

i
(k)i, λi(k)

)
−fi

(
x∗, λi(k)

)
|F(k)]

−
∣∣c(k)∣∣LE

∥∥θi
i

i

(k)
∥∥

⩾ E[fi
(
ξi(k)+θic(k)

i

i

(k), λi(k)
)
−fi

(
x̄(k), λi(k)

)
|F(k)]

+ fi
(
x̄(k), λi(k)

)
− fi

(
x∗, λi(k)

)
−

∣∣c(k)∣∣LE
∥∥θi

i

i

(k)
∥∥

⩾ fi
(
x̄(k), λ̄(k)

)
− fi

(
x∗, λ∗

)
+ fi

(
x̄(k), λi(k)

)
− fi

(
x̄(k), λ̄(k)

)
− fi

(
x∗, λi(k)

)
+ fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥ − 2

∣∣c(k)∣∣LE
∥∥θi

i

i

(k)
∥∥

⩾ fi
(
x̄(k), λ̄(k)

)
− fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥

− K
∥∥λi(k)−λ̄(k)

∥∥−K∥λi(k)−λ∗
∥∥−2c(k)LE

∥∥ i

i

(k)
∥∥,

(35)

and∣∣∣∣E[
(ςi)⊤

( i

i

(k)
[ i

i

(k)
]−⊤

− I
)
(ξi(k) − x∗)

∣∣F(k)]∣∣∣∣
=

∣∣∣∣E[
(ςi −∂fixi(k)

(
xi(k), λi(k)

)
)⊤

×

( i

i

(k)
[ i

i

(k)
]−⊤

− I
)
(ξi(k) − x∗)

∣∣F(k)]∣∣∣∣ ⩽ B.

(36)

where B is a positive constant. Combining (35), (28)
with (33) gives

E
[〈
di(k), xi(k) − ξ∗

〉∣∣F(k)]
⩾ fi

(
x̄(k), λ̄(k)

)
− fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥ − B

− K
∥∥λi(k)−λ̄(k)

∥∥−K∥λi(k)−λ∗
∥∥ − c(k)L

∥∥ i

i

(k)
∥∥.

(37)

(b) By Definition 1 and Remark 5, we obtain

E[
〈
ςi, ξi(k) − x∗

〉
|F(k)]

= E[
〈
ςi, ξi(k)+θic(k)

i

i

(k)−θic(k)
i

i

(k)−x∗
〉
|F(k)]

⩾ E[fi
(
ξi(k)+θic(k)

i
(k)i, λi(k)

)
−fi

(
x∗, λi(k)

)
|F(k)]

−
∣∣c(k)∣∣LE

∥∥θi
i

i

(k)
∥∥

⩾ E[fi
(
ξi(k) + θic(k)

i

i

(k), λi(k)
)

− fi
(
x̄(k), λi(k)

)
|F(k)]

+ fi
(
x̄(k), λi(k)

)
−fi

(
x∗, λi(k)

)
−

∣∣c(k)∣∣LE
∥∥θi

i

i

(k)
∥∥

⩾ fi
(
x̄(k), λ∗

)
− fi

(
x∗, λ∗

)
+ fi

(
x̄(k), λi(k)

)
−fi

(
x̄(k), λ∗

)
− fi

(
x∗, λi(k)

)
+ fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥ − 2

∣∣c(k)∣∣LE
∥∥θi

i

i

(k)
∥∥

⩾ fi
(
x̄(k), λ∗

)
− fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥

− 2K∥λi(k) − λ∗
∥∥ − 2c(k)LE

∥∥ i

i

(k)
∥∥. (38)

Similar to the proof of part (a), we can get

E
[〈
di(k), xi(k) − ξ∗

〉∣∣F(k)]
⩾ fi

(
x̄(k), λ∗

)
− fi

(
x∗, λ∗

)
− L

∥∥ξi(k) − x̄(k)
∥∥ − 2L

− 2K∥λi(k) − λ∗
∥∥ − c(k)L

∥∥ i

i

(k)
∥∥. (39)

The proof of second part of Lemma 10 can be given by
taking expection to both side of (39).

APPENDIX D
PROOF OF LEMMA 11
(a) We prove that for i, j = 1, 2, . . . , n,

lim
k→∞

∥∥xi(k) − xj(k)
∥∥ = 0 a. s.

From Lemma 9, limk→∞ E
∥∥xi(k + 1) − x̄(k + 1)

∥∥ =

0 holds. Still

0 ⩽ E
[
lim inf
k→∞

∥∥xi(k + 1) − x̄(k + 1)
∥∥]

⩽ lim inf
k→∞

E
∥∥xi(k + 1) − x̄(k + 1)

∥∥ = 0, (40)

which yields E
[
lim inf
k→∞

∥∥xi(k + 1) − x̄(k + 1)
∥∥]

= 0.

Therefore, lim inf
k→∞

∥∥xi(k + 1) − x̄(k + 1)
∥∥ = 0 holds

almost surely. Since
∑n

i=1

∥∥xi(k + 1) − x̄(k + 1)
∥∥2 ⩽∑n

i=1

∥∥xi(k + 1) − x̄(k)
∥∥2 according to Lemma 2 and∥∥xi(k + 1) − x̄(k)

∥∥2 ⩽
∥∥ξ̂i(k) − x̄(k)

∥∥2 according to
Lemma 3,

n∑
i=1

∥∥xi(k + 1) − x̄(k + 1)
∥∥2
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⩽
n∑
i=1

∥∥ξ̂i(k) − x̄(k)
∥∥2

⩽
n∑
i=1

n∑
j=1

wij(k)
∥∥xj(k) − x̄(k)

∥∥2 + ι2(k)
n∑
i=1

∥∥di(k)∥∥2
+ 2ι(k)

n∑
i=1

∥∥di(k)∥∥ n∑
j=1

wij(k)
∥∥xj(k) − x̄(k)

∥∥. (41)

According to Assumption 2(b),
n∑
i=1

n∑
j=1

wij(k)
∥∥xj(k) − x̄(k)

∥∥2 =

n∑
i=1

∥∥xi(k) − x̄(k)
∥∥2.
(42)

Thus, taking the conditional expectation of both side
of (41) yields

n∑
i=1

E
[∥∥xi(k + 1) − x̄(k + 1)

∥∥2∣∣F(k)]
⩽

n∑
i=1

∥∥xj(k) − x̄(k)
∥∥2 +

n∑
i=1

ι2(k)E
∥∥di(k)∥∥2

+

n∑
i=1

2nι(k)E
∥∥di(k)∥∥E

∥∥xi(k) − x̄(k)
∥∥. (43)

According to Assumption 4 and Lemma 8(b)
∞∑
k=1

n∑
i=1

ι2(k)E
∥∥di(k)∥∥2 < ∞.

According to Theorem 6.2 of [4],
∑

∞

k=1 ι(k)
∥∥xi(k) −

x̄(k)
∥∥ < ∞ with probability 1. Through Lemma 8(a),∑

∞

k=1
∑n

i=1 2nι(k)E
∥∥di(k)∥∥E

∥∥xi(k) − x̄(k)
∥∥ < ∞.

Therefore, limk→∞

∥∥xi(k) − x̄(k)
∥∥ = 0 holds almost

surely by Lemma 4.
(b) Clearly,

∥∥xi(k + 1) − x∗
∥∥2 ⩽

∥∥ξ̂i(k) − x∗
∥∥2 according

to the properties of Euclidean norm in Lemma 3. Then,∥∥xi(k + 1) − x∗
∥∥2 ⩽

∥∥ξi(k) − x∗
∥∥2 + ι2(k)

∥∥di(k)∥∥2
− 2ι(k)

〈
di(k), ξi(k) − x∗

〉
. (44)

Taking conditional expection of both sides of (44),
we obtain for all k = 0, 1, 2, . . .,

E
[∥∥xi(k + 1) − x∗

∥∥2∣∣F(k)]
⩽E

[∥∥ξi(k) − x∗
∥∥2∣∣F(k)] + ι2(k)E

[∥∥di(k)∥∥2∣∣F(k)]
− 2ι(k)E

[〈
di(k), ξi(k) − x∗

〉∣∣F(k)]. (45)

By the double stochasticity of matrix W (k) in Assump-
tion 2(b),

n∑
i=1

E
[∥∥ξi(k) − x∗

∥∥2∣∣F(k)] ⩽
n∑
i=1

∥∥xi(k) − x∗
∥∥2,

n∑
i=1

E
[∥∥ξi(k) − x̄(k)

∥∥∣∣F(k)] ⩽
n∑
i=1

∥∥xi(k) − x̄(k)
∥∥.

(46)

Then, with probability 1, for i ∈ N , it holds

n∑
i=1

E
[∥∥xi(k + 1) − x∗

∥∥2∣∣F(k)]
⩽

n∑
i=1

[∥∥xi(k) − x∗
∥∥2 +

[
Oi(k)

]
1 +

[
Oi(k)

]
2

+
[
Oi(k)

]
3+

[
Oi(k)

]
4+

[
Oi(k)

]
5+

[
Oi(k)

]
6 − Ji(k)

]
,

(47)

where

[
Oi(k)

]
1 = ι2(k)E

[∥∥di(k)∥∥2∣∣F(k)][
Oi(k)

]
2 = 2ι(k)LE

∥∥xi(k) − x̄(k)
∥∥[

Oi(k)
]
3 = 4ι(k)c(k)LE

∥∥ i
(k)i

∥∥[
Oi(k)

]
4 = 2ι(k)LE

∥∥λi(k) − λ̄(k)
∥∥[

Oi(k)
]
5 = 2ι(k)LE

∥∥λi(k) − λ∗
∥∥[

Oi(k)
]
6 = 2ι(k)B

Ji(k) = 2ι(k)
[
fi
(
x̄(k), λ̄(k)

)
− fi

(
x∗, λ∗

)]
.

According to Assumption 4 and Lemma 8,

∞∑
k=1

[
Oi(k)

]
1 < ∞.

By the proof in part (a),
∑

∞

k=1
[
Oi(k)

]
2 < ∞.

By Assumption 3-4,
∑

∞

k=1
[
Oi(k)

]
3 < ∞. By Theo-

rem 1,
∑

∞

k=1
[
Oi(k)

]
4 < ∞ and

∑
∞

k=1
[
Oi(k)

]
5 < ∞.

By Assumption 4,
∑

∞

k=1
[
Oi(k)

]
6 < ∞. Therefore,∑

∞

k=1
∑n

i=1

[[
Oi(k)

]
1+

[
Oi(k)

]
2+

[
Oi(k)

]
3+

[
Oi(k)

]
4+[

Oi(k)
]
5 +

[
Oi(k)

]
6

]
< ∞. From Lemma 7, the

sequence
∑n

i=1

∥∥xi(k) − x∗
∥∥2 converges almost surely

with
∑

∞

k=1
∑n

i=1 Ji(k) < ∞. Therefore, the sequence∑n
i=1

∥∥ξi(k)−ξ∗
∥∥2 converges to a random variable with

probability 1. The proof is completed.

APPENDIX E
PROOF OF LEMMA 12
By taking expectation to both sides of (44), we obtain

E
∥∥xi(k + 1) − x∗

∥∥2 ⩽ E
∥∥ξi(k) − x∗

∥∥2 + ι2(k)E
∥∥di(k)∥∥2

− 2ι(k)E
[〈
di(k), ξi(k) − x∗

〉]
. (48)

By the double stochasticity of matrix W (k) given in
Assumption 2(b), we have the following inequalities

n∑
i=1

E
∥∥ξi(k) − x∗

∥∥2 =

n∑
i=1

E
∥∥∥ n∑
j=1

wij(k)xj(k) − x∗

∥∥∥2
⩽

n∑
i=1

E
∥∥xi(k) − x∗

∥∥2, (49)
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n∑
i=1

E
∥∥ξi(k) − x̄(k)

∥∥ =

n∑
i=1

E
∥∥∥ n∑
j=1

wij(k)xj(k) − x̄(k)
∥∥∥

⩽
n∑
i=1

E
∥∥xi(k) − x̄(k)

∥∥. (50)

By taking summation of both sides of (48) for k = 1, 2, . . .T
and i = 1, 2, . . . n and noticing (49), (50) and Lemma 10,
we have
k∑
s=1

n∑
i=1

E
∥∥xi(s+ 1) − x∗

∥∥2
⩽

k∑
s=1

n∑
i=1

E
∥∥xi(s) − x∗

∥∥2 + 4K
k∑
s=1

n∑
i=1

ι(s)E
∥∥λi(s) − λ∗

∥∥
+ 2L

k∑
s=1

n∑
i=1

ι(s)E
∥∥xi(s) − x̄(s)

∥∥ + 2nB
k∑
s=1

ι(s)

+ 4L
k∑
s=1

n∑
i=1

ι(s)c(s)E
∥∥ i

i

(s)
∥∥ +

k∑
s=1

n∑
i=1

ι2(k)E
∥∥di(s)∥∥2

− 2
k∑
s=1

n∑
i=1

ι(s)E
[
fi
(
x̄(s), λ∗

)
− fi

(
x∗, λ∗

)]
. (51)

Therefore,
n∑
i=1

E
∥∥xi(k + 1) − x∗

∥∥2
⩽

k∑
s=1

n∑
i=1

ι2(k)E
∥∥di(s)∥∥2 + 4K

k∑
s=1

n∑
i=1

ι(s)E
∥∥λi(s) − λ∗

∥∥
+ 2L

k∑
s=1

n∑
i=1

ι(s)E
∥∥xi(s) − x̄(s)

∥∥ + 2nB
k∑
s=1

ι(s)

+ 4L
k∑
s=1

n∑
i=1

ι(s)c(s)E
∥∥ i

i

(s)
∥∥. (52)

Noticing that ι(s) =
1

s1+ϵ , c(s) =
1
sδ , and

1
2 + ϵ > δ > 0.

By Lemma 8, for the first term on the right hand side of (52),
we have

k∑
s=1

n∑
i=1

ι2(s)E
∥∥di(s)∥∥2 ⩽ n

k∑
s=1

ι2(k)L2 ⩽
M1

k2+2ϵ . (53)

Since X is bounded in Rm, for x ∈ X , there exists a constant
Mx such that

∥∥x∥∥ ⩽ Mx . Still, λ ∈ [0, 1]. For the terms on
the right hand side of (52), we have

2L
k∑
s=1

n∑
i=1

ι(s)E
∥∥xi(s) − x̄(s)

∥∥ ⩽ 4nLMx

k∑
s=1

ι(s) ⩽
M21

kϵ
,

(54)

4K
k∑
s=1

n∑
i=1

ι(s)E
∥∥λi(s) − λ∗

∥∥ ⩽ 2nK
k∑
s=1

ι(s) ⩽
M22

kϵ
.

(55)

According to Assumption 3-4, for the fouth term on the right

hand side of (52), we have 2nB
∑k

s=1 ι(s) ⩽
M23

kϵ
. For the last

term on the right hand side of (52), we have

4L
k∑
s=1

n∑
i=1

ι(s)c(s)E
∥∥ i

i

(s)
∥∥ ⩽

M3

kϵ+δ
. (56)

Since M1,M21,M22,M23,M3 are positive constants in the
above inequalities, we have

n∑
i=1

E
∥∥xi(k) − x∗

∥∥2 ⩽
M1

k2+2ϵ +
M2

kϵ
+

M3

kϵ+δ
, (57)

where M21 +M22 +M23 = M2.
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