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ABSTRACT Cancer decision-making is a complex process that can be exacerbated by the limited availability
of oncological expertise. This is particularly true in rural areas and settings with fewer resources. Recently,
there has been an interest in the potential of artificial intelligence in reliable computer-aided diagnosis
tools in such settings. Nevertheless, the majority of deep learning algorithms are resource hungry in terms
of data and storage requirements. In this work, we propose a novel lightweight deep learning model for
histological tumor classification through a Joint Sparsity-QuantizationAware Training framework. Extensive
experiments were conducted to evaluate the proposed framework. Promising performance has been achieved
compared to the most relevant state-of-the-art work with a classification accuracy of 94.26% and an average
5× reduction in the memory footprint. This work aims at opening doors toward efficient point-of-care
diagnostic devices suitable for environments with limited resources.

INDEX TERMS Deep learning, histopathology, quantization, pruning, transfer learning, medical image
analysis.

I. INTRODUCTION
The widespread use of deep learning models has many impli-
cations across multiple disciplines. Models are becoming
larger in size with massive amounts of data collected and
fed to them, requiring tremendous computing power and
energy. There is a current need to counteract the negative
consequences of traditionally large models by looking into
methods that scale back resource consumption. Deep learning
that is economical in size and resource consumption is an
attractive prospect, as it cuts back on cost, is accessible to
more devices, and reduces the carbon footprint. The lower
cost of entry incentives deployment to constrained resource
devices, which can reach communities that cannot afford
the cost of higher-end devices and expensive training. This
is especially important in medical devices that facilitate the
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clinical decision-making process which is needed in areas
with a deficiency in medical expertise.

Model compression is an area that is receiving a lot of
attention due to the potential gains in conserving memory
and computation, coupled with the interest and traction
the Internet of Things (IoT) and mobile devices have
gained in recent years, hence expediting the demand for
efficient models. Quantization, pruning, and knowledge
distillation are the main directions concerned with balancing
computational costs with the associated consequence of
accuracy degradation which are crucial factors for enabling
deployment to resource-constrained devices. Deep learning
applied to medical data has the potential to improve diagnos-
tic accuracy and subsequent patient prognosis through early
detection. Deep learning has a track record of being used in
many medical applications, for example in drug prediction
[1], medical image segmentation [2], cancer classification
[3], abnormal speech recognition [4], and others.
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Examination of histopathological images remains one of
the essential methods for diagnosing cancer. Despite it being
an effective diagnostic procedure, expert knowledge about
the disease is vital for a valid interpretation [5]. Moreover,
histopathological examination is liable to the subjective
interpretation of the pathologist which is dependent on
their level of experience, thus leading to variations in
patient assessment [6]. Therefore, the need for a second
opinion is often merited, however, it may be difficult and
time-consuming to obtain. This has created a niche for
computer-aided diagnosis systems for rapid diagnosis in
which deep learning has shown great promise [7], [8].

Despite the history of using deep learning in medical
applications, the availability of medical data is severely
restricted in a legal and natural sense. This is at odds with
the data-driven nature of deep learning. Laws and ethics
regulating patient data might be a hindrance to widespread
data collection, alongside the privatization of medical
datasets. Until now there is still no standardized protocol in
place for data collection, nor consistency in data quality [9].
In conjunction, the fact that some diseases manifest more
rarely in the population makes it impossible to create equal
classes of diseases [10]. Additionally, medical data needs
to undergo annotation by experts, making abundant, high
quality and annotated medical data a cumbersome goal to
achieve.We arrive at a point where traditional deep learning’s
superior abilities in pattern recognition, which are especially
important in tasks dependent on recognizing abnormalities,
sometimes reported to be arguably superior to that of human
experts [11], [12], [13], are being undermined by the scarcity
of medical data [14].
Motivated by the extensive computational and data

resources required for deep learning, in this work we aim
to provide an efficient framework that can aid medical
professionals in cancer decision support which could be
suitable for deployment to resource-constrained devices
such as EDGE and IoT devices for healthcare applications.
The contribution of this paper can be summarized as
follows:

• A Joint Sparsity-Quantization Aware Training (JSQAT)
framework is proposed for lightweight histopatholog-
ical classification. The approach presented interleaves
transfer learning, sparsity, and quantization techniques
through the training process.

• Extensive experiments were conducted to evaluate the
impact of sparsity and quantization within the context
of malignant tumor detection in breast histopathological
images.

• We empirically evaluate the proposed framework on
the BreakHis dataset and observe that JSQAT results
indicate the possibility of a performance/memory trade-
off that balances the needs of a medical classifier with
the memory bounds of a resource-constrained environ-
ment. We compare our results with other lightweight
models oriented toward breast cancer histopathological
classification.

II. RELATED WORK
The problem of histopathological classification is of great
interest across multiple disciplines. Cancer diagnosis remains
a challenging task for pathologists given cancer’s heteroge-
neous nature [15]. Cancer is varied in its types and classifying
malignant tumors in images is a nuanced problem. Diagnostic
accuracy and interpretability are priorities in medical applica-
tions which also apply to histological classification [16], [17].
However, the majority of the literature on medical images is
confined to the traditional deep learning paradigm that is both
computationally and data intensive.

There is a need to address the demand for efficient models
in histological imaging and medical imaging in general,
to enable performant models using limited resources [18].
This can contribute to more cost-effective solutions and wider
accessibility especially in resource-limited healthcare facili-
ties that suffer from insufficient infrastructure to support large
models and a shortage of medical specialists. We believe that
compression methods such as pruning and quantization in
addition to transfer learning can allow for resource-efficient
models to be integrated into clinical workflows in low-
resource settings.

The reviewed literature prominently features CNNs, which
are exceptional in pattern detection and suited for navigating
the challenging topology of histological images. Previous
works that tackle the problem of breast cancer classification
can be grouped into ensemble or fused models [19], [20],
lightweight models, or other various deep learning or
machine learning models. Models in the literature can be
also classified according to being magnification agnostic
[21], [22] or magnification dependent [23], or whether data
augmentation was used [24].

Another prominent approach is transfer learning based
methods, typically using ImageNet as the base dataset. As an
example, an approach followed in [25], uses a pre-trained
EfficientNetV2 [26] backbone with a modified dual squeeze
and excitation network for binary classification of BreakHis
images. The authors report a precision of 0.9858 and an
F1-score of 0.9764 at 40X magnification. Using a pre-trained
network is also attempted in [27], where the authors devise
an approach based on using a MobileNet network [45] with
a Support Vector Machine named MobileNet-SVM. This
yielded an accuracy of 91% on the 400X magnification of
BreakHis.

A subset of medical image classification research is
taking resource efficiency into consideration, however, those
that tackle histopathological images are significantly fewer
in the literature as the main body of literature does not
prioritize resource/performance trade-offs. This could be
due to the anticipated impact on diagnostic accuracy from
reducing computational resources. However, striking the
balance between the two will allow computer-aided diagnosis
systems to reach low-resource devices and communities.

We wish to highlight efforts in this direction as the
following reviewed works are conceptually closer to the goal
we aim to achieve. In [28], the authors used post-training
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FIGURE 1. Diagram of the methodology of the system. The pre-trained model undergoes three stages of training; standard
fine-tuning, sparsity-aware training, and quantization-aware training in order to adapt it to the target dataset with the goal of
subjecting it to the compound effect of sparsity and quantization.

quantization (PTQ) to compress their model MobiHisNet.
The results indicate a 3.3× compression at an accuracy of
87.31% on 40X magnification BreakHis images [29] and
89.94% accuracy for 16-bit PTQ. In another work [30], the
authors followed a structured pruning approach by filtering
less important filters based on their absolute sum. The
pruned VGG19 [31] based model achieved 90.08% accuracy
on the magnification-independent binary classification task.
The authors also reported a 47.54% parameter reduction
and 63.46% FLOPs reduction. In [32], the authors applied
structured pruning on a hybrid Inception network [33]. Image
pre-processing and data augmentation were applied to the
dataset. The accuracy for 40X magnification is 85.7 ±1.9%
when 50% of the channels are pruned.

While not widely attempted in the medical literature,
there has been an interest in exploring ways to combine
quantization and pruning to achieve lighter models mainly
in the computer vision community. This combination has
been implemented on medical images in [34]. The authors
devise a toolbox for producing efficient medical models
for constrained hardware where they provide customizable
pruning and quantization options. Of the applications tested,
the performance of the toolbox on 2D nuclei segmentation
task achieved a Dice score of 0.567.

In computer vision, attempts were made to combine
pruning and quantization on general datasets [35], [36], [37],
such as MNIST [38], ImageNet [39], CIFAR-10 [40], and
ILSVRC-2012 [41]. Results reported in these works include
1,910× and 210× size reduction [35] using LeNet-5 [42] and
AlexNet [43] on MNIST and ImageNet respectively. With
a 94.09% accuracy at 53.9% sparsity reported in [36] using
ResNet [44] on CIFAR-10. Alongside 92.23% accuracy for
50% weight sparsity outlined in [37] using MobileNet [45].

III. METHODOLOGY
This section details the methodology of the proposed JSQAT
framework and the associated experimental configurations.
The proposed framework consists of three major stages,
starting with transfer learning and fine-tuning [46] on

histopathological images of breast cancer labeled as malig-
nant or benign. The second stage is sparsity-aware training,
and the final stage is quantization-aware training as shown in
Figure 1. In this first stage of transfer learning, we started
with two ImageNet [39] VGG19 [31] and ResNet-50 [44]
pre-trained networks. Each network is appended by a global
average pooling layer, a fully connected layer, and a
classification (softmax) layer. We set the frozen/unfrozen
layer ratio to around 70%/30% of total parameters. This
results in most of the layers being frozen which preserves the
pre-trained weights as shown in Figure 2, which demonstrates
the state of the model layers at each of the three stages.

A. SPARSITY-AWARE TRAINING
Network pruning is a well-researched approach to model
compression [47], with two main methods; unstructured
and structured pruning, our approach to pruning falls under
the former category. We incorporate network pruning into
our training to reduce model complexity and overcome
overfitting, with the goal of reducing the storage required in
order to suit the capabilities of resource-constrained devices.

To maximize the efficacy of the pruning step, we adopt
L1 regularization as a preliminary step before pruning by
integrating it into the loss function of the fine-tuning stage.
L1 regularization-based pruning is used for its effectiveness
in minimizing weights and encouraging sparsity in the
training layers thus facilitating the subsequent pruning step
[48], [49]. When added to a training loss function, the
L1 regularization term imposes a penalty that encourages
more weights to become zero or near zero by penalizing the
sum of absolute weights, this allows the model to learn a
sparse representation. The regularization term consists of a
penalty hyperparameter (λ) that can be tuned to control the
severity of the penalization.

We also experiment with another regularization technique,
L1L2. While L1 regularization encourages sparsity in weights,
L2 regularization [50], [51] is primarily for controlling
model complexity by distributing weights evenly throughout
the model. The implication of using L2 regularization is
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FIGURE 2. Changes to the network at each stage, where the layers colored red are trainable.

preventing overfitting and stark differences between weights
by promoting weight decay. Typically it is used in conjunc-
tionwith L1 regularization for amore pronounced effect when
it comes to sparsification and regularization-based pruning to
improve the overall generalization ability of the model.

During the pruning step, we use unstructured magnitude-
based pruning [52] in which the smallest weights are removed
until the sparsity constraint is satisfied. This is followed by
re-training to allow the network to recover from potential
accuracy loss. The former steps are repeated iteratively, this is
referred to as iterative pruning [53]. It is important to point out
that the magnitude-based pruning schedule that is followed
enforces the sparsity percentage layer-wise not globally to
the entire network. We chose unstructured magnitude-based
pruning as our method due to its flexibility and more effective
compression without compromising accuracy [54].

Equations (1) and (2) show the loss function used. This
includes the Cross-Entropy loss term (LCE ) and regulariza-
tion penalty terms to encourage sparsity in the training layers,
y represents the ground truth and ŷ is the predicted output
while N refers to the number of sample points.

L(ŷ, y) = LCE + λ1

N∑
i=1

|wi| + λ2

N∑
i=1

w2
i (1)

LCE = −

N∑
i

yilog(ŷi) (2)

The second and third terms of the loss function
(Equation (1)) are the regularization terms which consist of
the λ1 and λ2 hyperparameters and the L1-norm and the
L2-norm respectively. The λ hyperparameter affects the
severity of the regularization penalty. The regularization
terms penalize the sum of absolute weights and squared
weights. This incentivizes the loss function to minimize the
magnitude of the weights [55], [56]. In our experiments,
we report the results for the following selection of hyperpa-
rameters < λ1, λ2 >=< λ0, 0 >. Going forward, this is
referred to as L1 regularization mode and < λ1, λ2 >=<

λ0, λ0 > is referred to as L1L2 regularization mode. The
λ0 values tested are {0, 0.001, 0.005, 0.01, 0.05} for the first
network and {0, 0.001, 0.005, 0.01} for the second network.

B. QUANTIZATION-AWARE TRAINING
In order to obtain a more compact network, we use
quantization to reduce the number of bits required for each
parameter from 32-bit floating point to 8-bit integers after
the sparsification methods previously mentioned. In addi-
tion to minimizing the required memory storage, weight
quantization lessens the burden of computation by enabling
fixed-point arithmetic. For the purposes of our application,
we opt for quantization-aware training (QAT), which is
able to achieve competitive performance when compared to
post-training quantization (PTQ). This is due to accounting
for quantization error resulting from 8-bit quantization
in the training process [57], which is not considered in
PTQ. As shown in Figure 1, this entails quantization and
dequantization blocks in the forward propagation path of the
training. No quantization takes place in the backpropagation.
Quantization in the forward propagation occurs according to
Equation (3):

wq = min(qmax ,max(qmin,
w
s

+ z)) (3)

where w is the input tensor/weight, wq is the quantized
weight, qmax and qmin are the maximum and minimum values
for the desired bit quantization, s is the scaling factor and z
is the zero-point. Then, dequantization is achieved by ŵ =

(wq − z)s. These operations are carried out by the quantizer
and dequantizer nodes respectively. However, observing the
dequantization equation, the recovered weight ŵ is not
exactly equal to the original input weight w. As a result,
quantization is a process that triggers loss which the optimizer
tries to minimize by adjusting the network’s weights. The loss
due to quantization for a network with w inputs, y labels, and
θ parameters can be described as L[f (w, q(θ )), y] where q is
the quantization operation. Adding this new loss to the loss
function in Equation (1), then the overall objective function
to be minimized from all prior loss functions becomes:

LCE + λ1

N∑
i=1

|wi| + λ2

N∑
i=1

w2
i + L[f (w, q(θ )), y] (4)

The steps in the framework are described in Algorithm 1,
where the model undergoes sparsification and then quanti-
zation in the training pipeline.
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Algorithm 1 Algorithm for Sparse-Quantization Aware
Training
Input: Pre-trained network with parameters θ , total number

of layers L, number of trainable layers k, number of
iterations n, pruning mask m and pruning rate p

Output: Lightweight classifier for histopathological images
Stage I : Transfer Learning (Fine-tuning)

1: for one epoch do
2: Minimize the loss function LCE
3: end for
4: Freeze the first L − k layers of the pre-trained model
5: for each epoch do
6: Minimize the loss function LCE + λ1

∑N
i=1 |wi| +

λ2
∑N

i=1 w
2
i

7: end for
Stage II : Sparse-Aware Training

8: Freeze the first L − k layers of the pre-trained model
9: for each epoch do

10: Prune the smallest absolute weights p
1
n% layer-wise.

The resulting mask m is applied to the network
parameters which become → θ ⊙ m

11: Re-train the network
12: Repeat for n iterations
13: end for

Stage III: Quantization-Aware Training
14: for each epoch do
15: Train in Simulated Quantization
16: Minimize the objective function LCE +λ1

∑N
i=1 |wi|+

λ2
∑N

i=1 w
2
i + L[f (w, q(θ )), y]

17: end for
18: Quantize the k layers to 8-bits

C. PRACTICAL CONSIDERATIONS
When performing transfer learning we opted for the
fine-tuning approach where the network’s upper layers plus
the classifier layers are trainable, and the lower layers are
frozen as demonstrated by the starting configuration in
Figure 2. Results reported in the following section are of
VGG19 and ResNet-50 pre-trained networks. As previously
mentioned, only about 30% of the parameters are trainable,
which reduces the number of total parameters of VGG19 from
20,576,466 to 7,631,506 trainable parameters. Similarly,
reducing ResNet-50 from 25,786,386 total parameters to
7,720,082 trainable parameters.

Experiments were conducted to test different configu-
rations of the loss function presented in Equation (4).
Namely, the following modes of the framework were
tested: Quantization-only Aware Training (QAT), Sparsity-
only Aware Training (SAT), and Joint Sparsity-Quantization
Aware Training (JSQAT). We experimented with enforcing
the sparsity using the two modes introduced in Section III.
These are namely L1 regularization mode, and L1L2 regular-
ization mode.

We test the effect of pruning at 50%, 70%, and 90%
sparsity on performance. We empirically experiment with

different λ values of the regularization term to assess its effect
Joint Sparsity-Quantization Aware Training schedule. The
training schedule of the framework follows the prune first
then quantize streamline as this is the recommended course
for classification tasks [37]. Quantization is applied to the
trainable layers only, in order to minimize training time. For
both networks tested (VGG19 and ResNet-50), the network
was trained for 50 epochs at each stage.

D. DATASET
The dataset used is the Breast Cancer Histopathological
Database (BreakHis) dataset [29], which is the largest dataset
for histopathological breast cancer images. Even though it is
the most comprehensive medical dataset for this condition
with a total of 7909 images, it dwarfs in comparison
to conventional image datasets like ImageNet. Originally,
the dataset has eight classes divided into malignant and
benign tumors as shown in Figure 3. We divide the dataset
into two classes by merging the malignant tumor samples
into one class and merging the benign classes at 40X
magnification. The dataset is highly imbalanced with the
number of malignant samples being twice the number of
benign samples; therefore, we use class weights in training to
balance any bias in the results. At 40X magnification, there
are 1,370malignant samples and 625 benign sampleswhich is
a total of 1,995 samples. The breakdown of the entire dataset
is as follows:

TABLE 1. Statistics of the BreakHis dataset.

IV. RESULTS AND DISCUSSION
We present the results for the following networks
VGG19 and ResNet-50 when applying the proposed
Joint Sparsity-Quantization Aware Training framework.
We include the accuracies of the fine-tuned network at
different λ values. The accuracies are averaged over three test
runs. Firstly, the results of VGG19 are presented in Table 2,
which includes the accuracies at different sparsity levels for
different λ followed by the results of ResNet-50 in Table 3.
Both networks are fine-tuned on the 40X magnification
partition of the BreakHis dataset. The results are divided by
the mode of regularization and the framework configuration
used. This is outlined for both networks. Moreover, after
displaying the test accuracies, the resultant model sizes are
included in Table 4. The sizes of all networks are of .tflite
[58] files with the exception of the baseline sizes of the model
(underlined) which are .h5 [59] files in MegaBytes.

Results on the 40X binarized Breakhis dataset at
0% and 50% sparsity levels are very close when Joint
Sparsity-Quantization is incorporated into the training
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FIGURE 3. Sample images from each class in the BreakHis dataset. The first row consists of benign tumors, the second row is of
malignant tumors. The images are 40X magnification.

FIGURE 4. Accuracy vs. sparsity for the two configurations, Sparsity-only Aware Training (SAT) (a,e,c,g) and Joint Sparsity-Quantization
Aware Training framework (JSQAT) (b,f,d,h), with either L1 and L1L2 regularization modes applied for both networks, VGG19 (a,b,c,d) and
ResNet-50 (e,f,g,h).

schedule, with L1 and L1L2 regularization modes on VGG19
and ResNet-50. The accuracy at 50% sparsity exceeds
0% sparsity in some cases. At 50% sparsity in Joint
Sparsity-Quantization Aware Training, there is the advantage
of decreased storage requirement which makes it the
configuration that achieves better accuracy/size trade-off.
This can be due to the regulatory effect on the network
from the sparsification process, in addition to the hypothesis
[53] that introducing sparsity to networks allows for better
generalization which can translate to better performance.
Considering the trade-off between sparsity and accuracy,
Hoefler et al. [56] observe that moderate sparsity targets
(defined as lower than 90%) benefit from magnitude-based
pruning, especially iterative pruning, in contrast to high

sparsity targets, which is the effect we have observed in our
experiments where the sparsity and accuracy trade-off are
best at 50% and 70% sparsity as shown in Figure 4.

VGG19 performs best at λ = 0.001 for both types of
regularizations, with an accuracy of 94.26% at 50% sparsity.
This combination results in a model size of 46.6 MB, which
is a compression of 5× when compared to the original
model size. We observe a similar occurrence with regards
to ResNet-50 when applying Joint Sparsity-Quantization
Aware Training at 50% or 70% sparsity alongside L1 or
L1L2 regularization mode. In most cases, the accuracy here
exceeds the baseline with more than a 2× decrease in size
when compared to the baseline network at 0% sparsity.
Overall, ResNet-50 demonstrates better relative performance
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TABLE 2. Binary classification accuracy results for applying L1 and L1L2 regularization modes at different sparsities (0%, 50%, 70%, 90%) using a VGG19
backbone. Baseline accuracies are underlined.

TABLE 3. Binary classification accuracy results for applying L1 and L1L2 regularization modes at different sparsities (0%, 50%, 70%, 90%) using a
ResNet-50 backbone. Baseline accuracies are underlined.

TABLE 4. Model sizes for different pruning percentages for the proposed Joint Sparsity-Quantization Aware Training framework (JSQAT) and the
Sparsity-only Aware Training (SAT) configuration in MegaBytes. Baseline sizes are underlined.

TABLE 5. Comparison with related work on the BreakHis dataset.

at higher sparsity percentages when compared to VGG19.
On the other hand, VGG19 displays higher compression
ratios. ResNet-50’s performance is best at λ = 0.001
using L1 regularization mode, where 50% sparsity gives an
accuracy of 94.81% and size reduction of 2.5×. Notably, 70%
and 90% sparsity at the same λ give an accuracy of 93.87%
and 86.34% respectively. In addition to achieving a size
decrease of 4× and 9.8× for 70% and 90% sparsities when
the Joint Sparsity-Quantization Aware Training framework is
used.

To summarize our results, it is worth pointing to the
enhanced accuracy at 50% sparsity when using the Joint
Sparsity-Quantization Aware Training framework configura-
tion for both VGG19 and ResNet-50 at most λ values used.
With the addition of a 2.5× and 5× decrease in size for
ResNet-50 and VGG19 whilst using only 30% of the total
parameters. We note that VGG19 displays a reduced memory
footprint with higher compression ratios but slightly lower
accuracy than ResNet-50. In low-resource settings, using
VGG19 as a backbone would be a better practical choice
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as it provides better compression ratios than ResNet-50
and competitive performance accuracy. Given that VGG19
yields almost double the compression ratio for only a 0.55%
decrease in accuracy. Thus it proves to be a better choicewhen
it comes to practical resource considerations in resource-
constrained environments.

To provide a point of comparison, we list our results with
those of other lightweight models trained on the BreakHis
dataset as shown in Table 5. We compare our best performing
model against works that align with resource awareness,
focusing specifically on pruning or quantization as com-
pression methods. We limit the works to those that test on
the BreakHis dataset in order to provide commonality when
comparing since providing a fair and unbiased comparison is
challenging due to the lack of standardization when reporting
performance results on medical data. We note a 1.7 × more
reduction in size and an increase of 6.96% in accuracy when
comparing JSQAT (VGG19) to MobiHisNet [28]. One of the
resource gains reported in [30] is a 47.54% reduction inmodel
parameters compared to our 50% model sparsity ratio, where
JSQAT (VGG19) yielded a 4.18% increase in classification
accuracy. Additionally, our unstructured sparsity approach
at 50% sparsity resulted in an increase of 9.77% accuracy
compared to the unstructured pruning and hybrid model
amalgamation followed in [32].

The results are demonstrative that it is possible to achieve
a fair compromise between accuracy and size to meet
the criteria of both resource-constrained environments and
medical image classification needs with the proposed Joint
Sparsity-Quantization Aware Training framework.

V. CONCLUSION
Clinical integration of computer-aided diagnostic devices
depends on a multitude of factors. In order to decrease
the dependency on human observers for a faster and more
streamlined process of early breast cancer detection, the
subject of deep learning in computer-aided diagnosis has
become a heavily investigated research area. Deep learning
in the medical domain has enjoyed much success, however,
there remain difficulties that hinder its progress, namely
massive resource and data consumption.

To navigate this issue, we explore the use of transfer
learning and fine-tuning on the BreakHis dataset to coun-
teract the effect of limited data samples. To meet this end
of classifying histopathological tumors, we develop a Joint
Sparsity-Quantization Aware Training framework that inte-
grates model compression techniques such as quantization-
aware training, regularization, and magnitude-based pruning
for the benefit of balancing accuracy and the memory
footprint. We empirically investigate the effectiveness of
the approach on different pre-trained networks to assess the
resilience of different networks against the introduction of
reduced precision and removal of weights.

For future evaluation in extremely data-limited settings,
few-shot learning has emerged in recent times as a promising
method to address limited size classes, with significant

implications pertaining to generalization when paired with
compression, specifically sparsifying techniques, especially
in medical applications, we leave this as future work.

Accordingly, focusing on learning with limited resources
and data is essential for medical applications as over-
coming these two constraints allows for designing better
cost-effective applications to be used in low-resource clinical
settings.
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