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ABSTRACT Quantum error correction codes (QECCs) play a central role in both quantum communications
and quantum computation. Practical quantum error correction codes, such as stabilizer codes, are generally
structured to suit a specific use, and present rigid code lengths and code rates. This paper shows that it
is possible to both construct and decode QECCs that can attain the maximum performance of the finite
blocklength regime, for any chosen code length when the code rate is sufficiently high. A recently proposed
strategy for decoding classical codes called GRAND (guessing random additive noise decoding) opened
doors to efficiently decode classical random linear codes (RLCs) performing near the maximum rate of the
finite blocklength regime. By using noise statistics, GRAND is a noise-centric efficient universal decoder
for classical codes, provided that a simple code membership test exists. These conditions are particularly
suitable for quantum systems, and therefore the paper extends these concepts to quantum random linear
codes (QRLCs), which were known to be possible to construct but whose decoding was not yet feasible.
By combining QRLCs and a newly proposed quantum-GRAND, this work shows that it is possible to decode
QECCs that are easy to adapt to changing conditions. The paper starts by assessing the minimum number of
gates in the coding circuit needed to reach the QRLCs’ asymptotic performance, and subsequently proposes
a quantum-GRAND algorithm that makes use of quantum noise statistics, not only to build an adaptive code
membership test, but also to efficiently implement syndrome decoding.

INDEX TERMS GRAND, ML decoding, quantum error correction codes, short codes, syndrome decoding.

I. INTRODUCTION
Quantum technologies have the potential to revolutionize
industries across the globe. By harnessing the power of
quantum mechanics, technologies such as quantum com-
puting, quantum simulation, quantum communication, and
quantum sensing can be used to solve a wide range of hard
problems in different areas, such as in the pharmaceutical,
materials science, cryptography, machine learning, logistics
optimization, finance, energy, and aerospace sectors [1],
[2], [3]. Nevertheless, for these technologies to be viable,
significant progress needs to be made in quantum error
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correction, to reduce the error rates of these quantum systems
to tolerable levels.

Implementing quantum computers and other devices
bearing quantum memories will require quantum error
correction of the stored quantum states [4], [5]. Moreover,
a number of applications, such as quantum key distribution,
distributed quantum computing, or the connection of different
quantum sensors, require the existence of quantum networks
and quantum repeaters in order to sustain end-to-end
quantum connections between several devices [6], [7], [8],
[9], [10], [11]. Quantum states are notoriously sensitive
to noise, so quantum error correction must be employed
when establishing entanglement or for preserving quantum
states in memory. Quantum gates still exhibit very high
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error rates, even though they have fallen in the last decade
from ≈10−2 [12] to ≈10−3 [13]). Thus, it is paramount
to have scalable quantum error correction codes (QECCs),
meaning that errors can be exponentially corrected while the
encoding/decoding complexity increases sub-exponentially
with the number of qubits in the codewords. A very recent
breakthrough toward this objective was communicated in
[13], showing experimental results for a surface code that
seem to pave the way for practical and scalable QECCs.
The problem of quantum error correction has been looked
at in [14] in a broader prospective than the traditional one
of designing a fixed code. The authors proposed using
quantum neural networks that work as autoencoders that
optimally adapt the design of the QECC to the existing
noise statistics. Note that making use of noise statistics is
also a central idea of the proposal in the present work.
QECCs designed for a particular type of channels, where
the statistics of the errors show that one type of quantum
errors is the most likely one, appeared in [15]. Reference [16]
presented an encoding method for quantum random codes
and analyzed its performance. Reference [17] performed a
similar analysis, but using a code construction akin to low-
density parity-check codes (LDPCs) and based on constraint
satisfaction. The works in [16] and [17] are mainly concerned
with the efficiency of the encoding process, and both
consider a decoder for an erasure channel, rather than a
Pauli decoherence channel, which is considered in our work.
Furthermore, important findings for QECCs designed for the
deletion channel (i.e., when a qubit is removed without notice
from a stream of qubits) have been communicated in [18].

A. SHORT LINEAR CODES: A HISTORICAL CONTEXT
Many ideas for designing QEEC can be traced down to
the developments made in classical error correction, and in
[19] one can find an exhaustive list of those connections.
The concept of error correction appeared in tandem with the
one of channel capacity in the pioneering work of Claude
Shannon [20], who proved that the capacity of a channel
could be attained by using a uniform-at-random code that
maps any k bits of information onto codewords n bits long.
This mapping should be random, in the sense that each
of the 2k codewords should be assigned to one of the 2n

possible words, and should be made according to a uniform
distribution. Shannon’s random code construction provably
reaches capacity when the length of the codewords tends to
infinity (n → ∞) and the decoder picks, among all possible
codewords, the most likely one, by applying maximum-
likelihood (ML) decoding with the received observation and
the codewords’ prior distribution. Nevertheless, Shannon’s
codes are too complex and have never been used in practice
because that would imply storing all the 2k codewords at the
transmitter side, and applying ML decoding at the receiver,
which is an NP-hard problem.

Classical random linear codes (RLCs) offer a solution to
the codewords’ storage problem, given that only the random

generation matrix needs to be stored. Moreover, they are
known to achieve capacity in the binary symmetric channel
[20], [21]. Although an exhaustive search among all the
2k codewords of a RLC remains prohibitively complex,
ML decoding is known to be attainable by other means.
An exhaustive search entails searching through all the 2k =

2nR codewords when the code rate is R ≤ 1/2, however, when
R > 1/2, it is preferable to look at the 2(n−k) = 2n(1−R)

syndromes and perform syndrome-based decoding, which
also delivers the ML decoding performance. In short, as it is
well known, the complexity of an exhaustive search approach
amounts to 2nmin(R,1−R) [22].
It is known that the computational complexity of decoding

any (deterministic or random) linear block code (LBC) can
be greatly reduced by using set information set decoding
algorithms (see [22] and references therein), or by having
a trellis representation of the LBC and running the Viterbi
algorithm on that trellis. The latter technique has been
known since [23], when Wolf showed how to construct a
trellis representation of a LBC using its parity-check matrix.
However, as described in [24], research on trellis decoding of
LBCs was not very active until the paper by Forney (and in
particular its appendix) came out [25]. In [24], Kschischang
and Sorokine provided a (arguably) more elegant manner
of constructing the trellis of a LBC by using the spans
of the so-called atomic codewords, which is a tool to find
the unique minimum trellis of a LBC. A measurement
of the complexity of the resulting trellis is the maximum
number of states existing across all its sections, and that
number can be shown to be smax = 2min(k,n−k). This
corresponds to the bound given byWolf [23] and also found in
[24], [26]. Forney’s work was, in fact, much broader,
unlocking the trellis representation of lattice codes (of which
LBCs are a particular case), and therefore permitting ML
lattice decoding of specially designed lattices [27], and also
approximate ML decoding of random lattices [28].

The path taken by coding theory (and coding practice) in
the following years focused on finding practical codes that
would achieve Shannon’s capacity; regardless of the family
of codes being studied, the efforts were concentrated on long
codes (with large n) and typically not having a very high
rate. This may explain why the work on trellis decoding
of LBCs (summarized in [29], [30]), as well as the various
information set decoding algorithms, have been overlooked
as a possible low-complexity ML decoding solution for
RLCs. All these decoding approaches deal with lists of size
2(n−k): being it the number of syndromes, or the number
of coset representatives described by the trellis of the code.
While syndrome decoding would involve storing all those
syndrome pairs and the associated coset representative in
the so-called standard array, a ML Viterbi trellis decoder
implies storing a trellis with the same number of paths (each
of which associated with a coset representative). When the
redundancy of the code (i.e., n − k) is large, the memory
requirements for syndrome decoding become too large, and
in the case of trellis decoding, the trellis comprises too many
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states, in both cases limiting the real-world use of capacity-
achieving RLCs.

Motivated by both power- and complexity-limited devices
in wireless communications, and also due to the goal of
reducing end-to-end coding/encoding latency, research only
recently shifted to the finite-blocklength, with an emerging
interest for short codes and high rates, eventually culminating
in a practical method for decoding RLCs dubbed guessing
random additive noise decoding (GRAND) algorithms [31],
[32], [33], [34], [35], [36]. At its core, GRAND is focused on
guessing the noise that corrupted the transmitted codeword,
rather than exhaustively going through all the possible
codewords in order to find the one that fits the ML criterion,
and is proven to still lead to ML decoding [31]. GRAND
is a universal decoder, enabling the decoding of any block
code of moderate length or high code rate, when dealing with
low entropy noise. The only requirement is that a practical
membership test exists to assess whether some word belongs
to the codebook or not. The decoding complexity is measured
by the average number of membership tests needed until a
valid codeword is found. Given that the space of possible
words has size 2n, and that there are 2k valid codewords,
that average number of attempts until one finds a codeword
is given by the ratio 2n

2k = 2n−k = 2n(1−R). Therefore, that
number can be low, provided that the codeword are short
or that the code rate is high, which is particularly attractive
for quantum setups, where the number of available qubits is
modest.

Although ML decoding could be implemented for the
particular case of low-redundancy RLCs via the above-
listed techniques, one would still face memory constraints.
Contrary to information set decoding, syndrome decoding,
or trellis-based decoding, GRAND does the decoding on-the-
fly, dispensing any type of storage besides the parity-check
matrix of the RLC (or any particular LBC). Note that
computing a minimal trellis of an RLC is a non-negligible
preprocessing that is needed each time the RLC changes.
Additionally, GRAND can outperform those techniques
(designed for memoryless channels) in the case of non-
independent and non-identically distributed noise having
memory [37]. In fact, any prior information about the struc-
ture of the noise can lead to performance improvement or to
further complexity reduction. For example, incorporating the
geometry of the used symbol constellation can significantly
reduce GRAND’s complexity [38].

B. SCOPE AND CONTRIBUTIONS
Due to the technical difficulties in manipulating qubits, the
error correction codes applied to qubit packets in quantum
communication links or quantum memories are necessarily
ones with short codewords, and for that reason, quantum
error correction is a good fit for GRAND-inspired strategies.
Since all quantum operations are required to be unitary, the
construction of quantum random linear codes (QRLCs) is
not as straightforward as in classical RLCs. This difficulty in
adapting classical codes to the quantum setting is typical; it

also took an extensive effort to find quantum LDPC codes
whose properties matched their classical counterparts, and
these issues continue to be the focus of intensive research
[39], [40], [41]. Similar issues plagued the development
of quantum turbo codes [42]. Furthermore, to borrow the
performance guarantees existing in the classical setting,
many of these adaptations amount to Calderbank-Shor-
Steane (CSS) codes, which have suboptimal channel capacity
[43], [44].

Fortunately, for QRLCs, simple (randomized) construc-
tions exist [16], [45], leading to codes whose performance
is primarily conditioned by the number of quantum gates
used as building blocks for the coding circuit. For codewords
with n qubits, and in a setup with all-to-all connectivity
(i.e., when any qubit can be directly entangled with any
other), O

(
n log2 n

)
two-qubit random Clifford gates and

O
(
log3(n)

)
circuit depth has been shown to lead to codes with

a reasonable Hamming distance [45]. More recent results
have expanded the capabilities of QRLCs for the case of
limited qubit connectivity, and eased the gate requirements
[16]. In general, the more gates used, the more the code
approaches a ‘‘truly’’ random QRLC. As part of the encoding
for stabilizer codes, they may also constitute a vital piece in
quantum error correction for quantum computing, quantum
networks, and quantum memories. However, these codes
have suffered from some of the same disadvantages as
classical RLCs, as they have been too difficult to decode
in practice. In fact, to the authors’ best knowledge, only
recently has been presented in [46] a practical decoding
technique, based on tensor networks, applicable specifically
to low-depth circuits with one-dimensional connectivity.
They numerically verify that their code reaches the hashing
bound [47], but do not prove it mathematically. The recent
work in [46] does consider a Pauli decoherence channel,
however the results are presented using different variables
and parameters, difficulting a direct comparison with our
proposal. We note that, from a practical perspective, our
model has some limitations. We consider all-to-all qubit
connectivity, noiseless encoding circuits, as well as a
noiseless syndrome extraction procedure. We also consider
noiseless quantum gates. These assumptions are regularly
used to analyze a code’s performance [48], and they are used
similarly in other results in the literatures [16], [17], and [46].
These limitations are further addressed in Section VIII.
Interestingly, research on trellis decoding has recently

also begun being studied as a possible practical way of
implementing ML decoding for any quantum stabilizer code
over a finite field of prime dimension [49]. As in the case
of the trellis decoding of classical RLCs (mentioned in
Section I-A), a trellis-based approach may also open doors
to the decoding of QRLCs.

The present paper extends the noise-decoding concept to
quantum systems, allowing one to tackle the decoding of
QRLCs for the first time in the typical Pauli decoherence
channel. Meanwhile, results on the use of guesswork in
the decoding of designed families of quantum codes have
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appeared in [50]. The concept of universal guessing-based
decoding was tested there with non-random codes, i.e.,
quantum codes that are known and hold a design structure
that fits particular decoding methods.

Our work considers a system model with perfect encoding
and perfect measurements, focusing on correcting the errors
that arise in the communication channel, which is a common
model used in the literatures [50] and [51]. By making use of
the key features of GRAND, this work shows how to take
advantage of QRLCs to construct stabilizer codes that are
shown, via semi-analytical simulation, to be near-capacity
achieving and decodable in practice, leading to quantum error
correction codes able to cope with large channel error rates,
even at reasonably high code rates.

As it is a universal decoding method, the pro-
posed quantum-GRAND (QGRAND) constitutes a general
approach to QEC that is amenable to any code length size n
and a sufficiently high code rate R. Furthermore, it is highly
adaptable to on-the-fly changes depending on noise statistics,
and is likely suitable to scenarios where less than all-to-all
connectivity exists. For these reasons, the combination of
QRLCs and QGRAND stands out from the well-established
QECCs. This combination is potentially of high importance
to future implementations of quantum error correction for
quantum computing and quantum networks, as recently
highlighted in [52, sec. VI.B].

The literature on the use of GRAND to decode classical
RLCs is quite recent and it often directly compares the
decoding complexity of RLCs via GRAND with the one of
ML decoding. The historical context (given in Section I-A)
brought to attention several other approaches that enabled the
decoding of RLCs. That account is further complemented in
Section II. Besides that, the main contributions of the paper
are i) the analysis of the requirements for the construction of
a good QRLC, including the implications to the associated
encoding complexity, measured by the number of gates in
the encoding circuit, and ii) the proposal of a quantum-
GRAND approach that enables the numerical assessment of
the performance of QRLC’s for the first time, and measuring
how close those results are from the optimal performance,
which is analytically derived.

C. ORGANIZATION AND NOTATION
The paper is organized as follows: Section II presents a brief
introduction to classical RLCs, and introduces GRAND in
the classical domain. Section III provides some quantum
error correction basics, and Section IV details the approach
taken by stabilizer codes. Section V presents some theoretical
and numerical results (using a semi-analytical framework)
for QRLCs, and the noise model considered. Section VI
describes how to construct a stabilizer code from this
quantum RLC encoding. These ideas are later combined in
Section VII, where QGRAND is showcased. The numerical
results are displayed in Section VIII, and a final discussion
appears in Section A.

For the sake of clarity, we opted to denote matrices and
vectors in non-bold, as that is the traditional notation in the
field of quantum signal processing, with the exception of the
classical vector s and the zero vector 0.

It should be noted that error rate is used throughout the
paper in the same sense that bit error rate is used in classical
communications, meaning that herein the term is used with
respect to qubits after their discretization. The literature on
QECCs often calls it error probability instead, and rather
associates the error rate with the continuous errors of the
physical qubits [53].

II. TOWARD SHANNON’S CODES: CLASSICAL RLCs
In 1948, Shannon proved [20] that (classical) random error
correcting codes with codewords of length n and having 2k

valid codewords randomly chosen out of the 2n possible
words are able to achieve the capacity of the Gaussian noise
channel, as n → ∞. Even so, randomly selecting the
codebook members leads to: i) a storage problem, given that
all codewords would have to be stored both at the encoding
side and at the decoding side, and ii) a decoding complexity
problem, given that, when applyingMLdecoding, a corrupted
codeword needs to be compared with all codewords in the
codebook.

The storage problem posed by Shannon’s construction (to
generate uniform-at-random codes) has been overcome by
RLCs, of rate R = k/n, because, as in the case of any
LBC, its generator matrix constitutes a very short description
of the code. Without the size constraints of many families
of classical structured codes, that impose constraints both
on the admissible codeword lengths and code rates, RLCs
can be constructed with any size and rate, and having those
degrees of freedom is a major practical advantage for most
engineering applications.

A. DECODING CLASSICAL RLCs BY NOISE GUESSING
A paradigm change in the decoding of classical codes
recently occurred for codes with short codewords or having
low redundancy (i.e., high rate). GRAND [31], [33], [34],
[35], [36] fundamentally shifts the role of detection from
searching codewords in the codebook to searching for the
error pattern that took place.

Let us assume that a received block Y = X ⊕ Ei has
been affected by some error pattern Ei, which could have
occurred with probability pi. The statistics N of the possible
error patterns are known, and the N candidate error patterns
Ei are ordered from the most likely (i = 1) to least likely
(i = N ). GRAND consists of subtracting the error pattern
Ei from Y , starting from i = 1 and progressing down the
list in N . If X = Y ⊖ Ei is a valid codeword, then X is
accepted as the decoded data. Otherwise, it moves to the next
error pattern Ei+1 and the process is repeated. Here, it is
important to note that having a tool to test if X is a codeword
(i.e., a membership test [31]) is absolutely necessary. If our
noise statisticsN encompasses all possible error patterns, it is
guaranteed that a valid codeword X is found at some iteration.
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As proven in [31], for noise with Shannon entropy H (N ) (or
entropy per bit h(N ) ≜ H (N )/n) and a code rate R = k/n
below capacity (i.e., R < 1− h(N )), the expected number of
error patterns needed to be tested until finding the true noise
pattern is 2nmin {h1/2(N ),1−R}, for large n, where h1/2 is the
Renyi entropy of order 1/2 [54], per bit. GRAND works best
when the noise entropy is low or the code rate is high. In that
case, the set of 2n words is densely populated by codewords,
and therefore the number of tests can easily be much lower
than 2nR, the expected number of tested patterns for standard
ML decoding. Given the focus on decoding the noise,
exploiting the prior knowledge of the noise statistics plays a
central role in boosting the overall decoding performance of
GRAND [37].
GRAND performsML decoding and can therefore provide

capacity-achieving performance when decoding structured
capacity-achieving codes or RLCs. For practical reasons, one
may be interested in themost likely errors only, and the search
may be abandoned after iterating through slightly more than
the first 2nh(N ) error patterns, and quit afterward. This variant
is called GRAND with abandonment (GRANDAB) and still
provides ML decoding. In this manner, GRANDAB is also
capacity-achieving, using many fewer iterations.

Although these results have been rigorously proven for
uniform-at-random codes as n → ∞, experimental applica-
tions using structured linear codes of small blocklength, and
also RLCs in particular, have produced striking results [32],
[37], [55], [56], [57], [58], consistent with these theoretical
guarantees.

It should be credited that very related ideas appear
in [59, pp. 220-227], namely i) codeword guessing decoding
based on the posterior probability of the noise, and ii) proving
Shannon’s capacity theorem for RLCs via counting argu-
ments based on the number of distinct syndromes.

III. QUANTUM ERROR CORRECTION
Quantum error correction attempts to restore a decohered
quantum state, which has undergone some error, back to
a quantum state encoding the original data [4], [5]. Qubits can
undergomore types of errors than their classical counterparts,
making QECCs in general more complex. Moreover, while
classical use cases, such as wired communications or data
storage, commonly offer error rates below 10−5, current
quantum technologies need to be able to handle much higher
error rates, similar to the ones encountered in uncoded
classical wireless links (between 10−3 and 10−2) [12], [13].
In addition to that, the construction and decoding of QECCs
faces extra difficulties [60]:
i) the non-cloning theorem shows it is impossible to copy

an arbitrary quantum state, thereby forbidding the use of
copies as redundancy;

ii) quantum errors are continuous in nature, as the quantum
state can be in any superposition of the basis states;

iii) any measurement performed on a state in superposition
destroys that superposition, and thus its quantum infor-
mation is lost.

Surprisingly, it is possible to circumvent these issues and
construct QECCs that reliably protect quantum data against
errors. Just as in the classical case, QECCs work by encoding
a quantum state composed of k qubits into one with n qubits,
in such a way that errors can be detected and corrected.

Any quantum channel error E , discrete or continuous,
acting on a quantum state, can be written as a linear
combination of these Pauli matrices. For one qubit only, one
has

E = α0I + α1X + α2Z + α3 Y , (1)

for some set of complex values αi. I is a 2×2 identity matrix
and

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = iXZ , (2)

are Pauli matrices. Since Y = iXZ , as long as QECCs can
correct X (bit-flip) and Z (phase-flip) errors simultaneously
and for each qubit, then they can also correct any arbitrary
n-qubit error.

From this digitization, it can be shown [60] that a
quantum error channel for n qubits may be decomposed as
a combination of Pauli strings

Pn = ei
π
2 θ O1 ⊗ . . .⊗ On,

with θ ∈ {0, 1, 2, 3}, Oi ∈ {I ,X ,Y ,Z }. (3)

and ⊗ denotes the tensorial (or Kronecker) product. This
description is named Pauli channel.

The Clifford group is the set of unitary transformations that
transform any Pauli string into a Pauli string. Clifford circuits
are built solely from unitaries of the Clifford group. Any such
Clifford unitary can be implemented via composition of the
simple 1- and 2-qubit unitaries

H =
1

√
2

(
1 1
1 −1

)
,
√
Z =

(
1 0
0 i

)
,CNOT =

(
I 0
0 X

)
. (4)

With these Clifford circuits, it is possible to construct an
encoding for a QECC, in order to protect the desired quantum
data. The backbone and inspiration for most quantum error
correctionmethods are the so-called stabilizer codes [61], and
for that reason, this work will chiefly focus on these codes as
the core machinery needed to produce random QECCs.

IV. STABILIZER CODES
A stabilizer Si of the quantum state |ψ⟩ is any Pauli string that
acts as the identity on |ψ⟩, that is, Si |ψ⟩ = |ψ⟩. The stabilizer
group S is the set of all such stabilizers. As there is a one-
to-one correspondence between |ψ⟩ and its stabilizer group,
stabilizer circuits can be efficiently simulated using only
Clifford unitaries (see [62], [63]). The stabilizer group can be
generated by some (non-unique) subset Smin, whose elements
are the minimal stabilizers. These minimal stabilizers can be
used to create a type of QECC, called a stabilizer code (see
Fig. 1). For simplicity, henceforth wewill refer to theminimal
stabilizers of stabilizer codes simply as stabilizers.
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FIGURE 1. Quantum circuit for a (n, k) stabilizer code, depicting the
encoding and decoding process.

Starting with the k-qubit quantum data |ψ⟩D and (n − k)
redundancy qubits in the state |0 . . . 0⟩R, which have been
entangled by some Clifford unitary encoder U , then the
resulting n-qubit logical state |ψ⟩L (amounting to a code-
word) must have s ≜ (n − k) stabilizers Smin, which must
commute with each other. It also has 2k logical operators
X̄i, Z̄i, for 1 ≤ i ≤ k , which act on |ψ⟩L similarly to Xi,Zi on
|ψ⟩D, and which can be combined to form a total of L ≜ 22k

logical operators.
Suppose that a Pauli error stringE affects |ψ⟩L , resulting in

˜|ψ⟩L = E |ψ⟩L . If we conditionally apply a stabilizer to ˜|ψ⟩L ,
controlled by an ancilla qubit in the state |+⟩ = H |0⟩ =

(|0⟩ + |1⟩)/
√
2, and subsequently apply the Hadamard gate

H a second time (see (4) (4)), we obtain

E |ψ⟩L
|0⟩ + |1⟩

√
2

(5)

Si
−→

1
√
2

[
E |ψ⟩L |0⟩ + SiE |ψ⟩L |1⟩

]
(6)

H
−→

1
2

[
(I + Si)E |ψ⟩L |0⟩ + (I − Si)E |ψ⟩L |1⟩

]
. (7)

Since both the error patterns and the stabilizers are Pauli
strings, they must necessarily commute or anticommute.
If they commute, the state in (7) will beE |ψ⟩L |0⟩, otherwise,
we will have E |ψ⟩L |1⟩. Consequently, the conditional
application of each stabilizer provides us with 1 bit of
information about the nature of the error. With s stabilizers,
we have a s-bit syndrome, allowing one to discern between
S ≜ 2s error patterns, while in the case of no error, one
obtains the zero syndrome. This information enables us to
correct the quantum state by undoing the effect of the error.
This recovery process R will consist of applying the inverse
of the error pattern E ascertained from the syndrome. Since
all Pauli strings are both Hermitian and unitary, for a Pauli
channel, we have E−1

= E .

V. QUANTUM RLCs ENCODING
The construction of classical RLCs mentioned in Section II
involves random generator matrices, whose only constraint is
that they ought to be full-rank. Because quantum operators
should be unitary, the construction of QRLCs is a rather
more constrained problem. The generation of QRLCs is
nevertheless possible: starting with a quantum state of k

qubits, to be encoded into n > k qubits, [45] presents a
method of generating a random qubit encoding. One starts
by randomly selecting Clifford unitaries from the C2 group
(i.e., Clifford unitaries for 2 qubits). There are |C2| =

11 520 such unitaries, and all of them can be built by simple
combinations of the Hadamard, CNOT, and phase gates,
which have efficient physical implementations in virtually
any quantum setting. After selecting these random unitaries
from C2, one successively applies each of them to a random
pair of qubits, taken from the set of n qubits, assuming that all-
to-all connectivity (between any of the n qubits) is possible in
practice. This assumption is required for the scaling results in
[45], and is used in this work. However, it may be dropped for
practical reasons, as the more recent results in [16] suggest,
and it is the subject of future work. This process leads to an
encoding unitary for our stabilizer code which, when applied
to the initial k qubits and (n−k) extra |0⟩ qubits added, returns
a n-qubit encoded quantum state. As shown in [45], as long as
O

(
n log2 n

)
gates are used, with a circuit depth ofO

(
log3 n

)
,

the construction leads to a highly performant (n, k) code, and
from [16] it is already known that these complexity orders can
be further lowered.

A. ROBUST ENCODING
In this context, the QRLCs’ performance will also depend
on the noise statistics. Nonetheless, in order to effectively
protect our quantum data from noise in an efficient and
practical manner, the noise statistics about the particular
environment in question should be known. In the quantum
setting, assuming we wish to correct the N error patterns in
the error set

E ≜ {Ei}Ni=0, with E0 ≜ I , (8)

and we know the probability of them affecting our data to
be P ≜ {pi}Ni=0, with p0 ≜ P(no error), then our encoding
and decoding procedure should have into account the noise
statistics, denoted by the set of pairs

N ≜ {(pi,Ei)}Ni=0, (9)

with the error patterns ordered by decreasing probability,
so that pi ≥ pi+1, for all i. For an encoding with n qubits,
using GRAND requires N + 1 = 4n, with

∑
i pi = 1,

as 4n is the total number of Pauli strings of n qubits. If using
GRANDAB, the unlikely errors may be disregarded, so a
much lower N , and

∑
i pi ≤ 1, is assumed.

As the encoding is randomly chosen, to ascertain the code’s
performance, we may compute the syndromes associated
with every error pattern in E , and check whether the code is
robust to all of them, inO(N ) time. The code is robust if each
Ei ∈ E has a unique syndrome or, for degenerate codes, if Ei
shares a syndromewithEj andEiEj ∈ S, that is, the combined
action of the two errors does not change the quantum state.

Nonetheless, we may not require that all errors in E be
correctable. For low entropy noise, some errors may be very
unlikely to surface. If a random code happens to not correct
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these unlikely errors, it may still function adequately in the
high probability case that more likely errors occur.

Classically, for a channel with input X and output Y , its
capacity is given by the maximum of the mutual information
I (X ,Y ) over the possible probability distributions of X . In the
quantum case, for the case of stabilizer codes, the quantum
capacity is given by the coherent information of the quantum
channel [60, sec. 7.6], [47, sec. 24.6.3]. For a Pauli channel,
this capacity is associated with the so-called hashing bound
[47, sec. 24.6.3], [64]. Using the results in [47, sec. 24.6.3]
we observe that, as long as

n > k + H (N ), (10)

the code is able to correct the error patterns in N with
high probability. This is a direct consequence of information-
theoretic arguments based on set counting, and interpreting
the entropy of the noise, H (N ), as the number of bits
needed to describe the noise, which establishes how many
different noise patterns can occur. Note that, in theory, due
to the possibility of degenerate error patterns, it is sometimes
possible to surpass the hashing bound [65], [66]. Nonetheless,
in Section V-B we motivate why degenerate errors have
negligible effects in our setting, and consequently, in our
numerical analysis in Section VII, these error patterns are
approximately considered to be uncorrectable. Therefore,
to obtain a near-capacity achieving code, wemust only ensure
that (10) is satisfied, and that sufficient 2−qubit gates are
used to create the random encoding, as indicated previously,
and as will be analyzed in Section V-C. This result is derived
for large n, but similar results are applicable to lower n, as we
see in the next section.

B. COMPARISON WITH IDEAL RANDOM CODES
In order to assess the results obtained numerically, we may
compare the QRLCs’ performance with the expected perfor-
mance of a simpler approximation. Similar techniques [16]
have been previously employed in the literature, since they
allow us to better gauge the behavior of QRLCs, as it is too
difficult to analytically estimate their performance.

As an ideal approximation, we consider a code that maps
each of N error patterns (plus the no error case) randomly,
using an i.i.d. uniform distribution, to one of the S syndromes.
This approximation constitutes a more manageable mapping
for analytical study, when compared with the mapping
produced by a QRLC, since it does not present the linearity
constraint, nor the added structure present in quantum codes.
Nonetheless, since QRLCs may be thought of as a subset
of the codes that this ideal approximation may generate, its
performance may be considered to provide an upper bound
for the QRLCs of interest.

For N error patterns, plus the no-error case, let u be the
number of unique error syndromes associated with them.
In general, the average number of unique syndromes is

⟨u⟩S,N+1 = S

[
1 −

(
1 −

1
S

)N+1
]
, (11)

and the correctable error fraction is given by

f =
uS,N+1

N + 1
. (12)

If we wish to correct allN error patterns (i.e., f = 1), wemust
have (N + 1) distinct error syndromes, which happens with
probability

P(f = 1) =

N∏
j=0

(
S − j
S

)
(13)

≃

N∏
j=0

e−j/S = exp
(

−
N (N + 1)

2S

)
, (14)

with the approximation achieved by the Taylor expansion
of ex . Note that the probability of correcting absolutely all
N error patterns P(f = 1) may be very low, while still having
P(f > 1 − ϵ) ≃ 1, for ϵ ≪ 1. In fact, reminding that
S = 2n−k , we have

P(f = 1) ≥ 1 − ϵ ⇐⇒ n ≳ k + log2

(
N (N + 1)

2ϵ

)
(15)

f ≥ 1 − ϵ ⇐⇒ n ≳ k + log2

(
N
2ϵ

)
. (16)

These equations directly showcase the relation between the
choice of n for the encoding and the code’s performance.
Unlike (10), their derivation does not assume large n.

For (n, k) QRLCs, each of the possible 4n Pauli strings will
be associated with one of the S = 2n−k syndromes. Due
to the linearity of the code, the strings will be distributed
equally through the syndromes, so that each syndrome will
have 2n+k = SL associated Pauli strings. In fact, for s = 0,
the associated strings will amount to all the combinations of
the S total stabilizers and the L = 22k total logical operators.
When creating aQRLC, it is possible to obtain a degenerate

code. For an error pattern Ei ∈ E , we obtain a degenerate
code when ∃i, j such that i ̸= j and EiEj ∈ S. In these
situations, Ei and Ej have the same effect on the encoded state
and, consequently, can be treated as the same error. For two
random error patterns E1,E2 with the same syndrome, the
probability of E1E2 being a stabilizer is ∼1/L.

For simplicity, we consider a code that can fully correct the
error patterns in E a (good) degenerate code, while making
no distinction between faulty codes that do or do not present
some level of degeneracy.

The probability of obtaining a ‘‘good’’ code, i.e., a code
that is capable of correcting all the N error patterns, can
be estimated by considering the probability that either the
syndrome of EiEj differs from 0 (non-degenerate case) or
equals a stabilizer (degenerate case). As there are

(
N+1
2

)
such

EiEj, this probability is given approximately by

P(good) ≃ (P(non-degen.) + P(degen.))

(
N+1
2

)
(17)

≃

[
S − 1
S

+
S
4n

](
N+1
2

)
(18)
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FIGURE 2. Probability of obtaining a ‘‘good’’ code (blue), that corrects all
N error patterns, vs. the ratio N/S, for a (16, 1) code, for the maximum
noise entropy case. Even if obtaining a good code is unlikely, it still
corrects almost all errors, so the probability of a successful correction is
high (red). The dots indicate the theoretical approximations given by (20),
(13), (21), and (12), respectively, which closely match the observed
behavior.

=

[
1 −

1
S

(
1 −

1
L

)](
N+1
2

)
(19)

≃ exp
(

−
N (N + 1)

2S

(
1 −

1
L

))
. (20)

As the probability of obtaining a working non-degenerate
code is approximately given by (13), the probability of
obtaining a working degenerate code can be estimated by

P(degenerate) = P(good) − P(non-degenerate). (21)

Fig. 2 presents 2000 samples of (16, 1) random codes. Most
of the ‘‘good’’ codes are non-degenerate, so every error
pattern has its distinct syndrome, but a small percentage
may be degenerate, since k = 1 is very low. As expected,
the probability of obtaining a code that corrects all N
error patterns present quickly decreases with increasing N .
Nonetheless, the probability that faulty codes will succeed
in correcting any particular error is still high for larger N
(red). For the highest shown N/S, with N/S = 0.025,
P(success) = 0.99, while P(good) ≃ 0. As noted previously,
this large discrepancy between P(success) and P(good) stems
from the fact that we may have P(f > 1 − ϵ) ≃ 1 while also
having P(f = 1) ≃ 0.

1) BERNOULLI PROCESS
As an example, we may consider the noise model in which
quantum errors consist of a Bernoulli process, with each
individual qubit having a probability p of suffering an error.
The error can be of type X ,Y , or Z (i.e., depolarizing noise),
and the error types are identical and independently distributed
(i.i.d.) for each qubit.

The number of distinct error patterns of weight t ′ ≤ t is

Bt ≜
t∑

t ′=0

At ′ , with At ≜ 3t
(
n
t

)
. (22)

For t ′ < t , as error patterns of weight t ′ are always more
likely than error patterns of weight t , for this noise model,
then whenever an error pattern of weight t has the same
syndrome as a weight-t ′ error pattern, it cannot be corrected.
Here, the degenerate scenarios are disregarded, since they are
negligible for large k . The expected number of syndromesMt
with a weight-t error pattern as the most likely one mapped
to them is Mt = ⟨u⟩S,Bt − ⟨u⟩S,Bt−1 . The correctable error
fraction f of weight-t error patterns that can be corrected will
be, on average,

f =
Mt

At
≃

S
At
e−

Bt−1
S

(
1 − e−

At
S

)
, for S ≫ 1. (23)

This expression enables a useful comparison for the
performance of QRLCs, as shown in Fig. 3 (and later
in figures 5 and 6).

C. MINIMUM NUMBER OF RANDOM GATES
It is important to assess how deep (i.e., number of concate-
nated gates) the generator circuits need to be such that the
QRLC they generate approximates the ideal performance.
In order to do so, we have implemented the methodology
in [45] and, for a varying number of gates, we measured the
relative deviation

δf ≜
(
ftheory − fexp

)
/ftheory, (24)

δP ≜ P(f = 1)theory − P(f = 1)exp, (25)

where the f stands for the fraction of weight-t error patterns
a code can correct. ftheory amounts to the average correctable
fraction coming from the approximation in (12), and fexp
is the result of averaging the observed correctable fraction
of 31 QRLC samples, for a given number of gates. Similarly,
P(f = 1)theory is given by (13), and P(f = 1)exp is the ratio
of the 31 samples that had f = 1 for weight t = 1. For the
noise statistics, we assume a Bernoulli process, as previously
described in Section V-B1.

The simulation results presented in Fig. 3 indicate that,
as the number of gates used for the encoding increases,
so do the codes’ correction capabilities, eventually reaching
(δ < 0.02) those of the ideal random code. The codes’ error
correction capabilities start off worse for error patterns of
larger weight, but converge to a similar minimum number
of gates needed. We considered codes for several n and k
to estimate this behavior. These results, shown in Fig. 3,
indicate that this minimum number of gates is given by
Nmin. gates = mn log22(n). From [45], we expect the minimum
number of gates to scale with O

(
n log2(n)

)
. Although this

theoretical result is only proved there for some codes, here
we experimentally observe it for the mean (n, k) code (with
m ≃ 0.13 − 0.15), which is of more practical relevance, and
for the case where we require that all t = 1 error patterns
must be correctable (m ≃ 0.21). Consequently, even for
larger quantum codes with n = 128, 1000 C2 Clifford gates
should suffice to ensure that the resulting code has a very high
performance for that rate and code length. Given that most of
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FIGURE 3. (a) Relative deviation δ, for different (n, k) codes and error
patterns of weight t . The shaded region indicates the 80% confidence
interval, obtained by constructing 31 random codes for each case
presented. (b) Minimum number of gates to achieve a relative deviation
δ < 0.02, for varying n log2

2(n).

these gates will be applied in parallel, with depth O
(
log3 n

)
,

this approach enables the creation of high-capacity codes
with low-depth quantum circuits.

D. DETERMINING THE STABILIZERS
The traditional approach in the construction of stabilizer
codes is to start by defining the stabilizers, and then find
the associated encoding process. The proposal in this paper
uses a random code construction, and therefore the first step
is the definition of the encoding circuit and only after one
determines the stabilizers associatedwith that particular code.

The construction of a QRLC only involves Clifford
unitaries, and therefore the encoding process U is a
stabilizer circuit. The Gottesman-Knill theorem indicates that
stabilizer circuits with n qubits can be simulated using only
O(poly(n)) classical resources (see [62], [63]). From this
efficient classical simulation, the desired stabilizers may be
extracted [16]. In particular, the (n − k) ancilla qubits used
for the encoding, in state |0⟩, start by having the associated
minimal stabilizers Zi, for k + 1 ≤ i ≤ n, since Zi |0⟩i = |0⟩i.
The classical simulation takes these starting stabilizers and
modifies them through the encoding U , resulting in the
desired minimal stabilizers Si, which can be used for the
stabilizer code.

VI. QUANTUM-GRAND PROPOSALS
We are now ready to construct GRAND-inspired decoding
techniques to decode QRLCs. This common framework
of quantum-GRAND (QGRAND), in the case of stabilizer
codes, consists of the steps herein summarized:

1) Generate a random QRLC encoding U , robust to
the noise statistics N . This can be efficiently done,
for instance, by combining random 2-qubit Clifford
unitaries (Section V-C and Section V-A);

2) Determine stabilizers of the chosen encoding by effi-
ciently simulating the stabilizer circuit (Section V-D);

3) Perform syndrome measurement using all the minimal
stabilizers (Section IV);

4) Apply decoding using an iterative noise guessing
recovery procedure, similar to the one in classical
GRAND (Section II-A), by applying the inverse of the
error pattern determined to the encoded quantum data.

These steps can be implemented in slightly different
manners, as will be described in the following subsections.

A. THE SYNDROME AS MEMBERSHIP TEST
Syndromemeasurement setups are a central building block in
QEEC [40], [41], [51]. As in classical GRAND, the syndrome
measurement step of the stabilizer code may be considered
simply as a membership test, accepting the quantum state if
the syndrome s is zero, and rejecting the error-affected state if
s ̸= 0 (see Fig. 4). If the syndromes associated with each error
pattern are not known a priori, then it will be necessary to
measure all s = n− k minimal stabilizers to verify if no error
has occurred. Since the encoding and subsequent stabilizers
are random, it will take only ∼2 stabilizer measurements,
on average, to obtain a nonzero syndrome bit when an error
actually occurred.

For a (n, k) code, we do not necessarily require the
measurement of the full syndrome to perform the GRAND
iteration procedure. If we are not taking advantage of the
information encoded in the syndrome, and wish to use it only
as a membership test for the codebook, then we just need to
check whether or not the syndrome is nonzero.

As the chosen encoding is random, so are its stabilizers.
Consequently, each error pattern has a probability of p =

1/2 of anticommuting (and thereby being detected) by
each stabilizer, and this behavior is independent for each
error pattern. Therefore, the average number of stabilizers
measured until encountering a 1 bit, for some error pattern, is

⟨Cs(p)⟩ =

s∑
i=1

i(1 − p)i−1p (26)

⇒ ⟨Cs⟩ = ⟨Cs(1/2)⟩ = 2 −
s+ 2
2s

< 2. (27)

As we generally don’t know a priori whether or not an error
has occurred at the first iteration, before the trial-and-error
correction process commences, there is the possibility that
we will need to measure all s minimal stabilizers, in the case
with probability p0 where no error has occurred. In that case,
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the average number of stabilizer measurements required to
determine whether an error has occurred or not will be

⟨Cs(p0)⟩ = p0s+ (1 − p0) ⟨Cs⟩ . (28)

If an error is observed, then at each iteration i > 0 of
the trial-and-error correction attempt, the average number of

measurements is Cs(pi/qi), with qi ≜ 1 −
∑i−1

j=0 pj.

The average total number of iterations in the trial-and-
error procedure, for N error patterns, is I ≜

∑N
i=0(i +

1)pi. Consequently, the average total number of stabilizer
measurements until the procedure is completed is

⟨C⟩ = s+ (I − 1) ⟨Cs⟩ < s− 2 + 2I . (29)

A downside of this approach is that the error correction
and syndrome extraction must be applied physically in the
quantum circuit at each iteration. As this correction consists
of applying E†i = Ei to the circuit, and the syndrome
extraction step might have a non-negligible number of gates
(see Fig. 1), then, for error-prone implementations, this
approach may lead to a costly error correction process,
as each application of correction gates adds error itself to the
encoded state.

For the case without abandonment, the error correction
process can fail solely when an observed error pattern has
the same syndrome as an error pattern that was more likely to
occur, given the noise statistics. This amounts to the scenario
where the coset leader chosen for a syndrome is not the error
that occurred. As previously alluded to in Section II-A, when
abandonment is implemented, a second source of failure
is the probability that an unlikely error occurs, beyond the
errors that one wishes to correct. Nonetheless, as indicated in
SectionV-A, n should be chosen to ensure that this probability
of failure is low.

B. SYNDROME DECODING
Alternatively, as long as partial or full access to the actual
syndrome is available, one may use that information to
improve the error correction process, while still taking
advantage of the known noise statistics (see Fig. 4(b)). There
are several possible approaches along this route. For instance,
one may rely on the classical computation of the syndromes
associated with each relevant error pattern, both before and
during the correction process.

To take advantage of syndrome decoding, let NP ⊆ N be
the set of error patterns for which we wish to precompute and
store the error syndrome, andNJ = N \NP the error patterns
for which we wish to compute the error syndrome on the fly,
as necessary. We have N = NP +NJ , with NP ≜ |NP|,NJ ≜
|NJ |. Its NP × s syndrome matrix MS , which stores the NP
syndromes, each s-bits long, can be computed by the matrix
product of the NP×2n error matrixME and the S×2n parity
check matrix A, through MS = MEAT [60]. If NP is small,
this syndrome matrix can be classically stored in memory.

Additionally, the precomputation of theNP error patterns’
syndromes enables checking a priori whether or not our

FIGURE 4. Flowchart of QGRAND, when (a) using the syndrome solely as
a membership test, or (b) also as an aid for decoding. Going beyond
stabilizer codes, (c) QGRAND may also be employed in a more general
context.

random linear code can distinguish between all the NP error
patterns, lest it have more than one relevant error pattern with
the same syndrome (cf. Section V-B). Therefore, we may try
other random encodings until we are sure that one satisfies
the requirements at hand, instead of relying on (10).

Given the random nature of the linear code, it takes,
on average, log2 NP bits to identify each of the NP error
patterns, for a total of at most ∼2NP bits to store, using a
binary tree. To single out a particular error pattern in N ,
we require, on average, log2(N +1) stabilizer measurements.
Note that log2(N+1) may be much less than s bits in practice
(see (10)). After log2(NP+1) stabilizer measurements, we are
likely to rule out almost all error patterns in NP. However,
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the error patterns in NJ have not yet been ruled out. To be
sure of which error actually occurred, log2(NP + NJ + 1)
measurements are needed. For that, the syndromes of the
otherNJ error patterns needed to be checked. These are error
patterns that we still wish to correct, but whose syndrome we
did not keep in memory due to memory constraints. These
computations can be performed in parallel, and we only need
to compare, and thus compute, on average, < 2 bits among
the measured syndrome bits, to check whether one of these
error patterns is the measured one.

In the case with abandonment, it is possible that none of
the NP or NJ error patterns explain the observed syndrome,
if the error that occurred was very unlikely and not worth
correcting.

C. ORDERING THE STABILIZERS
With direct access to the syndrome information, it might be
tempting to order the stabilizer measurements so that, at each
iteration, there is maximum information gain. However, it can
be shown that this costly computation results in negligible
savings in the average number of measurements that need to
be performed to determine the error (see Section A), when
compared with a random ordering. Similarly, ordering the
stabilizers to try and create a more efficient membership test
would also result in minimal improvement in performance.

If s ≫ log2(N + 1) > H , one may work with a smaller
subset of the sminimal stabilizers, since, on average, we only
require log2(N + 1) measurements (in the highest entropy
case) to determine the error. In this case, it is possible to
choose stabilizers that have low weight or that are easier to
implement, based on the hardware restrictions. However, this
biased sampling may negatively affect performance. In any
case, it should be noted that, if the encoding is chosen
according to (10), then one should not have s ≫ H .

D. ADAPTING TO CHANGING NOISE STATISTICS
As the set of noise statistics N takes center stage in the
decoding process, QGRANDmay be adapted on the fly to suit
a changing noise environment, or changing error tolerances.
For the latter case, less (more) strict correction expectations
can be achieved by discarding (including) some error patterns
Ei with low associated pi. Similarly, for the former case, ifN
no longer accurately represents the new noise environment,
a new N ′ may be considered, resulting in different errors
having correction priority.

If changingN is not sufficient, the code can still be quickly
adapted by undoing the old encoding U and implementing a
new encoding U ′, keeping in mind the expected performance
indicated by (10), (15), and (16).

E. A GENERAL APPROACH: BEYOND STABILIZED CODES
The QGRAND concept is not limited to stabilizer codes.
A general high-level implementation of QGRAND-inspired
decoders may be applied to other QECCs, consisting of the
following steps, as depicted in Fig. 4(c):

1) Preprocessing/Encoding: The initial quantum data,
ρD, is preprocessed by U , possibly composed by
ancilla qubits, unitary transformations, and projective
measurements, into its encoded version ρj (with j = 0).
ρj enables the desired operations Wj on the quantum
data to take place, transforming the state into ρj>0. All
of these states ρj, j ≥ 0 should be robust to errors.
At desired intermediate steps, the data is verified.

2) Data verification: A membership test is performed
to verify if the encoded state ρj has been corrupted
by errors beyond the maximum tolerable error weight
- fail case - or if it is still in a state acceptable
for further operations - pass case. Depending on
the implementation, the membership test may provide
further information Ii about the failure, facilitating
its subsequent correction. Note that the use of the
membership test may itself modify ρj, as long as this
modification simply aids the correction, and does not
induce further significant errors in ρj.

3) Iterative correction attempt: A recovery operation R
is attempted on the state ρj. This operation is chosen
based on the information Ik provided by the previous
membership tests, and on the noise statistics N known
about the setup a priori. This verification should be
reversible, so that subsequent iterations may undo the
effects of failed correction attempts.

4) Error correction: Steps 2 and 3 are repeated either
until no feasible further recovery attempts are possible
- leading to a failed correction - or until a membership
test indicates that ρj is now in an acceptable state, and
the potential operationsWj can resume.

VII. PERFORMANCE VS CODE RATE TRADE-OFF
As motivated in Section V-A, the alteration of quantum states
follows a noise model where a quantum state σ , in density
matrix form, gets transformed into

ρ =

N∑
i

piEiσE
†
i , with E0 = I . (30)

After measuring some syndrome s, and applying the associ-
ated correction (either directly, if possible, or by iteratively
guessing), we obtain the corrected state. Unlike the classical
case, where bit-flip errors definitely map a codeword to a
different word, in the quantum case the error’s actual effect
will depend on the original quantum data |ψ⟩, and it may go
from doing nothing to mapping |ψ⟩ to an orthogonal quantum
state. As an example, consider k = 1 and only the error Z̄ .
If |ψ⟩ = α |0⟩+β |1⟩ (with |α|

2
+|β|

2
= 1), and the affected

state Z̄ |ψ⟩ is not corrected, the decoded state’s fidelity
will be

F = | ⟨ψ |Z̄ |ψ⟩ |
2

= ||α|
2
− |β|

2
|
2, (31)

which may be any value from zero (if |α| = |β|) to one (if |α|

or |β| equal one). As we wish to determine an estimate of the
QGRAND’s performance which is independent of the initial
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FIGURE 5. BLER and correctable error fraction f for QRLCs with n = 128,
considering p = 10−2, when trying to correct error patterns of weight up
to t = 3. Top curves: BLER, with shaded areas marking an 80% confidence
interval. Bottom curves: fraction f of error patterns of weight t that can
be corrected by the code, for a given code rate.

quantum data of interest, we may estimate a lower bound
Fmin for the fidelity of the corrected state, averaged over the
noise probability distribution, for any given initial quantum
state. A straightforward lower bound may be obtained by
considering the worst-case scenario, where all errors in E
(exceptE0 = I ) map the initial quantum data to an orthogonal
state, resulting inF = 0 if an error occurs. Therefore, we have
the lower bound

⟨F⟩ ≥ Fmin =

∑
i∈C

ϵi ≥

∑
i∈Cnon−degen.

ϵi = 1 − BLER, (32)

with C the set of indices for error patterns that can be
successfully corrected by the code. Cnon−degen. ⊆ C
considers only errors that are correctable thanks to a distinct
syndrome, and not thanks to code degeneracy. 1 − Fmin
turns out to be further lower bounded by the block error
rate (BLER) in classical error correction, with the difference
resulting from code degeneracy. Since the probability of an
error being degenerate roughly scales with 1/L = 1/22k

(cf. Section V-B), this possibility can be disregarded for
moderate or high k . Nonetheless, by computing the BLER,
our results slightly underestimate the codes’ performance for
very low values of k .
The error probability associated with quantum communi-

cations and quantum computation is typically in the order
of 10−3

− 10−1 ([67], [68], [69]), higher than what is
usually encountered in classical applications. For fault-
tolerant computation, it is estimated that an error probability

FIGURE 6. BLER and correctable error fraction for QRLCs with n = 32,
considering different p values, when trying to correct error patterns of
weight up to t = 3. Top curves: BLER, with an overall behavior similar for
both p = 10−2 and p = 10−3, but the lower p enables 2 to 3 orders of
magnitude lower error rate. Bottom curves: fraction f of error patterns of
weight t that can be corrected by the code, for a given code rate. This
value is independent of p.

below ∼10−2 would be required [12]. To motivate the use
of QGRAND for near-future applications, for this work,
we consider error probabilities in this range.

Figures 5 and 6 show how both the block error rate (BLER,
which is an upper bound to the infidelity in the quantum
setting) and the fraction of error patterns of weight t evolve as
a function of the code rate for QRLCs with codeword lengths
n = 128 and n = 32, respectively.
These results are obtained semi-analytically, as the QRLCs

are constructed randomly, but their performance is computed
exactly from each QRLCs’ list of minimal stabilizers,
represented by the parity checkmatrixA. The implementation
uses the Python package Qiskit. For n = 128, we compute
31 samples for each k ≥ 90. For n = 32, all k are
considered. For each sample, a QRLC with the indicated
number of gates (it varies for n = 128, and it is always
2000 for n = 32) is constructed. Its performance is obtained
by summing the probabilities pi of the most likely error
patterns Ei ∈ E associated with each syndrome. These are
the error patterns that can, in fact, be corrected by QGRAND
(disregarding degeneracies). The syndrome of each error is
efficiently computed as si = MEiA

T , with MEi the binary
matrix representation of Ei. Only error patterns up to the
desired weight t are considered; thus N = Bt as in (22).

As the code rate increases, the code manages to correct
fewer and fewer error patterns, with an error rate approaching
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FIGURE 7. Codes’ performance as a function of the probability p of each
qubit suffering an error for different code lengths n, with R = 0.7.
A Bernoulli noise model is used.

the case where no error can be corrected. Lower code
rates eventually plateau for each weight t , as the codes
can eventually correct all error patterns with that weight.
As expected from Fig. 3, if the encoding has too few C2 gates,
it is not expressive enough to reach the performance of an
ideal random code (marked by dots, (23)), but, as more
gates are used, the observed performance of these QRLCs
matches it, qualitatively suggesting that GRAND’s results
for uniform-at-random codes may be applicable to quantum
random encodings. Note that the variance of the code
performance also decreases with an increasing number of
gates, indicating that a good code is obtained with high
probability.

ApproximatingQRLCs by their ideal counterparts, wemay
estimate their performance’s dependence on the noise prob-
ability. As seen in Fig. 7, increasing n improves the code’s
performance, with a lower p observing greater improvements.
The ideal approximation from Section V-B (dots) continues
to provide a quick and good estimate of QGRAND’s
performance.

VIII. CONCLUSION AND FUTURE DIRECTIONS
This work introduced a novel approach to quantum error
correction by bringing together quantum random linear
encoding and noise guessing decoding, considering a system
model with channel errors only, as a first extension of
the GRAND concept to the quantum realm. QGRAND is
particularly suitable for codes with short codewords, or with
high code rate, as highlighted in [52, sec. VI-B]. Given the
difficulties of manipulating large quantities of qubits, this
type of error protection seems particularly fit to the presently
envisaged quantum technologies requiring error correction,
such as the transmission of quantum entanglement, quantum
repeaters, quantum memories, and quantum computing.

It was first verified by numerical simulations that the
construction leading to random quantum codes can be effi-
ciently implemented, even outside the regime with theoretical
guarantees. Although we focus on the case of all-to-all qubit
connectivity, this method can be easily generalized to more
restrictive connectivities. A possible approach would be to

limit the 2-qubit gates composing the encoding to only
connect pairs of qubits with a direct connection. Employing
higher circuit depths to achieve similarly powerful encodings,
and limiting the stabilizer weight [16] would enable versatile
practical implementations.

By taking advantage of the noise statistics, known from
the medium at hand, an efficient and flexible decoding
process is obtained. One may even consider a scenario where
the syndrome measurements are not promptly available,
and rather there is only access to a membership test,
flagging whether the syndrome is zero or not. The QGRAND
methodology is generalizable beyond stabilizer codes, and is
suitable for time-variant noise statistics and changing setup
requirements, updated on the fly.

In the quantum setting, we may consider different forms
of abandonment. In the classical GRANDAB approach, the
iterative noise guessing process is stopped after a chosen
number of attempts, depending on the noise entropy. In the
case where the syndrome information is being actively
used, we may not only stop testing error patterns after a
given threshold, but we may also stop measuring stabilizers
after a given number of measurements, if the conducted
measurements rule out all but very unlikely errors. In general,
we expect the QGRAND approach to be directly amenable to
the GRANDAB formalism.

This work considered QECCs mostly for quantum com-
munications and quantum memories, where the errors mostly
arise during the quantum state transmission or storage.
However, in contexts such as quantum computation, the errors
during the encoding and decoding process themselves may be
of the same order of magnitude as those encountered in the
intended computations, and therefore, an important research
question is to find how robust the whole encoding-decoding
chain is when considering such errors in the system model.
The first step should be assessing the impact of imperfect
measurements when obtaining the syndrome, and how the
binary decision they control (i.e., the membership test) is
perturbed. The application and efficiency of QGRAND (and
GRANDAB) for practical applications with limited qubit
connectivity, and also in the context of fault-tolerant systems,
is the subject of ongoing work.

APPENDIX A
STABILIZER ORDER
For the syndrome decoding process, we may choose the order
in which we apply the stabilizers. For a random ordering of
the s minimal stabilizers, it will take, on average, measuring
∼log2(N + 1) stabilizers to identify which specific error
pattern in E has occurred. If the syndrome is only being used
as a membership test, then one needs to distinguish each error
pattern in E × E , which takes ∼2 log2(N + 1).
Instead of choosing the stabilizer ordering at random,

we may try to choose the stabilizer with highest information
gain, which, thanks to the random assignment of syndromes
to error patterns, will likely correspond to the stabilizer with
which the most error patterns anticommute.
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Using this information, one may precompute a decision
tree that maximizes the information gain at each measure-
ment step. An example can be seen in Fig. 8, where we see
the average number of stabilizers required to determine the
error that occurred, or if no error occurred at all, for different
error distributions, as a function of the noise entropy H (N ).
The shaded region marks one standard deviation. Random
(30, 1) codes are used, and only error patterns of weight
t = 1 are considered. When all cases are equally likely
and the entropy is maximal, the decision tree method will
require about the same number of stabilizers, log2(N + 1)
(black solid line), as the naïve method, where the stabilizers
are chosen at random. For lower entropy distributions, only
minor savings can be achieved. In the limit of zero entropy,
where no errors can occur, fewer stabilizers are required
(with the minimum given by the dashed line, computed using
(33)). The decaying and constant distributions correspond
to {pi = exp(−αi)} and {pi = ϵ, p0 = 1 − Nϵ}, respectively,
with both distributions normalized and α, ϵ chosen so as to
form a probability distribution with the indicated Shannon
entropy H (N ).
This approach might even be used to create a membership

test requiring a smaller number of stabilizers. However, here
we show that such a procedure will lead to very minor savings
in the necessary number of iterations, when compared with
the straightforward random ordering.

Let Xi be the distribution for the number of error patterns
in E that anticommute with stabilizer Si ∈ Smin. Then,
approximately, Xi ∼ Binomial(N , 1/2), using the binomial
distribution. For large N , Xi can be approximated by the
normal distribution Normal(n/2, n/4). The stabilizer that can
detect the highest number of error patterns, will detect on
average Z ∼ maxi Xi error patterns. By Jensen’s inequality,
its expected value is upper-bounded byµ+σ

√
2 ln s = n/2+

√
(n/2) ln s. Assuming that the stabilizer chosen for each

iteration matches this upper bound and the Xi distributions
are independent, we have Nj error patterns remaining at
iteration j, on average, when starting with N error patterns.
The recursion relation is given by

N0 = N , Nj+1 =
Nj
2

−

√
Nj
2

ln(s− j). (33)

An approximate lower bound for the minimum number of
measurements is given by I , such that NI ≃ 1. This bound
is not exact as the substitution of the binomial distribution
for a normal distribution is only valid for large Nj, which
necessarily cannot hold for j ≫ 1. Nonetheless, it provides
us with a simple rule of thumb to check whether the ordering
approach can potentially have large savings in measurements.
Using Aj ≜

√
Nj/2, we have

Aj+1 =
Aj
√
2

√
1 −

1
Aj

√
ln(s− j) ≃

Aj
√
2

−

√
ln s

2
√
2
. (34)

By solving this recursion relation, it can be shown that
the number of iterations required will be, approximately, for

FIGURE 8. Average number of stabilizers required to determine the error
that occurred, or if no error occurred at all, for different error
distributions, as a function of the noise entropy H(N ). The shaded region
marks one standard deviation. Random (30, 1) codes are used, and only
error patterns of weight t = 1 are considered.

FIGURE 9. Expected number of iterations, using the decision tree method,
for large N and s. Using I = a log2 N−b log2 log2 s − c , a least squares fit
obtains the parameters (a, b, c) = (0.96, 0.91, 0.84), which is
approximately in agreement with (35).

large N and s,

I ≃ log2 N − log2 log2 s− 1. (35)

Fig. 9 provides numerical confirmation of that. Suppose that
our setup follows (10), so that s ∝ log2 N . As N increases,
we expect no significant increase in savings for the number
of iterations, when compared with the approach of picking
stabilizers at random, which takes ∼log2 N iterations. Thus,
it is not justifiable, in practice, to compute a syndrome table
to construct a decision tree leading to the highest information
gain per iteration, as the gains are negligible.
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