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ABSTRACT The objective of our work was to develop a tool to support the process of making strategic
decisions about the COVID-19 pandemic by optimizing suppression intervention schedules.We focusmainly
on hard lockdowns that have the effect of containing the spread of the virus and, consequently, minimizing
the number of infections and keeping the incidence of COVID-19 at low levels. Properly implemented
restrictions can reduce the likelihood of infection and thus push the pandemic back. On the contrary, lifting
restrictions results in a sharp increase in likelihood of infection and the development of a pandemic. The
model proposed in this paper indicates the optimal moments to implement full lockdown, accounting for
both the costs of lockdown and the costs of not applying lockdown.

INDEX TERMS COVID-19, decision making, lockdown scheduling, mixed integer programming, strategic
management.

I. INTRODUCTION
December 2019, in Wuhan, China, the first cases of unusual
pneumonia were confirmed. The spread of the SARS-CoV-2
virus has soon become a global problem that has not
yet been effectively contained [1], [2], [3], [4], [5]. The
Coronavirus Disease 2019 (COVID-19) is a pulmonary
disease produced by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). According to the official
report [6], by February 22, 2022, the number of confirmed
cases of Coronavirus infection was 424.51 million, and the
number of deaths related to COVID-19 reached 5.89 million.
The SARS-CoV-2 coronavirus pandemic is the largest
pandemic since influenza in 1918 and the largest global crisis
since World War II [7], [8].

Research indicates that the environmental effects of
COVID-19 are complex and multifaceted. While some
studies have shown a decline in air quality, there is
also evidence of positive impacts on the natural world.
Additionally, various factors play a role in the transmission of
the virus and its impact on public health [9], [10], [11], [12],
[13], [14], [15], [16], [17]. Recent studies have revealed that
COVID-19 has had significant impacts on multiple aspects
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of society, including biological and behavioral factors,
economic benefits, and psychological well-being. These
effects have the potential to be both negative and positive,
with long-term consequences that are still being analyzed
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27].

The scope and gravity of the challenge posed to the
healthcare system by the disease, which often requires
hospitalization and specialized care, has quickly brought the
capacity of the system to a critical level. Therefore, the
use of nonpharmaceutical interventions (NPIs) has become
crucial. NPIs range from the lightest, such as social distance,
increased hygiene, and use of personal protective equipment
(masks, gloves, visors), to measures that restrict social
freedom, including the recommendation to work and study
remotely and lockdown.

There are two predominant approaches to dealing with the
pandemic: (1) mitigation, which seeks to slow the prolifer-
ation of the virus through non-pharmaceutical interventions
(social distancing, isolation, etc.) implemented to flatten the
incidence curve over time and reduce the exposure of themost
susceptible individuals, and (2) suppression, which involves
taking decisive actions (mainly lockdowns) that have the
effect of suppressing the spread of the virus and consequently
minimizing the number of infections and keeping them low
[7], [28], [29], [30], [31]. The effectiveness of NPIs depends
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not only on the discipline of the society but also on how
they are implemented by local and state administrations. It is
the responsibility of policy makers to develop strategies to
manage pandemic prevention and implement measures that
affect the economy and functioning of the country. Each of
these strategies and measures entails economic and social
costs that burden countries and regions to varying degrees
[32], [33], [34], [35], [36], [37].

To evaluate the effectiveness of these NPIs, most scientists
use the basic reproductive number R0 defined in Lau et al.
[38] as the ‘‘number indicating disease transmission, which
reflects the average number of secondary infections produced
by a typical infection case in a population where everyone
is susceptible’’. The value of R0 determines whether the
infection will spread exponentially (R0 ≥ 1), die (R0 ≤ 1),
or remain constant (R0 = 1) [39], [40]. As the research
presented in Xiang et al. [41], shows, there are significant
differences in the effects of various interventions at the time
of the pandemic. For example, according to Hellewell et al.
[42] contact tracking allows outbreak control even with
R0 = 3.5. Such a high level of R0 requires the tracking and
isolation of more than 90% of contacts which, as the authors
point out, is a considerable problem. However, tracking and
isolation are effective in the early stages of an outbreak.
In Koo et al. [43] is presented the impact analysis of NPIs
onR0: combined NPIs that involve quarantining the infected
as well as their families, keeping distance on the job, and
closing schools can significantly reduce R0. It should be
noted that the impact of these measures depends on the initial
level ofR0. According to the authors of this article, using all
interventions simultaneously as soon as possible is the most
effective. Namely, withR0 = 1.5, the median of the infected
can decrease by 99.3%, and forR0 = 2.5 it is only 78.2%.
The objective of our work was to develop a tool to

support the process of making strategic decisions about the
COVID-19 pandemic by optimizing suppression intervention
schedules. Suppression requires decisive actions (in this
article, we focus mainly on hard lockdown) that have the
effect of containing the spread of the virus and, consequently,
minimizing the number of infections and keeping the
incidence of COVID-19 at low levels. As already stated,
properly implemented restrictions can reduce R0 to less
than 1 and thus push the pandemic back. On the contrary,
lifting restrictions results in a marked increase inR0 and the
development of a pandemic. Themodel proposed in this paper
indicates the optimal moments to implement full lockdown,
accounting for both the cost of lockdown and the cost of not
applying lockdown.

Since its inception, the development of the COVID-19
pandemic has been the subject of scientific research in
epidemiology, statistics, data science, and mathematical
modeling with the aim of predicting the rate of virus spread,
as well as the consequences of individual decisions in
the short and long term [44], [45], [46], [47], [48], [49],
[50]. Models used to predict the course of a pandemic
and plan the actions to be taken to defeat it. It enables
us to distinguish two main groups of models supporting

decisions during a pandemic: (1) predictive, which aim
to forecast the selected characteristics that determine the
development of a pandemic, and (2) decisional, which aim
to support decision makers in NPI planning. Most research is
focused on developing predictive models. However, only the
appropriate use of these predictions in the decision-making
process can allow for an effective fight against the pandemic
and its implications. Therefore, decision-making issues have
become the focus of the research described in this article.
The proposed NPI scheduling model is decisional in nature
and can be based on the information provided by any
predictive model. Presenting the essence of the proposed
decision support model requires knowledge about the values
of parameters over time, e.g., the basic reproduction number
(R0), Susceptible (S), Insusceptible (P), Exposed (E),
Infective (I ), Quarantined (Q), Recovered (R) and Death (D),
contact number (σ ) and replacement number (R′′), referred to
as the characteristics in this paper. The source of knowledge
about these characteristics is the predictive models described
above [46], [50], [51], [52]. The values of these parameters
are estimated on the basis of real data measured for the
observed phenomenon. A particularly important problem in
the application of predictive models to make short- and
long-term forecasts is the proper estimation of the value of
the parameterR0 [54], [55], [56], [57].
As shown in Li et al. [53], a hard lockdown can contribute

to reducing the parameter R0 below the critical value R0 <

1: R0 for South Korea before the implementation of restric-
tions was almost 4.2, while extensive NPIs caused R0 to
drop to 0.1. Similar results were obtained in Hubei Province,
China and Iran. Conterminous findings are presented in
Kucharski et al. [51]: the reproduction numberR0 in Wuhan
decreased from 2.35 a week before the implementation of the
restrictions to 1.05 in the first week after the implementation.
However, the results of the study for the Wuhan region
presented in Li et al. [58] show that due to the implementation
of NPIs, the value of the parameterR0 decreased from 2.38 to
0.98–1.34 depending on the period analyzed. The examples
mentioned above show a strong link between the level of
introduced NPIs and the reduction of R0, thus stopping
the development of the pandemic. Needless to say, the
interventionsmentioned above have profound socioeconomic
consequences [33], [35], [36], [37], so it is crucial to choose
the right set of interventions, the timing of implementation
and the duration. Furthermore, introducing interventions too
late or insufficiently can lead to pandemic overexpansion and
ultimately reduce the effectiveness of these restrictions [30],
[43], [59], [60].

II. MATERIALS AND METHODS
The model presented in this paper works for each of the
characteristics. More importantly, it also works for the simul-
taneous testing of several characteristics. The waveforms
tested must be described using probability functions, for
example, the probability of death, the probability of survival
or the probability of infection. The Weibull distribution was
chosen for this work. It plays a central role in reliability
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analysis as one of the most important generalizations of
the exponential distribution [61]. The continuous probability
distribution introduced by Weibull [62] is distinguished by
the following distribution function:

F(x) = 1 − e−( xT )
b

(1)

where:
x – non-negative variable, e.g. time
T – scale parameter
b – shape parameter
The scale parameter T is related to the spread rate of the

phenomenon analyzed. It represents the value of x, for which
the probability of, e.g. infection, death, etc., is about 63.2%
[63]. The parameter b can be used to describe various shapes
of the distribution function and the probability distribution
function over time. TheWeibull function has been extensively
used for the analysis of COVID-19 pandemics in recent
studies [41], [63], [64], [65], [66], [67], [68].

The total number of deaths – Death (D) was chosen as the
characteristic analyzed. Data on this and other characteristics
used in this work were obtained from the Our World in Data
[6] website.

The function (1) presented above was used to describe
the relationship between the number of confirmed deaths
whose main cause was COVID-19 and the duration of the
first wave of the pandemic. The first 100 deaths that occurred
as a result of SARS-Cov-2 virus infection were assumed
to mark the beginning of the pandemic in a given country.
The end of the first wave was defined as a decrease in the
daily number of deaths to 10. Four European countries –
France, Germany, Italy, and Spain – were included in the
analysis, and the entire set of historical data was used to
create a set of sample empirical distribution functions that
served as the basis for determining the parameters of the
Weibull distribution. The distributions and actual data for
each country are presented in Figure 1. The Weibull function
for the parameters T = 36.496 and b = 1.669 is colored
purple.

It should be noted that the selected characteristics, the
function built on its basis, and the adopted methodology are
illustrative and are the starting point for the construction of a
decision support tool.

A. MATHEMATICAL MODEL OF THE LOSS MINIMIZATION
PROBLEM
This section presents a proposed newmixed integer program-
ming model (MIP) that seeks to minimize the total losses for
a certain analyzed process that can be described by a set of its
characteristics E . Each characteristic e ∈ E is described by its
maximum attainable value �e in the studied period (e.g., the
total number of deaths in the first wave of the pandemic) and
by a certain probability function of reaching the maximum
value of �e. We write a discrete function for successive
periods p of the planning horizon and a given characteristic e
and denote it by Ape.
We can define the behavior of a given characteristic e over

time as the emergence of the lost value, which in subsequent

FIGURE 1. Empirical distributions for the number of deaths during the
first wave of the pandemic in the analyzed countries compared with the
Weibull function for parameters T = 36.496 and b = 1.669.

p periods is expressed by decreasing the expected value
determined as �e · Ape. The defined lost value for a given
characteristic is greater if the number of consecutive periods
in the planning horizon is high (in each consecutive period,
the probability of achieving the�e value decreases). To break
the loss of value, it is possible to implement a certain action
at any time (e.g., hard lockdown) that will have the effect of
restoring a given characteristic e to its initial probability value
A0e. The period for which the restoration action is in effect is
called the reset of a given characteristic e, and its length ne
must be specified in advance.

Let T denote the set of consecutive identical periods on
some fixed time horizon, starting from period 0 to period m.
Therefore, T = [0, . . . ,m − 1] is a set of m consecutive
identical planning periods.

Let E be the set of certain process characteristics for which
the probability of value loss over time is expressed by an
arbitrary decreasing function. Hence, E = [0, . . . , l − 1] is
the set of l characteristics.

Let Pe be the set of successive values of the probability
function that will be assigned appropriately to a given period
t , starting from element 0 to element ke. Hence, Pe =

[0, . . . , k − 1] is the set of k consecutive decreasing values
of the probability function for the characteristic e.

Furthermore, let T ′
e be the set of consecutive periods that

must be assigned to the reset of characteristic e. Since ne
denotes the required number of these periods. Therefore,
T ′
e = [0, . . . , ne−1] is the set of ne consecutive reset periods

for the characteristic e.
Let the values of successively decreasing probabilities

for each characteristic be represented by the parameter
Ape. In other words, Ape is the value of the probability
function for the characteristic e ∈ E for the element
p ∈ Pe.
Let 1 denote the smallest decrease in probability between

successive Ape values for all functions that describe each
characteristic. This means that 1 is the minimum probability
loss between consecutive values of the function for particular
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characteristics. Analogously, �e is the maximum probability
value that describes the characteristic e.
The parameter0 represents the periodic cost of performing

a reset, that is, the cost of introducing lockdowns.
Let the binary variable ypet be equal to 1 if a given Ape

value of probability p for a given characteristic e is assigned
to period t , otherwise ypet = 0.
Let the binary variable zt ′,t,e sequentially take values equal

to 1, that is, zne−1,t−ne,e = 1 if the reset of a given
characteristic e begins in period ne − 1 (lockdown starts) and
z0,t,e = 1 if the reset finishes in period t(lockdown ends),
otherwise zt ′,t,e = 0.
Let the binary variable xt , respectively, take a value equal

to 1, if a reset of at least one characteristic is in progress in
a given period t , otherwise xt = 0. The variable xt is used to
aggregate the periods mentioned for the set of characteristics.

The MIP model for the loss minimization problem in a
process where the probability of a lost value for its individual
characteristics is described by a time-dependent probability
function, which can be formulated as follows:

maximize
∑
e∈E

∑
p∈Pe

∑
t∈T

�eApeypet − 0
∑
t∈T

xt (2)

∑
p∈Pe

ypet ≤ 1 −

∑
t ′∈T ′

zt ′t ; t ∈ T , e ∈ E; (3)

∑
p∈Pe

(Apeyp,e,t−1 − Apeypet ) ≥ 1 −M
∑
t ′∈T

zt ′,t−1,e;

t ∈ T , e ∈ E : t > 0; (4)

zt ′te = zt ′+1,t−1,e; e ∈ E, t ′ ∈ T ′
e, t ∈ T : t ′ < ne, t ≥ ne;

(5)∑
t ′∈T ′e

zt ′te ≤ 1; e ∈ E, t ∈ T ; (6)

M · xt ≥

∑
e∈E

∑
t ′∈T ′e

zt ′te; t ∈ T ; (7)

ytet = 1; t ∈ T , e ∈ E : t < ne; (8)

z0te = 0; t ∈ T , e ∈ E : t < ne; (9)

ypet ∈ [0, 1]; p ∈ P, e ∈ E, t ∈ T ; (10)

zt ′te ∈ [0, 1]; e ∈ E, t ∈ T , t ′ ∈ T ′
e. (11)

The objective function (2) minimizes the total lost value,
the loss of the characteristics under study, over the assumed
planning horizon. The expected value �e · Ape for a given
characteristic e in subsequent periods decreases until a reset
is performed. Furthermore, the objective function takes into
account the periodic cost of performing the reset 0 common
to all the characteristics studied. Constraints (3) ensure
that for a given period t , only one indicated value of the
probability function can be assigned to each characteristic e,
but only if there is no scheduled reset in the given period t .
The constraint (4) allows, in a consecutive period t , to assign
successively decreasing values of the probability function of
a given characteristic e, provided that in the previous period
t−1, the assigned probability was higher at least by the value
1, or any value thereof if the reset ended in the previous

TABLE 1. Survival function used for computational experiments (Ape).

period t−1. Note thatM is a large constant that is commonly
used in sequencing constraints. Constraints (5) and (6) ensure
that the reset of the characteristic e lasts for the required
number of consecutive planning periods. The constraint (7)
ensures the binarity of the variable xt . Constraints (8) and (9)
set the initial values of the variables, respectively.

III. RESULTS
Figure 1 shows the determined Weibull function transformed
to the form 1 − F(x) that was used in the calculations.
While in its original form we can interpret it as an increased
probability of death, after the transformation we will talk
about a decreasing probability of survival, which will be the
chosen characteristic of the process under study (the duration
of the pandemic will be treated as the examined process). The
planning horizon will be one year divided into 52 discrete
identical planning periods of one week. The values of the
‘‘survival’’ function used in the calculations are provided in
Table 1.
Let �e be equal to 1, which, together with the probability

function indicated earlier, we will interpret as the expected
survival value for a certain individual positive for COVID-19
and belonging to the group D (that is, Deaths in the sense
of interval deterministic prediction models), and let 0 be
equal to 0.

The periodic loss minimization cost 0 can be interpreted
as the cost of implementing lockdown in a given period. This
parameter, together with the appropriately adopted values of
�e – both �e and 0 must have equivalent units – will allow
minimizing the total cost of the pandemic. This approach
increases the functionality of the model, but at the same
time imposes the need to estimate �e in the given units
(e.g. monetary). It is obvious that in many situations such
quotation is problematic not only for technical but also ethical
reasons. As presented above, the correct operation of the
model does not require the use of this functionality. It can
be used when decision makers have the knowledge necessary
to describe the maximum value of the characteristic and
lockdown costs in a unified unit. The approach proposed in
this example – �e equal to 1 and 0 equal to 0 – can be
interpreted as assuming an infinitely large value for human
life. The common parameters assumed for all calculations are
summarized in Table 2.
The calculations were performed for scenarios that differed

in lockdown duration. The duration of a lockdown was
assumed to be between 1 and 10 weeks; however, as the
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TABLE 2. A summary of the parameters used in the calculations.

studies presented in the introduction of this article suggest,
a restrictive lockdown lasting 1-2 weeks can reduce R0 of
the COVID-19 pandemic to about 1 – the level at which
standard preventive measures (for example, contact tracking,
quarantine) are sufficient.

The resulting weekly distribution of the maximum
expected value for one person’s ‘‘survival’’ function (or,
conversely, the minimization of ‘‘mortality’’) and lockdown
duration is shown in Figure 2. Solutions for different
lockdown periods are presented there. The gray bars represent
the expected value of survival, while the gaps reflect the
lockdown periods. The model aims to increase the gray bars’
‘‘area’’, i.e., the cumulative ‘‘probability of survival’’. Thus,
the first chart from the top – lockdown lasting 1 week –
suggests that according to the model, the lockdown should
be implemented in week 3 and then in week 8. Conversely,
in the fourth chart from the top – lockdown lasting 4 weeks –
the lockdown is planned for week 5. It can also be observed
that in the case of a lockdown longer than 7 weeks, the
model allows for a much greater decrease in the probability of
survival. This may be due to the short planning horizon. The
optimal solution of this model for the mentioned lockdown
periods would probably change in a longer time perspective.
However, such a perspective is not needed in the case
analyzed.

Another conclusion that can be drawn from the model
sensitivity analysis presented in Figure 2 is that the shorter the
lockdown, the more often it can be applied, especially since
the total lockdown period may be shorter – of course, this
applies only to strict and fully enforced lockdown. In other
words, for the analyzed case, due to the adopted objective
function, the most effective solution involves frequent, yet
short, lockdowns.

The optimal values obtained for the objective function
in particular solutions are presented in Figure 3. The total
expected value of survival determined by the first segment
of the objective function (2) is represented by the gray line in
Figure 3.
Interpreting the relationship between the duration of the

lockdown and the change in the objective function presented
in Figure 3 may lead to the misconception that the longer
the lockdown, the smaller the survival chance. This is not a
valid conclusion, as the objective function does not take into
account the chance of survival during the lockdown period.
The solution to this problemmay be to include the probability
of survival during the lockdown period in the model, which
is the authors’ goal in their future work. However, in the
studied case, the main parameter supporting the decision on
the duration of the lockdown is the blue line in Figure 3
that represents the average expected µ value of survival

FIGURE 2. Optimal schedules for implementing lockdowns lasting 1,. . . ,
10 weeks over a planning horizon of 52 weeks.

FIGURE 3. Values of the objective function for the assumed lockdown
durations and mean value of the objective function for days without
lockdowns.

calculated only for periods without lockdown, according to
Equation (12).

µ =

∑
e∈E

∑
p∈Pe

∑
t∈T �eApeypet∑

t∈T xt
(12)

As the duration of a single lockdown increases, the average
chance of survival decreases. In the fifth week of lockdown,
the chance of survival fluctuates and then increases. This
situation may also be influenced by the already mentioned
problem of the limited period of analysis (1 year).

The above considerations lead the authors to conclude that
themost effective solutionwould be to implement the shortest
possible hard lockdown that would have the strongest impact
on a given pandemic. As mentioned in the introduction, in the
case of the COVID-19 pandemic, the hard lockdown period
that allows us to reduce the R0 parameter to about 1 is
from 1 to 3 weeks [33], [69], [70], [71], [72], [73]. Of course,
the period also depends on social factors in a given region,
which should be considered when making the decision about
lockdown [46], [74], [75], [76], [77].
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FIGURE 4. A detailed schedule of 1, 2, and 3-week lockdowns.

It is important to remember that the main goal of the
proposed tool is not the optimal choice of the duration
of the shutdown, but the development of an optimal schedule
for the implementation of the shutdown given: (1) the
evolution of key characteristics of the studied pandemic is
expressed in the probability function – in the analyzed case,
it is the Weibull function that represents the probability of
survival; (2) the duration of the shutdown 1, 2 or 3 weeks for
the COVID-19 pandemic.

Figure 4 presents a detailed schedule for the above
assumptions. As shown in Figure 4, in the case of a one-
week lockdown, the total lockdown duration over the year
is 12 weeks. The society functions normally for a total
of 40 weeks divided into 3-week periods. This approach
maintains the chance of survival above 80%. In the case of
a 2-week lockdown, the analyzed parameters are as follows:
(1) the total period of all lockdowns is 16 weeks; (2) the total
period of normal functioning of the population is 36 weeks,
divided into approximately 4-week periods; (3) the chance of
survival remains above 65%;

In the case of a 3-week lockdown, the situation is as
follows: (1) the total period of all lockdowns is 18 weeks;
(2) the total period of normal functioning of the society is
34 weeks, divided into approximately 4-week periods; (3) the
chance of survival remains above 50%.

IV. DISCUSSION
The wavelike spread of the SARS-CoV-2 virus [82]
requires the development of adequate and effective tools
to support the making of strategic decisions regarding
the COVID-19 pandemic by optimizing the schedules for
the implementation of subsequent preventive and non-
pharmaceutical countermeasures. According to the authors
of this paper, such a tools should have the following
functionalities:

• Possibility to include at least one characteristic that
describes the development of the pandemic: The
proposed model can be based on any number of char-
acteristics. As shown in the example (see Section III),
in the case of one characteristic, the model indicates

the moment of lockdown implementation that is optimal
in terms of minimizing the cumulative probability
of that characteristic. It is possible to add different
characteristics to the model, and the proposed schedule
will be optimal in terms of all these characteristics.

• Possibility to include lockdown costs in the analysis –
as discussed in Section II-A, the proposed model can
independently include lockdown implementation costs
and lost value. According to the authors of this andmany
similar studies (e.g. [70]), such a feature is necessary,
for example, to compare the cost of restrictions with
the costs of hospitalization. However, such a valuation
may be difficult or even impossible. Therefore, this
functionality is included in the model as an option.

• Possibility of considering other types of restriction:
the proposed model can take into account any type
of restriction, as long as its influence on the analyzed
characteristics is known and it is possible to predict
the course of these characteristics after restrictions are
lifted.

• The possibility of simulated different lockdown dura-
tions: as presented in the exemplary calculations, the
model allows one to conduct a kind of sensitivity
analysis in terms of lockdown duration, which facilitates
the choice of the optimal period.

It is important to remember that the WHO developed
several recommendations to limit the spread of the SARS-
CoV-2 virus, but the decisions to implement the actions
are the responsibility of local and state authorities. The
factor that is always considered when choosing a pandemic
management strategy is the capacity of the health care
system, as its overload can deprive those severely affected
by COVID-19 of professional help. The primary goal of
these activities is to spread the peak of the epidemic over
time in particular countries and to limit the impact on
the economy. Recent studies that predict the occurrence of
similar events in the future [64] suggest that the development
of tools for the management of pandemic crisis and health
management during a pandemic is essential. The presented
findings are intended to support decision-makers in a given
country or region in making strategic decisions about the
implementation of interventions. Final decisions should also
take into account social factors in the region analyzed. The
implementation of hard lockdowns in European countries
differs completely from lockdowns in Asia, which is reflected
in the length of a single cycle. It should be emphasized that
knowing the lockdown implementation schedule offers many
benefits (not only economic, but also social) and reduces
the uncertainty associated with planning actions during the
pandemic crisis.

The conclusions that can be drawn from the presented
analyses, in the context of the overall costs of a pandemic,
including not only health costs, but also far-reaching conse-
quences of the freezing economy, are as follows: The period
of hard lockdown should be as short as possible (taking into
account the nature of the pandemic and social factors in the
analyzed region), but it should be implemented periodically.
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Such an approach provides a clear and structured schedule
of lockdown activation, which ultimately allows minimizing
its impact on the functioning of the economy and society
as a whole. In summary, a lockdown should be restrictive,
periodic, and as short as possible.

V. LIMITATIONS AND FUTURE RECOMMENDATIONS
The limitations of the model described in this paper include
the lack of possibility of adjusting for changes in the charac-
teristics studied during the restriction period. In the proposed
approach, once the restriction is implemented, the tested
characteristic is reset. As a result, the model does not take into
account the costs generated by the analyzed characteristics
during the restriction period. The authors believe that this
simplification does not affect the objective function in the
analyzed case of hard lockdown. However, when analyzing
other restrictions on simultaneous valuation, for example,
in monetary units, the model may not adequately reflect the
actual dependencies between the analyzed factors.

Another problem is the lack of the possibility to change
the functions describing the analyzed characteristics in
subsequent cycles of the schedule. Namely, in the case of
an accurate forecasting model for a given characteristic, it is
possible to take into account the change of this characteristic
in subsequent cycles of the schedule, e.g., the function of
infection growth in the case of a new pandemic in the first
cycle may drastically differ from the function in the second
cycle (this may result from the unavailability of the tests).

Additional limitation of the presented solution is the
period and resolution of the analysis. The resolution and
computation time depend on the computational power, which
is not a significant problem at the moment, and on the
precise long-term prediction of changes in the analyzed
characteristics. As the literature review demonstrates, this
problem has already been extensively described, and the
available models are increasingly accurate, for instance, due
to the change from deterministic static models to data-driven
dynamic models, e.g. using machine learning [41], [78], [79],
[80], [81]. Of course, the mentioned problems are the basis
for the development of the described model, which is the
objective of the authors’ further work.
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