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ABSTRACT Financial portfolio construction problems are often formulated as quadratic and discrete
(combinatorial) optimization that belong to the nondeterministic polynomial time (NP)-hard class
in computational complexity theory. Ising machines are hardware devices that work in quantum-
mechanical/quantum-inspired principles for quickly solving NP-hard optimization problems, which
potentially enable making trading decisions based on NP-hard optimization in the time constraints
for high-speed trading strategies. Here we report a real-time stock trading system that determines
long(buying)/short(selling) positions through NP-hard portfolio optimization for improving the Sharpe ratio
using an embedded Ising machine based on a quantum-inspired algorithm called simulated bifurcation.
The Ising machine selects a balanced (delta-neutral) group of stocks from an N -stock universe according
to an objective function involving maximizing instantaneous expected returns defined as deviations from
volume-weighted average prices and minimizing the summation of statistical correlation factors (for
diversification). It has been demonstrated in the Tokyo Stock Exchange that the trading strategy based on
NP-hard portfolio optimization for N = 128 is executable with the FPGA (field-programmable gate array)-
based trading system with a response latency of 164 µs.

INDEX TERMS Portfolio construction, trading system, real-time system, custom circuit, FPGA,
combinatorial optimization, Ising machine, simulated bifurcation, quantum-inspired.

I. INTRODUCTION
Many portfolio construction/selection problems in finance
are, with considering minimum transaction lots or other
discretenesses of decision variables as realistic constraints,
known to be nondeterministic polynomial (NP)-hard in
computer science [1], [2]. Those include discrete optimiza-
tions of Markowitz’s mean-variance model [3] for better
risk-return characteristics [4], [5], multi-period portfolio
optimizations (or optimal trading trajectory problems) [6],
[7], [8], and correlation-diversified portfolio constructions
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including maximum independent set (MIS) problem-based
ones [9], [10], [11] and permutation of assets-based one [12].

Recently, special-purpose computers for NP-hard combi-
natorial (or discrete) optimization, called Isingmachines [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], have attracted intense
attention. Ising problems are the ground (energy minimum)-
state search problems of Ising spinmodels [31], which consist
of binary variables, called spins, coupled each other with
pairwise interactions (two-state interacting variables like the
Ising model have been utilized for analyzing various physical
or social systems [32], [33], [34]). The Ising problem belongs
to the NP-hard class [35], [36]; a variety of notoriously
hard problems can be represented in the form of the Ising
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problem [36], including discrete portfolio optimization [4],
[5], [6], [7], [8] and market graph analysis [9], [10], [11],
[37], [38] in finance. The Ising machine is a heuristic
methodology and quickly searches for the optimal (exact)
or near-optimal solutions of the Ising problem in the whole
solution space. Many Ising machines have claimed higher
speed performance than simulated annealing [39], [40]
(on von Neumann computers), a conventional heuristic for
combinatorial optimization. The generalization of the Ising
machine (quadratic) to higher-order problems [17], [41] has
also been studied to analysis higher-order networks [42], [43],
[44], [45], [46], [47].

The Ising machines are implemented with various hard-
ware including superconducting flux qubits [18], [19], hybrid
electronic-optical systems [20], [21], memristor-based neural
networks [22], probabilistic bits [23], coupled-oscillator
circuits [24], analog computing units [25], application
specific integrated circuits (ASICs) [26], [27], [28], field
programmable gate arrays (FPGAs) [13], [14], [15], [16],
[29], and graphics processing units (GPUs) [13], [15], [30].
The Ising machines may enable making more rational

judgments based on NP-hard combinatorial optimizations
for automated trading systems [48], [49], [50], [51], [52]
that become increasingly important in financial markets
[55], [56]. Those trading systems are typical real-time
systems that must respond (sense, judge, and react) within
critically defined time constraints. Many high-speed trading
systems [48], [49], [50], [51], [52] utilize FPGAs to shorten
the latency from the market feed arrival to order packet
issuance. Thus, among various Ising machines, FPGA-based
ones (Ising machines that can be accelerated with modern
FPGA architectures [53]) are suitable for high-speed trading
systems because they can be embedded together with other
system components in the FPGAs. High-speed trading
strategies based on combinatorial/discrete optimization and
the trading systems utilizing FPGA-based embeddable Ising
machines as in [37] and [38] have been, however, not
extensively studied. The execution capability of such a
trading system needs to be validated in the actual market
because the duration times of the trading opportunities of a
strategy (the time constrains for the system) are determined
by the activities of other trading entities.

Here we propose a trading strategy based on selections
of potentially profitable, uncorrelated, and balanced stocks
by NP-hard combinatorial optimization and show through
real-time trading that the strategy is executable with an
automated real-time system using an FPGA-based embedded
Ising machine for the discrete selection problem.

Based on the demand in the direction of convergence of the
stock price to the volume-weighted average price (VWAP),
the proposed strategy considers the deviations of stock prices
from the VWAPs as instantaneous expected returns and
selects a balanced (delta-neutral) group of stocks from an
N -stock universe according to an objective function involv-
ing maximizing the expected returns and minimizing the

summation of statistical correlation factors (for correlation-
diversification). The selection problem is formulated as
quadratic and discrete optimization and solved by an Ising
machine based on a quantum-inspired algorithm called
simulated bifurcation (SB) [13], [14], [15], [16], [17].
SB was derived from a classical counterpart to a quantum
adiabatic optimization method called a quantum bifurca-
tion machine [54] and numerically simulates the adiabatic
time-evolution of a classical nonlinear oscillator network
exhibiting bifurcation phenomena, where two branches of
the bifurcation in each oscillator correspond to two states of
each Ising spin. The algorithm of SB is highly parallelizable
and thus can be accelerated with parallel processors such as
FPGAs (field-programmable gate arrays) [14]. We use an
FPGA-based SB machine (SBM, a hardware implementation
of SB) because it can be integrated in an FPGA together
with other system components to shorten the system-wide
latency. To further reduce the system-wide latency by
decreasing the input data size of the SB machine from
O(N 2) toO(N ), we separate the data describing the problem
into two components that change tick-by-tick or day-by-
day and customize the basic SBM design [14]. We discuss
the execution capability of the system by comparing the
real-time transaction records of the system in the Tokyo Stock
Exchange (TSE) with a backcast simulation of the strategy
assuming the orders issued are necessarily filled.

II. COMPOSITION OF SECTIONS
This paper is multidisciplinary and across several fields
including financial engineering, discrete mathematics, and
computer engineering. The rest of the paper is organized
as follows. In Sec. III (trading strategy), we describe
the proposed strategy and formulate the discrete selection
problem in the forms of quadratic unconstrained binary
optimization (QUBO) problem and the Ising problem. Sec. IV
(system) describes the architecture of the system, the cus-
tomization of the SBM core circuit, and the implementation
details. Sec. V (experiment) describes the transaction records
in the TSE and the execution capability of the system. Sec. VI
concludes the paper.

III. TRADING STRATEGY
A. DISCRETE OPTIMIZATION-BASED STRATEGY
The proposed strategy considers the deviations of stock prices
from the VWAPs as instantaneous expected returns and bets
that the deviations would eventually converge (partially)
in the trading hours. To improve the reward-to-variability
ratio (or the Sharpe ratio [57], [58]), it simultaneously
holds multiple positions selected through a discrete portfolio
optimization problem making the group of positions being
market-neutral [59] and correlation-diversified [9], [10],
[11], [12].

There is demand in the direction of convergence of the
stock price to the VWAP [60], [61], [62]. For institutional
investors mainly through passive investments, one of the
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common methods for reducing the trading impact on market
prices is that the fund managers, with a certain fee promised,
ask brokerages to execute their large volume trades on the
VWAP determined at the end of the trading hours. If the
average executed price is the same as the end-of-trading-
hours VWAP, the brokerage earns the fee. If the brokerage
executes the trades at prices more favorable than the VWAP,
this brokerage earns more than the fee.

Considering the deviations of stock prices from the
VWAP as expected returns, the strategy takes long positions
of the underperforming stocks and short positions of the
outperforming stocks and statistically expects that the under-
performing stocks would move up while the outperforming
stocks would move down. To adapt to various market
conditions (uptrend, downtrend, or sideways), the strategy
matches long(/short) positions with short(/long) positions so
that the overall deltas of the positions total almost zero (delta
neutral) [59]. In addition, to statistically reduce the deviation
of the returns (risk), the strategy incorporates the concept
of correlation-diversified portfolio [9], [10], [11], [12]; the
multiple long/short positions are selected so that the stocks
involved are uncorrelated with each other.

The Sharpe ratio [57] is, in this work, the ratio of the
mean to the standard deviation of the return (the profit
and loss per period for an investment) from a strategy
as in [58]. To enhance the Sharpe ratio of the proposed
strategy, a group including Ns stocks is selected from
an N -stock universe as the candidates of open positions
(positions to be taken) so that (i) the summation of
instantaneous expected returns is maximized (for maximizing
returns), (ii) the summation of statistical correlation factors
is minimized (for diversification), and (iii) the numbers
of long/short positions are equal (delta-neutral). This is a
discrete optimization problem. The selection of Ns-stock
group is executed every time the market situation changes
and then the selected group is evaluated for determining
the opening.

The deviation of the stock price from the VWAP (1pi)
normalized with the base price on the day (pbi ) is expressed
by 1pi = (pi − VWAPi)/pbi , where pi is the middle price
between the best ask (ask) and the best bid (bid). When the
sign of1pi is negative (/positive), ith stock is the candidate of
long (/short) position. The absolute value of 1pi corresponds
to the instantaneous expected return of the ith-stock position.
The number of lots per order for a stock (Li) is determined

to make the amount of transaction (Atrans) common for all
tradable stocks by rounding with considering the minimum
tradable shares per order (a lot) of the stock (Smin

i ) and
the base price on the day (pbi ); Li = ⌊Atrans/Smin

i pbi ⌋. The
number of intraday positions is controlled to be within a max-
imum number (Pmax) and all positions are closed (unwind)
before the close of the day. Duplicate positions are not
allowed.

In this work, the correlation factor between ith and jth
stocks for a business day (σ̂i,j) is defined based on the price

deviation sequences against the VWAP as follows.

σ̂i,j =

∑
k

(
pki − VWAPki

) (
pkj − VWAPkj

)
∑
k

∣∣∣pki − VWAPki
∣∣∣∑

k

∣∣∣pkj − VWAPkj
∣∣∣ , (1)

where pki and VWAPki are the middle price and VWAP of
ith stock sampled at one-second intervals. The correlation
factor (σi,j) in the strategy is the average value for the last
five business days of σ̂i,j and is normalized to be in [0, 1].

B. FORMULATION
The problem to select Ns stocks from an N -stock universe
according to a cost (objective) function involvingmaximizing
instantaneous expected returns (|1pi|) and minimizing the
summation of statistical correlation factors (σi,j) of the
involved stocks under the constrain for delta-neutral positions
is formulated in the form of quadratic unconstrained binary
optimization (QUBO).

The formulation of the QUBO is in a one-to-one relation-
ship with the Ising model [31] that the Ising machine takes
as input data (see APPENDIX A for the mutual conversions).
Both the QUBO and Ising formulations describe the system
under interest using two-state (binary) variables which have
pairwise interactions (second-order interactions) each other,
where the two-state variables are bits (bi ∈ {0, 1}) in
the QUBO and spins (si ∈ {−1, 1}) in the Ising model.
The dynamics or time-evolution of the two-state interacting
variables describing physical or social systems according to
variously-defined updating rules of the two-state variables
(corresponding to the updating rules in cellular automata)
have been studied frommultiple perspectives including phase
transition, percolation, and optimization [32], [33], [34]. For
examples in sociology, majority-voting rules are used for
modeling the diffusion of infection and rumor [33], [34].
Simulated bifurcation [13], [15], utilized in this work
for discrete optimization, updates the states of oscilla-
tors (corresponding to the spin variables) depending on
the joint pairwise interactions in an N-dimensional space
where the energy landscape gradually changes (bifurcation
happens).

In this subsection, we explain the QUBO formulation of
the Ns-stock selection problem for explanatory clarity, and
then mention the Ising formulation in the next subsection.
The primitive data defining the problem ({1pi} vector and
σ matrix) are converted directly to the Ising formulation in
the trading system (not via the QUBO formulation).

Define a decision (bit) variable bi (bi ∈ {0, 1}) as taking
value 1 if ith stock is selected and 0 otherwise. When ith
stock is selected, the sign of1pi [sgn(1pi)] indicates whether
it corresponds to a long or short position. We prepare N bit
variables for an N -stock universe.
In the QUBO formulation, we search for the bit configu-

ration {bi} that minimizes the QUBO cost function HQUBO.
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HQUBO is a linear combination of a cost function Hcost
and a penalty function Hpenalty.

HQUBO =

N∑
i

N∑
j

Qi,jbibj = Hcost + Hpenalty. (2)

The cost function to be minimized is defined by

Hcost =

∑
i

∑
j

Qcost
i,j bibj, (3)

Qcost
i,j =

{
−c1 |1pi| (if i = j),
σi,j (otherwise),

(4)

where c1 is a positive coefficient. Note that b2i = bi
for diagonal terms (i = j). The constraints for Ns-stock
selection and delta-neutral positions are represented as a
penalty function expressed by

Hpenalty = c2

((∑
i

bi

)
− Ns

)2

+ c3

(∑
i

sgn(1pi)bi

)2

.

(5)

where c2 and c3 are positive coefficients. The first and second
terms correspond to the constraints forNs-stock selection and
delta-neutral positions, respectively. Constraint violations
increase the penalty, with Hpenalty = 0 if there are no
violations. Note that the nondiagonal elements in the coupling
coefficient matrix Q in Eq. (2) include not only σi,j in Eq. (4)
but also components of sgn(1pi) coming from the second
term in Eq. (5). QUBOs are known to be NP-hard problems
for classical computers [36]. Since the cost function in Eq. (4)
is quadratic, the discrete optimization involved in the strategy
is thought to be NP-hard problems.

C. SEPARATION OF PROBLEM COMPONENTS
The discrete optimization problem to be solved at a market
situation is described as an N×N size of coupling coefficient
matrixQ (in Eq. (2)), which should be transferred to the Ising
machine (in this work, SBM) every time the market situation
changes. To reduce the system-wide latency by decreasing the
size of data transferred fromO(N 2) toO(N ), we separate the
data describing the problem into two components that change
tick-by-tick or day-by-day.We prepare additional circuit units
for the computation depending only on the tick-by-tick data
to the basic SBM design (see Sec. IV).
In the QUBO formulation in Eqs. (2), (3), (4) and (5), the

{1pi} vector is the tick-by-tick change component and the
σ matrix is the day-by-day change component. The QUBO
problem can be represented in the form of the Ising problem
(see APPENDIX A), where the decision variables are spins
si (si ∈ {−1, 1}) and the problem is represented by a
coupling coefficient matrix J and a bias vector h. We describe
the Ising cost function HIsing as a linear combination
of terms that include the day-by-day change components
(Jday, hday) or tick-by-tick change components (J tick, htick)

as follows;

HIsing = −
1
2

N∑
i

N∑
j

Jdayi,j sisj −
1
2

N∑
i

N∑
j

J ticki,j sisj

+

N∑
i

hdayi si +
N∑
i

hticki si. (6)

Here, the (Jday, hday) and (J tick, htick) can be calculated from
the σ matrix and {1pi} vector, respectively.

The SBM core described in the next section stores the
(Jday, hday) and (J tick, htick) data in the separated memories.
Note that the size of J ticki,j isN×N , but theN -size intermediate
values are stored in the separated memory (see APPENDIXB
for details). When a market feed (informing the change of
ask or bid of a stock) arrives, the SBM core updates the
(J tick, htick) intermediate data [the size isO(N )] with keeping
the (Jday, hday) data [the size is O(N 2)].

IV. SYSTEM
The real-time stock trading system is a hybrid FPGA/CPU
system, featuring an event-driven SBM module that starts
processing the discrete optimization involved in the proposed
strategy when detecting the changes in ask or bid of tradable
stocks. The system-wide latency from the market feed arrival
to order packet issuance is shortened by co-integrating,
in the FPGA, the SBM module together with other system
components including communication interfaces. The pro-
cessing units and memory subsystems in the basic SBM
circuit design [14] have been customized (modified) for the
proposed strategy to further improve the system latency.

A. ARCHITECTURE
Figure 1 (a) and (b) show the block diagram and timing chart
of the hybrid FPGA/CPU system. The FPGA part responds
to the changes in the market in a low latency, i.e., it receives
the market information, determines the opening of positions
based on the NP-hard portfolio optimization by the SBM
module, and then issues the order packets. The CPU part
controls the whole system and manages the positions using
state machines for opened positions (the closing of the posi-
tions is determined by the CPU part). The market information
(including the changes in ask or bid) is received by both the
FPGA and CPU parts. The order (buying/selling) packets are
issued only from the FPGA part. The execution-result packets
informing the results (fill/lapse) of the orders are received by
the CPU part. The FPGA and CPU parts are connected with
the peripheral component interconnect-express (PCIe) bus.

The system components in the FPGA part are, in the
order of data flow, a receiver (RX), a price buffer (P)
that accommodates the price list of ask or bid for the
N -stock universe, the SBM module including the three
memory units (1p, σ , VWAP) which are updated at different
timing, a judgment module, a message generator, and a
transmitter (TX). Those components are implemented as
independent (not synchronized) circuit modules, which are

120026 VOLUME 11, 2023



K. Tatsumura et al.: Real-Time Trading System

FIGURE 1. System architecture (a hybrid FPGA/CPU system). (a) Block
diagram. (b) Timing chart.

connected with directed streaming data channels with FIFO
(first-in-first-out) buffers.

One of the characteristics of the SBM module is that it
has three memory units (1p, σ , and VWAP) to store data
updated at the three timing of tick-by-tick, day-by-day, and
every second. The VWAP information, a {VWAPi} vector,
is updated in the CPU part and informed to the FPGA
part at one-second intervals. The SBM module also has a
preprocessing submodule (pre) to generate the Ising problem
described by (Jday, hday) and (J tick, htick) based on the data
in the three memory units. The data in the 1p memory is
changed depending also on the open list (O memory) in the
judgment module. The open position is registered in the open
list when the opening is decided (before the issuance of the
order) and deregistered from there when the closing of the
position is confirmed with the message from the CPU part.
The 1p of the stocks listed in the O memory is set to zero as
the duplicate opening is prohibited.

Figure 1 (b) shows the timing chart for the operation of
the SBM module when representative events (Events 1 to 7)
happen. When no event happens for a certain time, the
SBM module is idling (polling to the FIFO buffers from
the price buffer, judgment, and PCIe I/F modules). When a
market feed arrives (Event 1), the SBM module immediately
starts the preprocessing (updating of the 1p memory and the
J tick/htick memory) and then the main processing (the discrete
optimization). After that, the SBM module evaluates the

solution output from the core circuit in terms of the constraint
violation and the objective function and then informs the open
candidates to the judgment module if the evaluation passes
(postprocessing, post). After checking the open candidates,
the judgment module finally determines the open positions,
registers them in theOmemory, and concurrently issues order
packets via the message generator (Event 2).

Regardless of whether or not order packets are issued, the
SBMmodule repeats themain processing for a predetermined
number of times with different initial states generated by
an internal random number generator [63]. As the simulated
bifurcation is a heuristic algorithm, the SBM module may
find a better solution or another solution enough for the
opening. When repeating the main processing, the SBM
module also repeats the preprocessing if the order packets
have been issued at the last run (in the case of Event 2)
since the 1p memory (O memory) has been changed, but
skips the preprocessing otherwise (Event 3). When the Ising
problem changes during the main processing because of the
arrivals of the newmarket feed (Event 4), the VWAP updating
information (Even 5), or the close confirmation information
(Event 6), the information is incorporated at the beginning of
the next execution of the SBM module (Event 7).

B. CUSTOMIZED SBM CORE CIRCUIT
To reduce the data size transferred to the SBM core
from O(N 2) to O(N ) (for improving the system latency)
when the market situation (or the internal state) changes,
we prepare additional computation and memory units to the
basic SBM design. Instead of combining the tick-by-tick
(N -size) and day-by-day (N × N -size) change information as
the coefficients describing the Ising problem, we store that
information in separated memory units, separately calculate
the updating components of internal variables (corrections
of momenta) coming from those two components and
then combine the updating components (the number of the
components is N ).
Simulated bifurcation [13], [15] simulates the time evolu-

tion of N nonlinear oscillators according to the Hamiltonian
equations of motion, where the nonlinear oscillators corre-
spond to the spin variables and the state of ith oscillator
is described by the position and momentum (xi, yi). The
SB time evolution step consists of calculating the correction
of momenta {1yi} based on the many-body interaction
[computationally corresponding to the matrix-vector multi-
plication (MM) of the J coupling matrix and {xi} position
vector] and calculating the updated (time-evolved) state
variables, {xk+1

i } and {yk+1
i }, from the {1yi}, {hi}, and the

current state variables, {xki } and {yki }. The additional circuits
calculate the correction of the momentum depending only on
the tick-by-tick J and h components (1yticki ).

Figure 2 shows the block diagram of the SB core circuit,
where the additional circuit units for the computation depend-
ing only on the tick-by-tick change problem components
(J tick, htick) are blue highlighted and the remaining units are
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FIGURE 2. Circuit architecture of the SBM core. To shorten the data input
time, additional circuit units (blue highlighted) for the computation
depending on the tick-by-tick data are introduced to the basic SBM
design [14].

architecturally the same as in the basic SBM design [14].
In the basic design, the main computation components are
JX units corresponding to the multiply-accumulate (MAC)
operations of

∑N
j=1 Jijxj and TE units corresponding to the

time-evolution operation, which are combined to be MMTE
units (each responsible for updating a subgroup of coupled
oscillators). The MMTE units are organized with the global
X′
mem memory unit to make a circulative structure as a whole

corresponding to the iteration of the SB time-evolution steps.
The J tick and htick data are stored in the J tick and H tick

memory units, which are separated from the Jday and
Hday memory units storing the day-by-day change problem
components (Jday, hday). The JX tick module calculates an
intermediate value 1Y tick common for all the oscillators and
supply the 1Y tick and sgn(1pi) data to the TE units. The
TE unit calculates the 1yticki for each oscillator based on
the 1Y tick, sgn(1pi), xi and hi and updates the state of ith
oscillator with the 1yticki . See APPENDIX B for details.

C. IMPLEMENTATION
We implemented the system described in Sec. IV-A with a
CPU server with a network interface card (NIC) and an FPGA
board having another network interface (see APPENDIX C
for details).

Figure 3 (a) shows the architecture and implementa-
tion results of the SBM module for 128-stock universes
(N = 128). Among three variants of simulated bifurcation
(adiabatic, ballistic, and discrete SBs) [15], ballistic SB is
adopted in this work, with the SB parameters of Nstep=300
(the number of SB time evolution steps per exectuion)
and dt = 0.02 (the integral time step). The machine
size (the number of spins) is 128 spins with all-to-all
connectively, and the computation precision is 32-bit floating
point. Figure 3 (b) shows the result of the placement of
system modules in the FPGA. The SBMmodule is dominant,
and the circuit resources used are listed in Fig. 3 (a).
The system clock frequency determined as a result of

FIGURE 3. System implementation. (a) Architecture and implementation
details of the SBM module. (b) Placement of system modules in the FPGA.

circuit synthesis, placement, and routing is 208 MHz. The
clock cycles of the SBmain (core) processing, preprocessing,
and postprocessing are 33,000 per run (110 per SB step),
129, and 648, respectively. The computation time (themodule
latency) per run (tpre + tcore + tpost ) is 162.1 µs, where the
SBM core processing is dominant (tcore = 158.4 µs). The
system-wide latency from the market feed arrival to order
packet issuance depicted in Fig. 1(b) as a red arrow is 164 µs
(including the latencies of the RX, price buffer, judgment,
SBM, message generator, and TX modules).

The speed performance and solution accuracy of FPGA-
based ballistic SB have been evaluated using various NP-hard
benchmark problems and demonstrated to be competitive
with other state-of-the-art Ising machines in [15]. Here
we show the capability of the SBM module to find the
trading opportunities of the proposed strategy using the real
market data of TSE in comparison with that of a simulated
annealing (SA) implementation [64].

Assuming the same N = 128 universe as in Sec. V,
we sampled eight market situations that include at least one
trading opportunity each in the period from Feb. 7, 2023 to
Mar. 10, 2023 (see Fig. 4) and, for each market situation,
examined all the solutions (the bit configurations {bi})
satisfying the constraints for Ns-stock selection (Ns = 4
as in Sec. V) and delta-neutral positions (corresponding
to Eq. 5) by a brute force method for verification. We then
evaluated the cost function described in Eq. 3 for all the
constrain-satisfying solutions and found the best (minimum)
and worst (maximum) cost values. We executed the SBM
and the SA (one time execution) for each market situation
and then evaluated the cost values of the solutions obtained
by the SBM and the SA after confirming that those solutions
satisfied the constraints. The cost values were normalized so
that the best one is 1 and the worst one is 0. This normalized
cost value is referred to as the relative solution accuracy.
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FIGURE 4. Relative solution accuracy of the SBM module and the SA
implementation [64] when solving the discrete optimization problem of
the proposed strategy by one execution each for the real market
situations from Feb. 7, 2023 to Mar. 10, 2023.

Similarly to Nstep = 300 for the SBM, the number of sweeps
per execution (Nsweep) for the SA [40] (one sweep consists
of a sequential Metropolis update of all spins) was set to be
300, so the amounts of pairwise interaction computations are
similar to each other (see [16] for details). Figure 4 shows
the relative solution accuracy of the SBM and the SA for
each market situation. The arithmetic means over the eight
market situations are, respectively, 95 % and 67 % for the
SBM and the SA. Note that, for the market situation on Mar.
10, 2023, the SBM could find the exact (best) solution (the
relative accuracy of 100 %) by one execution.

V. EXPERIMENT
The trading system described in Sec. IV was installed at
the JPX Co-location area of the TSE and operated through
real-time trading to examinewhether the strategy based on the
NP-hard combinatorial optimization proposed in Sec. III is
executable. The trading results are compared with a backcast
simulation of the strategy assuming the orders issued are
necessarily filled.

The proposed strategy determines the opening of positions
based on an instantaneous market situation (a price list of ask
and bid for the N -stock universe). Because of the latency
of a system that executes the strategy and the activities of
other trading entities, the orders issued are not necessarily
filled at the ask/bid prices used for the decision-making.
We developed a simulator that processes the historical market
feeds provided by the TSE and emulates the internal state
of the trading system. The simulator assumes that the orders
issued are necessarily filled at the intended prices.

Figures 5 (a) and (b) show the cumulative values of the
amounts of transactions per day and the profit and loss
(including ask-bid spread costs and commission) per day for
real-time trading (red line) and backcast simulation (black
line) with fixed strategic parameters of N = 128, Ns = 4,
Pmax = 4, and Atrans = 4 million Japanese yen (JPY).
The 128 stocks were selected from the Nikkei 225 or TOPIX
100 constituents in terms of high liquidity. The system is

FIGURE 5. Performance of the strategy. (a) Cumulative amount of
transactions in JPY and (b) cumulative profit and loss in JPY. Simulation
data is from May. 1, 2020, to May. 11, 2023 (737 business days). Real
trade data is from Feb. 1, 2023, to Mar. 31, 2023 (42 business days),
adjusted with the simulation at the first day.

allowed to take positions in the afternoon session of the TSE.
The simulation data is from May. 1, 2020, to May. 11, 2023.
The real trade data is from Feb. 1, 2023, to Mar. 31, 2023,
being adjusted with the simulation at the first day.

The Sharpe ratio of the strategy over the simulation period
(approximately 3 years) is 1.23, where the annualized return
and risk (the standard deviation of the return) are 3.6 %
and 2.9 %, respectively, for an investment of 16 million
JPY (Atrans × Pmax); the strategy proposed can be profitable
(a positive annualized return) with a reasonable risk (a low
level of annualized risk compared to the annualized return).
The cumulative value of the amounts of transactions by the
system (118,956,828 JPY) over the experiment (252 hours
of real-time trading) is coincident well (+0.01 %) with
the simulation value (118,948,300 JPY), indicating that the
strategy proposed is executable with the trading system with
a latency of 164 µs. Note that the slight difference in the
transaction amounts comes from the executed prices.

Figure 6 shows a typical transaction by the trading system
observed on Feb. 24, 2023. On that day, the number of the
market feeds informing the changes of ask/bid of stocks in
the N (= 128)-stock universe was 5,565,723, which arrived
at intervals of 3.6 ms on average. The system decided the
opening of the positions at 1:13 PM in JST (15,186 seconds
after 9:00 AM) based on the selection of codes 8411, 6762,
8036, and 9735 by the SBMmodule, leading to the profitable
closing of the positions before the end of the day [Fig. 6 (a)].
The selection of the four stocks (Ns = 4) by the SBM
module was based on the deviations of the stock prices from
the VWAPs (1pi) and the correlation factors (σi,j) shown in
Figs. 6 (b), (c), and (d). Codes 8411 and 8036 were selected
mainly because of the instantaneous expected returns (the
maximum and second-maximum ones at that moment) as the
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FIGURE 6. A typical transaction by the trading system observed on Feb.
24, 2023. (a) Last price vs. time on the day, where the execution times of
transactions are indicated by red markers. The open decision at the time
of 15,186 was made based on (b) the deviations from VWAPs of stocks,
(c) the correlation factors of stocks vs. code 8411, and (d) the correlation
factors of stocks vs. code 8036.

candidates for long positions. From the candidates for short
positions balancing to codes 8411 and 8036, codes 6762 and
9735 were chosen based on not only the relatively high
expected returns but also relatively low correlation factors
against both codes 8411 and 8036. The solution of the SBM
module satisfies the constraints of the discrete optimization;∑N

i bi = Ns and
∑N

i sgn(1pi)bi = 0 in the representation
using bit variables bi.

VI. CONCLUSION
We proposed a strategy based on selections of potentially
profitable, uncorrelated, and balanced stocks by NP-hard,
quadratic and discrete optimization and have demonstrated
with the real-time transaction records in the TSE that the
strategy is executable in terms of response latency with the
automated trading system using the SB-based embeddable
Ising machine for the selection problem.

The cost function of Ns-stock selection problem is
designed to involve maximizing instantaneous expected
returns defined as deviations from volume-weighted average

prices (VWAPs), minimizing the summation of statistical cor-
relation factors (for correlation diversification), and penalty
functions for Ns-stock selection and delta-neutral positions.
The selection problem is formulated in the form of the Ising
problem and then the data describing the problem is separated
into two components that change tick-by-tick (N -size) or
day-by-day (N × N -size). By customizing the SBM core
circuit to have two sets of memory and computation modules
respectively for the tick-by-tick and day-by-day change
problem-components, we reduced the data size transferred
to the SBM core from O(N 2) to O(N ) when the market
situation changes and improved the system latency. This is
a technique to improve the system latency when the problem
components change at different timing and is applicable to
the SB algorithm and other algorithms based on Hamiltonian
equations of motion.

The automated trading system is a hybrid FPGA/CPU
system, featuring an event-driven SBM module in the FPGA
part. The FPGA part (hardware processing) decides the
opening of a group of long/short positions using the SBM
and then issues the corresponding orders, while the CPU
part (software processing) manages the positions (including
the decision of closing positions). The system-wide latency
from the market feed arrival to the order packet issuance
is 164 µs for a 128-stock universe. In comparison with
a brute force method and a simulated annealing imple-
mentation (SA), it has been shown that the SBM module,
by one execution, finds a near-optimal solution (whose
accuracy is better than the SA) of the discrete optimization
problem.

The trading system was installed at the JPX Co-location
area of the TSE and operated for a real-time trading period
of 42 business days or 252 hours. The real-time transaction
records were compared with a backcast simulation of the
strategy assuming the orders issued are necessarily filled
at the intended prices. Based on the good agreement in
the cumulative transaction amounts and detailed comparison
analysis of transactions between the experiment and simu-
lation, we have concluded that the response latency of the
system with the SB-based Ising machine is sufficiently low
to execute the trading strategy based on the NP-hard discrete
portfolio optimization.

Automated trading systems with embedded Isingmachines
would be applicable to the strategies based on various
discrete portfolio optimizations characterized by different
definitions of expected returns and correlations [diagonal and
non-diagonal terms in Eq. (3)] and other trading strategies
that rely on high-speed discrete optimization.

APPENDIX A
QUBO & ISING REPRESENTATIONS
The QUBO formulation (bi ∈ {0, 1}),

HQUBO =

N∑
i

N∑
j

Qi,jbibj, (7)
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is represented also in the Ising formulation (si ∈ {−1, 1}) as
follows.

HIsing = −
1
2

N∑
i

N∑
j

Ji,jsisj +
N∑
i

hisi, (8)

where

si = 2bi − 1, (9)

Ji,j =

−
Qi,j
2

(if i ̸= j),

0 (if i = j),
(10)

hi =

N∑
j

Qi,j
2

. (11)

APPENDIX B
ADDITIONAL COMPUTATION UNITS
The correction (1yticki ) of the momentum per SB time-
evolution step for ith oscillator depending on the tick-by-tick
J and h components is expressed by

1yticki =
c3
2

(
1Y tick

− xi
)
sgn(1pi) − hticki , (12)

where

1Y tick
=

N∑
i

sgn(1pi)xi, (13)

hticki = −c1
|1pi|
2

+ c3

 N∑
j

sgn(1pj)
2

 sgn(1pi). (14)

The JX tick in theMAC tick module (Fig. 2) is provided with
the xi and sgn(1pi) data from the global X′

mem memory and
the J tick memory and calculates the 1Y tick in a spatially
parallel manner using multiple MAC processing elements.
The time evolution (TE) module receives the 1Y tick and
sgn(1pi) data from the MAC tick module and also receives
the hticki data from the H tick memory, and then updates the
momentum of each oscillator by respective correction of
1yticki in a temporal parallel manner (pipelining).

APPENDIX C
IMPLEMENTATION DETAILS
An FPGA board and a high-speed network interface card
(NIC) are mounted on a host server with dual CPUs (Intel
Xeon Silver 4215R) and DDR-DRAM modules (384 GB).
The FPGA (Intel Arria 10 GX 1150 FPGA) on the board has
427,200 adaptive logic modules (ALMs) including 854,400
adaptive look-up-tables (ALUTs, 5-input LUT equivalent)
and 1,708,800 flip-flop registers, 2,713 20Kbit-size RAM
blocks (BRAMs), and 1,518 digital signal processor blocks
(DSPs). The system components in the FPGA described
in Section IV were coded in a high-level synthesis (HLS)
language (Intel FPGA SDK for OpenCL, ver. 18.1). The
FPGA interfaces including a PCIe IP (PCIe Gen3 × 8),
a 10 Gbps Ethernet PHY IP and communication IPs (RX, TX)

were written in Verilog HDL and incorporated in the board
support package (BSP).
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