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ABSTRACT Digital transformation has been prioritized in the railway industry to bring automation to
railway operations. Digital Twin (DT) technology has recently gained attention in the railway industry to
fulfill this goal. Contemporary researchers argue that DT can be advantageous in Railway manufacturing
logistics to planning and scheduling. Although underlying technologies of DT, e.g., modelling, computer
vision, and the Internet of Things, have been studied for various railway industry applications, the DT has
been least explored in the context of railways. Thus, in this paper, we aim to understand the state-of-the-art
of DT for railway (DTR), for advanced railway systems. Besides, this survey clarifies how DT can serve the
railway twin system designers and developers. As DTR is still in its early adoption stage, there is hardly any
clear direction to identify the technologies for specific DTR applications. Therefore, based on our findings
we present a taxonomy for DTR for designers and developers. Finally, we describe potential challenges,
pitfalls, and opportunities in DTR for future researchers.

INDEX TERMS Digital twin, railway, modelling, structural health monitoring, artificial intelligence, safety.

I. INTRODUCTION
Digital Twin (DT) technology has become increasingly
prevalent in recent years, revolutionizing the way in which
various sectors operate. DT is defined as the virtual clone of a
physical living or nonliving entity that can exchange data and
feedback between the real and digital world [1]. In addition,
DT is an outcome of the aggregation of technologies like the
Internet of Things (IoT), Big Data, and Artificial Intelligence
(AI) [2]. DT has invaded various fields such as industrial
decision-making, virtual learning, well-being, and healthcare
diagnosis due to its potential and unique characteristics [3].
In addition to its inherent benefits, the recent standardization
[4] efforts within the digital transformation framework, have
rendered DT an increasingly demanding technology for
manufacturers and other stakeholders.

DTs have been rigorously examined for a variety of
applications within industrial systems. For example, in [5],
researchers developed a DT model for a shop floor,
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focusing on tool wear prediction and system variables’
forecast. P. Aivaliotis et al. in [6], introduced an advanced
physics-based modeling technique designed to harness the
potential of the DT paradigm in predictive maintenance
scenarios. Expanding the horizon of applications, a notable
contribution in [7] unveiled a DT-driven framework to
address anomaly detection. This approach not only ensures
efficient and reliable anomaly detection in automation but
also addresses prevailing challenges. It prioritizes real-time
health surveillance of industrial setups, facilitating immediate
anomaly recognition and prediction. Furthermore, the utility
of Digital Twins extends to production systems as highlighted
in [8], where they are employed to streamline and enhance
both the planning and optimizing phases.

In recent times, the railway transportation industry -as
any industrial sector- has shifted away from conventional
computer-based systems towards virtual platforms, lever-
aging the capabilities of digital transformation technology.
Despite being one of the rapidly used facilities by commuters,
DT in the railway industry is still in progress. A Digital Twin
for Railway (DTR) has been described in the literature as
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a collection of observational state (insight), predictive state
(foresight), and actuation state (oversight) [9].

DTR employs numerous technologies, but the diverse
methods of leveraging these technologies to enhance DTR’s
potential remain underexplored. For example, research has
delved into using IoT devices [10] to monitor railway
infrastructure components such as tracks and signals.
However, to implement monitoring applications, DTR may
define alternative ways to use IoT devices in conjunction
with other technologies such as computer vision (CV)
and virtual reality (VR) to enable predictive maintenance
and minimize downtime. Furthermore, the full potential of
DT-enabled railways can be realized only when researchers
and developers gain a comprehensive understanding of how
diverse DTR technologies can be integrated and applied in
multifaceted ways; as well as to identify the key challenges
and opportunities that arise within the railway transportation
industry [9].

For that reason, we aim to investigate the current progress
and trends in the adoption of technologies within the context
of DTR, with the intention of identifying the associated
challenges and gaps.

The rest of the sections are organized as follows.
In Section II, we present a meta-review of related DTR
surveys, to understand the need for this survey over existing
work. Section III outlines the methods used to conduct
this survey, detailing the paper collection and information
extraction process, and research questions. Section IV finds
how DT has served the railway systems over the past years;
Section V finds the emerging technologies and techniques or
strategies to apply in railway applications; while Section VI,
in its first part addresses challenges and research gaps,
while the second part briefly discusses the study limitations.
Finally, we conclude this research in Section VII.

II. EXISTING SURVEYS
Despite several scopes of DTR to advance the railway, few
surveys have been conducted on the topic. Addressing main-
tenance, the authors in [11] elucidated the challenges and
advantages of DT for railways, employing Machine Learning
(ML) within the DT framework. Additionally, Condition-
Based Maintenance (CBM) in the scope of DTR was
explored in [12] and [13]. The former paper illustrated the
application of DT in forecasting and wellness management
paradigms, while the latter showcased emerging technologies
for assessing railway tunnel conditions. The introduction of
DT for tunnels represents an enhancement over traditional
digital model representations. Furthermore, Doubell et al.
in [14] leveraged DT to meet the evolving requirements of
railway infrastructure data management. Nonetheless, this
survey focuses on examining the ongoing advancements and
trends in adopting technologies within the DTR framework,
aiming to identify the inherent challenges and gaps.

The majority of existing surveys largely center on infras-
tructure maintenance and management. Yet, DTRs offer

FIGURE 1. Paper selection flowchart based on PRISMA. N: Total number
of papers. ni : Partial number of papers.

potential benefits in health inspection [15], visualization [16],
automation [17], and safety monitoring [18]. A more encom-
passing survey addressing awider array of applicationswould
help identify trends, challenges, and gaps in DTR systems.
Given the varied approaches in current surveys, there’s a
pressing need for a universal framework to support diverse
applications and tackle existing challenges. Accordingly, our
methodology, detailed in the subsequent section, extends
from infrastructure maintenance to visualization.

III. METHODOLOGY
We utilize the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [19] method, to nar-
row down the pool of relevant literature. The eligibility
of the paper has been identified by conducting a thorough
search of relevant databases using specific search terms and
publication years, and then subjecting the resulting papers to
four main phases of PRISMA, as illustrated in Figure 1. The
search yielded 144 publications, which were subsequently
classified based on their publisher, year of publication, and
type. Duplicate publications were removed during the initial
scanning phase, and non-relevant papers were excluded after
further examination of their abstracts and full text. Finally,
80 papers were identified as meeting the criteria for inclusion
in this study.

Initially, we formulate research questions (RQs) and con-
duct a thorough search for relevant literature. Then, we select
the relevant papers based on pre-determined inclusion and
exclusion criteria. Finally, the relevant information has been
then extracted from the chosen papers employing a set of
pre-defined concepts, as proposed by Petersen et al. [20] for
systematic reviews. In the following parts, we detail the steps
of the methodology used in this research.

A. RESEARCH QUESTIONS
The railway industry has garnered considerable attention in
recent times due to the need for a comprehensive Intelligent
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FIGURE 2. Classification of selected papers.

Transportation System (ITS) [21] and the requirement for
sustainable, accurate, and efficient monitoring of rail inspec-
tions and maintenance [22]. However, traditional approaches
still present a challenge as they are susceptible to human
errors and lack the ability to provide swift and direct solutions
for defects and faults. This has led to an increasing need
for predictive models that harness the capabilities of IoT
and emerging technologies such as Cyber-Physical Systems
(CPS) to usher in the DT paradigm for railways. This survey
addresses three RQs stemming from the need to demystify
the ‘‘Railway-Digital Twin’’ engagement in literature, hence
identifying the opportunities and future recommendations,
as well as pointing out the challenges and limitations. The
RQs are as follows:

- RQ1: What contributions has Digital Twin technol-
ogy made to the Railway System?

- RQ2: What are the emerging technologies for Railway
Digital Twins and how are they employed?

- RQ3: To what extent has Digital Twin achieved its
functionality in Railway and what are the research gaps?

B. PAPER COLLECTION
The search query for this study has been formulated based
on the primary focus of ‘‘Digital Twin’’ and ‘‘Railway’’ in
combination.

The query is then applied to Web of Science and Scopus
repositories with a restricted search to ‘‘Title, abstract,
or keyword.’’ After scanning the publications, the most
relevant ones covering the period from 2018 to January
2023 inclusive were selected. The search returns 144 papers,
which are then reduced to 80 articles by removing duplicates
and non-relevant research through a thorough screening
process. Two inclusion eligibility criteria are established: (a)
the paper should be available in English and (b) the DT should
be in a railway context.

The majority of the collected articles were published in
2022 (Figure 2 (a)), and most of them are journal papers
(Figure 2(b)), with a larger portion originating from the
Scopus database (Table 1). The distribution of papers by

FIGURE 3. Papers distribution by type over the years of publication.

TABLE 1. Number of papers by publisher by database.

type over the years of publication is depicted in Figure 3.
It is evident that no publication activities occurred before
2020, except for journal articles,1 on the subject of DT with
railways.

C. INFORMATION EXTRACTION
A multi-phase approach has been employed to extract
information on the topic of DTR. The initial step involves
analyzing the abstracts of relevant publications to identify
the main ideas and classify them based on the problem
addressed and the specific research field of interest. The
keywords are then added to the classification sheet. Next,
a full-text reading has been conducted to identify the tools,
technologies, and applications related to DTR. Based on
the frequent terms a word cloud has been generated using
the ‘‘Google Drive Word Cloud’’ tool to visualize the most
common terms, excluding ‘‘Digital Twin’’ and ‘‘Railway’’,
which were ubiquitous across all eligible publications. After
that, the common terms have been unified under a single term,
such as various types of bridges as ‘‘Bridge.’’

The extracted information has been utilized to find the
RQ1 by analyzing correlation and progression over the years.

IV. RQ1: WHAT CONTRIBUTIONS HAS DIGITAL TWIN
TECHNOLOGY MADE TO THE RAILWAY SYSTEM?
In this section, we detail our findings under the RQ1 which
aims to find the potentials of DTR in literature to serve
various purposes of the railway. To answer this question,

1The scope of this survey is limited to the publications available until
January 2023.
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FIGURE 4. Most frequent terms.

we employed the information extraction process discussed
in the above section. The Word Cloud generated from the
information has been illustrated in Figure 4. In addition,
we demonstrate the progression of DT in the railway system
in Figure 5. Finally, we generated a heatmap from the
information to demonstrate the relation between the key terms
and railway over the past few years (Figure 6).

A. FREQUENT TERMS
The Word Cloud presented in Figure 4 illustrates the
prominent DTR terms in the literature from 2018 to January
2023 to highlight the areas of research focus. This figure
also points out the areas where further efforts and attention
may be required. The size of the words represents the
frequency and significance of using these terms in literature.
From the figure, it appears that the most significant field
within DTR publications is modelling techniques, followed
by IoT and intelligence. For instance, Building Information
Model (BIM) was observed to outweigh any other modelling
techniques in this context. In fact, depending on the level of
development (LOD), BIM has been considered a version of
DT in several studies. In terms of application, maintenance
has been found to be the major area of interest, followed
by Structural Health Monitoring (SHM), predictive mainte-
nance, and damage detection. In terms of focused railway
parts, we found the bridge, infrastructure, and turnout, are
some commonly studied railway components.

To understand the relation between the key terms and
railway over the past few years, we generated a heatmap using
the information extracted from relevant studies. Figure 6
depicts the relation of DTR with the most frequent terms
on three essential levels: technology (VR, AI, and IoT),
modelling (BIM and simulation), and purpose (condition
monitoring, SHM, maintenance, predictive maintenance, and
sustainability). For this part, we have grouped machine
learning (ML), deep learning (DL), federated learning (FL),
and neural networks (NN) under the umbrella term AI, while
IoT devices, sensors, and actuators were aggregated under the
term IoT.

FIGURE 5. Main fields of interest for DTR.

The generated heatmap highlights that most of the
technical terms have been used extensively since 2021, with
the exception of modelling with BIM and IoT, because those
terms have been studied earlier in the context of DTR from
the outset of its evolution [23]. In contrast, terms such as
VR, predictive maintenance, and sustainability have received
limited exploration in the literature.

B. PROGRESSION OF DT
This section explores the purposes and corresponding per-
centage of use of DTR to achieve those purposes within the
literature.

The imperative to replace the labor-intensive and extensive
procedures used for maintenance and condition monitoring
has elevated the appeal of this category for research [24].
This fact is revealed in Figure 5 where the most common
interest in DTR is occupied by the ‘‘Maintenance/ Condition
Monitoring’’ accounting for 34.09% of the research focus.
So, it can be observed that DTR models have been primarily
utilized for monitoring the health of complex systems and
identifying potential risks before their occurrence.

Secondly, ‘‘Optimization’’ has been found to occupy
28.41% of the research focus in DTR. It is apparent
that the DTR paradigm has been employed to optimize
system performance and identify ways to improve efficiency.
This field encompasses various domains such as industrial,
financial (cost and budget), structural, operational, planning,
and modelling activities, Quality of Experience (QoE) of
passenger services, life-cycle, and data management.

The third common application area of DTR is ‘‘Inspection/
Defect Detection’’ which accounts for 19.32% of the research
focus. To a certain extent, this application domain overlaps
with maintenance and monitoring. However, these studies
are mainly focused on detecting defects and improving the
inspection process.

The ‘‘Other Purposes’’ accounts for 14.77% of the research
focus. The ‘‘Other Purposes’’ include tasks involving DT
for sustainability, safety, security and privacy, cartography,
scheduling, and guidance approaches for the railway.

Lastly, ‘‘Training/Learning’’ is the least common appli-
cation area accounting for 3.41% of the research focus.
From these statistics, we can conclude that DTR is still not
well-exploited for these areas.
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FIGURE 6. ‘‘Key term-Publication year’’ engagement.

C. SUMMARY OF RQ1
In summary, the findings of our exploration of RQ1 imply
that DTR has been primarily utilized for maintenance
and condition monitoring, followed by optimization and
inspection/defect detection. However, there is still potential
for DTR to be applied in other areas such as training/learning
and sustainability, and further approaches for the railway.
The integration of BIM and IoT has been prominent over the
periods, whereas the integration of AI and VR is still in its
incubation period.

V. RQ2: WHAT ARE THE EMERGING TECHNOLOGIES FOR
RAILWAY DIGITAL TWINS AND HOW ARE THEY
EMPLOYED?
The realization of the DTR concept has been made possible
through the integration of several state-of-the-art technolo-
gies. In order to address the first part of RQ2, we conducted
a comprehensive review of the existing literature, in which
we summarized, compared, and contrasted current DTR
studies across various applications. Figure 6 summarizes
the evolving trends in technology and maintenance domains
from 2018 to 2022 within the DTR sector, offering a brief
overview of research directions.

Whilst to answer the second part of RQ2, we sought to
gain a better understanding of the techniques used in DTR
applications and the scope of their integration. We follow
the core features of DTR including representation, data,
intelligence, and safety and security to organize our answers
to RQ2. Each of these components has been elaborated into
two parts - 1) existing work, and 2) employed technologies.

A. THE REPRESENTATION
Representation is one of the key characteristics of DT [1];
it can take different forms, such as structural 3D modelling,

or multi-modal interaction through VR, Augmented Reality
(AR), and extended reality (XR) technologies.

Modelling has been studied since the early stages of DT’s
evolution. As shown in Figure 6, BIM has emerged as
a popular modelling technique since 2019. Therefore, the
papers listed in this section cover a wide range of topics,
including infrastructure maintenance, simulation, operations
and control, and health. The categories of DTR papers focus-
ing on Modelling to achieve the specific goal are presented in
the following sections. Another newly growing technology
for representation focuses on multi-modal interaction and
there are a few shreds of evidence in the literature, which will
also be reviewed in this section.

1) MODELLING IN DTR FOR VARIOUS APPLICATIONS
The categories of DTR papers focusing on Modelling to
achieve the specific goal are presented in the following
sections. By organizing these papers into categories and
summarizing them, we can better understand the various
ways in which DT technology is being applied in the railway
industry and the different modelling techniques that are being
used to achieve specific goals.

i. Infrastructure Maintenance Using DTR
Modelling Techniques have been extensively studied
in the context of infrastructure maintenance [25], [26],
[27], [28], [29], [30], [31]. This section is focused on
exploring the use of modelling technologies in literature
in the context of railway infrastructure maintenance. The
studies discussed in this section examine the various
modelling technologies used to create DT. Table 2
summarizes the DT applications in railway infrastructure
using modelling.

ii. Automation Using DTR
Several researchers have explored the use of modelling
techniques to optimize the creation, maintenance, and
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TABLE 2. Summary of papers on modelling for infrastructure maintenance using DTR.

TABLE 3. Summary of papers on modelling for system automation in railway using DTR.

update of DTs [32], [33], [34], [35], [36]. This section
aims to analyze recent research papers that explore the
application of DTR in system automation. The summary
of the review is presented in Table 3.
Besides, the application of Modelling for Automation
has expanded to encompass various domains, including
Automation and Digitalization, Automation in Industry,
and Automation for Lifecycle Maintenance. These areas
of application have been extensively examined, with
comprehensive details provided in Table 4, Table 5,
and Table 6, which present the purpose of applying
modelling for automation, the techniques employed
for modelling or simulation, the tested use cases,
and the challenges encountered in realizing these
applications.

iii. Modelling for Health Inspection in Railway using DT
Railway infrastructure is subject to significant wear
and tear, making it essential to have an efficient health
monitoring system to prevent accidents, maintain high
levels of service, and reduce maintenance costs. DTR
is emerging as a promising solution to support SHM.
In this section, we discuss contemporary studies on
modelling techniques for health monitoring in railway
DT. Table 7 provides a summary of different modelling

techniques that are being used in the context of DT health
monitoring for railway systems.

Overall, the reviewed studies demonstrate the potential
benefits of simulation and modelling in automating processes
and services within the railway industry, particularly for
system automation and lifecycle maintenance. DT-based
health monitoring has also been studied in literature to
replace manual inspection and solution planning stages
through variousmodelling techniques. These techniques offer
benefits such as reduced labor times and costs as well
as precision monitoring in various applications of SHM
such as load test data processing, operational condition
monitoring, predictive maintenance, fault diagnosis, and
damage assessment. As a conclusion, modelling technologies
have promising potential for infrastructure management and
maintenance through DTR in the railway industry.

2) MULTI-MODAL INTERACTION IN DTR FOR VARIOUS
APPLICATIONS
The concept of Multi-modal Interaction (MMI) is an integral
part of DTs as it provides the capability to represent and
simulate the physical system in a virtual environment,
and potentially interact with this virtual representation [1].
Despite the extensive use of MMI in literature, it has not yet
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TABLE 4. Summary of papers on modelling for automation and digitalization using DTR.

been thoroughly investigated in many studies. This section
presents the aspects of MMI in DTR applications.

While safety in fully automated vehicles may not be
well-suited for heavy freight railways, VR devices and
3D modelling tools can greatly impact remote training
eliminating the need for real apparatus or in-person trainers.
For example, VR apparatus such as head-mounted displays
(HMD) and 3D representation tools like unity3D and toolkits
like Hurricane VR have been used to provide a safe and full
virtual experience for trainees [18]. In addition to preparing
trainees, the virtual experience also contributes to monitoring
and decision-making. For instance, a virtual 3D environment
has been proposed to emulate real-life geodetic monitoring,
accompanied by a VR application applied for remote railway
tunnel observation [59]. XR was also employed in guiding
commuters in railway stations to find their destination using
the DT and the A* algorithm to provide the optimal route,
as demonstrated in [60].
To recapitulate, MMI in DTR remains relatively under-

explored, yet it holds significant potential and promises
numerous benefits.

3) TECHNIQUES OF REPRESENTATION
This section represents details of tools, and strategies used in
literature for representation through DTR. First, we present
the modelling techniques for numerous applications and
second, we present the technique forMulti-modal Interaction.

i. Modelling Techniques for DT Maintenance of Railway
Infrastructure
In this section, we provide an overview of different
modelling types and categories used for infrastructure
maintenance and optimization using DT in railway in
literature.

• BIM is considered a hybrid modelling type as
it integrates various data sources, including geo-
metrical, spatial, and non-spatial data. BIM can
aid in asset management visualization, including
predictingmaintenance needs and identifying poten-
tial failures. For example, a BIM model has been
proposed in the literature to analyze the location and
condition of assets [26]. To realize the BIM, Revit
software was used in several studies. BIM can be
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TABLE 5. Summary of papers on modelling for automation in industry using DTR.

TABLE 6. Summary of papers on modelling for automation for lifecycle maintenance using DTR.

seen in other sections in this study for achieving
other goals in railway.

• 3D modelling is a physical modelling type as it
represents the physical properties and characteristics
of railway infrastructure assets. The 3D models can
be used to optimize track geometry, track mainte-
nance and inspection, and design new infrastructure
[29]. For example, a 3D model of the track can help
identify areas of uneven wear and tear, leading to
more targeted maintenance.

• 6Dmodelling adds real-timemonitoring and control
to asset management by incorporating time and

cost dimensions [25]. This modelling type provides
insights into asset behaviour and enables predictive
maintenance. For instance, a 6D model can help
predict when a train may need maintenance based
on real-time data about its speed, weight, and usage.
However, it presents challenges in data acquisition,
system complexity, and data management.

• Physics-based modelling is a numerical modelling
type that simulates physical phenomena and pro-
vides detailed insights into asset behaviour and fail-
ure modes. This modelling type is useful for rolling
stock maintenance and identifying potential failures
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TABLE 7. Summary of papers on modelling for health inspection in railway using DT.

in infrastructure [27]. To illustrate, a physics-based
model can help predict how a bridge will perform
under different weather conditions, leading to more
targeted maintenance and repair efforts. However,
it presents challenges in data availability, model
validation, and computing power.

ii. Modelling Technique for SystemAutomation in Railway
using DT
In the context of DTR, we elaborate on the 3D mod-
elling/Simulation Techniques as follows accompanied
with its application.

• Numerical Simulation: Numerical simulation is
a technique used to model and analyze complex
systems by solving mathematical equations using
numerical methods [61]. It encompasses a wide
range of numerical techniques used to simulate
the behavior of physical systems. One of the
primary techniques is the Finite Element Model
(FEM) [34] which employs mathematical models
to simulate the behavior of physical systems (e.g.
behavior of the bearings while train crossing [62]).
In addition to FEM, another approach known as
numerical Reduced-Order Modeling (ROM) used to
optimize the model by approximating the behavior
of complex systems with a lower-dimensional one
(e.g. thermal characteristics analysis for traction
motors in railways [63]).

• Real-time Simulation: Real-time simulation is a
technique used to simulate physical systems in real
time, which means that the simulation runs at the
same speed as the actual system. In the context
of railway operations, real-time simulation can be
used to model and simulate the behavior of the
railway system in real-time, including train opera-
tions [36], track conditions, and signal and control
systems. We can benefit from real-time simulation
to optimize train scheduling by adjusting schedules
in real-time based on real-world conditions, such as
delays or changes in the track condition.

iii. Modelling Techniques for DT Health Inspection in
Railway
Various modelling techniques have the potential to
improve the effectiveness of railway health inspection
through the integration of digital technologies. However,
each technique has its own limitations and challenges
that must be addressed in order to fully realize its
potential as presented in this section.

• BIM+ASHVIN: ASHVIN project is part of
the H2020 European project. The framework of
ASHVIN project is related to Assistants for Healthy,
Safe, and Productive Virtual Construction, Design,
Operation &Maintenance, using Digital Twins [55].
BIM tools and IoT paradigm (including sensors,
actuators, and personal computers) enabled by the
ASHVIN platform can be used for data processing
and condition monitoring of railway infrastructure
[55]. However, the challenge lies in integrating
different systems and technologies, as well as
ensuring data security and privacy.

• Multi-Body Simulation (MBS) Model: MBS is
a computational technique used to analyze the
dynamics of systems consisting of multiple inter-
connected rigid or flexible bodies [64]. It can be
used for predictive maintenance of wheels and rails
in railways. MBS models simulate the motion and
interaction of different components of a railway
vehicle, which can then be used to predict the wear
and tear of wheels and rails [34]. The scope of
this technology is to enable predictive maintenance
of railway vehicles and infrastructure, which can
reduce maintenance costs and increase the lifespan
of the assets [36]. The challenge lies in creating
accurate MBS models that can reflect real-world
conditions and in ensuring that the models are
regularly updated with new data.

• High-dimensional Structures (HDS): These tech-
nologies can be used for fault diagnosis of railway
point machines, in [15] three-dimensional and
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five-dimensional structures were used to identify
possible root causes of malfunctions in railway
point machines. Also, it can be utilized to promote
intelligent railway construction [65]. The scope of
this technology is to improve the accuracy of fault
diagnosis, reduce the time and cost of maintenance,
and enhance operation management and services.
The challenge lies in integrating these technologies
with existing systems and ensuring that the data are
accurately collected and analyzed.

• Peridynamics: Peridynamics can be used for
fatigue damage assessment of complex railway
turnout crossings. It is a non-local continuum
mechanics theory that can be used to simulate
material behavior under extreme conditions as
leveraged in [58] for crossing nose. The scope of
this technology is to improve the safety of railway
crossings and reduce the likelihood of catastrophic
failures. The challenge lies in creating accurate
models that can reflect real-world conditions and
ensuring that the data are regularly updated with new
information.

In a nutshell, different modelling types can aid in
the creation and maintenance of a comprehensive DT
for railway infrastructure. The application of numer-
ical simulation (e.g., 3D solid FEM), and real-time
simulation foster system understanding. The successful
integration of these techniques into a comprehensive
DT system will require collaboration between industry
experts, technology providers, and researchers to address
the technical, operational, and economic challenges
involved.

iv. Techniques for Multi-modal Interaction
• Virtual Reality: Amongst virtual technologies,
VR can be identified as the most prevalent. The
technology’s scope is to create an immersive dig-
ital environment with the intermediate of HMD,
allowing users to interact with 3D representations,
sound, and other sensory inputs, providing a feeling
of being present in the virtual space as witnessed
in [18] for train pre-operation health and safety
training, for DTR management and control [66],
and for permanent monitoring system [59]. Besides
the lack of continuous real-time data, the challenge
associated with equipment, including availability,
cost, and long-term acceptability, further contributes
to the existing obstacles.

• Augmented Reality: the technology that superim-
poses digital content onto the real-world environ-
ment, typically using displays such as smartphone
and tablet screens or AR head-up displays (HUD).
For example, AR can assist in providing specific
details to improve surveillance and management
of foundation pits in subway stations [67] during
the construction and upkeeping phases. The main
challenges are set in the complexity of designing

intuitive and user-friendly interfaces and the diffi-
culties of integration with existing systems.

• Extended Reality: is an umbrella term that encom-
passes all immersive technologies that blend dig-
ital and physical environments, providing a more
engaging and realistic experience for the user.
XR capabilities were harnessed in [60] to achieve the
DTR that aims to guide pedestrians to their optimal
paths within the station. The challenge pertains to
the availability of real-time data for timely and
continuous updates.

In terms of virtual representation, game engines have
played a significant role. Out of all the platforms, Unity3D
the cross-platform game engine, was the sole platform used
in the literature [15], [18], [59], [67], [68], [69] to develop
and implement the researchers’ DTR prototypes.

In summary, the virtual experience afforded by DT
augments the capabilities of systems, facilitating system
automation and informed decision-making. By enabling a
deeper understanding of the system and its surroundings, DTs
contribute to improved performance and safety.

B. DATA
Recently, data collection has been discussed broadly [70]
as a turning point in building modern industrial systems.
DT can follow a data-driven or knowledge-driven approach.
In the railway industry, DTs have the potential to improve the
management of railway assets, operations, and maintenance
by providing real-time data insights and predictive analytics.
However, some limitations should be carefully considered
before implementation when deciding between the two
approaches. Therefore, in this section, we present a review
of studies focused on Data Collection and Information
Management.

1) EXISTING WORK ON DATA COLLECTION FOR DTR
IoT sensors and devices have been employed in DTR to
capture and analyze data about trains, tracks, signals, and
other vital components. The data collected through these
sensors undergo processing and analysis with advanced
analytics and ML algorithms, which results in the creation
of a DT capable of accurately simulating the behavior of the
physical system [27].
By leveraging IoT-generated data to build digital twins,

railway companies can optimize their operations, minimize
downtime, and enhance safety and security through CBM
[71]. For example, in the context of predictive upkeep that
serves the SIA H2020 project, [72] proposed an IoT data
collection approach to support DT creation.

In [73], the authors utilized UbiBot and DS18B20 to
acquire weather condition data affecting railway turnouts and
safety. UbiBot is a wireless temperature and humidity mon-
itoring system that leverages IoT and features a cloud-based
platform providing real-time alerts and customizable reports.
DS18B20, on the other hand, is a digital temperature sensor
that yields accurate readings while requiring minimal wiring.
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The authors employed both sensors to provide reliable and
accurate readings for the railway switches and crossing DT.
Additionally, IoT possibilities were employed to support the
DT model for bridges in [42] and [44]. In [67], IoT was an
essential technology employed to develop the excavation pit
BIM-based surveillance platform.

In [55], DT was achieved with ASHVIN IoT platform
support for railway bridge load testing concerns. Lastly,
in [74], IoT supported the Computer Simulation Technology
(CST) for empirical testing aimed at observing the H2S high-
speed railways (HSR) embankment.Within the DT paradigm,
IoT sensors play a crucial role in defining the connection
between the physical and virtual space [75].

Harvesting useful data requires guessing the best place-
ment of the sensors within the system. For this purpose, the
authors in [34] and [76] presented DT for turnouts to explore
the best location of the sensors (strain and stress) for adequate
feedback and optimal inspection.

2) EXISTING WORK FOR INFORMATION MANAGEMENT
USING DTR
Table 8 summarizes the articles that propose DTR from a
data-driven or knowledge-driven perspective for information
management.

DT can be useful for railway infrastructure management
by integrating data from various sources and enabling
features, such as sustainable decision-making. However,
to fully leverage the potential of DTR, developers need
to consider the spatiotemporal and interaction relationships
among railway features and integrate data throughout the
asset’s whole lifecycle. The studies also highlight the need
for standardized data formats and further research to fill
existing gaps in the implementation of DTs in transportation
infrastructure.

3) TOOLS/ TECHNIQUES USED FOR HANDLING DATA
USING DTR
i. Tools for Data Collection

The data collection tools proposed or used in DTR
studies are various ranging from scanning techniques to
sensors and platforms. In this section, we discuss the
major techniques employed in the literature.

• Light Detection and Ranging (LiDAR) Technolo-
gies: is a remote sensing technology that uses laser
light to measure distances and create precise 3D
maps of objects and environments [33]. LiDAR
can be used to efficiently model existing railway
infrastructure, including tracks, tunnels, bridges,
and other structures. This information can be used
for monitoring and predictive maintenance of the
railway system due to its ability to capture anomalies
such as deviations or misalignments.

• Point Cloud scanning: is a 3D scanning technique
used to capture the shape and position of objects
by collecting large sets of data points named Point
Cloud Data (PCD). The PCD can be applied to

generate railway masts [82], catenary arches [83],
or the Overhead Line Equipment (OLE) elements
[24]. This technique provides an efficient approach
to developing infrastructure models for DTRs.

• Fiber Bragg Gratings (FBG) sensors: in [84],
monitoring and data collection for the DT model
were achieved by using FBG sensors. FBGs are
optical sensors commonly used in structural mon-
itoring applications such as monitoring the strain,
temperature, or pressure of structures (i.e. bridges).
Any shift in the FBGwavelength signals a change in
structure and an alert for maintenance.

• Accelerometer sensors: is a type of sensor used to
measure the acceleration of a moving object and can
be used to detect changes in motion and orientation.
It is considered a main source of data used by [56] to
develop a railway crossings DT targeting evaluation
and upkeeping forecasting, and in [85] for track line
assessment based on the rail stress-strain evaluation.

• ASHVIN IoT platform: It can enable data acquisi-
tion from sensors and actuators installed in railway
infrastructure, which can then be processed and
analyzed by BIM tools to monitor the condition of
the infrastructure as leveraged in [68].

ii. Techniques Used for Information Management Using
DTR
The techniques used in the literature for information
management using DTR are summarized below:

• Knowledge integrated data modelling: This tech-
nique can be used to explicitly describe the
spatiotemporal and interaction relationships among
railway features through a conceptual knowledge
graph [77]. This can help in understanding the com-
plex relationships among different railway features
and their interactions with each other, which can aid
in decision-making and optimization.

• Data integration from multiple sources and Big
Data:
Railway infrastructure produces vast data from
sources like sensors [69]. Using big data techniques,
this data can be analyzed for performance, main-
tenance, and safety insights [70], allowing early
identification and prevention of potential issues.

• Standardized 3D format: CityGML is a stan-
dardized 3D format for city modelling that can
be used to create a digital twin of the railway
infrastructure in a 3D environment [78]. This can
help in visualizing the infrastructure, identifying
potential issues, and optimizing the layout and
design of the infrastructure [79].

• Data Driven Framework: A data-driven DT can
be created using machine learning and other AI
techniques to learn from the data generated by the
railway infrastructure. This can help in predicting
potential issues, optimizing maintenance schedules,
and improving overall performance [86] and [87].
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TABLE 8. Summary of papers on information management for DTR.

• Data as an engineering tool: Data can be used as
an engineering tool to model, simulate, and optimize
the railway infrastructure [81]. This can help in
identifying potential issues, optimizing layouts and
designs, and improving overall performance and
safety.

To summarize, the use of data technology in DTR man-
agement presents both opportunities and challenges. As a
result, data-driven DTs can predict potential issues and
improve overall performance, while sensors and monitoring
systems can provide real-time data for decision-making and
optimization.

C. INTELLIGENCE
The advent of equipping a digital representation with intelli-
gence has been identified as the catalyst for the commence-
ment of the DT era. Specifically, the incorporation of AI is
deemed as one of the crucial features that have enabled the
transformation of a static representation to an interactive and
dynamic model. By facilitating diagnostics and prognostics,
AI has elevated the capabilities of DTs, thereby enabling
them to closely mimic real-world systems and interact with
them in real-time. This section presents an overview of
the diverse intelligent approaches employed in literature to
address various tasks related to railway management and
control, asset management, planning optimization, defect
inspection, maintenance prediction, and delay prediction,
among others. To this end, we have presented a summary of
the different AI models adopted by researchers in Table 9,
followed by a description of the techniques utilized to achieve
their respective research objectives.

1) AI APPROACHES IN DTR
In this section, we will explore the potential of data-driven
approaches based on DTs and AI techniques to improve
various aspects of railway station management, bridges,
tracks and their components, wheels, and overhead contact
systems (OCS) as follows:
i. Railway Station

Several studies have utilized DTs to enhance diverse
parts of the railway station and its management. For

instance, Hong et al. in [67] proposed an intelligent
approach to subway station foundation pit surveil-
lance and management, which utilized multi-sensing
technology, unmanned aerial vehicles (UAV), and CV,
amongst others. Another study by Peng and Zheng
[66] investigated the implementation of a DT-based
shop floor management and control system. The study
conducted an analogy of the system scheduling before
and after the implementation, which revealed that
the fuzzy rule NN exhibited superior performance to
the traditional manufacturing method when the output
volume surpassed a certain threshold. In [88], the authors
introduced a real-time train delay prediction system for
HSR networks using DT technology and DL algorithms.
The efficacy of the proposed system is verified through
a series of experiments, demonstrating its ability to
ameliorate the efficiency and safety of HSR networks.
Additionally, guiding pedestrians in rail stations to
optimal routes using DT is proposed by Preece et al. [60],
who utilized 3D scanning technology and Constrained
Delaunay Triangulation (CDT) to construct a DT of the
station. The A* pathfinding algorithm is then applied to
compute the shortest path between two points within the
created model. These systems’ objectives are to improve
the passenger experience and increase expediency within
rail stations.

ii. Bridges
In recent years, SHM has gained significant attention
for the continuous assessment of infrastructure assets’
performance. In this regard, several studies have pro-
posed the use of DTs coupled with AI techniques
to enhance SHM’s effectiveness. In their study, Eky
Febrianto et al. [84] demonstrated the application of
the statistical FEM (statFEM) to develop a DT of
a self-sensing steel railway bridge. The study used
FBG sensors for data acquisition and Bayesian learning
to target long-range SHM. Likewise, in a study by
Meixedo et al. in [86], an AI-based SHM methodology
for instantaneous unsupervised damage detection for
railway bridges was proposed, which utilized a hybrid
approach involving Continuous Wavelet Transform

120248 VOLUME 11, 2023



S. Ghaboura et al.: DT for Railway: A Comprehensive Survey

(CWT), Principal Component Analysis (PCA), and k-
means clustering. The findings from both studies were
promising, with successful detection of early damage
scenarios even in minor cases, which could potentially
reduce maintenance costs and improve safety levels.

iii. Tracks and their components
Rail tracks and their components were also a main
part targeted by researchers within the literature. For
example, in [68], a DT-based predictive maintenance
model for turnout motors was proposed using Unity3D
while the predictions were accomplished by involving a
combination of Long-Short Term Memory (LSTM) and
Autoregressive Integrated Moving Average (ARIMA)
models. In [40], the Rail for Future Platform (R4F)
was presented, where track geometry is considered as
the use case using the Vehicle and Track Interaction
(VTI) model as a numerical model and Recurrent Neural
Networks (RNN) to predict the lifetime of railway
tracks. Similarly, Sresakoolchai and Kaewunruen [89]
employed DL models and a BIM model to predict track
geometry parameters. Moreover, in [90], an approach
was proposed to build railway track geometric DTs
(RailGDT) from airborne LiDAR data. The proposed
method leverages the consistency of rail infrastructure
to generate RailGDTs in a cost-effective and less
arduous manner. These studies showcase how DT has
the capabilities to revolutionize rail deviation and defect
detection processes. Besides, they can help optimize the
overall upkeep of railway systems, thereby promoting
their sustainable evolution on a large scale.

iv. Rail Wheels
The field of continuous performance tracking has
recently seen significant advances in the development
of lifetime living models. In their work, Yang et al. [87]
presented a framework for the development of such
models, utilizing an AI-based DT to operate heavy
freight cars. The authors applied ML models such as
decision trees and Naive Bayes to two versions of
the Wheel Impact Load Detector system (WILD), then
employed Transfer Learning (TL) techniques to improve
performance. The study aimed to enhance railway
operation safety levels and reduce maintenance costs
and downtime in the Canadian transportation sector.
In the same way, the RailTwin conceptual framework is
proposed in [9] to enable the DT with automation and
actuation, transcending the classical structural modelling
or information systems. This framework is enabled
by AI subdomains such as DL, TL, Reinforcement
Learning (RL), and explainable AI (XAI), allowing
for the estimation of future states and decision-making
beforehand. The authors demonstrated the effectiveness
of the proposed framework with a use case for asset
health inspection and surveillance. Consequently, these
studies revealed that DT can play an important role in
improving the efficiency and safety of transportation
operations.

v. Overhead Contact System
The railway OCS is a critical component of railway
infrastructure, its role is to provide a continuous
electrical supply to the train. The integration of DT
technology has been proposed as a promising approach
for enhancing OCS management. Errandonea et al. [91]
highlighted the challenges in incorporating IoT and edge
computing systems and proposed new approaches for
enhancing system interoperability. They also presented
a four-stage methodology for developing edge-based AI
solutions, which includes AI models selected based on
multi-objective problems and implemented using XAI
strategies taking the diagnostic of stagger amplitude
as a use case. The study in [83] utilized terrestrial
laser scanning and semantic segmentation techniques to
generate accurate DTs for upkeeping, surveillance, and
planning. A case study involving railway catenary arches
was considered and a modified PointNet++ model was
implemented. While Ariyachandra and Brilakis [82]
and [24] proposed an automated method for detecting
masts and overhead line equipment (cable, catenary)
respectively using LiDAR data and the Random Sample
Consensus (RANSAC) algorithm leveraging railway
uniformity. Recent work by Patwardhan et al. [33] har-
nessed LiDAR technologies to optimize DTmechanisms
in multi-faceted environments and proposed a decen-
tralized approach for DT generation and updating using
FL. The aforementioned studies aimed to upgrade OCS
management and maintenance levels by leveraging DT.

2) AI TECHNIQUES FOR DTR
Several researchers have explored the application of DT
by employing various AI methods for advancing decision-
making, prediction, and detection. These studies have
demonstrated the effectiveness of these techniques in terms
of performance and accuracy. In this section, we aim to
understand the mechanism of data-driven decision-making
and predictive maintenance in railways through AI tech-
niques. To achieve this, Table 9 summarizes the AI techniques
employed in DTR across three primary domains such as
ML, DL, CV, and a few remaining algorithms in the
fields.

Building on the notable findings from earlier research,
it’s evident that DT plays a transformative role in mul-
tiple applications. For instance, in [82], a sophisticated
methodology is showcased, achieving a remarkable 94%
detection rate of railway masts using airborne LiDAR data
by harnessing DT in PCD and IFC formats. In a related
vein, [24] delivers a model-driven DT tailored for railway
OLE, yielding an F1 score of 93.2% for OLE cables and
98.1% for other components across an 18 km domain,
with an accuracy benchmark set at 3.82 cm RMSE. Diving
deeper into infrastructure applications, [83] accentuates the
pivotal role of contemporary DTs, particularly in legacy
structures. By engaging mobile laser scanning with semantic
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TABLE 9. Summary of papers on DTR for Intelligence sub-domain. H:Heigh, L:Low, mi : the it h model, ANSYS: (Swanson) Analysis Systems, ANFIS:
Adaptive neuro-fuzzy inference system, ARIMA: AutoregRessive Integrated Moving Average, BP: Back Propagation, CNN: Convolution Neural Network,
CWT: Continuous Wavelet Transform, FCNN: Fully Convolutional Neural Network, FCN: Fully Connected Network, FE: Finite Element, GA-BP:Genetic
Algorithm optimized Back Propagation, GRU: Gated Recurrent Unit, mIoU: mean Intersection-over-Union, LIME: Local Interpretable Model Agnostic
Explanations algorithm, LSTM: Long Short Term Memory, MAE: Mean Average Error, MAPE: Mean Absolute Percentage Error, MSE: Mean Square Error,
Namdam: Nesterov’s Adaptive Moment Estimation, NARX: Nonlinear AutoRegressive network with exogenous inputs, OCS: Overhead Contact System,
OLE: Overhead Line Equipment,PCA: Principal Component Analysis, PE: Polynomial Equation,Prob.: Problem, R2: Coefficient of Determination, RANSAC:
Random sample consensus, RMSE: Root Mean Square Error, RNN: Recurrent Neural Network, SIL: Silhouette Index, StatFEM: Statistical Finite Element
Model, XR: Extended Reality.
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segmentation techniques, an accurate DT is synthesized from
CAD models. Further refinement using the PointNet++

model led to a mean class IoU of 71%. Pursuing a similar
trajectory, [89] pioneers a novel approach in railway track
maintenance, channeling DL models and a 3D RNN for
forecasting track geometry parameters in the imminent
future. Augmenting this, a BIM DT facilitates co-simulation,
yielding an average R2 value of 0.95 and an MEA of
0.56 mm. These findings highlight the substantial positive
effects of integrating DTs in diverse scenarios, affirming their
capacity to enhance railway system effectiveness on multiple
fronts.

D. SAFETY AND SECURITY
In this section, we review the research based on safety
monitoring or security in the literature.

1) SAFETY MONITORING USING DTR
Table 10 provides a summary of a few studies that
demonstrate the use of DT in variousmonitoring applications.
It shows that the use of DT can bring about significant
improvements in safety, and reliability.

These studies demonstrate the importance of incorpo-
rating advanced technology into railway operations, train-
ing, design, and maintenance processes. These innovative
approaches hold the potential to improve safety in the railway
industry, ultimately leading to improved outcomes for both
employees and passengers alike.

2) DATA SECURITY AND PRIVACY IN DTR
Data authorization and authentication are crucial components
for ensuring trust, security, and privacy in DTR [93]. Recent
research highlighted the need to address emerging security
and privacy technologies in the future. However, some studies
have pointed out that data security and privacy remain
challenging factors in this context, similar to any data-driven
methodology.

For example, in [94], the authors proposed face recognition
as a means of traveler identity authentication for supporting
railway riders’ station functionality and services. In [69],
security levels were defined within the network structure for
a proposed DT surveillance platform for HSR.

In the context of DTR, research has targeted data
protection, confidentiality, and authentication. The research
in [33] and [95] both focused on these issues.
FL provides a decentralized training method that can

guarantee high levels of security and confidentiality for
participants. In [33], FL was utilized to build a DT for railway
catenary for maintenance planning.

Meanwhile, in [95], the authors introduced blockchain
technology to address centralization dependency and security
threats for trustworthy decision-making in manufacturing.
The research framework was applied to different sectors
of intelligent commuting, including railway prognostic
upkeeping.

3) TECHNIQUES USED IN DT FOR SAFETY AND SECURITY
In this section, the techniques and strategies used to achieve
safety and security in DTR are spread over Table 11 for Safety
Monitoring and Table 12 for techniques and strategies for
Security in DTR. The tables summarize the description of
technologies, benefits, and challenges in brevity.

4) TAXONOMY OF DTR
To understand the categorization of the techniques, we have
developed the DTR taxonomy (Figure 7) which delineates
the foundational components and cutting-edge technologies
underpinning the development and deployment of DTR. This
architecture is structured around five core pillars: ‘‘Data’’,
‘‘Modeling’’, ‘‘AI’’, ‘‘Connected vehicles communication’’,
‘‘MMI’’, and ‘‘Security’’.

Data stands as the bedrock of any DT, aggregating inputs
from diverse sources such as the IoT and historical records.
These offer both instantaneous data feeds and past data
insights. This collected data undergoes refinement through a
spectrum of Modeling techniques, spanning from rudimen-
tary data-centric methods to intricate mathematical modeling.
The AI segment highlights the incorporation of ML strate-
gies, encompassing techniques like DL and FL. These are
crucial in amplifying the predictive precision and ensuring
the agile responsiveness of the DTR system. Connected
vehicles introduce the concept of real-time communication
between vehicles, emphasizing connected vehicle commu-
nication. This refers to the real-time exchange of information
between vehicles and infrastructure, facilitating safer, more
efficient, and intelligent transportation operations within
railway systems.MMI underscores the significance of a rich
array of user interfaces and experiences. It captures senses
ranging from the visual and auditory considering olfactory
and gustatory dimensions as well. Additionally, innovations
such as VR, AR, and haptic feedback pave the way for a
more immersive engagement with the DTR environment.
Concluding with Security, the emphasis is on pivotal
measures that bolster the DTR system’s resilience. From
blockchain technologies that guarantee data’s immutability to
cybersecurity protocols that shield against potential external
intrusions, the focus is on ensuring an impregnable and
trustworthy system.

E. SUMMARY OF RQ2
The above comprehensive section clarifies numerous tech-
nologies proposed and employed in the literature. It is
evident from the summary of the studies and techniques
that those technologies have been applied to activate the
basic building blocks of DTR, as well as to support a wide
range of railway operations. However, it can be noticed that
several technologies are mutually inclusive. We concluded
this section by DTR taxonomy (Figure 7) where we classified
the core enabling technologies, techniques, and tools to fulfill
DTR requirements.
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TABLE 10. Summary of papers on safety monitoring using DTR.

TABLE 11. Summary of techniques in dt for railway safety.

TABLE 12. Summary of techniques for data security and privacy.

FIGURE 7. Taxonomy of DTR.

Several technologies in the taxonomy have been utilized
in the literature, which is outlined in Table 11 and Table 12.
The information presented in these tables answers how
the technologies are employed to facilitate various DTR

applications. Although Modeling, AI, and Data have already
been studied in the literature for DTR, technologies including
multimodal interaction, communication, and security have
hardly been implemented and evaluated in the literature.
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VI. RQ3: TO WHAT EXTENT DIGITAL TWIN HAD
ACHIEVED ITS FUNCTIONALITY IN RAILWAY AND WHAT
ARE THE RESEARCH GAPS?
A. GAPS AND CHALLENGES
DTR has gained the attention of railway stakeholders and
researchers due to being a shared platform to utilize various
technologies for twining manual processes and conditional
states. However, the adoption of DTR for heavy freights is
still at its earliest stage and presents the following challenges
and research gaps.

1) DATA AVAILABILITY
The railway industry produces enormous amounts of data.
Therefore, to design and develop DTR, a seamless and
continuous data stream is required. However, data distribution
drift or acquiring data from outdated and sensor-lacking
heavy freights has been a challenge for most studies
[87]. Despite proposing transfer learning as a solution in
contemporary research [87], the need for a continuous
real-time data stream and access to railway industry data is
essential to ensure the success of DTR.

To address the lack of availability of data, there is a need
to ensure secured and authorized access to data. Furthermore,
designing embedded systems or budget-friendly sensors to
mount on freight bodies can be used in collecting data from
various sources.

2) INTEGRATION AND SYNCHRONIZATION
To develop a full-fledged DTR, integration and synchro-
nization of various parts of the railway system, such as
control, scheduling, monitoring, and maintenance systems,
are necessary. Different technologies have been proposed
and evaluated for these systems in research; however, the
successful implementation of DTR requires a comprehensive
and standardized framework [9]. Besides, one of the main
challenges is the propagation of data integration issues
caused by the lack of standardization in data collection tools
and formats of various parameters, including faulty images,
environment states, and structural conditions. Moreover, the
use of multiple sensors to collect diverse data types further
complicates the analysis process. To address these challenges,
it is essential to design a data standardization process or
fusion techniques that can integrate data from diverse sources
effectively.

3) BUILDING AI MODEL
As data (e.g. images) are rudimentary elements to create
a reliable and efficient AI model, the development of an
intelligent model (e.g. defect classifier) still needs to rely
on manual data labeling (e.g. bounding box labeling) or
historical data (e.g., particular defect images). However,
for a massive industry like the railway, such a process is
time-consuming and costly.

Several studies have shown evidence that DL can be
applied to build classifiers with limited data [9]; however,

these models have primarily been evaluated on smaller
and particular datasets [77]. Thus, a less computationally
expensive and reusable AI model architecture is needed to
handle the diverse nature of data in the railway system.
To mitigate the trade-off between limited data and efficient
AI models, the Ensembling of transfer-learned models can
be utilized for building reusable AI models. Moreover,
to provide forecasting oversights in DTR based on the current
and previous state, a relativity theory-based model is still
required to be investigated.

4) CREATING VIRTUAL MODEL
Creating models of railway infrastructures is a complex
task due to its moving nature. For example, modelling the
controlling room for the training is intricate as it requires
mapping exact components in 3D models in order to twin the
manual monitoring or training process [18]. Creating models
also requires redundant efforts. Furthermore, the research
trend already demonstrates the adoption of immersive
learning through cutting-edge technologies like VR, AR,
or XR. This opens doors to accessing the QoE and usability
of DTR use cases. Understanding the needs and requirements
to improve the User Experience (UX) of DTR products is
essential.

5) VIRTUAL MODEL INSPECTION
Although modeling has been emphasized in several studies,
exploring the use of models for virtual inspection in shared
persistent platforms like Metaverse is yet to be done.
Developing a virtual model for the DTR using a shared,
persistent, and consistent platform can aid in addressing the
challenge of creating this model. For example, using the DTR
as one of the cornerstones of the Metaverse can empower this
development.

6) ENABLING FEEDBACK LOOPS
Enabling feedback loop is one of the crucial features
to activate actuation, controlling, and interaction between
virtual space and real space [1], [2], [3]. However, due
to the unavailability of real-time data, and limited multi-
modal interaction, the feedback loop in DTR has not been
studied comprehensively in the literature. To facilitate the
collection of real-time data and enable a feedback loop, the
incorporation of multi-modal sensors such as haptics, and
actuators such as controllers can be used.

The importance of emerging technologies such as immer-
sive VR or XR to enable feedback loops in DTR has been
recognized in the literature. However, there is still no specific
approach to retrieve the outcome of DTR in a shared,
consistent, and persistent platform.

7) SECURITY AND PRIVACY
As railway is one of the major transportation facilities
worldwide, building DTR data security and privacy is a prime
concern. However, Security at the communication level has
not been fully realized through proper methodologies and
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FIGURE 8. Challenges and future recommendations to desing and
develop DTR.

evidence. Therefore, extensive evaluation of security in DTR
is still required in the existing literature [95].

Based on our findings on challenges faced in designing
and developing a DTR, we present the following future
recommendations (Figure 8) that can benefit the railway
industry in achieving a complete DTR.

B. LIMITATIONS
This survey has a few limitations that we would like to point
out. Firstly, we were unable to fully elaborate on technologies
included in the taxonomy, such as Haptics. This is due to
the lack of enough contributions in literature and detailed
information available to narrow down its characteristics
and methods of implementation. Secondly, we suggest that
future research should investigate the existing technologies
with a specific framework and use case. Developing a
generic framework with a detailed design of components to
incorporate relevant techniques, such as Metaverse, Haptics,
Reusable AI, and Blockchain, can help in integrating theDTR
with existing systems. This can ensure seamless integration
and improve the overall effectiveness of the DTR. We plan to
address this limitation in the future by extending this survey.
Moreover, using the snowballing technique in the future
for paper inclusion eligibility may reflect a deeper topic
coverage. We recognize that there may exist many DT-related
papers that do not explicitly specify DT for railways as their
main focus, but that are nonetheless related to topics such
as predictive maintenance, AI, automation, etc. The railway
systems may directly or indirectly benefit from such research
papers. For the time being, such publications are not part of
this survey since they do not focus on DT railway. Therefore,
extending this work in the future to include such research
papers will add a broader scope to the survey.

VII. CONCLUSION
In conclusion, DT technology has the potential to revo-
lutionize the railway transportation industry by improving
sustainability and efficiency. However, despite the growing
interest in DT, its full potential in the railway domain has
not yet been realized due to the lack of exploration of its
underlying technologies. In this study, we present the DTR

from the perspectives of representation, data, intelligence,
and safety and security. Our aim is to bridge existing gaps
by conducting an exhaustive literature review, introducing a
DTR taxonomy grounded in cutting-edge technologies, and
emphasizing challenges and unexplored research areas. This
provides both industry and academia with a clear overview
of the advancements in this field. We found several efforts
have been made to realize the underlying technologies of
DT for transforming the railway industry into an automated
and digital transformation system.However, a comprehensive
framework incorporating newly emerging technologies is still
required to be designed. Besides, with a deeper understanding
of how diverse DTR technologies can be integrated and
applied, we obtained key challenges and opportunities in the
railway transportation industry and maximized the potential
of DT. We recommend future research to explore emerging
technologies such as the Metaverse and Generative AI for
further advancement of DTR.
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