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ABSTRACT Multi-Access Edge Computing (MEC) architectures now seem to represent the future of
data processing architectures. Indeed, they have the potential to optimize the use of the backhaul network,
guarantee the implementation of real-time applications and offer services adapted to the user’s context.
To further improve the performance of MEC architectures, it may be worth combining them with a new
technology at the physical layer: Non Orthogonal Multiple Access (NOMA). During the task offloading
process, this could enhance energy efficiency, maximize the number of users benefiting from MEC services
and further reduce latency. That is why the article focuses on the use of NOMA for task offloading in MEC
architectures and offers a comprehensive study on the subject. First, we define a taxonomy to ensure a
systematic review of existing work.We then analyze and compare existing works, classifying them according
to their purpose. Based on this, we then discuss the benefits and limitations of existing work, highlighting
some good practices. Finally, we identify future research directions in the field of NOMA-assisted MEC
architectures.

INDEX TERMS Massive connectivity, multi-access edge computing, NOMA, offloading, quality of service.

I. INTRODUCTION
The growth in computing capabilities, the introduction
of new artificial intelligence based (AI) algorithms and
more efficient communication systems have led to the
emergence of new applications and services for the future [1].
These include: 1) Augmented/Virtual/Mixed Reality, which
creates immersive environments allowing users to interact
with objects and information in a more intuitive way;
2) Cooperative Intelligent Transport Systems (C-ITS), which
aims to increase road safety and traffic management; 3) the
multiplication of Internet of Things devices (IoTs) that can
supervise and control entire cities or new industries by
providing massive data to AI programs; 4) 8K streaming,
which guarantees a fluid user experience for content viewing
and 5) Telemedicine, which enables remote medical care for
distant populations.
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However, the operation of these new applications and
services requires high performance, both in terms of the
computing resources needed to run them, and in terms of the
network infrastructure that transports and processes the data.
Reduced processing times to operate in real time, as well
as limited power consumption to improve the lifetime of
the devices are particularly mandatory. In recent years, the
use of Mobile Cloud Computing (MCC) architectures has
proven to be relevant to address these concerns [8]. This
type of distributed architecture combining remote computing
and storage capabilities in the cloud aims at improving
the performance and capabilities of mobile network users,
providing them with cloud services to run their new
performance-intensive applications. However, in the MCC
architecture the physical resources are located far from the
users, increasing latency and processing delays [9]. These
are important limitations to the optimal operation of these
new applications. In addition, the higher power consumption
required to transport data to the cloud is disadvantageous for
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TABLE 1. Comparison of existing surveys.

users with limited resources, such as IoTs, since they are
running on batteries.

To overcome these limitations, a paradigm shift has
occurred with the introduction of Multi-Access Edge
Computing (MEC) architectures [10]. MEC consists in
deploying computing and storage servers at the edge of
the network, as close as possible to the end users. This
type of deployment close to end users enables them to
benefit from additional computing resources in a quasi-
transparent manner. This ensures the functioning of new
applications and services while limiting processing times and
energy consumption compared to MCC architectures [11].
As a result, mobile users have the option of running some
or all of their applications on the MEC server, known
as offloading process. However, the latency and energy
consumption during offloading depend on several factors,
such as the underlying communication technology in the
MEC infrastructure, the propagation channel conditions,
the mobility and number of users, and so on. Despite the
predisposition of MEC architectures to provide low latency
and low power consumption, such factors can drastically
reduce its performance.

Alongside this, a significant amount of work has been done
on the physical layer, with a growing interest in recent years in
Non-Orthogonal Multiple Access communications (NOMA)
[12]. These technologies allow multiple users to share the
same radio resources in time and frequency, using power
domain with superposition coding (SC) at the transmitter
side, and Successive Interference Cancellation (SIC) at the
receiver side to distinguish the signals of the different users.
This enables users to access the channel simultaneously and
improves spectral efficiency.

Due to its attractive characteristics, researchers began
formulating new proposals aroundMEC architecture in 2018,
where NOMA is used as the physical layer providing an
optimal solution to overcome the MEC limitations. Their
intuition proved to be right, as NOMA permits multiple users
to offload their tasks simultaneously without having to wait
for a radio resource to free up, reducing processing times.
In addition, superposition coding, consisting in weighting
the signals to be transmitted, reduces the energy consumed
to offload tasks. Thus, the integration of NOMA in MEC
architectures has been a major contribution in improving
the performance of these infrastructures, becoming a new
type of architecture called NOMA-assisted MEC networks.
Since then, the research community has formulated many

proposals, assessing these architectures in new use cases,
defining new algorithms to efficiently manage joint
resources, and introducing new solutions based on emerging
technologies.

To the best of our knowledge, no state of the art on
offloading in NOMA-assisted MEC architectures has been
proposed to date. Table 1 compares the existing surveys that
partially explore this topic. Most of them address offloading
proposals in a very oriented way, i.e. from a NOMA point
of view in which MEC is an annex technology, or from a
MEC point of view in which NOMA is part of a set of
solutions allowing to improve MEC architectures. Purely
NOMA-assisted MEC papers are only presented within one
sub-section of the studies carried out, and a limited number
of papers were compared. In this survey, we propose to
analyze specifically the approaches and proposals made
by the authors in the NOMA-assisted MEC architectures,
considering MEC and NOMA a monolithic block. Our
contributions can be summarized as follows:

• We define a taxonomy around the key concepts of
NOMA-assited MEC architectures by defining a basic
conceptual framework that allows us to understand
all the papers in the literature as well as future
proposals. The defined structure also contributes to the
harmonization of terminologies and future works around
these architectures, facilitating future collaborations,
mutual understanding and sharing of research results;

• Considering the combination of NOMA and MEC as
an indivisible block, we have conducted a comparative
study and classified a large number of proposals
structured around the main objectives of NOMA-MEC
architectures;

• On the basis of this comparative overview, a discussion
is conducted on the approaches and trends that emerge,
identifying in particular the most effective methods for
dealing with a particular problem, the limitations of
certain models and approaches, and best practices;

• Finally, we have identified four perspectives on this
research area that will allow us to overcome the
bottleneck induced by a number approaches, in order
to evaluate and propose new solutions in these architec-
tures.

The rest of this paper is organized as follows. First,
a brief introduction to MEC and NOMA communication
architectures is proposed to understand the functioning of
the global NOMA-assisted MEC architecture (Section II).
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Thereafter, a taxomony is described to facilitate mutual
understanding (Section III). On this basis, the proposals
made in the literature are compared (Section IV). Then,
a discussion is led to identify the more relevant approaches
and the limitations of the proposals (Section V). Finally,
we in proposals and perspectives around this field of research
(Section VI).

II. BACKGROUND
This section defines a number of concepts that are essential
to understanding the rest of the document. Unlike existing
surveys, such as [13] and [14], NOMA-MEC architectures are
analyzed as a complete and indivisible entity. Consequently,
this section will not constitute a new knowledge base
specific to each of these technologies, but will detail
particular elements borrowed from them for the formulation
of optimization problems centered around these NOMA-
MEC architectures. MEC architectures are reintroduced and
we explain how they are modeled in the authors’ proposals,
as well as the different offloading models used. We also
describe how NOMA is defined and applied in this type of
problem.

A. MULTI-ACCESS EDGE COMPUTING
MEC architectures have a long history that dates back to
the convergence of mobile networks and cloud computing.
This network architecture arose as a solution to meet the
growing need for low-latency, high-bandwidth applications
and services. Its origins can be traced back to the European
Telecommunications Standards Institute’s (ETSI) introduc-
tion of MEC in 2014, which was fundamental in the
development ofMEC as an industry standard, with the goal of
enabling the deployment of computational resources closer to
the network edge. A framework for the implementation of this
architectures is compiled in the ETSI MEC standard which
supports an open and interoperable ecosystem. It outlines
the functional architecture, APIs, protocols, and interfaces
necessary for interoperability among MEC platforms, net-
working hardware, and application developers. It addresses a
number of topics, such as application lifecycle management,
MEC application discovery, mobility support, and security
issues [15].

Because of this proximity, real-time and context-aware ser-
vices may be provided, thus lowering latency by eliminating
the need to backhaul data to centralized data centers. Indeed,
MEC architectures are based on the deployment of computing
nodes at the network edge, known as MEC nodes, that can be
hosted within base stations (BSs) and access points. These
nodes run applications by utilizing virtualization and dis-
tributed computing technologies (cf. Figure 1). To efficiently
manage resources and maximize service delivery, these
architectures employ techniques as Network Slicing (NS)
and Software Defined Networking (SDN) [16]. This way,
MEC is able to support multiple functionalities by putting
processing, storage, and networking capabilities closer to end
devices, enabling data offloading. Particularly, this offloading

stages reduce network congestion, improve user experiences,
and provide support for new compute-intensive services,
such as real-time analytics, video processing [17], content
caching [18], and other edge-based services, while limiting
the energy consumed by the users.

Several approaches are considered for MEC servers’
tasks offloading, including binary offloading and partial
offloading, which optimize resource usage and enhance
performance. By offloading the complete execution of an
application or task from an end device to a MEC server,
binary offloading lowers the computational load on the device
and exploits the computing capabilities at the network edge.
As opposed to this, partial offloading offers a selective
offloading method in which only a portion of an application
is transferred to the MEC server and the rest is run locally
on the device. This technique offers fine-grained control over
the offloading process, enabling the optimization of resource
usage by exploiting the capabilities of both the device and the
MEC server.

MEC architectures are used in many different fields such
as 1) C-ITS to manage for example task detection and path
panning [19]; 2) Smart city to enable heterogeneous systems
inteoperability [20]; 3) telemedecine to provide rea-time
heathcare services [21]; and 4) Industry 4.0 to enhance
machine to machine communications and decision-making
processes [22].

B. NON-ORTHOGONAL MULTIPLE ACCESS (NOMA)
In 2017, to improve the performance of MEC architectures,
researchers put forward proposals to integrate NOMA as
the physical layer of the Radio Access Network (RAN).
NOMA is a multi-user communication technique that
allows multiple users to simultaneously access the same
time-frequency resources in wireless networks [12]. Unlike
traditional Orthogonal Multiple Access (OMA) schemes,
NOMA employs power domain multiplexing, where users
are allocated different power levels to transmit their signals.
Users with weaker channel conditions are assigned higher
power levels, enabling them to overcome their weaker
links and ensuring reliable reception. It’s important to
note that in the literature, the use of the terms NOMA
uplink or NOMA downlink does not refer to communi-
cations directions from a network point of view (uplink
and downlink), but to the way offloading is managed.
(cf. Figure 2):

• Uplink-NOMA: this version is based on the objective
of simultaneously offloading the tasks of several users
to the MEC server onto the same radio resources. This
suggests that the BS coordinates centrally how the users
will exploit the radio resources during the offloading
phase. To do this, prior exchanges were necessary
between the users and the BS. In the first phase, the
users provide the BS with feedback on information such
as the CSI, the size of the tasks to be offloaded and the
local computing resources available, so that the BS can
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FIGURE 1. NOMA-assisted MEC architectures.

FIGURE 2. NOMA-Uplink and NOMA-Downlink communications.

accurately determine the most suitable offloading policy
to adopt. The BS then sends the established parameters,
power coefficient and selected radio resources, to each
user for their offloading phase;

• Downlink-NOMA: this type of communication is
also used for offloading phases (i.e. from users to
the network, uplink direction), although this may be
counter-intuitive due to its designation. Like Uplink-
NOMAcommunications, Downlink-NOMAallows data
to be offloaded to the MEC server, but enabling a
user to simultaneously offload tasks to multiple MEC.
This suggests that the decision and coordination of the

offloading phase falls under the responsibility of the
user. A preliminary phase therefore consists of several
BSs equipped with MEC servers communicating their
CSI and available computing resources to the user,
so that the latter can establish the optimum offloading
policy based on this information.

In all cases, NOMA uplink and downlink are based on
the principle of SC on the transmit side, and SIC on the
receive side. Figure 3 shows the principle of these two
techniques in the context of transmission (SC) and reception
(SIC). NOMA symbols are represented in a constellation,
in which user1 (red arrow) aims to send bits 00, and user2
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(blue arrow) wishes to send bits 01. These bits are then
mapped into a 4-Quadrature Amplitude Modulation (QAM)
digital communication, simultaneously on the same radio
resource. Initially, the SC is based on equation (1) where the
symbol transmitted (Sn - violet arrow) is equivalent to the sum
of the signals from several users, weighted by a coefficient
established according to the quality of their channel, so that
condition (2) is respected, which in other words corresponds
to a limited power budget (in our examples, the total power is
fixed at 1).

S[n] =

N∑
i = 1

√
αui × Ptot × sui [n] (1)

N∑
i=1

αui = 1 (2)

These coefficients are then set so that the user with the
worst channel can have the maximum power. Indeed, this
permits to prevent its signal from being significantlymodified
by the poor conditions offered by its communication channel,
enabling it to be decoded by the base station. In our case,
user1 is assigned the α = 0.75 coefficient because it has
a worse channel than user2, which is assigned the α =

0.25 coefficient, and will be considered as noise in user1’s
signal as in (3).

S [n]︸︷︷︸
superimposed symbol

=
√

αu1su1 [n]︸ ︷︷ ︸
user1 symbol

+
√

αu2su2 [n]︸ ︷︷ ︸
user2 symbol

(3)

Secondly, during reception, the Sn symbol is partly filtered
by the different user channels and Additive White Gaussian
Noise (AWGN) noise is added to the received Yn signal,
as shown in equation (4). In our example, these effects are
negligible on Sn, which is equivalent to Yn.

Y [n]︸︷︷︸
received symbol

= hu1
√

αu1su1 [n]︸ ︷︷ ︸
user1 symbol

+ hu2
√

αu2su2 [n]︸ ︷︷ ︸
user2 symbol

+σ 2 (4)

At this point, SIC is used to find the symbol of each user:
• User1 only has to decode the symbol Yn received as
his own to find the transmitted message (user2 is not
considered to be noise);

• On user2’s side, it first decodes user1’s message.
Once it has obtained user1’s symbol, it then subtracts
user1’s weighted theoretical symbol from Yn, so as to
extract the noise that carries its symbol, as shown in
equation (5).

yu2 [n] = Y [n] − hu2
√

αu1su1 [n] (5)

These two techniques allow NOMA communications to
fully exploit the power domain, which significantly improves
spectral efficiency, increases capacity, and enhances the
overall system performance. However, the above formulas
are not representative of the NOMA-assisted MEC domain.
In fact, all the proposals made in this area are based on
the formulation of a mathematical model representing the

underlying architecture. NOMA is then expressed in terms
of the maximum theoretical throughput that can be obtained
for a user on a subcarrier, as shown in equation (6). Compared
to the formulation of the theoretical throughput of an OMA
communication, we find in particular the term of interference
between symbols (Ptot |hui|2

∑N
k=i+1 αuk ) specific to the

superposition of several users on the same subcarrier.

Rui,spj = log2

(
1 +

αuiPtot |hui|2

Ptot |hui|2
∑N

k=i+1 αuk + σ 2
n

)
(6)

In the case of two users, user1 and user2, sharing the same
subcarrier, the theoretical throughput for each is equivalent to
equations (7) and (8) respectively.

Ru1,sp1 = log2

(
1 +

αu1 |hu1|2

αu2

∣∣hu1 ∣∣2 + σ 2
n

)
(7)

Ru2,sp1 = log2

(
1 +

αu2 |hu2|2

σ 2
n

)
(8)

This formulation of throughput rates is used to obtain the
delay in the task offloading phase, by expressing the ratio
between the task’s size (bits) and this theoretical throughput
rate. Finally, the introduction of decision variables into the
theoretical throughput formula, such as a parameter taking
the value 1 or 0 in the numerator of the fraction present in
the logarithm, makes it possible to manage the allocation
or non-allocation of the subcarrier to a user. Similarly, the
weighting of the ratio between the size of the task and the
theoretical throughput can be used to define the offloading
policy.

III. TAXONOMY
This section presents the taxonomy we defined to understand
and analyze NOMA-assisted MEC offloading. Most of the
studied papers were formulated as optimization problems.
The structure of these documents can be summarized by
formulating the following problem: the authors proposed a
given environment composed of use case with a particular
RAN type and some different communication types, where
they aim to minimize/maximize an objective, implementing
algorithms controlling decision variables and new tech-
nologies. These elements are shown in Figure 4 and detailed
in this section.

A. OPTIMIZATION CRITERIA
The main objective of a NOMA-assisted MEC architecture
is to provide additional computational capabilities to users,
allowing them to process their tasks as quickly as possible
(latency) while consuming as little energy as possible
(energy). Most authors have therefore presented proposals
to minimize these elements by using them as optimization
criteria in the mathematical formulations of the optimization
problems. Some authors have addressed other objectives,
or have proposed new metrics to formulate these criteria. The
main criteria we identified are as follows:
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FIGURE 3. SC and SIC constellations.

• Energy: Energy minimization is one of the main
criterion for the implementation of a NOMA-assisted
MEC architecture. Indeed, the users of this environment
are often IoT devices with low battery autonomy. The
researchers propose tominimize energy at several levels,
such as the energy consumed locally by each user, the
energy consumed by the users to transmit and download
their data to the MEC server, the energy consumed by
the MEC server, or the combination of all these criteria
which then corresponds to the overall energy consumed
in a NOMA-assisted MEC architecture;

• Delay/Latency: Providing sufficient computing resources
to users with limited computing capacity allows them
to speed up the processing of demanding computing
tasks and thus reduce their processing time. Authors aim
particularly at providing transparent processing times to
users, i.e. the shortest latency between the moment of
offloading the task and the response containing the result
of the task’s calculation. The underlying objective is to
minimize the processing times of the tasks (at device
and MEC server level) in these architectures, and also
the latency of the NOMA communications;

• Joint Weighted Energy and Latency (JWEL): The
above two objectives are often combined in the problem
formulation although one is defined as an optimization
criterion and the other is formulated as a constraint. This
is why some authors have defined the JWEL criterion,
so that the two objectives become simultaneously a
single optimization criterion. In addition, by adjusting
theweighting coefficient, themost significantmetric can
be defined according to the proposed use case;

• Security: Due to the properties and nature of the air-
waves, RANs communications are broadcasted and are
therefore subject to several external attacks. An attacker
could conduct passive eavesdropping, compromising the
confidentiality of such a system. Some authors proposed
new mechanisms to improve security;

• Quality of Service (QoS): Given that not all offloaded
tasks have the same performance requirements, as they
need shorter or longer processing times or higher or
lower reliability, objective may be to determine how
the MEC system can meet the QoS level of each
task;

• Processing rate: The latency criterion can be reformu-
lated by considering the capacity of the MEC server
architecture to process as many tasks as possible. In this
case, the objective is to maximize the processing rate;

• Outage probability: The probability of the system to
crash can also be considered as a criterion allowing
to quantify the probability that the network architec-
ture fails to meet a certain threshold of reliability
or QoS;

• Amount of transferred data: Maximizing the amount
of data transferred to the MEC server, i.e. the capacity
of the system to receive, manage and process data
from multiple users, is another objective. However, this
metric must be formulated with energy and latency
constraints to be representative in NOMA-assistedMEC
architectures.

B. COMBINATION OF NOMA AND OTHER TECHNOLOGIES
To improve the strength of the proposals, and/or to overcome
some of the limitations of MEC architectures and NOMA
communications, some authors propose to combine several
emerging technologies on both the access and backhaul
networks. While the introduction of these emerging tech-
nologies may overcome the limitations of these architectures,
they introduce new management issues and bring their own
shortcomings into the model. These include:

• Content caching: Content caching consists in storing
frequently requested data on MEC server, close to the
users. This allows users to access content much more
quicklywithout having to go further up the network, thus
reducing task processing time and ensuring the required
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FIGURE 4. NOMA-MEC taxonomy overview.

QoS [23]. This also allows the backhaul to be unloaded
by reducing the number of processing tasks to be carried
out and the network congestion, minimizing the energy
consumed in this type of architecture, and allowing to
increase the number of supported users;

• Blockchain: Blockchain in MEC is a newly proposed
strategy that aims to give users efficient, secure, and

decentralized data sharing and processing capabil-
ity [24]. Users can offload their task in a trustless
environment without the need for a centralized entity.
The capacity of Blockchain to improve data security,
privacy, and transparency through the use of crypto-
graphic techniques, making it more difficult for attackers
to infiltrate the system. Blockchain can also support
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resource sharing, and enable decentralized resource
management. However, a number of factors, including
the system’s scalability, interoperability, and latency,
affect how well Blockchain works in MEC. Indeed,
this technology can be computationally demanding
which increases the energy consumed and degrades the
performance of NOMA-MEC systems;

• Network slicing: Network Slicing (NS) consist in
splitting the MEC network infrastructure into several
logical network slices that have their own key per-
formance (slice with very low latency, slice providing
high connectivity, slice providing high reliability etc.)
to process tasks in the most optimal way, ensuring
a sufficient QoS [25]. This provides NOMA-assisted
MEC architectures with features such as flexibility,
efficiency, and connectivity by supporting multiple user
groups with heterogeneous QoS tasks on the same
infrastructure. However, the efficiency of NS depends
of the system’s complexity, the slices’ management, and
the infrastructure’s scalability;

• Wireless Power Transfer (WPT) / Energy harvesting:
This technology allows through the use of wireless
technologies to transfer power that will be gathered by
the users of the MEC network to reduce the dependence
on wired power sources or batteries and enabling
cost-effective and sustainable MEC deployment [26].
The base station sends power beacons which are
then harvested by the users to increase their lifetime,
providing them with more power to process their tasks
locally, or giving them energy to offload their tasks to the
MEC server. From a technical point of view,WPT can be
achieved through various techniques such as inductive
coupling, resonant coupling, and electromagnetic radia-
tion. Nevertheless, the effectiveness of these techniques
depends on the variability and unpredictability of the
energy sources, requiring advanced resource control and
management;

• mmWave: Communications using the frequency
bands between 30GHz and 300GHz are called
Millimeter-wave communications because their wave-
length decreases when the frequency increases. This
type of communication provides high bandwidth and
very low latency communications and could therefore
be useful in a MEC context [27]. However, due to the
small wavelengths, these communications are subject
to strong attenuation phenomena and are susceptible to
be hindered by obstacles such as buildings, degrading
the transmitted signal and the communication reliability.
However, by combining mmWave and massive MIMO
it is possible to bypass these limitations [28]

• MIMO/Massive MIMO: Massive-MIMO enables dig-
ital communications to transmit to multiple users simul-
taneously by spatial multiplexing, formed by multiple
beamforming, using a large number of antennas at
the BS. In particular, it increases spectral efficiency

and signal quality, which ensures better radio cell
coverage, greater connectivity, higher data rates and
better latencies [29]. Coupled with NOMA, it can
greatly increase network capacity by superimposing
user signals in beams, especially for massive IoT
use cases. Nevertheless, the use of this technology
generates energy overheads due to the complexity of
demodulating this type of communication (especially
with user mobility and inter-cell interference), which
is particularly challenging in MEC-type architectures
where we aim to minimize the energy consumed;

• Jamming: In security, jamming techniques are initially
used by attackers wishing to affect the availability and
proper functioning of the network. The attacker emits
a strong signal over the entire operating frequency
band to jam the channel, thus making communication
impossible [30]. However this tool recently has been
adapted to overcome the problems of passive listening
in radio networks by an eavesdropper, in particular by
combining it with NOMA, where two users join forces,
one to transmit this data, the other to jam and prevent
any passive listening;

• Device-to-Device (D2D) communication: D2D com-
munications permit RAN users to communicate directly
with each other without using the infrastructure such as
BSs [31]. This type of communication is often used in
operator networks such as 5G sidelink, or is particularly
effective in vehicular networks with V2V communica-
tion type, i.e. in dense and high mobility environments,
allowing to increase network capacity, reduce latency
and traffic congestion at the BS. CombinedwithNOMA,
it allows D2D communications to be overlapped on top
of conventional RAN communications, which is benefi-
cial to the NOMA-assisted MEC architecture. However,
this type of overlapping increases the interference inside
the cell, which weakens and degrades the performance
of users when offloading their tasks;

• Cognitive radio: Cognitive Radio (CR) allows multiple
users (secondary users) to dynamically choose opti-
mal frequency bands for communication that are not
occupied by other users (primary users and licensees)
at that moment. By permanently reusing the radio
spectrum, this greatly improves the spectral efficiency
and capacity of the network [32]. However, the use
of complex algorithms and hardware to operate this
type of technology can increase latency and energy
consumption in NOMA-assisted MEC architectures;

• Cooperative communication: To cope with bad chan-
nel conditions, which can be degraded due to the
distance to the BS, the mobility of the user, and the
multipath, the use of a relaying node, is employed
to enable the offloading phases. This is especially
the case for users at the cell edges, that will have
insufficient conditions to offload their tasks and that
will therefore need cooperative communications [33].
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In a first step, this user will offload part of his
tasks to another user, who will then have the possi-
bility, depending on the availability of his computing
resources, to process the task locally or to transmit
it to the MEC server. This approach greatly improves
the performance of NOMA-assisted MEC architectures
by exploiting the available resources of all the actors
as much as possible. Nevertheless, the complexity of
such a system, in particular the coordination of all
the actors, becomes limiting as the number of users
increases;

• Dual Connectivity (DC): This technology allows users
to connect to multiple BSs simultaneously enabling
faster and more reliable data transmission, improved
coverage, and reduces latency [34]. It is mainly found
in Non-StandAlone (NSA) 5G systems, where it allows
a user to associate simultaneously with a 5G NR
BS and an eNB BS. However, its implementation in
network architectures increases complexity, signaling
overhead and interference due to the need to coordinate
the two base stations, which increases the energy
consumption;

• LTE-DRX: LTE Discontinuous Reception is a power-
saving technology used in 4G LTE networks to save
energy on user side [35]. It enables a device to
periodically turn off its receiver while still being
connected to the network which helps to reduce energy
consumption. However, as the user’s device must
re-establish connectivity with the network after each
sleep period, this technique increases latency;

• Intelligent Reflecting Surface (IRS): These are passive
arrays of elements that reflect and direct signals to
extend the radio coverage area, and/or bypass an obsta-
cle, and/or increase the transmitted signal strength [36].
In NOMA-assistedMEC architectures, its passive nature
does not increase energy consumption, which is a
major advantage over other solutions. Nevertheless, its
combination with NOMA requires more optimization
efforts to limit interference. In addition, themanagement
of this technology can be complicated in cases of high
mobility;

• Flying Base Station (FBS): The use of an Unmanned
Aerial Vehicle (UAV) as a FBS in MEC architectures
introduces a paradigm shift, where the access network
comes to the users and not the contrary (such as coopera-
tive communications). This UAV can either act as aMEC
server providing computing power to users, or simply as
a relay transmitting offloaded data to another BS [37].
It can therefore provide edge computing services in
areas where there is no connectivity or in highly mobile
environments. However, the use of such a tool does not
provide much computational capacity. Moreover the use
of a battery to power the FBS, run the computations
on the embedded server, and manage the communi-
cations greatly limits the performance of this type of
approach.

C. USE CASE
Although most papers are classical optimization proposals,
some authors shape the optimization problem according to
certain use cases with specific requirements and constraints:

• Classical use case: The user is a simple actor in the
network that offloads a certain amount of data. These
computing capacities (CPU frequency, power budget)
are often dimensioned to look like a smartphone or a
laptop;

• IoT/Massive IoT: This refers to physical devices with
the ability to be connected to the Internet and com-
municate with each other via the MEC infrastructure.
They generally provide extensive data feedback from
their sensors to centralized applications feeding AI
for monitoring and decision making [38]. However,
these devices are limited in terms of computing power
and autonomy, as they are battery powered. NOMA-
MEC architectures can greatly improve the use of these
devices, especially in cases of massive IoT requiring
high connectivity and network capacity process the
massive data traffic [39];

• Smart City: this is a broader use case, many IoTs are
used to monitor a city to improve the quality of life of its
inhabitants, the efficiency of public services (f.e. optimal
rubbish collection) and to supervise the environment
sustainability: pollution control, hygrometry, tempera-
ture, etc [40]. The smart city use case (high density,
heterogeneity) requires communications that can adapt
to and support such an environment. Interoperability,
security and privacy issues are raised in this type of
environment;

• Industry 4.0: the combination of IoT with IA, robotics
and augmented reality constitutes the new industrial
revolution, allowing to optimize production processes,
production quality, and energy use [41]. However,
it implies constraints such as very low operating latency
to monitor and manage production in real-time;

• Internet of Vehicles (IoV): IoV brings together multiple
connected objects from the vehicular domain. These can
be road infrastructure sensors as well as autonomous
and connected vehicles. These technologies, based on
the cooperation of all the actors that compose this
environment, make it possible to improve road safety,
manage traffic efficiently and reduce pollution [42].
Applications in this context require very low latency
and very high levels of reliability (f.e. cooperative
emergency braking);

• Hetnets: this is an environment made up of several
overlapping radio cells that aim to serve a wide variety
of use cases, such as IoV, industry 4.0, smart city, etc.
A Macro Cell could be used to manage and connect
users in a city, while several small cells could be used to
retrieve data from an urban area and manage vehicular
traffic. This type of environment requires the MEC
architecture to be able to adapt to the wide range of QoS
required.
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D. COMMUNICATION TYPE
We were able to identify various NOMA and OMA
techniques that have been studied in the literature:

• Power Domain-NOMA (PD-NOMA): This is the most
widely considered NOMA approach in the literature,
which uses the principles of SC to assign multiple users
to the same radio resource simultaneously;

• Sparse Code Multiple Access (SCMA): This type of
communication constitutes the second NOMA domain
based on codes, more precisely on the sparcity properties
of codes. It introduces new decision variables in the
formulation of the authors’ proposals such as the design
of the codebooks or the design of the factor graphmatrix;

• Frequency Division Multiple Access (FDMA): This
OMA technique divides radio resources into several
frequencies, each of them being allocated to a different
user;

• Time Division Multiple Access (TDMA): This tech-
nique OMA consists of dividing the time into several
time slots, which are then allocated to each user;

• Code Division Multiple Access (CDMA): This type
of communication, widely used in Universal Mobile
Telecommunications Service (UMTS) networks, allows
several users to share the same frequency band by
assigning each user’s signal a unique orthogonal code;

• Orthogonal Frequency-Division Multiple access
(OFDMA): Used in recent communications systems,
it is a wireless communication technique that uses
multiple orthogonal sub-carriers to transmit data
simultaneously to multiple users in the same frequency
band;

• Hybrid-NOMA: Several types of hybrid-NOMA com-
munications are distinguished in the literature. Firstly,
some authors consider that these communications are
made up of several sub-carriers, some of which can be
overloaded by several users, while others can support
only one user. The other approach to hybrid-NOMA
communications is to start by offloading on the basis of a
NOMA communication and then, when there is only one
user left to offload, switch to an OMA communication.
This makes it possible to correct themathematical model
for calculating transmission rates in certain papers,
where the value of the NOMA interference changes
when a user stops offloading (which is not always taken
into account).

E. DECISION VARIABLE
To optimize NOMA-MEC architectures, researchers propose
the use of different leverages that become decision variables
in the formulation of the proposed optimization problem.
They can be classified into several categories, corresponding
to the different components of the architecture.

First, we find the communication leverages allowing to
modify, adapt, coordinate and control the NOMA and/or
OMA type digital communications in the RAN:

• NOMA Time Phase Allocation (NOMA-TPA): This
leverage is used to set the transmission times that several
users occupy when simultaneously offloading their tasks
onto a NOMA radio resource. It is often set as a
trade-off between several users to make fair use of the
radio resource, i.e. without penalizing the user with
the best channel conditions and without degrading the
offloading performance of users with a weak channel.
Also, by defining shorter offloading times, it can
improve offloading security by limiting the ability of an
eavesdropper to listen to the communication;

• Hybrid-TPA: Like NOMA-TPA, it allows to allocate
the duration of the communication phase but for a
Hybrid NOMA-OMA communication. In particular,
it enables the first transmission phase to be set to
NOMA, followed by theOMAphasewhen only one user
remains, which often benefits users with good channel
conditions by enabling them to increase their offloading
performance;

• Radio Resource Allocation (RRA): it is globally
defined as the way to allocate the radio resources
available at each moment to access the channel.
However, due to the nature of the formulation of the
optimization problems, these radio resources do not
really have a physical meaning but only a mathematical
one (functions or vectors), and are considered more as
blocks of available resources, labelled by the authors
according to the context and the nature of the underlying
communications (NOMA, OMA). The main types
of RRA are block resource allocation, sub-channel
allocation, sub-carrier allocation and the factor-graph
matrix design in SCMA;

• NOMA power allocation: This is the most widely used
tool in the literature tomanage NOMA communications.
During the Uplink phases, it enables the allocation of
transmission power levels to the base station for each
user sharing the same radio resource, and according to
the channel status of each one. Due to the weighting
of the power level, it allows users to reduce their
consumption during the transmission phase. However,
it is set optimally by the optimization algorithms,
to avoid degradation of the transmission performance
and to respect a balance between energy minimization
and task processing time. In the case of NOMA-
downlink communication, it allows a user to offload
his tasks more efficiently to several MEC servers while
respecting the channel state of each one;

• Transmission rate allocation: This leverage refers to
the process of dynamically allocating various trans-
mission rates to many users based on their channel
conditions and QoS needs. This permits effective use of
the radio resources and improved capabilities for users
with different communication demands;

• SIC ordering/Hybrid SIC: The SIC ordering algorithm
designates the order in which user signals are detected
and decoded at the BS. Both decoding accuracy and
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interference cancellation are affected by the SIC order-
ing, which impacts system performance. The optimal
SIC ordering decoding according to different objectives,
such as processing time, is not necessarily the classical
decreasing order of the channel qualities of each user
(Hybrid SIC);

• D2D coordination: This leverage refers to the use
of nearby mobile devices to facilitate the offloading
process, which can enhance the system’s efficiency and
reduce communication delays by not using RAN’s main
radio resources. However, the challenge of this type of
leverage is to limit the amount of interference that D2D
use causes with other communications in the radio cell.

Themanagement and coordination of the different nodes of
NOMA-assistedMEC architectures are also tools considered:

• Offloading policy: This is one of the main leverages
used to efficiently manage offloading to the MEC server
to minimize the energy consumed and the processing
tasks duration. Depending on the context, the offload
policy could be partial offloading or binary offloading.
In scenarios with several MEC servers, the offloading
policy also corresponds to the selection of the servers to
assign the different tasks to offload and process them as
efficiently as possible;

• User scheduling: It defines the process of selecting
the subset of users that will offload tasks to the MEC
servers depending on their channel conditions, tasks
requirements, and priority in stochastic optimization
problems;

• User grouping: Thismechanism relates to the clustering
of users with comparable channel and computational
characteristics so they can be scheduled for offloading
together. By exploiting the variety of channel and task
requirements, user grouping seeks at improving system
efficiency while reducing interference and resource
allocation overheads. It has a direct impact on the
quality or degradation of the performance of NOMA
communication. It would be especially true if a group
had to be formed with a user at the edge of the radio cell
and a user closer to the antenna, which corresponds to a
OMA use case rather than a NOMA use case;

• MEC server selection/grouping: This is the mecha-
nism that allows a user to define a group of MEC
servers that will simultaneously be used to offload tasks.
This MEC servers’ selection depends on the quality
of the channel of each MEC server BS, its workload
and availability. A balance must be found between a
large number of MEC servers, which would limit the
transmission performance for offloading calculations,
and a small number of servers, which would increase the
task processing time;

• Computation resource allocation (CRA): Since the
primary goal of a MEC architecture is to provide
additional computational resources to network users,
the authors have defined different metrics to reflect

the computational resources available on each network
entity. From a local point of view, i.e. at the level of the
RAN users, computational resources are often expressed
as the definition of CPU frequencies or computational
time (inversely proportional to the frequency, which con-
sequently sets the CPU frequencies) to locally execute
the task. At the MEC server level, even though they are
often considered unlimited, some authors quantify these
computational resources to fit real scenarios. They then
define policies to manage the computational frequencies
or define a limited number of blocks of computational
resources to process the offloaded tasks (cf. Section IV).

Some authors focused on backhaul network optimization:

• Service caching: Like CDNs, MEC architectures have
the ability to store data close to users to deliver real-time
services [18]. Thus, this metric aims at defining optimal
policies for storing tasks as close to the users as possible,
particularly in architectures consisting of several radio
cells equipped with MEC servers;

• Task popularity prediction: In real systems, the arrival
and nature of tasks are stochastic. Thus, to improve the
adaptability of MEC architectures to efficiently handle
offloaded tasks according to their QoS constraints, it is
necessary to anticipate and predict the nature of the
tasks to prioritize their processing. In caching systems,
this allows to store tasks/data that will be requested or
exchanged several times by several users;

• Slice selection: This leverage allows a task to be
assigned to a network slice according to the QoS
expexted by this task. The aim of this process is to
match the performance provided by each slice to theQoS
constraints of each task.

Combining NOMA with new technologies, new lever-
ages are also introduced to drive them efficiently without
degrading the functioning of the underlying NOMA-MEC
architecture:

• UAV-Flying Base Station (UAV-FBS) trajectory: The
introduction of FBSs to best serve the users of the
network is proposed by several authors. They define
the optimal trajectories (x,y,z coordinates in space)
that the UAVs must follow to cover a specific area of
users, taking into account their CSI and the mobility of
each of them [43]. This allows to improve the CSI
of each user and thus to enhance the performance of task
offloading thanks to an optimal placement. Nevertheless
the calculation of this trajectory is defined by several
constraints such as a limited energy resource, UAV’s
displacement capacities, the obstacles and the mobility
of the different users;

• IRS phase shifts: This leverage refers to an IRS capacity
to modify the phase of electromagnetic waves that
reflect off of it. Thus, it can direct and focus the
reflected waves by modifying the phase shifts of
the different elements that compose it, which
enhances the signal quality and coverage of wireless
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communication systems, especially in large or obstacle-
constrained environments [44];

• WPT-TPA: This metric defines the time during which
the power beacons sent by the BS will be broadcast
to distribute energy to the RAN users. This must be
defined in such a way that it does not interfere with the
transmission phases, while ensuring sufficient energy
delivery to increase IoTs’ lifespan;

• Harvesting-TPA: Like WPT-TPA, it allows the user
to define the period of time during which an IoT
will harvest the energy transmitted by the network
architecture via power beacons. It is also defined to
ensure a balance between using an external power source
to increase lifetime and minimize energy consumption,
and performance during offloading and task processing
phases;

• Beamwidth optimization: It consists in modifying
the width of the electromagnetic wave beam sent out
by antenna to improve the performance of the com-
munication system in mmWave communication. This
optimization is essential for addressing the significant
path loss and the high directional nature of mmWave
signals, in particular for the NOMA communications
which contain several superimposed signals;

• Power beacon allocation: This leverage consist in
assigning power sources, known as power beacons,
to specific locations in a wireless charging network.
Thus, by figuring out how many power beacons are
required, where they should be placed, and how much
power they should have, it is possible to maximize
charging efficiency while reducing energy waste and
interference;

• Helper selection: Cooperative-NOMA systems are
made up of users who will offload their tasks through
nodes called Helpers. A user must select a helper that
will enable him to improve his performance during
the offloading phase. This selection is based on the
distance from the user to the helper, the quality of
the channel between user/helper and helper/BS, and
the computational and radio resources available on the
helper;

• Codeword/secrecy rate transmission: It defines the
maximum rate at which secure communication can be
achieved in a wiretap channel using a specific coding
scheme. It quantifies the amount of secret information
that can be transmitted from a sender to a legitimate
receiver while keeping the information confidential.

F. RAN TYPE
The experiments carried out in existing proposals are
evaluated in several types of radio environments such as:

• Single cell - One Base Station: This is the environment
most used to demonstrate the proposals made, consisting
of a conventional radio cell with a BS. However, it does
not allow the evaluation of user mobility;

• Single cell - Multiple Base Stations: This is a more
complex version of the previous model to represent
Hetnets models, cognitive radio based models, dual
connectivity basedmodels, or models which require user
mobility;

• Multiple cells: It constitutes the most complex envi-
ronment to model because it takes into account new
parameters such as interference between radio cells,
mobility in different cells and so on. It is particularly
used in papers presenting high mobility environments
such as IoV.

G. PROBLEMS TYPE AND ALGORITHMS
The description of a context with particular use cases,
objectives and technologies, leads to formulate a mathe-
matical problem. Although in most cases this leads to a
classical optimization problem with a non-convex function
to be minimized/maximized under constraints, some papers
propose other alternatives such as game theory or AI
tools. In any case, each problem is solved using a certain
algorithm/solver specific to each problem formulation. It is
therefore important in this section not to dissociate the type
of problem formulated and the solution used to solve it.
First, there are several types of problems depending on the
formulation of the model and the decision variables used by
the authors:

• Geometric programming: It is a particular class
of optimization problem where the constraints and
objectives are defined as convex monomials and posyn-
omials [45]. Geometric programming can be utilized to
formulate power allocation issues in the NOMA-MEC
use case;

• Online/Offline problems: An offline problem requires
that all information is provided up front, whereas
an online problem in optimization includes making
decisions sequentially and adaptively given incomplete
knowledge. In the NOMA-MEC use case, online opti-
mization can be used to allocate resources in real-time
based on the state of the network such as task arrival,
channel state information, while offline optimization can
be used to design the system parameters, such as the
user transmission power or resource allocation in order
to maximize the system performance under a variety of
hypotheses or scenarios;

• Stochastic optimization problems: Stochastic opti-
mization deals with uncertain variables that have prob-
abilistic distributions [46]. Similar to online problems,
stochastic optimization requires sequential and adaptive
decision-making based on incomplete information, but
with the complexity of dealing with randomness and
uncertainty in the decision-making process;

• Mixed Integer Non-Linear Programming (MINLP):
It is a type of optimization problem that is computa-
tionally difficult because it combines continuous and
discrete variables [47]. MINLP can be employed to
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address resource allocation issues in the NOMA-MEC
use case that involve both continuous variables such as
power and bandwidth allocation and discrete variables
like user association and computing resource allocation;

• Fractional programming: It refers to a type of
optimization problem that involves optimizing a ratio of
two convex functions [48].

Most of the formulated problems are classical non-convex
optimization problems such as MINLP which are solved
using various methods. The main methods used are:

• Dual Lagrange Method and KKT: this approach is
an optimization technique used to solve constrained
optimization problems. It involves introducing Lagrange
multipliers associated with the problem’s constraints
to create a new optimization problem called the
Lagrangian. On the other hand, Karush-Kuhn-Tucker
(KKT) conditions are a set of necessary conditions
for a point to be a solution to a constrained opti-
mization problem. Together, they are powerful tools in
mathematical optimization, aiding in the analysis and
solution of complex constrained optimization problems
by introducing and leveraging the concept of Lagrange
multipliers and their associated conditions.

• Closed form expressions: It refers to mathematical
models that can be expressed in an explicit and analytical
form, rather than iterative or numerical methods. It can
be used to derive analytical solutions to optimize the
resource allocation problem, such as the closed-form
expression for the optimal power allocation;

• Successive Convex Approximation (SCA): The
SCA algorithm is a widely used method for solv-
ing non-convex optimization problems by iteratively
approximating them with convex subproblems;

• Lyapunov functions: In stochastic optimization, Lya-
punov functions are used to design stability criterion for
the convergence of stochastic systems over time. They
are used to analyze the long-term behavior of the system
as the randomness of the problem evolves;

• Block Coordinate Descent (BCD): This algorithm
divides the decision variable into blocks and updates
each block in a cyclic manner to solve a complex opti-
mization problem. In NOMA-assisted MEC systems,
this enables ideal radio and computational resource
allocation policies to be found in a coordinated way;

• Iterative algorithm: It’s an ensemble of optimization
techniques that progressively get better at the solution
until a good convergence criterion is reached;

• Dinkelbach method: It refers to a particular iterative
algorithm that can solve fractional programming prob-
lems by transforming them into a sequence of linear
programming problems;

• Matching algorithm: It belongs to a group of optimiza-
tion algorithms used to determine the best combination
of two sets of devices or entities (optimize resource
allocation based on user demands and system constraints
in NOMA-assisted MEC).

Other approaches can also be considered by implementing
different algorithms and considering different formulations:

• Heuristic: It refers to amethod for addressing issues that
quickly and effectively finds approximations to difficult
optimization problems;

• Game theory: It is a mathematical framework for
examining how different actors interact strategically
when each decision has an impact on the others. Game
theory can be utilized in the NOMA-assisted MEC
architecture to model interactions between users or
MEC servers competing for limited resources and to
identify the best course of action for maximizing system
performance or achieving a predetermined level of
fairness;

• Analytical analysis: It corresponds to a method used
in optimization to employ mathematical methods and
formulas to solve problems precisely. Under specific
assumptions and conditions, analytical analysis can be
used in the NOMA assisted MEC to obtain closed-form
expressions for power allocation, bandwidth allocation,
and resource allocation, and so on.

More recently, to address online models, new approaches
based on artificial intelligence appeared:

• Reinforcement Learning (RL): In NOMA-MEC, RL is
a technique that instructs an agent to make decisions
on rewards and punishments they receive from the
environment. The agent gains knowledge on how to
enhance the functionality of the NOMA-assisted MEC
system in this situation. This is accomplished by
teaching the agent’s best policies using Q-learning
approach or Policy Iteration algorithms (with markov
decision process (MDP) as decision model);

• Deep Reinforcement Learning (DRL): It is an exten-
sion of RL that uses Deep Neural Networks (DNNs)
to learn complex representations of the environment.
It includes many approaches which will be detailed in
the following sections and which are used to adapt to
the various environments and use cases proposed by the
authors in the NOMA-assisted MEC systems;

• SAQ-learning: It refers to a variant of Q-learning
that aims to learn the optimal action-value function
using a single sample per episode, making it more
sample-efficient than traditional Q-learning. It achieves
this by using a soft-update rule to update the action-value
function, rather than a hard-update rule;

• Long Short-Term Memory (LSTM): It is a type
of recurrent neural network that is able to remem-
ber long-term dependencies in data and avoid the
vanishing gradient problem, making it well-suited for
sequential data tasks such as time series prediction of
NOMA-assisted MEC environment. It has the ability to
handle variable-length sequences, uses backpropagation
through time for effective training, and can selectively
forget or remember certain information depending on
the input;
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• Deep Deterministic Policy Gradient (DDPG): It refers
to a model-free, off-policy algorithm used in DRL that
combines the actor-critic architecture with the insights
from deep Q-learning. In particular, it has the capacity
to learn policies in contexts with delayed rewards and the
handling of high-dimensional continuous action spaces.

IV. ANALYSIS AND COMPARISON OF STATE-OF-THE-ART
SOLUTIONS
This section aims at presenting and comparing the main
existing works applying the NOMA technology in a MEC
context. The articles identified in the literature are classified
into five broad categories according to their purpose:
1) energy minimization (Section IV.A), 2) delay mini-
mization (Section IV.B), joint energy and latency min-
imization (Section IV.C), security (Section IV.D) and
Others (Section IV.E).

A. ENERGY MINIMIZATION
Minimizing the energy required can be a first objective
associated with the application of the NOMA technology.
State-of-the-art solutions (cf. Table 2) aim at minimizing
the energy consumed by users while respecting the time
constraints imposed by the processing of their tasks. This can
be particularly useful for devices with low energy capabilities
that need to process a significant amount of data.

To the best of our knowledge, [49] is the first paper
that introduced NOMA in MEC architectures for energy
minimization. The authors have defined an offloading policy
(local or remote computation) that involves 1) managing the
computing power of users by modulating the frequencies of
their CPUs, 2) allocating the transmission rate and power
for each user, and 3) managing the SIC control at the base
station. The proposes solution is based on a Dual Lagrange
method and the presented results highlight the benefits of a
partial offloading approach compared to a binary offloading
approach to minimize the energy consumed by users,
independently of the underlying type of communication.
Nevertheless, the proposed scheme shows a very small gain in
using NOMA over OMA to minimize the energy consumed.

Following on from this, the authors of [50] considered
a more specific scenario: two users simultaneously trying
to offload their tasks to a MEC server to reduce their
energy consumption during an offloading phase. The notion
of Hybrid-NOMA communications was introduced in this
paper. This means that a user first offloads part of his
calculations onto a radio resource already allocated to another
user, and then offloads the rest of the calculation onto a
time slot that is totally dedicated to him via an OMA
communication. The authors defined both the allocation
of the durations of the NOMA and OMA time phases
(Phase 1 NOMA, then phase 2 OMA) as well as the
transmission powers considering a Geometric Programming
optimization problem. Although the hybrid scheme performs
better than other schemes such as full NOMA or full OMA,

this difference seems to decrease as the processing time
constraint of the task to be offloaded is reduced.

Hybrid-NOMA was also considered in [51] to minimize
the energy consumed by users under the constraint of respect-
ing the specific deadlines of each task and the transmission
powers. OMA communications can be specifically used
depending on the critical nature of the processing time of
its task. This allows the communication model to take into
account the evolution of the NOMA interference value: when
a user of a group completes the offloading phase, it leaves the
group of users that is still offloading its tasks, modifying the
interference value. In this paper, the use of the SCA method
enables the treatment of the non-convex problem, and the
use of the KKTs simplifies the problem and provides
the closed-form expressions for the transmission powers and
the time allocation of the offloading phases, i.e. the different
NOMA phases and the OMA phases where only one user
remains. The development of the analytical results leads to the
understanding that the power allocation strategy for each user
looks like a water-filling strategy which involves allocating
more power to frequency bands with higher channel gains,
and less power to frequency bands with lower channel gains.

In contrast to a global formulation of the problem, the
energy minimization problem can also be formulated for
each user during their offloading phases as proposed in [52].
This paper was the first to define the computational resources
of the MEC server as a set of finite block resources, similarly
to radio block resources. The heuristic algorithm then
tackles the joint computation and communication resource
allocation problem to cluster users that will share the same
resource block, the allocation of transmission power, and the
computational resources of the MEC server. The results show
that the proposed algorithm provides a quasi-optimal solution
with a much faster data processing. However, although the
authors have mentioned 5G architecture several times, the
formulation of the problem and the experiments conducted
do not validate and demonstrate the use of NOMA in a 5G
context.

Due to the complexity of formulating an optimization
problem considering both uplink and downlink cases, the
authors of [53] proposed for the first time to focus only
on pure downlink use cases. Several data of different sizes
dedicated to each user should be transmitted by the base
station according to specific delay constraints. Dynamic user
scheduling with transmission power allocation for SC is
considered in this paper to minimize the long-term total
energy consumed. The formulated stochastic problem is then
transformed into a series of static optimization problem and
treated with Lyapunov functions. Moreover, during phases
when the user is not receiving, the authors propose to
use the concept of discontinuous reception (LTE-DRX),
in which the user goes into sleep mode, to enhance power
reduction. The results show that the proposed algorithm
quickly converges to an equilibrium point between the power
consumption and the virtual queue backlog, and provides
better performance in terms of energy minimization when the
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system is underloaded, and provide a better user satisfaction
when the system is overloaded. However, it should be noted
that this proposed scheme can only be used up to a threshold
of 60 users, beyond which the power constraint is no longer
satisfied.

The identified problems are also related to specificmodels:
offloading model, network model, etc. Regarding offload-
ing model, a binary offloading model was for example
considered in [54]. UEs offload all their computational
tasks to the server without performing any local processing.
Significant results were achieved in this paper using an
efficient offloading policy and an SCA approach to efficiently
allocate transmission powers, uplink and downlink phase
transmission times. This is particularly the case when the
size of the tasks to be offloaded is large and the deadline
constraints are stringent. However, these results may be
questioned due to the formulation of the underlying network
model and the many assumptions made that do not match the
actual operation of a network. For example, they considered
that the channel does not change over the whole offloading
period, i.e., the same gain over the entire uplink and downlink
phases.

In [55], a specific offloadingmodelwas regarded. Consid-
ering that some users may only partially use their available
computing resources, the authors proposed to rely on the
availability of the computational resources of a neighboring
node to perform task offloading. They defined a temporal
division of the uplink communication into two phases. In the
first phase, the user relies on NOMA to simultaneously
offload to the MEC server and the neighboring node called
the helper. In the second phase, the helper offloads part
of its task to the MEC server and simultaneously executes
user’s task processing. To this end, the authors formulated
two problems aimed at minimizing the consumed energy,
increasing the number of data transmitted to the MEC server
by partitioning tasks (policy offloading), managing transmit
power, and managing the time of the various uplink phases.
The use of KKT and BCD addresses the highly non-convex
problem. The results showed that from an energy perspective,
if the user consumes more energy than the helper, it will tend
to offload its calculations. High SNR or distance between the
helper and the user do not seem to be in favour of the proposed
solution. It can be noted that the paper does not consider
the case of feedbacks processed by the Helper and the MEC
server during downlink phases, which would increase the
energy consumption and the delay when transmitting the
process results from the Helper to the user.

Regarding network model, many papers consider in
their model that the prediction of task arrival and channel
state can be accurately predicted. However, this assumption
cannot be valid in real large-scale systems, where many
IoTs offload tasks of different sizes to the MEC server in
a dynamic and random way. Therefore, a new algorithm
called NTORA based on Lyapunov functions was proposed
in [56] to adapt to rapidly changing conditions in a smart

city environment, where the main objective is to minimize
the average energy consumed by each IoT in the system,
constrained by the processing time of their tasks. Stochastic
optimization techniques are used to transform the problem
into a deterministic one, split into three sub-problems
to address the offloading policies, and the allocation of
computational resources of the MEC server. The results show
that NTORA offers much better performance in terms of
energy minimization and processing time than the full local
processing or full offloading approach (binary), thus offering
a scalable solution for the smart city and smart grid use cases.

Energy consumption can also be considered in a context
of user mobility. For example, in [57], a dual-connectivity
model has been proposed to describe an environment where
a user connects to multiple base stations in the same cell
that overlap through NOMA. To this end, they defined a
reinforcement learning algorithm (Twin Delayed DDPG -
TD3) that allows efficientmanagement of transmission power
and propose a heuristic method for segmenting the tasks to
be offloaded. Although the idea of mobility is introduced in
this paper, mobility management issues when a user moves
from one radio cell to another, through the implementation of
handover type mechanisms, were not addressed.

Beyond problems and models, energy consumption can
also be attached to specific use cases. For example, flying
base stations (UAVs) is today a major subject for increasing
network coverage, and thus, in the long term, massively
deploying MEC architectures. However, these technologies
bring new constraints in terms of energy consumption. This
is why many research works, such as [58] and [59], integrate
into energy consumption models local consumption issues
at the flying base station level. In this context, the authors
of [58] defined a new framework allowing to efficiently pilot
several UAVs to best serve all the users of a zone, while
addressing the problems of radio and computing resources
allocation. The non-convex optimization problem is divided
into two sub-problems iteratively treated by SCA and
quadratic approximation. The results obtained demonstrate
the relevance of the proposed framework, reducing by 5 the
total energy consumption of the network compared to OMA
schemes. In [59], the authors proposed a unique flying
base station (UAV) to best serve all terminals during their
offloading phases and consider the time allocation problem
along different user cluster. A global energy minimiza-
tion problem was formulated, including the local energy
consumption on each mobile users and the UAV energy
consumption. As the previous papers, the NLP formulated
problem is subdivided into 2 subproblems and resolved
using iterative algorithm and SCA to find the optimal UAV
trajectory and resource allocation. The results show that the
proposed scheme performs better results up to 33% in energy
consumption minimization as compared to OMA and equal
resource allocation schemes.

IoT is another possible use case. In [60], the authors
considered an IoT (smart camera processing video
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streaming) that has several tasks to process in parallel, each
with specific time constraints. These tasks must be offloaded
to several MEC servers, depending on their load level. The
formulated problem aimed at minimizing the total energy
consumed by the IoT while respecting the processing time
limit of each task. Two steps were defined to solve this
problem: 1) by fixing the tasks’ allocation to the MEC
servers, authors defined local computation-rate allocation
and NOMA transmission times to the MEC servers by
implementing a layered algorithm and 2) by defining the
optimal allocation of tasks to the different MEC servers as
an optimal ordering problem they solved it with an index-
swapping algorithm. The proposed scheme outperforms the
NOMA-Heuristic scheme and the FDMA scheme in terms of
energy minimization of the IoT.

The massive IoT use case was also considered in [61]:
the minimization of the energy consumed by many IoTs to
fully offload their computational tasks to severalMEC servers
is studied. The proposed model takes into account both
intra-cell and inter-cell interference, which enables a more
realistic evaluation of the impact of NOMA. The authors
of this paper proposed to manage, in an energy-efficient
way, the allocation of computational resources of the servers,
as well as the communication resources (allocation of NOMA
transmission power and association with the subchannels).
The formulated problem is of MINLP nature, and is
subdivided into two sub-problems to address the optimal
management of the previously mentioned decision variables,
handled by sequential convex programming algorithms and
Knapsackmethod respectively. TheNOMAscheme proposed
by the authors outperforms the others in terms of fair
distribution of network resources among its users thanks to
the equitable and more reasonable power allocation method.

Industry 4.0 is a third potential use case. In this
context, the authors of [62] proposed to optimize the energy
consumed by an IoT with several workloads of tasks to
be offloaded on different MEC servers using NOMA-
downlink communications, while respecting the processing
time constraints of each of these tasks. To do this, they
defined two types of approaches depending on the channel
model. For a static model, the use of a distributed algorithm
addresses the non-convexity of the problem formulated. DRL
can be used in a time-varying channel context to efficiently
define the offloading policy, the NOMA power allocation,
and the allocation of local computational resources and at
the MEC servers level. This second approach allows to
evaluate the solution proposed by the authors in a real-life
context. Moreover, the policies obtained using the DRL show
significant performances, with a relative error with respect to
the optimal solution not exceeding 3%, which validates the
approach.

Content caching can be seen as another use case: storing
in MEC servers content that will be used in the near future
by other users will reduce the number of exchanges and the
computational overhead while limiting latency and energy
consumption. This is why the authors of [63] have proposed

a framework based on DRL, allowing them to efficiently
manage content caching (CDNs), policy offloading and
computation resource allocation in order to minimize energy
consumption over the long term. The authors argue that
optimizing content caching is a matter of estimating and
identifying task popularity to respond to user dynamic
requests. Using an LSTM algorithm and collected time
series data, the authors accurately predict task popularity by
identifying traffics patterns at different timescales. Finally,
an SAQ-learning algorithm and a BLA are used to address
the problems of computing resources and policy offloading
respectively. The results show that the framework proposed
by the authors outperforms the classical approaches using
MAQ-learning algorithm. Nevertheless, in the proposed
scenario, the results tend to show that the increase in
computational resources of the MEC server has more impact
in reducing the energy consumption of the network in the
long-term compared to approaches with content caching.

This content caching issue was also considered by the
authors of [64] in a specific context: multiple radio cells
each with a MEC server. Service caching is used to reduce
the load on the backhaul network and the cloud server. The
authors take into account the popularity of the services,
their size and the caching capabilities available on the MEC
server and propose a DRL strategy to maximize service
caching. The algorithm based on the DDPG DRL is also
used to obtain the policy offloading, and the allocation of
computational resources. The proposed approach surpasses
the baseline algorithms in terms of energy consumption and
QoS, according to the results. In particular, the suggested
method saves up to 30% more energy than the baseline
algorithms while still achieving users QoS criteria and a high
hit rate for service requests.

Beyond problems,models and use cases, specific architec-
tures can also be considered. For example, the authors of [65]
proposed to optimize the energy consumption of all users of a
heterogeneous network consisting of a Macro Base Station
(MBS) with a MEC server and several Small Base Stations
(SBS) also equipped with servers. Users can compute tasks
locally or remotely. Tasks can be offloaded to the server of
the macro base station via OMA communications, or to the
SBSs by superimposing themselves on the sub-channel of
the macro cell via NOMA. In this context, they formulated
a joint problem in which they manage the allocation of
radio resources and the offloading policy with the aim
of minimizing the energy consumed by the users while
respecting the quality of service required by each user task.
This division into two sub-problems to deal with the original
MINLP problem allows, via an iterative algorithm, to find
the optimal solutions concerning the task offloading policy,
transmission powers, subchannel resource allocation, the
management of the CPU frequencies of each user for the local
processing and the allocation of the computing resources of
the MEC servers. The authors demonstrate that their scheme
performs near optimal performance with a low complexity.
The results obtained with tasks having a delay tolerance of
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TABLE 2. Comparison of state-of-the-art solutions focusing on energy minimization.

100ms, also demonstrate the effectiveness of the authors’
approach in minimizing further the global energy consumed
by the users compared to schemes based on OMA, binary
offloading and local computing.

Similarly, the authors of [66] considered a heterogeneous
network in which there are several small base stations (SBS)

within amacro base station (MBS) to serve a high density of
users. Each SBS acts as a relay to send information back to the
MBS. The energy considered corresponds both to the energy
consumption within each SBS and at the backhaul level. The
authors formulated an optimization problem in which they
wish to minimize the overall energy consumed in the system
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while guaranteeing a certain fairness between each actor. The
non-convex problem defined aims to handle the selection of
users matching the right SBSs, the allocation of subcarriers,
and the allocation of computational resources. It was solved
using dual decomposition and ACS respectively. To further
increase the minimization of energy consumption, they also
propose to determine the ON/OFF transitions of small cells
with limited computational complexity. Using this method
allows for dynamic energy saving and reduced interference
with other SBS, which, at the same time, improves and
reduces the transmission power of other SBS. The results
indicate that for a very large number of users (about 1000),
the authors’ proposal outperforms other schemes under
different traffic models while guaranteeing the service level
agreement. Moreover, it seems that the use of PD-NOMA
compared to PD-SCMA communication seems preferable in
terms of energy efficiency and computational complexity as
the number of available subcarriers increases.

Architectural solutions can also integrate new tech-
nologies such as wireless energy harvesting technologies.
For example, in [67], the authors aim to minimize the
overall energy consumption of the system, by maximizing
the ratio between offloaded bits and energy consumption
using wireless energy harvesting technologies. A nonconvex
fractional programming problem was formulated and solved
using a Dinkelbach-based algorithm to determine: 1)the
computational frequencies and execution times of the server
and user tasks, 2) the Uplink transmission powers, 3) the
harvesting times for the terminals and 4) the power transmit-
ted by the power beacon. The results show that the energy
consumed decreases significantly when the computational
frequencies on the MEC server and user sides are reduced.
Furthermore, the total number of task bits offloaded should be
equal to the maximum number of computational bits for the
MEC server during the task execution stage, while the MEC
server and users use the maximum allotted time to complete
the tasks, so as to minimize the energy consumed by the
system.

Reconfigurable Intelligent Surfaces (RIS) are another
solution that has already been considered in NOMA-MEC
architectures. The authors of [68] describe an environment
in which the direct link between the users and the base
station where the MEC server is located is hindered by
obstacles, thus providing poor conditions for offloading
information. To overcome this, the user signals are sent to
a RIS which passively relays to the base station the tasks
to be offloaded. The authors then formulated a problem of
minimizing the overall energy consumed in such a system,
by first managing the passive reflecting beamforming of
the RIS (phase shifts) to transmit these uplink signals
in the best possible conditions. Each UE is assigned an
offloading policy, a transmission rate, a transmission power
and a transmission time allocation. SIC orderingmanagement
is proposed to optimize the decoding phase at the base
station. The authors also proposed an iterative algorithm
that treats the problem in two sub-problems using the dual

decomposition method for the first one (phase shifts and
SIC ordering), then the Penalty method for the second one
which subdivides the problem into several convex problems
to obtain the sub-optimal solutions. The use of a BCD
is then applied to address in continuity the treatment of
these two sub-problems. The results show that the use of
NOMA is beneficial compared to the approach using TDMA
communications.

B. DELAY MINIMIZATION
Delay minimization can be another objective associated with
the application of the NOMA in MEC architectures (cf.
Table 3. The main idea of such papers is to minimize the
time required to process the tasks requested by the end
users (delay). This may be necessary for critical applications
with high latency constraints: UAV, connected vehicles for
example.

Similarly to the work related to energy minimization,
the first studies on delay minimization were based on
binary offloading models. For example, the authors of [69]
proposed a new NOMA resource allocation scheme for users
who want to fully offload their computational tasks to a
MEC server to minimize the overall delay (task transmission
time and task processing time). Due to the complexity of
the problem formulated as a MINLP, they divided it into
3 sub-problems tackled using a heuristic algorithm called
NCORA that defines in a greedy manner the allocation of
radio resources (power and sub-carriers) and the allocation of
computational resources of theMEC server (CPU frequency).
The experiments were conducted in a scenario where 30 users
are seeking to offload their computational tasks. The results
show that NCORA performs much better than other schemes,
in particular theNOMA-NCORAversion compared toOMA-
based schemes. Nevertheless, this evaluation is insufficient
to validate the authors’ hypothesis that NCORA is a scalable
algorithm able to handle a large number of users.

Reference [70] is also one of the first papers that aimed to
minimize task execution time by managing task offloading
policies and NOMA transmission powers. However, as many
papers focusing on partial offloading, the authors assumed
that their users have the possibility to fragment their tasks into
several fragments of any size (processed locally or remotely).
In real scenarios this would not be possible as only specific
partitions would be possible. Due to the particular structure of
the problem, the authors were able to formulate it in a convex
manner and to apply a bisection search iterative algorithm.
Closed-form expressions for the optimal policy offloading
and power allocations are studied to reduce the complexity
of the proposed algorithm using the Karush-Kuhn-Tucker
(KKT) approach when two users want to process data. The
evaluations were carried out considering that the computer
resources of the MEC server are limited and allowed the
authors to demonstrate the relevance of their solution in terms
of delay minimization.

More realistic data processing models have been consid-
ered in some papers such as [71]. Under real conditions, the
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arrival of tasks and their nature is variable. Different types of
services imply different processing delays. This is why the
authors formulated a problem where they seek to optimize
the global task processing delay by the MEC server, given the
constraint that these delays are variable and specific to each
task. They first evaluated the relationship between the dif-
ferentiated uploading delay and the co-channel interference
between NOMA users. This allowed them to detect the close
link between interference management and overall system
latency, and thus to define the optimal power allocation.
In particular, they noticed that when the completion order
of uploading tasks is not consistent with their SIC decoding
order, reducing co-channel interference cannot decrease the
users’ offload times. Secondly, the use of KKT conditions
allowed them to find the close-form expression of the MEC
server’s computational resource allocation. Finally, using
semidefinite relaxation approach to determine a lower bound
on the average offload delay helped them determine the
offloading and user pairing policy. The results showed that
the proposed scheme improves the overall processing time of
the whole set of tasks.

Some studies have also consideredmore complex scenar-
ios in which data is not transmitted to a single MEC server
but to a set of servers. For example, the authors of [72]
tried to minimize the processing time of a user’s task groups
by offloading them to several MEC servers using downlink
NOMA transmissions with superposition coding. Due to
the transmission power limit of the user and the channel
quality of each MEC server, the idea is to define a group
of servers that is neither too large nor too small to handle
the user’s task groups. A group that is too small results in
too much data being processed, which would considerably
increase the processing time. On the contrary, too many
MEC servers increase co-channel interference and therefore
transmission power. To address the challenges of time varying
channels and variable MEC servers’ capabilities, the authors
defined transmission times and offloading policies. In a static
channel scenario, they proposed an algorithm based on the
combination of the Golden Section search method and the
CQR algorithm to obtain the optimal task offloading policy.
When channels are time-varying a DRL-like algorithm was
considered to get the optimal transmission time on this
channel, coupled with the use of the CQR algorithm to
define the task offloading policy. It allowed them to reach
performances that converge quickly to find the optimal
solution, much more than the CVX (convex) tool and the
FDMA schemes.

A similar problem was considered in [73] with a specific
use case: an IoT (camera) aiming to offload tasks to several
MEC servers. The authors formulated a joint optimization
of the computation resource allocations at the MEC server,
the radio resource allocations, and the offloading policy
(assigning part of the job to a specific MEC server
depending on the availability of its resources). It is solved by
implementing a three-layered algorithm to find the optimal
offloading solution exploiting the hidden convexity of the

problem. Amore complex use case with different IoT devices
simultaneously offloading their computational tasks to MEC
servers was also considered there. An algorithm based on
the Nash stability concept that allows the optimal allocation
of MEC server clusters to each IoT was defined to solve
that. The results showed that the use of NOMA in such
a context optimizes the performance compared to OMA
communication.

The IoT use case was also studied in [74]: the authors
placed their work in aNB-IOT context with a limited number
of resources. To miminize delay (task transmission time
and task processing time), they optimized the SIC ordering
and the allocation of computing resources (CPU frequency)
at the MEC server formulating a job-shop scheduling
problem. The results obtained in a RAN containing 30 users
validated the authors’ intuition. Indeed, using the SIC in
a classical way (ascending order of channel conditions) is
suboptimal compared to the scheme proposed by the authors.
Moreover, the considered approach outperforms the other
schemes as the number of users increases, perfectly adapted
to IoT.

Combining different technologies can also be a solution
to minimize latency in MEC architectures and Hybrid-
NOMA could be a potential approach. In [75], considered
two users aiming to offload tasks to a MEC server. Users
switch, depending on an energy threshold, either to simul-
taneous transmission on the same block resource via NOMA
or via OMA communication. This problem formulation is a
fractional programming problem and is therefore addressed
using Dinkelbach’s method and Newton’s method. The
results showd that Newton’s algorithm converges faster than
Dinkelbach’s algorithm in this environment. Furthermore, the
higher the energy constraint, the more the use of a scheme
based on pure NOMA communication is preferable to OMA
and H-NOMA schemes, to reduce offloading delays in the
case of two users sharing a block resource.

Going further in terms of technological solutions, NOMA
could also be combined with MIMO. In this way, massive-
MIMOwas used in [76] to improve the global task processing
delay. By combining the properties of massive MIMO with
NOMA, the authors aimed to serve and improve the perfor-
mance of all users in the cell, in particular those at the cell-
edge, which usually benefit from degraded performance dur-
ing offloading phases. To this end, they proposed to optimize
the user pairing policy, the transmission duration (defined by
the strong user), the offloading policy and the computation
resource allocation (CPU frequency) using KKT and the
interior-point method. The results showed that for a large
number of antennas the delay minimization performance is
much better than the OMA-MIMO schemes while using less
energy for the transmission phases. Nevertheless, the pro-
posed algorithm only allows the allocation of two users per
NOMA cluster which under-utilizes the NOMA technology.

Similarly, the authors of [77] used massive-MIMO and
NOMA in a specific use case: computationally-heavy and
latency-critical IOT tasks. The use of a distributedAlternating
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TABLE 3. Comparison of state-of-the-art solutions focusing on delay minimization.

Direction Method of Multipliers (ADMM) approach allowed
them to manage offloading policy, transmission powers and
offloading rates. The results of the numerical study showed
that their method effectively minimizes offloading time and
optimizes the energy for an uplink NOMA-MEC network.

On their side, the authors of [78] proposed to combine the
advantages of Hybrid-NOMA communications andMIMO
technologies to reduce latency in such systems. To solve
the non-convex problem, they proposed to decompose it
into two sub-problems in which they first deal with the
NOMA communication part and then with the OMA part
using the Dinkelbach method, the KKT conditions and the
generalized singular value decomposition GSVD method.
This allowed them to optimally define the allocation of
transmission powers. Moreover, the GSVD allows them to
decompose the MIMO channels between users andMEC into
SISO channels to simplify the problem. Simulation results
demonstrate that their proposed system can achieve better
delay performance and lower energy consumption compared
to OMA but only in the case of two users.

Finally, new architectures have also been considered
to minimize latency. The authors of [79] proposed to
define new mmWave-based architectures to improve
NOMA-MEC offloading environments. The advantage of
NOMA scheme-based mmWave is that it significantly

improves the accessing efficiency for crowded networks
by allowing users to share time and spectrum resources
in the same spatial layer with NOMA. They defined a
problem in which they minimize the task processing time
by optimizing the beamwidth, the user scheduling, and the
transmission powers. To solve this problem, the authors
proposed an alternative optimization which decouples the
MINLP problem into a series of solvable subproblems by
iteratively optimizing each variable while fixing the others.
They prove that this approach can converge to close-optimum
solutions with low complexity and achieve up to 50%
reduction in average delay compared to other schemes, such
as random access and joint beamforming transmission power
schemes.

In [80], a WPT NOMA-MEC environment was consid-
ered. Multiple users harvest the transferred energy to increase
their durability and thus take advantage of more energy to
solve the delay minimization problems in these systems. The
authors proposed a DRL approach to optimize the policy
offloading, the WPT duration, and the transmission duration
to theMEC server. By exploiting DRL and optimization tech-
niques, they obtained near-optimal offloading solutions with
low computational complexity. The numerical results showed
that the proposed algorithm outperforms the benchmark
algorithms by up to 50% in terms of total computation delay
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reduction which improve the overall system performance.
Nevertheless the non consideration of the users’ CSI is not
realistic in practice, and therefore weakens the proposed
solution.

C. JOINT ENERGY AND LATENCY MINIMIZATION
The authors of [81] were the first to demonstrate analytically
that NOMA, compared to OMA, could offert significant
gains in terms of energy and latency minimization.
They considered two scenarios (uplink and downlink) and
proposed a radio resource management and offloading policy
that enabled them to show that NOMA outperforms OMA,
especially when the signal-to-noise ratio is deferable.

Many studies were then interested in the joint min-
imization of the consumed energy and the delay in
NOMA-MEC architectures (cf. Table 4. Most articles define
a new criterion: the weighted sum of these two metrics.
This coefficient is used to determine and quantify the
degree of importance of one metric over the other. Usually,
this coefficient is equal to 50%, meaning that latency and
energy have the same degree of importance in the problem
formulation. Depending on the particular use case/scenario,
it is also possible to prioritize one metric over the other. This
approach differs from the problem formulation described in
the previous sections where a single objective was coupled
with constraints. In the next section, we use the JWEL
minimization notation, which stands for Joint Weighted
Energy and Latency criterion.

For example, the authors of [82] proposed to mini-
mize the JWEL in a dynamic system, i.e. an environ-
ment with time-varying channels. They defined a type of
hybrid NOMA/OMA communication, consisting in allocat-
ing resources on several types of subcarriers simultaneously.
Some can be overloaded and therefore used by several
users, such as NOMA subcarriers, while others can only
be allocated to one user. They then defined a non-convex
optimization problem and addressed it using aDRL algorithm
to tackle the radio resource allocation problem in the hybrid
NOMA/OMA system, as well as the offloading policy. The
DRL algorithm combines the advantages of actor-critic and
Deep Q Learning, resulting in a low-complexity algorithm.
The algorithm and the Hybrid NOMA/OMA system can then
achieve up to 69% energy and latency reduction in such a
system compared to non-task offloading, binary and random
offloading using NOMA.

Hybrid-NOMA was also considered in [83]. The authors
proposed to minimize the JWEL in MEC architectures
under the constraints of respecting the specific rates and
delays of each user’s task. The authors’ strategy is to use
hybrid NOMA communications, in which several users start
transmitting their messages simultaneously on the same
subcarrier, and when a user finishes its offloading phase, the
remaining user finishes offloading its task using a classical
OMA communication (without changing subcarrier). Never-
theless, it allows to correct and improve the model proposed
in some papers in the literature which do not consider

variation over time of the interference between users using the
same NOMA subcarrier (unsynchronized task completion).
In this context, using the KKT approach, they obtain the
closed-form expressions of the optimal power allocation and
offloading time for each group of users sharing the same
subcarrier. Finally, using these closed-for expressions, they
define a matching algorithm that allows to select the different
user groups. The solution proposed by the authors shows
much better results in terms of joint minimization of energy
and latency in such a system compared to OMA schemes.
Moreover, the closed-form expressions permit to determine
the use cases where it is preferable to use OMA or hybrid
NOMA communication. Indeed, in situations with specific
and constrained delays, it will be preferable to consider
NOMA-hybrid, whereas OMAwill be considered when there
is no particular delay to respect in order to have higher
performances.

While most of the proposed solutions considered PD-
NOMA, other NOMA technologies could also be applied.
For example, in [84], the authors formulated a MINLP
minimization problem of joint latency and energy con-
sumption in an SCMA-assisted MEC system. The use of
SCMA compared to PD-NOMA necessarily involves the
introduction of new variables tomanage to efficiently allocate
these radio resources. Indeed, it is essential to efficiently
distribute the codebooks to each user by taking into account
their CSI. However, as the codebooks remains the same
during the whole communication, the problem of resource
allocation in an SCMA system consists in designing the
factor graph matrix, i.e. to which sub-carriers each user is
attached. The use of the bidirectionalmatchingmethodmakes
it possible to determine the factor graph matrix, which in
turn allows the transmission powers to be fixed using the
lagrange multiplier and KKT methods. Finally, the problems
of allocating the computational resources (MEC servers’ and
users’ CPU management), and the task policy offloading
are tackled using the interior point method and a heuristic
method respectively. The results show that the use of SCMA
in conjunction with the use of transmission powers achieves
significantly higher performance than other schemes. Also
by evaluating scenarios with different values of the JWEL
coefficient, it seems that the more energy minimization is
taken into account compared to processing delays, the more
the total system cost is minimized for a large number of users.

Beyond that, other papers considered more complex
scenarios. The authors of [85] proposed to minimize the
JWEL in a system based on cooperative-NOMA, in which
several helpers are available to assist other users with task
offloading on several MEC servers. To solve the formulated
MINLP problem, the authors propose to optimize user
association, resource block (RB) allocation, power allocation,
task allocation and computational resource allocation. First,
the problem is decoupled into a sub-problem of power
allocation, task assignment and computational resource
allocation processed using a machine learning algorithm
(Incremental principal component analysis - IPCA). Then,
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TABLE 4. Comparison of state-of-the-art solutions focusing on joint energy and delay minimization.

with the obtained solution, the original problem is equiv-
alently reformulated as a discrete user association and
RB assignment processed with a four-sided UE-RB-helper-
server matching algorithm, where a sequential permutation
operation is designed. Numerical results presented in the
paper show that the proposed four-sided algorithm achieves a
near-optimal solution with much lower complexity, achieves
the minimum fairness between user equipment (UEs) and
outperforms other schemes for JWEL.

Decentralized decision processes could also be used to
minimize the JWEL. Some works, such as [86], proposed
to extend the use of DRL. The classical use of DRL in
MEC architectures is based on a centralized approach in
which the algorithm is applied at the base station level, which
have previously collected all the global information of the
network architecture needed. This includes conditions and
metrics specific to eachMEC user, which necessarily leads to
additional delays. In [86], the authors proposed to deal with
that thanks to a decentralized DRL for the IoV. It allows each
car to make its decision based on its own local observations
concerning the transmission power to offload, and the power
needed to execute the task locally, which in a way consists
in defining an offloading policy. They demonstrated the
relevance of such an approach to minimize in the long term
the energy consumed and the processing delay of the different
tasks, in a highly mobile environment with MIMO-NOMA
communications and the stochastic task arrival to depict a
real scenario context. Thus, the deep deterministic policy
gradient (DDPG) algorithm is adopted to learn the optimal
power transmission and local execution allocation decision
based on the DRL framework. The results show that the
approach proposed by the authors outperforms the other
schemes, and the further a car is from the base station, the

more it will tend to execute its tasks locally and transmit less
data. Nevertheless, this paper, as different studies focusing on
this issue, assumes that the resources of the MEC server are
infinite, which does not fit with real scenarios. It could be
sometimes preferable to compute data locally due to the load
of the MEC server.

DRL is not the only solution that could be used to provide
a distributed decision process in NOMA-MEC architectures.
Game Theory is another approach, considered for example
in [87]. The authors modeled complex interactions and
collaborations between several users wishing to offload
tasks to the MEC server, using several NOMA subcarriers
and game theory. UEs are then considered here as players
who cooperatively form coalitions in order to optimize the
network performance (subcarriers are regarded as coalitions).
To this end, using a distributed algorithm based on this game
model, they solve the MINLP problem by jointly optimizing
the policy offloading, corresponding to the execution of all
the user’s task locally or remotely on the server, and the
allocation of subcarriers, to minimize the total computational
overhead, corresponding to the JWEL presented in the other
papers. The presented algorithm outperforms in terms of
energy minimization and system latency, compared to a Full
Local/Binary Offloading/OMA Heuristic mode.

Game Theory was also an approach considered in [88].
The context presented in this paper is a two-user scenario
of a NOMA-MEC network where a Stackelberg Game,
in which the users are considered as the leads and the
server MEC as a follower, is formulated to minimize energy
consumption and execution time, i.e. JWEL. Specifically,
the leader aims to minimize the total energy consumption
for task offloading and local computing by optimizing
the policy offloading (coefficients to determine how many
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percent in local/remote the task is processed) and transmit
power, while the follower aims to minimize the execution
time by optimizing its computation resources. Moreover,
closed-form expressions for the optimization variables are
derived to obtain the Stackelberg equilibrium solution. The
insights gained from considering the Stackelberg equilibrium
in solving the formulated problem include a low-complexity
solution and improved performance compared to other
existing solutions.

D. SECURITY
Beyond energy and latency minimization, existing studies
also focus on another important issue: security (cf. Table 5.

One of the first criterion defined to evaluate security in
NOMA-assisted MEC network architectures is the secrecy
outage probability, which quantify the probability that
a secure communication link fails due to an inability to
maintain the desired level of secrecy. In other words,
it is the probability that an eavesdropper can successfully
decode a transmitted message despite the use of encryption
techniques. This criterion is formulated in this way because
it is almost impossible for the base station to determine the
attacker’s CSI.

In this context, the authors of [89] proposed a passive
defense mechanism. They presented a framework that
allows both the minimization of the energy consumed by
the terminals and the reinforcement of the security of the
communication with the MEC server. They proposed to
manage the offloading policy, the transmission power, the
codeword transmission rates and the confidential data rates to
prevent an attacker from conducting passive eavesdropping
in the radio cell. Two models are then proposed. The
first is to minimize the overall energy consumed by all
users, under time constraints, and not to interrupt the
secrecy of the communication by the attacker. The second
is to consider only the minimization of the secrecy outage
probability. To solve these models, they derive the different
allocation schemes towards optimal solutions in closed form
expressions that permit them to achieve performances better
than the OMA schemes.

With the same objective of linking both energy minimiza-
tion and improving communication security to protect against
passive eavesdropping, the authors of [90] have defined
a new metric to quantify both objectives simultaneously:
the Secrecy Energy Efficiency (SEE) which is the ratio
between the total number of secure computations offloading
bits per Joule. This is equivalent to maximizing the number
of bits to be offloaded to the MEC server without being
intercepted, while minimizing at the same time the energy
during the transmission phase. To maximize this new
criterion, the authors formulate a model in which they adjust
the computation resources, the transmission powers in the
uplink phases, and the subchannel allocations. The use of
a Dinkelbach-type algorithm allows them to address the
problem of radio resource allocation, which lets them get the
closed-from expressions of the transmission powers for each

subchannel. Finally, the Knapsack algorithm is used to solve
the computation resource allocation problem. The results
show that the scheme combined with NOMA outperforms the
others as the number of users increases, thus validating the
use case of massive IOT networks presented by the authors.

To quantify the intrinsic ability of a user to be antieaves-
dropping, i.e. to make it difficult for a malicious user to
listen in, the authors of [91] defined a new metric called
AntiEavesdropping Ability (AEA). This is the first paper
to consider the eavesdropper’s CSI in their approach. The
formulation of the fractional programming optimization
problem consisting in minimizing the AEA is then solved
using an adaptation of an interative algorithm and the
Dinkelbach method. This approach allows to solve for 2 users
the secrecy rate, the policy offloading (i.e. in this context the
number of locally processed bits), and the power allocation
for transmission. The formulation of the problem and the
results obtained tend to show that it is impossible to satisfy
both low transmission latency and increased offloading
security for a given amount of power. Thus, the increase in
security during offloading phases in this system is achieved
at the expense of the degradation of transmission delays.
Nevertheless, the larger the energy budget, the better the
authors’ approach will be in terms of security and delay.

On their side, the authors of [92] considered both security
and latency. They designed a solution that minimizes the
latency of the system to improve its overall performance and
security in the presence of an eavesdropper. Indeed, reducing
these delays shortens the time window for eavesdroppers
to intercept offloaded task, and benefits to the global
performance improvement of theNOMA-MEC system. To do
so, they considered power allocation, policy offloading, and
computational resource allocation, which will be defined
through the use of a reinforcement learning algorithm based
on Q-learning. Furthermore, the proposed algorithm aims
to minimize latency while ensuring secure transmission of
confidential tasks in NOMA-MEC systems with hybrid SIC
decoding. The results show that the proposed approach
achieves lower latency and thus higher physical layer
security compared to existing approaches. Finally, the use
of RL-type algorithms in these architectures outperforms
existing algorithms in terms of convergence speed and
solution quality.

Generally, papers seeking to improve the security of their
communications aim to put in place various solutions to
protect themselves, allowing them to conceal their commu-
nications, which we will refer to in the rest of this paper
as passive defenses. On the other hand, some papers [93]
and [94] propose active defenses, in which users attack the
eavesdropper so that it cannot decipher the communications,
thus considering that the best way to defend oneself is to
attack. In fact, one of the possible attacks in an environment
where an attacker would carry out passive eavesdropping
would be to jam the eavesdropper’s channel in such a way
that it would be impossible for him, to listen to any signal
in these frequency bands: this is called jamming. In [93], the
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TABLE 5. Comparison of state-of-the-art solutions focusing on security.

authors propose to define pairs of cooperative users, which
join together so that one transmits these data, and the other
carries out artificial jamming to prevent the eavesdropper
from deciphering the different communications. However, the
use of jamming leads to energy consumption overheads. They
then formulate an optimization problem in which they wish
to minimize the total energy consumption of the MEC server
users. In order for these users to benefit from this cooperating
jamming in a fairness manner, they then formulate a system
of cooperation between pairs of users based on the NASH
bargaining game. Finally, they applied an algorithm based on
Gale-Shapley theory to form the user pairs in an optimal way.

The authors of [94] also used jamming but in a different
way. They proposed to use the wireless power transfer
technology, using the power beacon sent to allow the user
to offload his tasks, but also to perform the jamming of
the channel to prevent passive eavesdropping. They then
formulate a problem whose objective is to maximize the SEE
by adjusting the powers allocations (beacon cells, during
offloading, and jamming), time allocations (beacon emission
duration and offloading duration) and the offloading policy.
The problem formulated in this way is non-convex, and is
treated by an algorithm that uses Dinkelbach’s technique and
SCA to find the optimal decision variables. The proposed
scheme presents better performances, even though like the
others it tends to decrease as the size of the tasks increases.

More complex scenarios have also been considered,
including flying base stations (UAVs) to best serve all users
in MEC architectures. In this context, the authors of [95]
studied security issues. Due to the nature of line-of-sight
radio communications, it is easy to carry out eavesdropping

attacks. They proposed to set up several active defenses such
as a jamming ground station, and passive defenses to protect
against a possible UAV attacker doing passive eavesdropping.
They formulated an optimization problem in which they
attempt to maximize the average security computation
capacity, under the constraint of minimizing the energy
consumed by the system, minimizing the computational
capacity of each actor in this architecture, and avoiding
collisions between UAVs. To achieve this, they managed
the CPU computation frequency, the transmission power, the
offloading policy, and the trajectory of the UAV. In addition,
to deal with the coexistence and simultaneous operation of
the UAV and the ground jammer, they introduced the varying
channel relations coefficient allocation in such a way that
the flying base station is not affected by it. The formulated
problem is then iteratively solved using SCA and BCD to find
the optimal solutions.

To overcome the unavailability of the MEC server, UAVs
are not the only solution. Some researchers considered
distributing the calculations to neighboring nodes with
sufficient computing resources. In this context, the authors
of [96] proposed a Blockchain-based solution to secure
the cooperation between different nodes so that they can
cooperate securely and authentify each other. A cooperative
game theory is applied to maximize the total sum rate
and secrecy capacity. The use of NOMA with Blockchain
allows to improve the latency and security of such a
system by improving its resilience. Nevertheless, such a
proposition does not consider active attacks such as jamming
or availability attacks which, despite the use of a Blockchain
system, would degrade its performance in terms of latency.
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In [97], a specific use case was considered by the authors:
an IoV environment, i.e. a highly mobile environment in
which several vehicles move from radio cell to radio cell.
This environment consists of a macrocell which contains
several microcells in which the vehicles move, and where
an eavesdropper can listen to the communications. Each of
these microcells is equipped with a RoadSide Unit (RSU)
which relays the offloaded tasks from the vehicles to the
base station of the macrocell where the MEC server is
located. In this context, the authors aimed at preserving
the security of the PHY layer of communications while
minimizing the offloading delay of the tasks by adjusting
the allocation of transmission power. The underlying model
proposed differs from the traditional paper using Jake’s
model (based on a Rayleigh fading model by summing up
sinusoids), using an imperfect CSI and a queuing model.
The formulated problem is then of the MINLP type and
is solved by using Karush-Kugn-Tucker (KKT) conditions
and the Frank-and-Wold algorithm to define the optimal
transmission powers. For vehicle speeds up to 150km, the
proposed solution is much more efficient than solutions
based on OFDMA communications, in terms of processing
time while guaranteeing the security of the communications.
This demonstrates the overall superiority of using NOMA
to improve latency and system security in highly mobile
environments.

E. OTHERS
Beyond these issues common to many papers, there are also
other relevant ideas that are addressed in a limited number
of studies (cf. Table 6). These are highlighted in this section,
whether they are objectives, architectures or models.

For example, specific objectives/criteria could be con-
sidered. The authors of [98] introduced a new criterion
for evaluating the performance of offloading in MEC
architectures: the task processing capability of the system.
This metric measures the ratio between the size of the tasks
to be offloaded and the delay to process them for each MEC
user, which, compared to the notions of delay minimization,
introduces a notion of tradeoff between task size and
delay. They investigated a scenario in a heterogeneous
network, where several users offload their computational
tasks to severalMEC servers. Thus, they formulated aMINLP
problem, divided into two sub-problems to deal first with
the allocation of radio and computational resources, and then
with the task offloading problem. Finally, they implemented
a low complexity sub-optimal matching process to deal with
the resource allocation, and the Lagrangianmultiplier method
to cope with the convex transmission power allocation
problem. The results show that the use of NOMA and several
MEC servers in offloading scenario increases significantly
the task processing capability of the system, and at the same
time decreases the energy and latency of the system.

Such a criterion was also considered in [99]. To overcome
the decreased offloading efficiency for users at the cell

edge, the authors of this paper used cooperative NOMA
technologies to offload their latency-intensive and critical
tasks in an optimal manner. They proposed a new frame-
work based on the cooperation of several helpers nodes,
coordinated in two phases. In the first phase (first time-
slot), the user at the cell edge offloads his tasks to several
helpers via a NOMA-Downlink communication. During the
second phase, the helpers pre-process the task and transmit
it to the MEC server via a NOMA-Uplink communication.
They then formulate a problem in which they maximize the
amount of data transmitted to the MEC server under latency
constraints, i.e. the amount of user’s executed data in the
system (overall system performance). To solve it, they first
studied the optimal distances between the different helpers
and the user, which maximize the amount of data transmitted,
allowing them to define their helper selection. They then use
the interior point method to address the optimal times of
the two phases (user to helpers, helpers to MEC server), the
offloading policy and the transmission powers. The results
show up to 60%more performance in terms of task offloading
compared to single helper and TDMA based schemes.

A similar idea was considered in [100]. SCMA-assisted
MEC architectures are mostly evaluated as classical
optimization problems. However, SCMA communications
involving large numbers of parameters such as codebook and
factor matrix design, or codebook distribution, have never
been considered in stochastic systems, where the user demand
and the propagation channel vary randomly over time. For
this reason, the authors of [100] presented a framework in
which the long-term maximization of the processing rate
of the SCMA-MEC architecture with constraints on the
processing time for each task is achieved, by using DRL. The
LSTM and DQN algorithm allows them to address the joint
problem of policy offloading and the SCMA radio resources
allocation (codebook allocation and power distribution).
Moreover, each IoT user acts as an agent in the algorithm
(since it is able to observe only a part of its environment),
which, using the LSTM, predicts the state of the other devices
to define the optimal policies and allocations in such a system.
The results show that the proposed framework achieves
significant improvements (up to 30% higher) than schemes
based on OMA communications or those based on random
distribution of SCMA radio resources.

On their side, the authors of [101] focused on another
objective: processing rate maximization. They presented a
solution that uses the advantages of DRL to maximize the
computation rate of an NOMA multi-carrier MEC system,
which means improving the server’s long-term capacity to
process more and more tasks in a quicker manner. Thus, they
designed an online model in which the inputs correspond
to the channel gains at time t of every subcarrier. The
proposedDRL algorithm then solves for each user the optimal
allocation of the subcarriers as well as its remote or local
task processing mode, using an optimal offloading policy.
The use of replay experiences in the algorithm improves
the learning efficiency of the agent. Indeed, by storing and
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TABLE 6. Comparison of other state-of-the-art solutions.

reusing past experiences to feed the DNN, the agent learns
from a multitude of diverse experiences. This not only allows
it to break the correlation between consecutive experiences,
but also to learn from rare and important experiences, which
helps in the choice of optimal action policies. The algorithm
presented by the authors outperforms those based on TDMA
schemes by achieving near-optimal results for maximizing
the system’s computation rates.

Processing rate maximization was also an objective
in [102] but in another context: a NOMA-MEC architecture,
consisting of several serversMEC, based onCognitiveRadio
(CR). In this environment, there are two classes of users,
including licensed Primary Users (PUs) with priority and
absolute access to radio resources, and Secondary Users
(SUs) wishing to access the computing resources of the
MEC server. Several small Cognitive Base Stations (CBS)
with limited computational resources then allow the SUs
to offload their computational tasks while sharing the radio
spectrum with the PUs. In this context, the authors formulate
an optimization problem whose objective is to maximize
and improve the global computational capacity of users
(and thus maximize the utility of such a system). To this
end, the authors propose to manage the allocation of radio
and computational resources, and offloading decision in a
distributed manner using an ADMM algorithm (Alternating
Direction Method of Multipliers). This algorithm achieves
much better performance than the other schemes, but is
slightly inferior to the centralized solution. Nevertheless, the
efficiency of such a system by using cognitive radio is not
very relevant due to the under-utilisation of PUs.

Another critera was also introduced in [103]. The use of
power beacons is a relevant solution to extend the operating
time of IoT devices, in particular those whose battery is
difficult or impossible to change. The use of power beacons

in NOMA-MEC architectures seems promising to reduce
energy consumption and decrease the outage rate of devices.
This is why the authors of [103] proposed a beacon-assisted
NOMA-MEC environment whose objective is to minimize
the outage probability of the system. Moreover, the use of
a relay, also supplied by the powers beacons, helps the
distant IoTs to offload their computing tasks to the MEC
server (cooperative-NOMA). The ability of wireless power
transfer from the best power beacon to serve distant IoT
devices in uplink phases is assessed by the authors using
closed-form expressions of the outage probability. The results
show that the use of NOMA provides better performance
compared to OMA schemes. In addition, increasing the
number of antennas and power beacons greatly improves the
performance of this beacon-assisted NOMA-MEC system.

To guarantee a high level of performance, it could also be
interesting to consider new network architectures promoted
by 5G networks. This is the case of the solution proposed
in [104], which relies on Network Slicing to guarantee a
certain level of QoS. This paper focuses on the optimization
of resource allocation in MEC-enabled IoV networks based
on network slicing. The authors introduced a model-free
approach based on DRL to solve the resource allocation
problem, which jointly addresses channel and power allo-
cation of NOMA transmissions, slice selection, and vehicle
grouping. The selection process consists in choosing between
two slices allowing to ensure respectively the reliability and
the delay of the communication. The problem is modeled
as a single-agent Markov decision process, and a Deep Q-
Learning (DQL) algorithm is developed that outperforms
other benchmark algorithms based on global and offline
decisions. The proposed DQL algorithm is proven robust and
effective against various system parameters, including the
high-mobility characteristics of IoV networks. However, the
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paper does not discuss the implementation of the proposed
solution in a real-world scenario, which could be a limitation.
Additionally, the paper only considers a single-agent Markov
decision process and does not explore multi-agent scenarios
which leads to more robust solutions by better decision
making.

Finally, the authors of [105] considered a specific use
case, Internet of Vehicles (IoV), taking into account the
specific constraints of this environment. Offloading solutions
for computing tasks are more difficult due to the diversity
of communication quality in the current IoV and the high-
speed mobility of vehicles. To this end, the authors proposed
a computational resource allocation scheme based on a
DRL-type algorithm to solve the complex problem of task
offloading strategies in the IoV. The scheme takes into
account the computational power of the service nodes and the
speed of movement of the vehicles as constraints and uses a
DQL and experience replaymethod to solve themathematical
resource allocation model to minimize the total system cost.
For a number of 15 users with tasks of the order of 10Kbits,
the proposed scheme shows excellent performance in terms
of reduced network overhead and task processing time.

V. DISCUSSIONS
The taxonomy defined in section III and the comparison
carried out in section IV allowed us to identify particularities
of some NOMA-MEC approaches, highlighting both good
practices and limitations. In this section, we discuss the
findings of this study from two angles: the formulation of
the problem and the advantages of NOMA technology and
its combination with other technologies.

A. PROBLEM FORMULATION
From the problem formulation point of view, the following
points seem important:

• NOMA was one of the candidates studied for being
integrated into the 5G standards. However, due
to its implementation complexity, other technologies
such as MU-MIMO have been preferred. Due to its
non-integration in a more global network, and the
compartmentalization of research in telecommunication
networks (research being conducted at three levels
which are the application layers, the network layers, and
the physical layers), this technology found its way into
the hands of researchers in signal processing, limiting its
study and integration into more global networks. Indeed,
apart from a few papers, such as [106], [107], [108], and
[109], which focused on linking the network layers and
the NOMA physical layers, there is no real framework
for applying it in a global network. This explains the
fact that the majority of papers on NOMA-assisted
MEC architectures rely only on simplified mathematical
models to represent the communication system. NOMA
is integrated in the formulation of the optimization
problem using the formula for calculating the throughput
of a user on a sub-carrier. This lack of realism leads to

several problems. On the one hand, when a user offloads
a task, the whole channel access aspect is abstracted,
i.e. the whole communication chain of transforming
information (tasks) into radio symbols and then signal
is omitted, so that the user offloads in a linear and
uninterrupted way his tasks over the same duration. This
suggests that the channel is invariant over the offloading
period, which seems unrealistic for a large task that
will take several seconds to be offloaded with the same
channel gain. Moreover, although some authors have
introduced Hybrid-NOMA communications (NOMA
then OMA communication), a large part of the papers
do not modify the value of the inter interference
between NOMA users in the throughput formula when
one of the users completes its offload, which is very
limiting to really judge the performance of NOMA
compared to other digital communications. Moreover,
this abstraction induced by the implementation of
such a model simplifies the use of this technology
by minimizing the additional costs generated by its
control and management. Indeed, during the uplink
phases (offloading of users to the MEC server), neither
the allocation of radio resources (transmission power,
selection of the sub-carrier, etc.) by the base station, nor
the transmission from the users to the base station of the
metrics on which the calculation of the optimal policies
is based are considered, which greatly underestimates
the impact of the complexity of such a system on the
performance of NOMA communications;

• By extending the NOMA communication model
(throughput formula) to offloading and network models,
the MINLP type optimization problem formulation
has been one of themost considered approaches since
the emergence of this research area. This is due to the
nature of the decision variables employed, such as user
allocation (discrete decision variables), and continuous
non-linear resource allocation, as in the power allocation
problem which includes non-convex constraints on
power and NOMA interference. This formulation leads
to the solution of an optimization problem by setting
up algorithms, which establishes the optimal solutions
and policies to adopt. However, these optimal strategies
do not take into account the stochasticity of a real
system, alternating between periods of high demand
and periods of low demand, making it impossible to
guarantee a long-term objective. This is why the recent
implementation of solutions such as DRL is a major
evolution for the research field, offering new properties
of flexibility, scalability, and management of complex
and dynamic environments, thus guaranteeing long-
term performance, regardless of the underlying scenario.
Being model-free learning, it avoids relying on explicit
modelling of the environment by learning directly from
observations, thus avoiding the need to formulate an
accurate and tractable mathematical model, due to the
nonlineartity and complexity of the problem;
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• The majority of the papers are also criticized for
considering that the BS supports all connectivity
simultaneously, i.e. that all users offload their tasks at
the same time. This lacks realism because the model
(throughput formulation) does not take into account the
degradation of NOMA performance induced by a large
number of simultaneous users, which then increases
the complexity of algorithms such as the SIC. On the
one hand, the latter will not be able to ensure the
same performance for a large number of users due
to the increase in inter-symbol interference, and on
the other hand, it will increase the energy and delay
consumption to carry out the demodulation. Only papers
with online models or those considering user scheduling
have considered the connectivity limit of the BS;

• Finally, in digital communications, knowing the CSI of
a radio link is fundamental. It describes the way in
which the transmitted signal will be distorted/attenuated
during transmission, due to numerous effects such
as scattering, fading and power decay. It is there-
fore essential to know this information to adapt the
parameters of its digital communication to ensure that
the transmitted signal can be decoded at the receiver.
Two approaches are usually considered: the short term
CSI based on the estimation of the channel impulse
response, and the long term CSI based on a static
characterization of the channel using some distribution
models such as: Rayleigh model, Rice model. However,
the acquisition of short-term CSI can be difficult in
fast fading systems, where the channel conditions vary
very rapidly compared to the estimation time required.
In a security context, where an eavesdropper would
conduct passive eavesdropping, knowing the channel
properties of the eavesdropper also seems to be a
fundamental issue because of the broadcast nature of
radio signals. Indeed, knowing this information would
allow the different users to adapt their communications
so that once the transmitted signal is filtered by the
eavesdropper’s channel, it is impossible for it to decode
the information. The first approaches considered were to
assume the CSI of the eavesdropper which is a limited
and unrealistic assumption, while others considered the
definition of new metrics such as the AEA to take into
account the CSI.

B. NOMA, MEC AND LINKED TECHNOLOGIES
LIMITS/BENEFITS
From the point of view of NOMA technology, the following
points seem important:

• Despite the shortcomings of the models proposed by the
simplified handling of NOMA and the lack of realism
of the solutions, NOMA seems to offer much better
performance than otherOMA schemes. NOMA could
be the optimal solution to maximize spectral efficiency,
improving user fairness by using power weighting to

distribute network resources more equitably, reducing
latency by eliminating queuing and channel access
times, increasing connectivity, and improving energy
efficiency by minimizing energy consumption. Like 5G
networks which are polymorphic systems aiming to
ensure a few KPIs in a global set (slice URLLC, EMBB,
UMTC), NOMA does not provide all its performances
simultaneously. Indeed, the minimization/maximization
of one criterion leads to the degradation of the others.
For example, the reduction of latency is often done at the
expense of more energy consumption. This is why the
authors define constraints such as a limited energy bud-
get in delay optimization problems, otherwise NOMA
would provide very low latencies at the expense of huge
energy consumption;

• In some use cases, NOMA seems to reveal some
limitations compared to other schemes. NOMA
offers ideal performance conditions if and only if the
resource allocation is optimally managed. This digital
communication is particularly sensitive to the quality of
the transmission channel. Indeed, superimposing several
users with bad gains on the same radio resource presents
less benefits compared to the use of a classical orthog-
onal scheme, because of the difficulty of demodulating
the signals during the SIC. A common use case is for
users located at the cell edge, i.e. users with a low signal-
to-noise ratio. NOMA is non-energy efficient in this case
where a user is forced to offload all its tasks onto a radio
resource occupied by this edge cell user;

• The superposition of users, generating intra-cell
interference, could also constitute a real bottleneck
limiting the performance of NOMA-MEC systems.
This limitation is however overcome by the implemen-
tation of optimal power allocation, user scheduling and
grouping policies. Furthermore, although the experi-
ments were conducted with a small number of users
(fifteen on average), NOMA is still more profitable than
the other schemes as the number of users increases,
even though this complicates the resource allocation
control;

• Other resources than radio resources are considered
in NOMA-assistedMEC architectures. The main goal
of such an architecture is to provide a supplement of
computational resources to the users. This is achieved
by defining an offloading policy which consists in
segmenting a task, part of which will be executed
locally and the other part remotely on the MEC server.
Once again, due to the nature of the formulation of
the optimization problem, the definition of this policy,
as well as its application, appears to be unrealistic.
On the one hand, the model does not take into account
the multiple exchanges allowing the metrics on which
the decisions are based to be centralized, and on the other
hand, the segmentation of the task, i.e. the number of bits
to be offloaded, is carried out under the constraint of
the available resources without taking into account the
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nature of the task (the task is split in two at any point,
which is not coherent);

• MEC architectures consist in placing servers at
the edge of the network. These servers have limited
resources compared to the pooling of several servers
in the cloud. Thus, it can be seen that the more
computing resources are available on the MEC server
side, the more the energy consumed by each user
decreases. This is because users can offload much
more data to the MEC server, and thus limit the
execution and calculation of energy-intensive local
tasks. To fit a real environment, it is therefore essential
to limit the number of resources available on the MEC
server in the problem formulation, otherwise users will
tend to only offload their tasks. Moreover, with this
constraint, it is sometimes preferable to execute a task
locally rather than offloading it onto an overloaded
server, when the aim is to reduce task processing
times;

• One of the other major roles ofMEC architectures is to
provide storage resources to network users, which has
been little considered in the field of NOMA-assisted
MEC, apart from a few papers on content caching.
However, the benefits of such a solution may be limited
due to the popularity of content, the storage capacity
of MEC servers and the caching policy. Indeed, if the
stored content is not very accessible, this solution does
not present major benefits. Finally, managing these large
amounts of data also becomes resource intensive, which
for small MEC servers can degrade their performance.
The current state of the art does not therefore allow
us to observe any real advantages in exploiting storage
resources to significantly improve these architectures in
terms of energy and delay minimization for the use cases
assessed;

• Other approaches could be relevant for the improve-
ment of NOMA-MEC systems, in particular technolo-
gies combined with NOMA. Some solutions coupled
with NOMA-assisted MEC architectures improve some
performances already provided by NOMA, while accen-
tuating the degradation of others (polymorphic system).
This is particularly the case for active systems such
as the use of flying base stations or the cooperative
NOMA, which introduce new elements degrading some
performances that are expected by such systems (like
the energy consumption of UAV base stations). On the
other hand, the incorporation of passive solutions such as
IRS limits this impact, but nevertheless retains a certain
complexity of implementation.

VI. PERSPECTIVES
After comparing a large part of the literature on
NOMA-assisted MEC architectures, we were able to conduct
a discussion to identify the good practices and limitations of
all the approaches considered. Nevertheless, some aspects
still unexplored to date are revealing themselves as real

challenges to optimize these environments. Although many
perspectives have been identified so far in MEC surveys,
our positioning focuses NOMA-assisted MEC architectures
as a monolithic block. Thus, our perspectives concern
improvements and proposals specific to this environment, i.e.
they engageNOMAand the higher layers of theMEC in equal
proportions.

A. DOWNLINK AND FULL DUPLEX TRAFFIC
Initially, the main feature of NOMA-assisted MEC architec-
tures consists in having several users, offloading their tasks on
theMEC server in order to benefit from additional computing
resources to process them, which is called the offloading
phase. So far, the authors have mainly made proposals
around the uplink network side. Only [53] considered a
strictly downlink context. Other papers such as [54] use
the term downlink to refer to NOMA-downlink, which is
from a network point of view an uplink communication to
several MEC servers. In this context, NOMA-assisted MEC
architectures will have to be able to simultaneously support
several types of new services that require both types of
communication, such as 8K streaming, Augmented Reality,
or the results of MEC server calculations. The latter are
considered negligible in research papers compared to the
size of the offloaded tasks, but their consideration will be
essential in new use cases such as IoV applications [110]):
HDmaps, digital twins, etc.. It will therefore be interesting to
develop new problem formulations involving both downlink
and uplink voices. Moreover, due to the abstract nature of
the optimization problems, the coordination andmanagement
of resources (i.e. the feedback of information to the BS to
decide on the best policies to adopt, then their coordination
via the downlink channel) is not yet considered. Therefore,
it would be interesting to exploit the uplink and downlink
channels to match the real working of these architectures, and
thus measure the impact of the additional costs generated.
Finally, as the base stations are also used to manage the
incoming and outgoing traffic of other types of users (not
using the MEC services), it would be interesting to include
them in the simulations in order to measure their impact on
the performance of the MEC services.

B. TASK DEPENDENCY
In the formulation of the different approaches proposed in
the literature, the nature of the tasks is greatly oversimplified.
They are represented in a very basic way by a number of bits
to be offloaded to the MEC server. Moreover, it is possible,
when defining the offloading policies, to segment at any
point of the task without worrying about the consistency
of the task. This suggests that there is no relationship
between the task segments, and that it is a simple file to
be transferred. However, the future applications that will
need to be handled by MEC servers are significantly more
complex than just data. Indeed, they are often made up of
indivisible parallel processes (threads). Moreover, some of
them have interdependent relationships, i.e. the result of the
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calculation of one thread is often necessary to process the
other, establishing a precise processing order. This modelling
of relations between tasks greatly complexifies offloading
policies, as they also require an orchestration of their
different segments. Some authors, such as [111], [112], [113],
and [114], have studied this type of model in the context
of MEC architectures and have shown that it has an impact
on the offloading performance. In this context, the use of a
NOMA-assisted MEC architecture would make it possible
to overcome these limitations. Indeed, a user could unload
several interdependent threads on different MEC servers
thanks to downlink-NOMA. The optimal offloading policy
would then be a trade-off between the performance of each
MEC server, the local processing performance, and the return
time of the results, in order to optimize the global processing
time of the tasks, by limiting the waiting time between
each thread according to the available resources. Moreover,
it would be possible to limit the overload due to the return of
calculation results on the downlink, by sharing them directly
via the backhaul. For example, a user could offload several
interdependent threads, and whose intermediate results are
exchanged via the backhaul. Thus, a range of such approaches
could be designed to efficiently handle more complex and
realistic task dependency models using NOMA-assisted
MEC architectures.

C. OTHER SECURITY ISSUES
Some of the authors of our comparative study were inter-
ested in the security of these new NOMA-assisted MEC
architectures. They considered the case where an attacker
would carry out passive eavesdropping in the RAN, which
would compromise the confidentiality of the transmitted
information. To prevent this, the authors proposed passive
and active defensivemeasures to guarantee the confidentiality
of their communications. However, these approaches remain
limited because the challenges of computer security are also
based on other equally important criteria such as integrity and
availability. This last point seems to be the most important in
this type of architecture. Indeed, if the MEC server becomes
unavailable, the whole usefulness of this architecture is
called into question, as it cannot guarantee access to the
surplus of computing resources for its users. In this context,
attacks could come from the RAN, by an attacker jamming
the entire channel of the radio cell, or from the backhaul
by a Denial of Service attack on the MEC server [115].
In both cases, a NOMA-assisted MEC architecture would
be more suitable than a MEC architecture. Indeed, thanks
to the downlink-NOMA, the user has the possibility to
offload several times his computation tasks simultaneously
on several MEC servers, so that his task is processed
by an available server. This additional redundancy would
provide resilience in these architectures, in order to mitigate
the increasing attacks. Nevertheless, a reflection on the
detection mechanisms of availability attacks combined with
preventive measures such as NOMA-downlink should be
studied.

D. NEW EVALUATION METHODS/ENVIRONMENTS
As mentioned in the discussion section, all the proposals
made around NOMA-assisted MEC architectures are based
on simplifiedmathematical models solved using optimization
algorithms. However, these models do not allow for a detailed
evaluation of the real performances in these architectures,
in particular with the abstraction of the communicationmodel
(by the use of a flow formula), limiting the experiments
conducted. This is also the case with the abstraction of
the MEC server model, which in most cases is relegated
to a simple relationship between the size of the task
and the frequency of calculation, which does not allow
the full benefits of the MEC architecture standardized by
ETSI to be exploited (based on multiple orchestrators and
virtualization managers). As there are no real connections
between NOMA and the upper layers of the network, there
is no complete environment for evaluating the performance
of NOMA-assisted MEC architectures. Moreover, due to
the compartmentalization of networks, many simulators are
available today to evaluate each technology independently.
To evaluate NOMAas a physical layer, there aremanyMatlab
scripts, or simulators such as 5G VIENNA simulator [116].
On the other hand, MEC architectures can be evaluated in
simulators/emulators such as SIMU5G (Omnet++) [117],
EdgeCloudSim [118], NS-3 [119], or Emu5GNet [120].
Thus, one of the most interesting prospects for accelerating
the research field would be to offer it a new environment for
conducting its experiments. This will necessarily involve the
development of new simulators, the combination of several,
or the integration of NOMA in MEC simulators, which will
lead to thinking about how to interface NOMA with the
higher layers of a network. This new environment will allow
a more accurate evaluation of the approaches considered in
the literature until now.

VII. CONCLUSION
The emergence of new services requires the development
of new network architectures to guarantee their opera-
tion. Multi-Access Edge Computing has been introduced
to meet the growing needs of applications in terms of
computing capacity. It enables users to offload part of
their tasks, limiting the energy consumed by end-users
and the applications’ processing time. At the same time,
the new NOMA digital communications have attracted
the interest of researchers for their innovative properties.
Defining NOMA-assisted MEC architectures could be a
way to overcome numerous limitations (connectivity, spectral
efficiency) while improving performance (latency, energy,
security).

In this paper we analyze and compare state-of-the-art solu-
tions proposed for NOMA-MEC architectures. To achieve
that, we have introduced a taxonomy providing an overview
of the field and a framework for the scientific community to
develop new approaches around these architectures. We then
carried out a comparative study of the papers, grouping them
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according to the targeted performance improvement objec-
tives, enabling us to identify in more detail the approaches
considered by the authors. Following this, we conducted
discussions on the formulation of the models as well as
the advantages and limitations observed during experiments
with NOMA-assisted MEC architectures. Finally, we have
identified a number of perspectives that will help to overcome
certain limitations and accelerate research concerning these
architectures.
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