
Received 19 September 2023, accepted 18 October 2023, date of publication 23 October 2023, date of current version 31 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3326534

V-SKP: Vectorized Kernel-Based Structured
Kernel Pruning for Accelerating Deep
Convolutional Neural Networks
KWANGHYUN KOO, (Graduate Student Member, IEEE),
AND HYUN KIM , (Senior Member, IEEE)
Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and
Technology, Seoul 01811, South Korea

Corresponding author: Hyun Kim (hyunkim@seoultech.ac.kr)

This work was supported by the Ministry of Science and ICT (MSIT), South Korea, through the Information Technology Research Center
(ITRC) Support Program, supervised by the Institute for Information and Communications Technology Planning and Evaluation (IITP),
under Grant IITP-2023-RS-2022-00156295.

ABSTRACT In recent years, kernel pruning, which offers the advantages of both weight and filter pruning
methods, has been actively conducted. Although kernel pruning must be implemented as structured pruning
to obtain the actual network acceleration effect on GPUs, most existing methods are limited in that they
have been implemented as unstructured pruning. To compensate for this problem, we propose vectorized
kernel-based structured kernel pruning (V-SKP), which has a high FLOPs reduction effect with minimal
reduction in accuracy while maintaining a 4D weight structure. V-SKP treats the kernel of the convolution
layer as a vector and performs pruning by extracting the feature from each filter vector of the convolution
layer. Conventional L1/L2 norm-based pruning considers only the size of the vector and removes parameters
without considering the direction of the vector, whereas V-SKP removes the kernel by considering both
the feature of the filter vector and the size and direction of the vectorized kernel. Moreover, because the
kernel-pruned weight cannot be utilized when using the typical convolution, in this study, the kernel-pruned
weights and the input channels are matched by compressing and storing the retained kernel index in the
kernel index set during the proposed kernel pruning scheme. In addition, a kernel index convolution method
is proposed to perform convolution operations bymatching the input channels with the kernel-prunedweights
on the GPU structure. Experimental results show that V-SKP achieves a significant level of parameter
and FLOPs reduction with acceptable accuracy degradation in various networks, including ResNet-50, and
facilitates real acceleration effects on the GPUs, unlike conventional kernel pruning techniques.

INDEX TERMS Kernel pruning, convolutional neural networks, vectorized kernel, network compression.

I. INTRODUCTION
Deep convolutional neural networks (DCNNs) have afforded
significant achievements in computer vision fields, such as
image classification [1], object detection [2], [3], and seman-
tic segmentation [4], [5], and most related studies [6] have
accumulated deep hidden layers gradually to improve the
performance of DCNNs. However, as layer depth increases,
the number of parameters in the network increases, and the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

required computational costs and memory capacity/accesses
increase rapidly, rendering DCNNs impractical. Hence, the
size of heavy weights must be reduced to enable the practical
use of DCNNs in power-restricted environments, such as
mobile devices [7], [8].

In recent years, most networks are over-parameterized,
and as the size of the network increases, the proportion
of unnecessary parameters increases [9]. The network
pruning method [10], [11], which removes these unnecessary
parameters, yields the best performance compared with other
network compression methods in terms of the trade-off

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 118547

https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0003-0381-4360

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

between network compression effect and accuracy. Twomain
methods of pruning exist: unstructured [12], [13], [14], [15],
[16] and structured [17], [18], [19], [20], [21], [22], [23], [24],
[25]. The criteria for classifying unstructured and structured
pruning are generally determined based on the pruning unit in
the network.Weight pruning, which is themost representative
unstructured pruning method, compresses the network by
assigning a value of zero to the weights to be removed
based on the pruning criterion. Because weight pruning is
performed in the smallest unit of the networks (i.e., weight
unit), it can be applied flexibly and is not constrained by
the network structure. However, it is difficult to accelerate
DCNNs in the graphics processing unit (GPU) environment
via weight pruning, because the weights assigned to zero
value are not removed structurally. By contrast, filter pruning,
a representative method of structured pruning, selects a filter
to be removed based on a pruning criterion and structurally
removes the filter from the network [26]. Unlike weight
pruning, filter pruning can be easily accelerated in a GPU
environment [27], and its acceleration performance is high
because the actual operation is reduced through structural
removal. However, because the filter corresponds to a unit
larger than the weight, its application in complicated network
structures is limited. For example, in the case of a network
with a shortcut layer, such as ResNet [1], the number of
output channels must be the same because the two layers
connected to the shortcut layer are added to each other’s
outputs. However, if filter pruning is applied, the number of
output channels of the layer is reduced, and consequently, the
number of output channels of the two layers connected by the
shortcut layer changes, resulting in an open problem [22] that
hinders summation operations.

Kernel pruning, an intermediate step between weight prun-
ing and filter pruning, is applied based on the kernel, which
is the smallest structural unit in the network. Kernel pruning
can be classified into the following categories. Structured
kernel pruning is a technique that systematically removes
targeted kernels, while unstructured kernel pruning involves
replacing the targeted kernels with zero values. Additionally,
the partially structured kernel pruning is a hybrid approach
that combines the characteristics of both unstructured and
structured kernel pruning methods. In general, this approach
has the advantage of enabling real acceleration by reducing
unnecessary kernels. Unlike filter pruning, kernel pruning
can be free from open problems, because the number of
output channels is maintained, which means that it can be
flexibly applied to networks. Kernel pruning can be applied
unproblematically to the shortcut layer of ResNet [1] and
MobileNet-V2 [28], which typically have open problems.
However, if the kernel is simply removed through the pruning
criterion, a different ratio of kernels is removed for each filter,
and the layer’s 4D weight structure collapses. In addition,
even if the kernel is removedwhilemaintaining the 4Dweight
structure of the layer, the convolution operation cannot be
performed, because it cannot correspond one-to-one with
the kernel in the filter and the input feature map of the

filter. Therefore, it is not easy to implement structured kernel
pruning, and since it causes relatively serious performance
degradation, it is implemented as unstructured kernel pruning
in most cases [29]. However, because no structural change
occurs in the layer weight even after unstructured kernel
pruning is performed, the actual acceleration effect cannot be
achieved on the GPU as in weight pruning.

To overcome the limitations of the existing kernel pruning,
this study proposes a vectorized kernel-based structured
kernel pruning (V-SKP) method. In V-SKP, by treating the
kernel of the convolution layer as a vector, the importance
score of each kernel is obtained through the L1 norm of the
kernel and the feature of the filter vector, which is the sum
of all vectorized kernels of one filter. To reflect the different
sensitivities of each layer, we use this importance score to
implement global threshold-based global pruning [30].While
conventional L1/L2 norm-based pruning considers only the
size of the vectorized kernel, V-SKP removes the kernel by
considering the direction of the filter vector as well as the size
of the vectorized kernel. In addition, V-SKP is implemented
with structure-aware kernel pruning by removing kernels in
the same ratio from the filter, which is a three-dimensional
value, to maintain the layer weight structure of 4-dimensional
(4D) arrays. If structured kernel pruning is performed while
maintaining the layer weights of a 4D array, a kernel-pruned
weight is obtained. Each filter in the kernel-pruned weight
must receive a corresponding input feature map, but since the
number of kernels in the filter of the kernel-pruned weight
has been reduced, it cannot correspond one-to-one with the
input feature map. In the end, the convolution operation can
be performed in correspondence with the input feature map
only when the indexes of the remaining kernels are known.
To solve this problem, in this paper, kernel index convolution
using kernel index set is also proposed, and the acceleration
effect is verified by realizing this method through CUDA.
The superior performance of the proposed V-SKP compared
to the existing pruning studies is verified in various datasets
and models, and it is confirmed that the acceleration effect
of 2.72× can be achieved through the actual latency test. The
contributions of this study can be summarized as follows:

• To achieve a high pruning rate without degrading
network performance, a kernel pruning technique that
considers both the size and direction of each kernel in
the filter is proposed through the vectorized kernel.

• Structured kernel pruning is implemented by adaptively
reflecting the importance of each layer while maintain-
ing the 4D weight structure of the weight parameter.

• Kernel-pruned weights, which cannot be calculated with
general convolution, can be calculated through kernel
index convolution.

The remainder of this paper is organized as follows.
Section II introduces the concept of kernel pruning and
related existing studies. Section III presents a detailed
description of the proposed V-SKP, and Section IV provides

118548 VOLUME 11, 2023

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

the experimental results to evaluate the proposed method.
Finally, Section V concludes this paper.

II. RELATED WORKS: KERNEL PRUNING
In a representative study pertaining to unstructured kernel
pruning [29], a single-port salient mapping channel and a
dual-port salient mapping channel were obtained via pruning
training. The single-port salient mapping channel refers to
convolutional kernels with strong mapping ability in the
single direction (i.e., input-output direction or output-input
direction), and the dual-port salient mapping channel refers
to a convolutional kernel with strong mapping ability in
both directions. The previous work [29] presents a kernel
pruning method that defines the average mapping ability
measurement index and sets the retained kernel set as either
a single-port or dual-port salient mapping channel, compared
with the threshold. In [31], another example of unstructured
kernel pruning is presented, where the connectivity between
the input channel and the kernel corresponding to the channel
is evaluated based on the L2 norm. However, in these studies,
structured pruning cannot be implemented because the 4D
array weight structure cannot be maintained since structured
pruning is not considered.

KSE [32], a partially structured kernel pruning method,
measures the sparsity and entropy of the input feature map
and partitions the kernel corresponding to the input feature
map into important and insignificant sets via clustering. KSE
implements partially structured kernel pruning by removing
unimportant sets and not receiving the corresponding input
feature map. While KSE maintains the 4D array weight
structure by removing the kernel at the same location from
all filters in a layer, it cannot effectively extract features for
the entire input because it receives only a portion of the
input feature map, and therefore, actual acceleration cannot
be achieved in GPUs. As another study of the structured
kernel pruning technique, TMI-GKP [33] uses the filter group
formed by clustering filters related to each other through
TMI scores for group convolution, and removes kernels
of the same order from each filter in the group. Then,
structured kernel pruning is implemented by removing the
same percentage of kernels from other filter groups of the
layer. However, removing kernels in the same order from
multiple filters can cause performance degradation because
the properties of each filter cannot be effectively maintained,
and this method also has a limitation in that the number
of input channels is increased compared to the previous
one because the input channel must be newly configured
according to the input channel combination suitable for
the filter group due to group convolution. PPT-KP [34]
addressed the problems of existing kernel pruningmethods by
securing multiple margin spaces for kernel pruning through
an adaptive regularizer that applies different strengths of
L1 regularization depending on the size of the L1 norm of
the kernel. However, this method has limitations in that it
requires an additional training process to secure multiple

FIGURE 1. Structure of pruning. (a) Filter pruning, (b) Kernel pruning.
If the filter is removed in (a), the output channel of the filter is also
removed. In contrast, even if the kernel is removed in (b), the output
channel of the filter is maintained.

margin spaces and has not been verified on a large dataset
such as ImageNet ILSVRC-2012 dataset [35].

III. VECTORIZED KERNEL-BASED STRUCTURED KERNEL
PRUNING
A. OVERALL STRUCTURE
The backbone structure of the DCNN network is generally
a structure in which the layer weights of a 4D array are
stacked. In the layer, the 3D component weight is a filter
(as shown in Fig. 1(a)), and each filter produces an output
feature map of one channel. Thus, the number of filters in
the convolution layer is the same as the number of output
channels in the corresponding layer. On the other hand,
as shown in Fig. 1(b), the two-dimensional component weight
in the layer is the kernel, and the same number of kernels as
the input featuremap exists in one filter. Each kernel performs
a convolution operation in correspondence with one input
feature map channel. As a result, the output feature map of
the filter is the sum of all the results obtained by convolution
operations on the kernel and the input feature map in
the filter.

Kernel pruning is a method of removing such a kernel,
and since doing so does not change the number of filters, the
number of channels in the output feature map is maintained.
The method proposed in this study is shown in Fig. 2, divided
into two parts: the pruning part and the process to convolution
the kernel-pruned weight. The pruning part of Fig. 2(a)
is summarized as follows. The proposed vectorized kernel
pruning removes the kernel while maintaining the 4D array
structure of the network and recovers performance through
fine-tuning. Then, the remaining kernels are structurally
reconstructed and the indexes of the remaining kernels are
stored in the kernel index set (see SectionsIII-B & III-C
for details). The process of inference of the kernel-pruned
weight in Fig. 2(b) is summarized as follows. Kernel-pruned
weights have a problem that cannot be used for general
convolution, and a method called kernel index convolution is
proposed to solve the problem (see SectionsIII-C & III-D for
details).

VOLUME 11, 2023 118549

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

FIGURE 2. Schematic diagram of the proposed method. The proposed method is divided into (a) pruning part and (b) convolution part. (a) shows
the overall process of the proposed vectorized and structured pruning, and (b) shows the overall process of convolution in the pruned network in
kernel units.

B. VECTORIZED KERNEL PRUNING
In this study, vectorization is performed to make various
attempts in evaluating the properties of the kernel. Through
the vectorization of the kernel, it is possible to consider
not only the L1 norm, which was previously considered
during pruning, but also the directionality with other vectors.
To vectorize a kernel, the kernel must be larger than 1 × 1.
This is because the 1×1 kernel is treated as a scalar with only
one component. For kernels larger than 1 × 1, we can treat
the kernel as a vector by treating the elements of the kernel
as components of the vector. For example, in the case of a
3 × 3 kernel, it has 9 elements, which can be expressed as a
9-dimensional vector through vectorization. Here, we express
the i-th kernel of the q-th filter of the p-th layer as K (p)

q,i ,
and simply express it as Ki when expressed in one filter.
Similarly, the q-th filter of the p-th layer is expressed as F (p)

q ,
and when expressing it for one filter, it is simply expressed as
F . Then, as shown in Fig.3(a), the i-th vectorized kernel can
be expressed as

−→
K i, and the filter, which is a set of kernels,

is expressed as F = {
−→
K 0,

−→
K 1, . . . ,

−→
K n−1}. In the end,

−→
F ,

which is a filter vector of F , can be obtained by adding all
−→
K s, and this process is expressed as follows:

−→
F =

n−1∑
i=0

−→
K i. (1)

−→
F serves as a reference point during kernel pruning.
In other words, we aim to keep the properties of

−→
F as

much as possible during kernel pruning. Therefore, through
comparison between

−→
K i and

−→
F , pruning is performed

to minimize changes in the direction and size of
−→
F .

In this paper, the importance of the kernel is determined by
considering two factors and stored in S, the importance score
of kernels. The importance score of the i-th kernel of the q-th
filter of the p-th layer can be expressed as Sp,q,i, but when
expressed for one filter, it is expressed as Si for simplicity.
First, we determine the importance of the kernel based

on the L1 norm. Even if a vector with a small L1 norm
is removed, it does not significantly affect the size of

−→
F

and does not significantly affect the direction of the vector.
Second, we determine the importance by reflecting the angle
between

−→
F and

−→
K i (i.e., θi). The orthogonal component

of
−→
K i to

−→
F interferes with maintaining the direction of

−→
F . Therefore, in order to give a penalty for the orthogonal
component of

−→
K i to

−→
F , a cosine value is obtained through

cosine similarity as shown in Fig.3(b), and it is reflected
when calculating the importance score of kernels in (2). This
importance scoring process is expressed as follows:

Sp,q,i = ∥Ki∥1 × {α + |cosθi| × (1 − α)} (2)

where ∥Ki∥1 represents the L1 norm as a symbol, and α is a
hyperparameter that determines the reflection ratio between
the L1 norm and the cosine value. Sp,q,i is stored in the global
importance score array Aglobal . This Sp,q,i is used not only
when selecting the kernel to be removed within the filter,
but also used to select the layer pruning rate and the global
threshold for the pruning rate of each layer. In addition,
in the case of 1 × 1 convolution, since the vectorized
kernel-based importance scoring cannot be used, L1 norm-
based kernel importance scoring is used independently of

118550 VOLUME 11, 2023

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

FIGURE 3. The process of selecting a global threshold in vectorized kernel pruning. In (a), a vectorized kernel,
−→

K , is created by vectorizing the

kernels in the filter, and the filter vector,
−→

F , is created by adding all
−→

K s in the filter. (b) derives cosθi through cosine similarity of
−→

K i and
−→

F .
(c) measures the importance score using the L1 norm and cosine value of the kernel and stores this score in the global importance score array.
This process is repeated until importance scores are collected from all kernels in the pruning target. In (d), the importance score corresponding to
the given pruning rate in the global importance score array is selected as the global threshold.

3 × 3 convolution, and this importance score is used when
selecting the global threshold, layer pruning rate, and kernel
to be removed in a filter. It should be noted that 1 ×

1 convolution and 3 × 3 convolution have the same given
pruning rate but independent global thresholds.

C. PRUNING PROCESS
Based on the vectorized kernel pruning, we perform pruning
in three stages according to a special rule to minimize
performance degradation due to the implementation of
structured kernel pruning, by reflecting the importance of the
layer. First, through the process of Fig.3, a global threshold
for the pruning rate of each layer is selected to implement
global pruning that reflects the importance of each layer.
In detail, the global importance score, S, of all kernels through
the process in Fig.3 is sorted in size order and stored in the
global importance score array, Aglobal . Assuming that the size
of Aglobal is C and the given pruning rate is Rg, the method
for obtaining the global threshold T is expressed as follows:

T = Aglobal[⌈C × Rg⌉] (3)

where ⌈ and ⌉ are ceiling symbols, and they serve to ceil
decimal values because only integers are possible for index.
Second, as shown in Fig.4(a), we store the importance
scores of the kernels from all filters in a layer in the layer
importance score array Alayer . Subsequently, as shown in
Fig.4(b), through comparison of the global threshold and
layer importance score, we divide the number of Sp,q,i below
T by the total number of kernels in the layer to determine the
pruning rate of the layer, R(p)l . Then, for the implementation
of structured kernel pruning, kernels are removed by R(p)l
from all filters in one layer as shown in Fig. 4(c). At this
time, the kernel to be removed from the filter is selected
by comparing the size of Si. Finally, after creating an

unstructured kernel-pruned network by inserting zero values
into the kernel to be removed, fine-tuning is performed until
the performance is restored. In the third step, as shown in
Fig.4(d), we structurally remove the kernels filled with zero
values and store the retained kernels and the indexes of the
retained kernels. The 1 × 1 convolution also proceeds with
pruning, in the sameway, using the importance score obtained
by the L1 norm.

It is noteworthy that kernel-pruned weights cannot be
operated with general convolution [36]. Because the number
of kernels in the filter and the number of input channels in the
filter are the same in general convolution, after performing
convolution operation in a one-to-one correspondence, they
are added to each other to make the output of the filter.
However, if kernel pruning is applied, the number of kernels
in the filter is less than the number of input channels. In this
case, one-to-one correspondence between the kernel and the
input channel is not possible, and convolution operation must
be performed by designating the input channel corresponding
to the retained kernel. To support this operation, it is
necessary to separately store the kernel index of the kernel-
pruned weight. Therefore, we add the kernel index set to the
set storing the index of the retained kernel, and in order to
save it, a new parameter is inevitably added in addition to the
weight parameter.

To minimize the addition of hardware resources owing to
the introduction of new parameters, this study proposes the
lossless compression method, which is presented in Fig. 5.
Before applying this method, the kernel index set stores the
index of the retained kernel as 32 bits. Therefore, if the
pruning rate is low, the number of parameters increased by
the retained kernel index set may exceed the number of
parameters in removed kernels. In addition, in the case of
a 1 × 1 convolution layer in which only one parameter is

VOLUME 11, 2023 118551

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

FIGURE 4. Pruning process in each layer. (a) measures the importance score in the kernel of each filter and stores this score in the layer
importance score array. (b) compares the global threshold and the layer importance score to calculate the pruning rate of the corresponding layer.
(c) fills the kernels below the calculated pruning rate with zero values. (d) structurally removes the kernels filled with zero values and stores the
retained kernels and the indexes of the retained kernels.

FIGURE 5. Binary index compression method. In (a), all retained indexes
should be stored, but in (b), it is possible to store indexes together
without loss by compressing them to binary numbers.

present in the kernel, the effect of the addition of the retained
kernel index set is even more catastrophic. To alleviate this
issue, we apply a lossless compression method as illustrated
in Fig. 5. In Fig. 5(a), it is assumed that among the eight
kernels, three kernels, [1,3,5], are retained and the kernel
index set for the retained kernel is stored as 32 bits.We use the
binary index to store not only the index of the retained kernel
but also that of the removed kernel. In detail, the index of the
removed kernel is converted to 0, and the index of the retained
kernel is converted to 1 and arranged in binary numbers in the
order of the kernel. When the index of the retained kernel is
[1,3,5] as shown in Fig. 5, the index of the eight kernels can be
expressed as a binary index of 0101_0100(2). Subsequently,
it is converted to [84], which is an 8-bit unsigned number to be
stored. Because the size of the kernel index set is maintained
regardless of the pruning rate, it is possible to achieve a high
level of parameter reduction and weight size reduction by the
binary index, even if the pruning rate is low.

D. KERNEL INDEX CONVOLUTION
In this study, we propose a kernel index convolution that
matches the kernel of the kernel-pruned weight with the input
channels by using the previously stored kernel index set in
the proposed kernel pruning process. As shown in Fig. 6,
the kernel-pruned weight is different from the number of
input channels and the number of kernels in the filter, and
it is impossible to know to which input channels the retained
kernel corresponds. On the other hand, in the proposed kernel

index convolution, since the combination of the retained
kernel and the corresponding input channels is stored in
the kernel index set in advance, the retained kernel and
the corresponding input channels can be known, so that
the convolution operation can be performed correctly. As a
result, by performing convolution corresponding to the input
channels using the index of the retained kernel from the kernel
index set, it is possible to generate the output of the kernel
index convolution as follows:

K ′
i ∗ I [idx[i]] = O (4)

where idx is the index set of the retained kernel, I is the input
channel,O is the output channel, andK ′ is the retained kernel.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
- Fine-tuning Environments: All networks are tested in
the PyTorch framework, and all weights are pruned using
pretrained weights. Stochastic gradient descent (SGD) and
a momentum of 0.9 are applied. In Table 1, learning
rates of 1e-2, and 1e-3 are sequentially applied without
decay. Meanwhile, in Table 2, learning rates of 5e-2, 1e-
2, and 1e-3 are sequentially applied without decay. After
applying unstructured kernel pruning for fine-tuning, the
actual weights are pruned via structured kernel pruning.

- Kernel index convolution environments: The conven-
tional convolution and kernel index convolution implemented
in CUDA are connected to the PyTorch framework model
through CuPy. The experiment is conducted on a TITAN Xp
GPU.

- FLOP reduction and pruned rate: In this study, FLOPs
reduction is an indicator of the decreased number of FLOPs
in the network after pruning compared with before pruning.

118552 VOLUME 11, 2023

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

FIGURE 6. Kernel index convolution process. In typical convolution, input
channels and kernel-pruned weights cannot be matched. However, in the
kernel index convolution, the input channel and the retained kernel can
be mapped and calculated through the kernel index set.

FLOPs reduction (FR) is calculated as follows:

FR = 100

(
1 −

NM ′
+
∑L

i=0 F
(i)K ′(i)(k (i))2H (i)W (i)

NM +
∑L

i=0 F
(i)K (i)(k (i))2H (i)W (i)

)
(5)

where F (i) is the number of filters in the i-th layer, K (i) is
the number of kernels in the filter in the i-th layer, k (i) is
the size of the kernel in the i-th layer, K ′(i) is the number of
retained kernels in the filter of the i-th layer after pruning,
H (i) is the height of the output of the i-th layer, W (i) is the
width of the output of the i-th layer, N is the number of
input nodes in the fully connected layer, M is the number of
output nodes, and M ′ is the number of weights connecting
the output nodes to the retained input nodes after pruning.
In addition, the parameter reduction (PR) is an indicator of
the extent to which the network parameters after pruning
have decreased comparedwith the network parameters before
pruning, calculated as follows:

PR = 100

(
1 −

NM ′
+
∑L

i=0 F
(i)K ′(i)(k (i))2 + B(i)

NM +
∑L

i=0 F
(i)K (i)(k (i))2 + B(i)

)
(6)

where B(i) is the number of scale factors in the BN of the i-th
layer.

B. PRUNING RESULTS
To demonstrate that V-SKP is effective in the CIFAR-10
dataset [37], in Table 1, the proposed method is compared
with state-of-the-art (SOTA) structured pruning methods
used in ResNet-56 and ResNet-110. The proposed V-SKP
presents two results according to the FLOPs reduction ratio
in each network (i.e., Ours1 & Ours2), and results not
provided in the previous studies are indicated by ’-’. As a
comparative study, TMI-GKP [33] was selected as a priority
comparison because it is a structured kernel pruning paper
like V-SKP. We also selected KSE [32], which is the most
representative of unstructured kernel pruning paper, and
PPT-KP [34], which achieved excellent performance as an
unstructured kernel pruning research. In addition, a number

of representative filter pruning studies, including C-SGD
[22], a representative paper that solved the open problem,
and ResRep [38], which achieved excellent performance in
various networks, were selected for comparison. As can be
seen in the experimental results for ResNet-56, although
V-SKP (Ours2) has higher FLOP reduction and parameter
reduction than KSE [32] by 6.6% and 20.2%, respectively,
the accuracy degradation is lower by 0.14%, indicating
that V-SKP is superior to KSE [32] which includes the
partially structured kernel pruning. In addition, V-SKP
(Ours1) achieves higher FLOP reduction and parameter
reduction than another structured kernel pruning technique,
TMI-GKP [33], by 0.5% and 10%, respectively, while the
accuracy performance is also better by 0.45%. The proposed
method is slightly better than PPT-KP [34] in terms of the
trade-off between accuracy and parameter reduction. It is
noteworthy that PPT-KP, an iterative unstructured kernel
pruning method that converges the l1 norm of kernels to
0 through sparsity training and then removes the kernel,
must be accompanied by fine-tuning after pruning as well
as sparsity training that requires considerable computation
before pruning. In addition, these processes must be repeated
until the target pruning rate is reached, resulting in a very
high computational complexity of PPT-KP. On the other
hand, since V-SKP does not require a pre-training process for
pruning and can be performed only with one-shot pruning,
the computational complexity of V-SKP is much lower than
that of PPT-KP. OED [19] which achieved the highest FLOPs
reduction among comparative studies, caused an additional
decrease in accuracy of 1.67%, compared to V-SKP (Ours2),
even though OED [19] reduced fewer FLOPs than V-
SKP (Ours2). Lastly, V-SKP (Ours2) achieves significantly
more FLOPs reduction at a similar accuracy drop compared
to ResRep [38], even though ResRep requires additional
training. For example, after performing ResRep training for
250 epochs, the filter is removed through a pruning process.
On the other hand, the proposed V-SKP performs finetuning
for about 80 epochs as a one-shot pruning procedure along
with the standard setup at the baseline. Therefore, compared
to ResRep, it can be seen that V-SKP has less complexity
because it completes the entire procedure throughmuch fewer
training epochs. In addition, in the ResRep training process,
complexity increases due to the use of penalty gradient,
whereas the finetuning process of V-SKP, which is the same
as the general training process, does not increase complexity.

In the case of ResNet-110, although V-SKP (Ours2)
achieved the highest FLOPs reduction (i.e., 72.8%) and
parameter reduction (i.e., 83.1%) compared to previous
studies, the accuracy degradation is only 0.02%. In particular,
compared to TMI-GKP [33], V-SKP (Ours1) achieves 1.1%
of higher FLOP reduction and 10.1% of higher parameter
reduction while the accuracy performance is also better by
0.15%. It is noteworthy that V-SKP (Ours1) can achieve
FLOPs and parameter reductions of more than 40% and 50%,
respectively, with an accuracy improvement of approximately
0.8%.

VOLUME 11, 2023 118553

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

TABLE 1. Performance comparison on CIFAR-10.

Next, to demonstrate that V-SKP is also effective in the
ImageNet ILSVRC-2012 dataset [35], in Table 2, we compare
the proposed method with several SOTA structured pruning
methods on ResNet-50. We achieve the highest FLOPs
reduction only with a similar level of accuracy reduction as
in the existing SOTA studies. The top-1 accuracy reduction
of LFPC [24] is 1.69%, which is 0.79% lower than that of
V-SKP (Ours2) (i.e., 0.90%) despite the FLOP reduction of
LFPC being 60.8%, which is 6.3% lower than that of V-SKP
(Ours2) (i.e., 67.1%). Another SOTAmethod, CC [25], shows
a parameter reduction of 58.6% and a FLOP reduction of
62.7% with a top-1 accuracy reduction of 1.61%. Although
those numbers are 20.9% and 2.4% lower than those of V-
SKP (Ours2), respectively, the accuracy of V-SKP (Ours2)
is better by 0.71% than CC [25]. In addition, compared to
the structured kernel pruning method (i.e., TMI-GKP [33],
V-SKP (Ours1) achieves 1.1% and 11.5% of higher FLOP
and parameter reductions, respectively, while the accuracy
performance is also better by 0.8%. It is also noteworthy that
V-SKP (Ours1) can achieve FLOPs and parameter reductions
of more than 30% and 40%, respectively, with an accuracy
improvement of approximately 0.2% even in the ImageNet
dataset. It is noteworthy that TMI-GKP, which structurally
removes kernels at the same position from all filters in the
group by forming similar filter groups and utilizing group
convolution, concatenates each reconstructed input channel
according to the order of the filter group. In this process,

the number of combined input channels becomes larger than
the number of original input channels, and consequently, the
memory requirement for the required input increases. On the
other hand, V-SKP does not increase thememory requirement
of the input channel because it reflects the characteristics
of each filter and removes the kernel using kernel index
convolution so that the characteristics are maintained asmuch
as possible.

C. ABLATION STUDIES: WEIGHT SIZE, LATENCY, AND
COMPATIBILITY EVALUATION
As shown in Table 3, when the binary index, which constitutes
the lossless compression method, is used, the weight size is
significantly reduced. Because the networks on the CIFAR-
10 dataset have a high pruning rate, the weight size is
significantly reduced only by the kernel index set (i.e.,
without using the binary index). However, if the binary
index is applied to the kernel index set, then the weight
size can be further compressed. In the ImageNet dataset
environment, the difference between kernel index and binary
index compression becomes significant since the pruning rate
is lower than that of CIFAR-10. The experimental result from
ResNet-50 shows that when the kernel index set is used,
62.5% of the weight size is decreased, whereas when the
binary index is used, 71.4% of the weight size is decreased.

Because the existing framework does not support kernel
index convolution, baseline convolution and kernel index

118554 VOLUME 11, 2023

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

TABLE 2. Performance comparison on imageNet ILSVRC-2012.

TABLE 3. Weight Size Comparison Results by the Proposed Method in
Various Models and Datasets.

convolution are implemented using the CUDA code. Sub-
sequently, an experiment is conducted by linking CuPy
with PyTorch. ‘‘Origin Latency’’ in Table 4 refers to the
time when inference is performed in the conventional
convolution implemented using CUDA code, and ‘‘Kernel
Index Latency’’ refers to kernel index convolution (also using
CUDA code), where the inference time is measured using the
kernel-pruned weight. The presented latency time is the result
of inferring one image on each network pruned by V-SKP
(Our2), and we present the average value of the inference
result of 10,000 images. AR denotes the acceleration rate.
Compared with the conventional convolution operation,
kernel index convolution includes indexing the input channel
via the kernel index set. However, as shown in Table 4,
reducing the number of convolutions by skipping input
channels via the proposed indexing has advantages, even
considering the increase in latency. In the case of the CIFAR-
10 dataset, the kernel index latency is accelerated by 1.70×
and 1.89× comparedwith the origin latency in ResNet-56 and
ResNet-110, respectively. In addition, ResNet-50 tested in the
ImageNet dataset environment shows that V-SKP achieves an
acceleration effect of 2.72× accelerations, which is 0.65×
higher than C-SGD [22]. This means that the increase in
computation complexity due to the input channel indexing
process in V-SKP is negligible compared to the reduction in
computational complexity and execution time due to pruning
accompanying the indexing process.

TABLE 4. Latency Comparison Results by the Proposed Method.

Next, we analyze the effectiveness of the three stages
pruning process of V-SKP explained in Section III-C. In the
first stage of V-SKP, the vectorized kernel pruning equation
is used to find the global threshold to determine the pruning
rate of each layer, and in the second stage of V-SKP, the
importance of each kernel is compared using the equation
of vectorized kernel pruning. Therefore, we performed addi-
tional ablation studies according to the proposed technique at
each stage. The experiments in Table 5 compare the results of
training ResNet-50 on the ImageNet Dataset for 70 epochs.
In the first case, the proposed technique (i.e., Stage 1) is
applied only to the global threshold, and the importance of
each kernel is configured through a naive method based on
the l1-norm. On the other hand, in the second case, the global
threshold is calculated using a naive approach based on the l1-
norm, and the importance of each kernel is processed through
the proposed method (i.e., Stage 2). Table 5 shows that each
method of stage 1 and stage 2 causes a top-1 accuracy drop
of 1.27% and 2.02%, respectively, compared to the baseline.
However, when the two methods are used together, synergy is
achieved,making it possible to alleviate even a top-1 accuracy
drop of 0.9%. Lastly, it should be noted that if the proposed
third stage is not applied, calculations through kernel index
convolution are impossible and the actual acceleration effect
presented in Table 4 cannot be achieved.
To verify the compatibility of V-SKP with various

optimizers, Table 6 shows additional experimental results
by changing the fine-tuning of V-SKP (i.e., SGD) to Adam

VOLUME 11, 2023 118555

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

TABLE 5. Ablation Study for Each Stage of the Proposed Pruning Method.

TABLE 6. Comparison of Fine-tuning Performance on Cifar-10 according to Various Optimizers.

[42] and RMSprop [43]. Experimental results show that
V-SKP is compatible with any optimizer and can achieve
better experimental results than existing pruning studies,
even if there is a slight difference in accuracy drop. As a
result, V-SKP enables considerable network lightweighting
and acceleration with only a small decrease in accuracy,
regardless of the optimizer.

V. CONCLUSION
The existing filter pruning method affords a high FLOP
reduction rate but has difficulties with application to
a complicated network, and the existing kernel pruning
methods to compensate for this are difficult to implement
via structured pruning; therefore, actual acceleration cannot
be achieved in GPUs. To address this problem, this study
proposed the novel structured kernel pruning method (i.e.,
V-SKP) for maintaining the 4D array weight structure and
kernel index convolution for supporting the kernel-pruned
weights. Consequently, the proposed method cannot only
achieve a high parameter reduction rate and FLOP reduction
rate, achieving the actual acceleration effect on GPUs. It is
noteworthy that the kernel index convolution proposed in this
paper is implemented through CUDA code, but due to the
limitations of CUDA code, it is less optimized and slower
than the implementation on Pytorch. Therefore, there is a
need to additionally perform optimization studies on CUDA
for practical use of kernel index convolution. Additionally,
since vision transformers (ViTs) are being actively researched
in the field of computer vision, based on this study, it is
expected that future research will be conducted to expand
and apply the structured kernel pruning method to the field
of ViTs.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[2] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[3] J. Choi, D. Chun, H. Kim, and H.-J. Lee, ‘‘Gaussian YOLOv3: An accurate
and fast object detector using localization uncertainty for autonomous
driving,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 502–511.

[4] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, ‘‘YOLACT: Real-time instance
segmentation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9157–9166.

[5] S. I. Lee and H. Kim, ‘‘GaussianMask: Uncertainty-aware instance
segmentation based on Gaussian modeling,’’ in Proc. 26th Int. Conf.
Pattern Recognit. (ICPR), Aug. 2022, pp. 3851–3857.

[6] Z. Xing, S. Zhao, W. Guo, F. Meng, X. Guo, S. Wang, and H. He,
‘‘Coal resources under carbon peak: Segmentation of massive laser
point clouds for coal mining in underground dusty environments using
integrated graph deep learning model,’’ Energy, vol. 285, Dec. 2023,
Art. no. 128771. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360544223021655

[7] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, ‘‘A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,’’ IEEETrans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1861–1873, Aug. 2019.

[8] J. Choi, D. Chun, H.-J. Lee, and H. Kim, ‘‘Uncertainty-based object
detector for autonomous driving embedded platforms,’’ in Proc. 2nd IEEE
Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Aug. 2020, pp. 16–20.

[9] N. J. Kim and H. Kim, ‘‘FP-AGL: Filter pruning with adaptive
gradient learning for accelerating deep convolutional neural
networks,’’ IEEE Trans. Multimedia, early access, Jul. 11, 2022,
doi: 10.1109/TMM.2022.3189496.

[10] E. Camci, M. Gupta, M. Wu, and J. Lin, ‘‘QLP: Deep Q-learning for
pruning deep neural networks,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 32, no. 10, pp. 6488–6501, Oct. 2022.

[11] J. Guo, W. Zhang, W. Ouyang, and D. Xu, ‘‘Model compression using
progressive channel pruning,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 3, pp. 1114–1124, Mar. 2021.

[12] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ 2018, arXiv:1803.03635.

[13] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[14] A. S. Morcos, H. Yu,M. Paganini, and Y. Tian, ‘‘One ticket to win them all:
Generalizing lottery ticket initializations across datasets and optimizers,’’
2019, arXiv:1906.02773.

[15] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda,
M. Paluri, J. Tran, B. Catanzaro, and W. J. Dally, ‘‘DSD: Dense-sparse-
dense training for deep neural networks,’’ 2016, arXiv:1607.04381.

118556 VOLUME 11, 2023

http://dx.doi.org/10.1109/TMM.2022.3189496

K. Koo, H. Kim: V-SKP for Accelerating DCNNs

[16] X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, ‘‘Global
sparse momentum SGD for pruning very deep neural networks,’’ 2019,
arXiv:1909.12778.

[17] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and
J. Zhu, ‘‘Discrimination-aware channel pruning for deep neural networks,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1–12.

[18] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, ‘‘Channel pruning
via automatic structure search,’’ 2020, arXiv:2001.08565.

[19] Z. Wang, S. Lin, J. Xie, and Y. Lin, ‘‘Pruning blocks for CNN compression
and acceleration via online ensemble distillation,’’ IEEE Access, vol. 7,
pp. 175703–175716, 2019.

[20] M. Lin, R. Ji, Y.Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, ‘‘HRank:
Filter pruning using high-rank feature map,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1529–1538.

[21] T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, ‘‘Towards efficient
model compression via learned global ranking,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1518–1528.

[22] X. Ding, G. Ding, Y. Guo, and J. Han, ‘‘Centripetal SGD for pruning
very deep convolutional networks with complicated structure,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4943–4953.

[23] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5058–5066.

[24] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. Yang, ‘‘Learning filter
pruning criteria for deep convolutional neural networks acceleration,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 2006–2015.

[25] Y. Li, S. Lin, J. Liu, Q. Ye, M. Wang, F. Chao, F. Yang, J. Ma, Q. Tian,
and R. Ji, ‘‘Towards compact CNNs via collaborative compression,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 6438–6447.

[26] C. Zhao, Y. Zhang, and B. Ni, ‘‘Exploiting channel similarity for network
pruning,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 9,
pp. 5049–5061, Sep. 2023.

[27] H.-J. Kang, ‘‘Accelerator-aware pruning for convolutional neural net-
works,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 7,
pp. 2093–2103, Jul. 2020.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[29] J. Zhu and J. Pei, ‘‘Progressive kernel pruning with saliency mapping
of input-output channels,’’ Neurocomputing, vol. 467, pp. 360–378,
Jan. 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0925231221014879

[30] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, ‘‘Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–12.

[31] C. Lin, Z. Zhong, W.Wei, and J. Yan, ‘‘Synaptic strength for convolutional
neural network,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 1–10.

[32] Y. Li, S. Lin, B. Zhang, J. Liu, D. Doermann, Y. Wu, F. Huang, and
R. Ji, ‘‘Exploiting kernel sparsity and entropy for interpretable CNN
compression,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2800–2809.

[33] S. Zhong, G. Zhang, N. Huang, and S. Xu, ‘‘Revisit kernel prun-
ing with lottery regulated grouped convolutions,’’ in Proc. Int. Conf.
Learn. Represent., 2022, pp. 1–23. [Online]. Available: https://openreview.
net/forum?id=LdEhiMG9WLO

[34] K. Koo andH. Kim, ‘‘PPT-KP: Pruning point training-based kernel pruning
for deep convolutional neural networks,’’ in Proc. IEEE 5th Int. Conf. Artif.
Intell. Circuits Syst. (AICAS), Jun. 2023, pp. 1–5.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[37] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON,
Canada, 2009.

[38] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding, ‘‘ResRep:
Lossless CNN pruning via decoupling remembering and forgetting,’’ 2020,
arXiv:2007.03260.

[39] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann,
‘‘Towards optimal structured CNN pruning via generative adversarial
learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2790–2799.

[40] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, ‘‘Filter pruning via geometric
median for deep convolutional neural networks acceleration,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4340–4349.

[41] Y. Zuo, B. Chen, T. Shi, and M. Sun, ‘‘Filter pruning without damaging
networks capacity,’’ IEEE Access, vol. 8, pp. 90924–90930, 2020.

[42] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[43] G. Hinton. Lecture 6A Overview of Mini-Batch Gradient Descent.
Accessed: Oct. 25, 2023. [Online]. Available: http://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

KWANGHYUN KOO (Graduate Student Mem-
ber, IEEE) received the B.S. and M.S. degrees
in electrical and information engineering from
the Seoul National University of Science and
Technology, Seoul, South Korea, in 2020 and
2022, respectively, where he is currently pursuing
the Ph.D. degree in electrical and information
engineering. His current research interests include
network pruning, quantization, and efficient net-
work design for deep neural networks.

HYUN KIM (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electrical
engineering and computer science from Seoul
National University, Seoul, South Korea, in 2009,
2011, and 2015, respectively. From 2015 to 2018,
he was a BK Assistant Professor with the BK21
Creative Research Engineer Development for IT,
Seoul National University. In 2018, he joined
the Department of Electrical and Information
Engineering, Seoul National University of Science

and Technology, Seoul, where he is currently an Associate Professor.
His current research interests include algorithms, computer architecture,
memory, and SoC design for low-complexity multimedia applications and
deep neural networks.

VOLUME 11, 2023 118557

