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ABSTRACT Internet of things (IoT) devices are gaining traction around the globe. These devices are
sometimes hijacked and turned into zombies or botnets. One risk posed by hijacked devices is a ping flood
attack, also known as an internet control message protocol echo request flood. Current literature lacks a ping
flood attack dataset generated from an IoT device. This paper contributes by developing an IoT network
intrusion detection framework for ping flood attacks. This framework deploys an IoT testbed using embedded
devices to emulate two datasets, normal ping traffic and malicious ping flood attack traffic. Features are
extracted from the captured traffic using the Zeek tool. Attacks are detected using three machine learning
algorithms: logistic regression, K-nearest neighbor, and support vector machine. These models are compared
using evaluations such as the confusion matrix, accuracy, precision, recall, F1-score, and misclassification
(error rate). The models are validated using split validation and cross-fold validation. The time consumed
in training and testing the models across various data levels is also analyzed, along with the time required
for feature extraction. The discrepancies between capturing tools are discussed. The use of criteria based on
the time difference between requests to detect malicious traffic is considered, as is the impact of machine
learning models on memory usage. Our work is compared with similar research. The testbed concluded that
the K-nearest neighbor algorithm achieved 99.67% detection accuracy, with an error rate of 0.33% and an
F1-score of 99.67%, which is the best amongst the three algorithms.

INDEX TERMS Flow information, ICMP flood, IoT, IoT devices, machine learning, ping flood, zeek.

I. INTRODUCTION
The technological renaissance is creating new paths for
civilization to advance. The internet of things (IoT) is a new
concept whose genesis could only be realized after recent
developments in hardware, communication, and application
layers [1], [2]. These layers are required for IoT devices
to work. In its rudimentary sense, IoT technology enables
remote physical devices that connect via various networks,
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mainly the internet, to exchange data and perform specific
tasks. These tasks can involve collecting and retrieving data or
manipulating the device’s environment, i.e., interoperability
between remote devices and performing desired goals.

The evolution of IoT security risks can be seen in the
Mirai botnet attack, in which the attackers hijacked IoT
embedded consumer devices. In [3], blame was placed on
the conduct of both manufacturers and consumers. Man-
ufacturers fabricated cheap devices with poor architecture
design and code implementation, such as the teletype network
protocol (Telnet). On the other hand, consumers failed to
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reset the default factory password. The Mirai attack targeted
15 000 high-level systems [4], and around 2.5 million IoT
devices were infected [5].
One of the major types of attack that can suspend services

is the denial of service (DoS) attack. This attack prevents
legitimate users from accessing online services. This is done
by a single device trying to overwhelm and suspend the
operation of the service. A variant of DoS is distributed denial
of service (DDoS), which is an orchestrated attack by many
devices to simultaneously achieve the same goal as DoS.
However, the ramification of DDoS is far greater, since DDoS
attacks have many attackers from different networks.

An intrusion detection system (IDS) is used to detect
anomalies and known malicious signatures at the network
level. When an IDS detects malicious traffic, it generates
alerts for a security team to investigate the incident.
The signature-based approach searches incoming traffic for
specific patterns that are known to be malicious. On the other
hand, anomaly detection recognizes any abnormal behavior
in network traffic. The IDS can be placed either inside or
outside the network [6], [7], [8], [9].

The focus of this work is on the internet control message
protocol (ICMP) echo request flood attack. The ICMP
protocol is employed in the ‘‘ping’’ network utility to check
the status of a remote device and obtain the round trip time
in milliseconds. The attacker uses this utility to bombard
the target with requests, and the target then has to process
the request and reply to it. This consumes bandwidth and
processing power of the target.

There are different structure headers and fields for each
functionality of the ICMP protocol [10]. However, this work
concentrates on ICMP echo request traffic; its structure is
illustrated in Table 1. The data size in an ICMP packet
depends on the operating system (OS): Microsoft Windows
and Linux have different implementations. The former uses
a data size of 32 bytes, while the latter uses 56 bytes. Linux
divides its data into two sections: 8 bytes for a timestamp and
the remaining 48 bytes for the rest of the data. The size of
a ping packet in Windows is 74 bytes, while for Linux it is
98 bytes. Table 2 presents these differences. In our testbed,
the Microsoft ping packet is used.

TABLE 1. ICMP echo request/response header structure.

Zeek is a cybersecurity tool that extracts flow information
by analyzing and summarizing traffic [11], [12]. The scripts
used by Zeek run on packet capture (pcap) files to detect
threats and malicious behaviors. Being a passive tool, Zeek
does not have a countermeasure mechanism after detection.

TABLE 2. ICMP packet size breakdown.

The lightweight transmission control protocol (TCP)/
internet protocol (IP) stack (LwIP) is a C language library that
was created for embedded systems by Adam Dunkels [13],
[14], [15]. This library is a lighter version of the traditional
TCP/IP stack library present in OSs. It assists in reducing the
random-access memory (RAM) usage while still providing
the full TCP/IP stack functionality.

IoT devices are prone to hijacking as demonstrated by the
Mirai attacks. This makes IoT devices a threat to internet
services and network devices. One of the attacks employed
in such a scenario is the ping flood attack, also known as
ICMP echo request flood attack. This attack saturates the
network bandwidth, computational processes, and memory
of the targeted device. This leads to suspension of services
to the legitimate users.

There are multiple variants of ICMP attack; however, this
work focuses on an ICMP echo request flood attack with
a spoofed IP address. This attack has a range of data sizes
from 0 to 1472 bytes, i.e., not fragmented into multiple
packets, and also where the packet configurations are normal,
and not malformed.

There are multiple computer programs that can perform
ping floods, such as hping3, Tribe Flood Network 2k edition
(TFN2K), and Scapy [16], [17], [18], [19]. However, this
work presents an attack program for embedded systems.
Traditional computers usually have a higher processing speed
and multi-threading capabilities.

The current literature lacks an accurate detection mecha-
nism for ping flood attacks generated from IoT devices, i.e.,
embedded devices. In order to solve this problem, we have
set three objectives:

• Creating a dataset that represents ICMP attack traffic
generated from embedded devices (existing datasets
are created using simulations and tools running on
traditional computers).

• Finding the optimal features that represent ping flood
attacks that are to be used in the machine learning (ML)
prediction.

• Finding the optimal ML algorithm among the three
chosen—logistic regression (LR), K-nearest neighbor
(K-NN), and support vector machine (SVM)—that is
best suited to detecting ping flood attacks.

In this work, an IoT network intrusion detection framework
(INIDF) for detecting ping flood attacks generated from
embedded devices is presented. This framework comprises
four modules: a) knowledge building, in which information
is gathered about the inner workings of other modules and
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their performance, b) generating a dataset from IoT devices
that emulates two scenarios of normal and malicious traffic,
c) extracting features from the dataset, and d) implementing
ML models with dataset injection for training and testing.

The dataset is generated from an espressif (ESP) 01S
microcontroller for two scenarios: normal and malicious
traffic. The features are extracted from network traffic using
the Zeek tool. In the ML phase, training and testing is applied
to LR, K-NN, and SVM algorithms. The performance of
the models is measured using the confusion matrix and its
derivative metrics.

Furthermore, the execution time is measured for the
feature extraction module and the ML module (training
and testing for all three algorithms). Memory profiling,
also known as memory analysis, is also performed for the
training and testing steps, with a Python script being used to
evaluate and analyze the memory consumption of the applied
ML algorithms. Finally, a hypothesis stated in previous
research is argued to be disproven based on a real-world OS
implementation.

There has been much research revolving around detecting
DDoS attacks in IoT networks. However, after reviewing
dozens of works, we found that none have ever created a
ping flood attack from an embedded device, specifically a
microcontroller (a special-purpose machine). This work fills
this gap by 1) generating normal ping traffic and a malicious
ping flood attack from a microcontroller, and 2) using only
normal ICMP packets for the normal dataset—other works
have usedmulti-protocol traffic in the normal dataset, making
comparisons less valid. The traffic detection process in this
work is then built on the knowledge and experience gained
from the traffic generation process. That is, we create and
manipulate ICMP packets, which in turn influence the feature
extraction and the ML detection model.

The significance of this work is that the generated IoT
data differ in volume (bandwidth) than the PC generated
traffic. This is important because if the wrong bandwidth
is used, then the ML model accuracy is diminished.
Because if inaccurate data are used to train the model, then
the model prediction will be inadequate. In other words,
if the traffic bandwidth data is not correctly represented,
then the subsequent steps like feature extraction and machine
learning will be built on imprecise data.

Network traffic bandwidth is the maximum bit rate in
a network system. Table 3 shows the bandwidth of a
testbed experiment performed in the study to demonstrate
the differences in bandwidth for three different devices
(ESP8266, Raspberry Pi, and a PC). Each device generates
a ping flood attack on a victim, the victim captures the data,
and the bandwidth is extracted. As shown in Table 3, the ESP
has the lowest bandwidth among the three, and the PC has the
highest.

Bandwidth is an unreliable characteristic of networking,
since networks rely on different physical factors to make
a network connection, such as the type of connection
(media and network interface card), the distance between

devices, and the level of network congestion. As for
wireless networking, it depends on the hardware and the
IEEE 802.11 standard used. The experimental bandwidth
measurement was extracted from a Wireshark I/O Graph for
a single traffic instance, using an interval of 1 second. These
statistics can fluctuate from device to device.

The ICMP or ping flood attack is the same across
different devices, such as a server, PC, Raspberry Pi,
or microcontroller. Because they use the same network
protocol, any detection of ping flood attacks can be applied
on any device. However, the volume of output data differs
between device classes, and if the detection method uses
machine learning, the model that is trained on the data is
crucial to the accuracy of the system: if the data are provided
from a different class, this would affect the outcome. This
research provides a new dataset from a microcontroller, its
bandwidth, and a new methodology. This work adds to the
body of knowledge in that regard.

The contributions of this paper are as follows:

1) An emulated dataset, used to represent a ping flood,
is extracted through a deployed IoT testbed.

2) Feature extraction is used to detect malicious ping
floods.

3) AnML detectionmodel is used to classify malicious and
normal traffic in the deployed testbed.

4) The accuracy, efficiency, time consumption, and mem-
ory consumption of the system are analyzed for normal
and abnormal traffic.

5) A previously stated hypothesis is validated.

The rest of the paper is organized as follows: Section II
presents a review of the literature, Section III describes the
experimental setup, Section IV outlines the INIDF, Section V
presents and discusses the results, and Section VI concludes.

II. RELATED WORK
In [19], the researchers created a detection and prevention
system for DDoS attacks based on a multiple-layer approach
for an IoT-based environment. The detection of attacks can
be performed online (cloud layer) or offline. The ML phase
used a decision tree (DT) algorithm, and the prevention phase
used a software-defined network (SDN) to drop malicious
packets. The researchers deployed IoT devices in eight
street lamp poles on a campus. The devices used various
communication protocols, such as wireless fidelity (WiFi),
ZigBee, Bluetooth, Ethernet, and long-range radio (LoRa).

The detection was performed for three DDoS attacks:
ICMP flood, user datagram protocol (UDP) flood, and
synchronize sequence number (SYN) flood. The available
research datasets consist of comma-separated values (CSV)
files and are found online [20]. The time consumption for
online ML was greater than for offline prediction. The DT
achieved over 97% for detection accuracy and F-score. The
drawbacks of this research are that only one ML algorithm is
used, and that it mentions that the sensors perform the attack,
but does not explain this in great detail.
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TABLE 3. Bandwidth measurement in testbed experiment.

Supervised deep learning (DL) approaches, such as
convolutional neural networks (CNNs), were used to detect
DDoS attacks in an edge computing environment in [16].
The experiment used a PC as an edge computing device
to detect and distinguish traffic by using two-dimensional
CNN models. The first dimension is for the packet traffic
model and the second is for the packet feature model. The
generated DDoS attacks were a SYN flood, a UDP flood, and
an ICMP flood attack. The tool used to launch the attacks was
TFN2K. The two-dimensional CNN models achieved over
99% detection accuracy. The measured time taken to divert
the traffic to the edge device, perform the prediction, and
relay the results was around 8 seconds. The disadvantage of
this approach is the high processing time.

Numerous technologies were used in the creation of the
IoT and industrial IoT (IIoT) datasets provided by [20]. After
generating the datasets, they were used in a predictive analy-
sis employing DL. This research created datasets for multiple
attacks such as DDoS attacks, information gathering, man
in the middle (MitM), injection, and malware attacks. The
technology layers used in the creation of the datasets were
cloud computing, network function virtualization (NFV),
blockchain networks, fog computing, SDN layer, edge
computing and IoT, and IIoT perception layer. There is a
thorough review of current datasets, which are compared with
their new IoT and IIoT datasets. A list of hardware, sensors,
OS, and software used are provided. Moreover, a table of
DDoS attacks and their generating tools is presented. The
tools used for traffic capture and feature extraction were
TShark and Zeek.

The number of selected features was 61 from a total
of 1176 features. The ML and DL were implemented in
the form of centralized and federated learning, respectively.
The centralized approach used DT, a random forest (RF),
SVM, K-NN, and a deep neural network (DNN). The
federated approach used DL. The predictive models were
used for binary, 6-class, and 15-class classification. DNN
was the best-performing centralized approach for the 6- and
15-classes: it achieved 94.67% and 96.01% detection accura-
cies, respectively. Furthermore, RF, SVM, K-NN, and DNN
achieved the same results for the binary classification with an
accuracy of 99.99%. This research provides a comprehensive
view and implementation of current technologies in creating
new datasets for IoT and IIoT. However, their attacks were
performed using PC tools.

The authors of [21] focused on detection of three DDoS
attacks in an IoT environment—hypertext transfer protocol
(HTTP) Get flood, TCP SYN, and UDP flood—using ML.

The proposed framework generates and captures the traffic,
and a feature engineering phase focuses on IoT-specific
network behavior to determine the features, including both
stateless and stateful features. The applied algorithms are
K–NN, SVM, DT, RF, and a neural network (NN). All
five algorithms achieved an accuracy higher than 99%. The
drawback of this work is that the generated malicious dataset
was generated using PC tools instead of real IoT devices. The
generated malicious dataset was manipulated by spoofing the
IP address with other IoT devices’ IP addresses in the testbed.

Other researchers have focused solely on ICMP flood
attacks, such as the authors of [22], who proposed detecting
ICMP traffic using ML. The study generated a dataset
containing normal and malicious traffic and analyzed the
significant and relevant features of a ping flood in an
IoT network. The traffic was detected using unsupervised
learning algorithms like K-means clustering and a random
tree (RT). Finally, a calculation of the energy consumption
of their proposed detection model was provided. K-means
and RT achieved a 99.94% detection accuracy for normal and
malicious traffic. A shortcoming of this research is that the
generated malicious traffic was produced using a traditional
computer, not an embedded device. Their selected feature is
discussed in the hypothesis validation section below.

In [23], the detection of four DDoS attacks in IoT networks
using supervised learning is presented. These attacks include
UDP flood, SYN flood, ICMP flood, and HTTP Get flood.
The study used five consumer IoT devices to create the
dataset. Their framework includes traffic generation together
with scanning, a mitigation phase using rules along with
policies procedures, features selection, and extraction of
flow-dependent and flow-independent features. Finally, six
ML algorithms were used: SVM, RF, DT, LR, K-NN, and
naive Bayes (NB). The achieved detection accuracy for ML
models ranges from 97%–99%, with RF as the best classifier.
The shortcoming of this work is that the malicious dataset
was generated using a tool from a traditional computer using
Kali Linux utilities.

The authors of [24] focused on a different tactic for ICMP
flood attacks, specifically the ICMP Smurf amplification
attack. This differs from the traditional ICMP ping flood
attack, which relies heavily on the echo requests. In contrast,
the Smurf attack depends on echo replies to perform the
attack. The detection method used for this research is the
Kullback–Leibler divergence (KLD) metric. The feature used
to detect Smurf attacks is the number of echo replies. The
experiment was conducted with the DARPA 99 dataset. The
research concluded that it can detect Smurf attacks for both
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low and high rates of attack. However, the results did not
address the accuracy of the suggested approach.

Authors in [25] applied an enhanced SVM to detect
9 different DDoS attacks, which included an ICMP flood
attack. A dataset was generated for the testbed; however,
this was not published. The performance of the ML was
evaluated for linear, polynomial, and radial kernels. The
radial basis kernel achieved the best prediction. A comparison
between the created dataset and the KDDCUP 99 dataset was
conducted. Although much research has been conducted on
the KDDCUP dataset, they did not compare their results with
other works. The dataset was created using a workstation and
program scripts.

The researchers in [26] focused on detection of DDoS
in software-defined IoT networks. The research considered
detecting SYN flood, ping flood, UDP port scan, and UDP
flood attacks. The ML algorithm used to detect the attacks
was RF. The experiment used six sets of data features to
predict the state of network traffic. The experiment took
advantage of Minine-WiFi to simulate the software-defined
IoT network, and the hping3 program was used to implement
the attacks. The dataset obtained from the testbed has not
been published online. The testbed simulated four scenarios
with different settings, and results were presented for each.
For example, in the first scenario, the ICMP flood detection
accuracy was 0.9999. In the second and third scenarios, the
corresponding accuracy score was 0.67. The research also
compared its dataset with two other datasets. The results
obtained suggest that if the number of trees or the tree depth
for the RF algorithm is reduced, the accuracy and run time
overhead will decrease as well.

The researchers in [27] applied an RF and a multi-layer
perceptron (MLP) to the canadian institute for cybersecurity
(CIC) IDS 2017 Dataset. This dataset does not include ICMP
floods in its DDoS attacks. The features were obtained using
the CICFlowmeter packet analyzer. The analyzer extracted
84 network features from the dataset. After the features
were extracted, the waikato environment for knowledge
analysis (WeKa) application was used to apply ML and a
NN. The RF and MLP accuracies were 99.9% and 98.8%,
respectively.

The authors of [28] developed a thresholding DDoS
detection method. Four flow network features were selected
to be the deciding factor in the proposed threshold algorithm.
A dataset was created using hping3, Hyenae, and Metasploit.
The new method was compared to DARPA 98 and DARPA
2000, and the detection accuracy was 99.5%.

The researchers in [29] developed a traffic flow classifier-
based NN for detecting DDoS attacks in an SDN network.
A mitigation process was also developed after detecting
malicious traffic. The SDN environment was created using
mininet and floodlight. The testbed generated three types
of DDoS attacks: TCP flood, UDP flood, and ICMP ping
of death attacks. The features used in the dataset are
OpenFlow from the SDN network and raw packet attributes.

The testbed utilized hping3 to generate the attacks. The
detection accuracy achieved by the algorithm was 96.13%,

In [30], the researchers also created an SDN network
using mininet and floodlight. The DDoS attacks generated
by hping3 were TCP SYN flood, UDP flood, and ICMP
flood attacks. The flow table attributes that are found in SDN
networks were used as features in the dataset. The SVM
algorithm was used in the detection process. The reported
detection accuracy for ICMPflood attacks is between 90.48%
and 95.24%.

In [31], the authors developed a DDoS detection frame-
work in an SDN-IoT environment. The framework imple-
mented three phases for detecting malicious traffic. The
first phase used several ML algorithms, such as SVM,
NB, RF, K-NN, and LR. The results from these algorithms
were introduced to an ensemble voting algorithm to create
an adaptive training model. This model was then used
in a real live prediction. The experiment was constructed
using Mininet-WiFi, while the SDN controllers used were
floodlight and POX, and the Ping3 tool was used to flood
the network. To measure the traffic, sFlow was used. The
detection accuracy from the adaptive model is between 98%
and 99%.

Detection and mitigation of low-rate DDoS (LR-DDoS)
attacks in an SDN environment using ML technique was
investigated by [32]. The research used ML algorithms such
as J48, RT, REP Tree, RF, MLP, and SVM. A modularized
approach was followed in the architectural design, in which
an IDS system was installed on a different device and the
intrusion prevention system (IPS) was integrated with the
SDN controller. The dataset used for training was CIC DoS
2017; however, a testbed was deployed using mininet for
testing purposes.

The LR-DDoS attacks included in this work were DDoS-
Sim (a layer 7 DDoS simulator), GoldenEye, H.U.L.K.
(the HTTP Unbreakable Load King), R.U.D.Y. (R U Dead
Yet DoS tool), SlowBody2, Slow Headers, Slowloris, and
Slowread. The innovation of the work lay in the framework
and the implemented detection system. The traffic features
were extracted using the flowtbag tool, and these features
were then used in the IDS, i.e., the ML process. The best
result reported was for the MLP algorithm with a detection
accuracy of 95%. A shortcoming of this work is that there
is no comparison between the obtained results and other
research results; there was also no calculation of the time
consumption of the ML process.

A. RESEARCH GAP
Tables 4–7 show an overview of the literature review.
Although for some works, the ‘‘research purpose’’ column
states that they generated attacks from IoT networks,
in actuality, they were generated using greater processing
power than is available in an IoT device.

Based on the above review, we can conclude that there is
a research gap in generating a dataset of ICMP echo request

119122 VOLUME 11, 2023



O. M. Almorabea et al.: IoT Network-Based Intrusion Detection Framework

floods from embedded devices. To the best of our knowledge,
no research has generated ICMP echo request flood and
normal ICMP traffic from an embedded device. Researchers
have either used existing datasets or generated a dataset using
tools running on PCs. Available datasets have been inquired
about; however, none are applicable to this work on ICMP
echo request floods.

Traditional computers have higher processing speeds than
embedded devices, which is reflected in their malicious attack
rate through using multiple cores and threads. Researchers
use PCs to generate ping flood attacks, then spoof the IP
address to that of an IoT device.

This work presents an IoT network device that generates
an ICMP echo request flood and normal echo request traffic.
The ICMP traffic in the dataset is categorized as either normal
or malicious by the use of ML algorithms. Furthermore, the
performance is analyzed, according to various metrics, from
the deployed framework.

III. EXPERIMENTAL SETUP
The characteristics of the devices used in the emulation were
chosen based on their use in real-world IoT deployment.
The choice of language was based on the low level of
programming used for real-world IoT devices. The ESP
device used in the testbed is called a system on a chip (SoC).
It houses the microcontroller, RAM, input/output devices,
and others on a single chip. Furthermore, it uses a WiFi
module for network connection.

The ESP adapter device used in the testbed has two
functionalities. The first provides power to the ESP-01S,
and the second provides a universal serial bus (USB) to
serial conversion for easy flashing and programming. The
following subsection details the deployed testbed using
embedded IoT devices for attack traffic analysis.

A. DEPLOYED TESTBED FOR TRAFFIC ATTACK ANALYSIS
This framework uses various devices to deploy the imple-
mented testbed, depicted in Fig. 1, which are as follows:

• A PC, which plays multiple roles in the emulation
process (victim/server/sniffer) and uses Ubuntu Linux
OS on a virtual machine. The PC uses a category 6a
copper wire for transmission.

• An ESP-01S device, used for generating genuine or
malicious traffic. The media used for transmission is
WiFi, with transmission frequency 2.4 GHz.

• An ESP-01S adapter used for easy ESP-01S
programmability.

• A wireless access point (WAP), used to receive and
transmit to/from the ESP-01S, with frequency band
2.4 GHz.

• A layer 2 switch.

The ESP was chosen for the testbed because it is used in a
product known as Sonoff [38]. These products are used as
switches for home appliances. For the current framework,
C++ was used to program the ESP. Implementing the two

FIGURE 1. Network topology.

scenarios required the LwIP library for creating sockets,
Ethernet headers, and IP headers [13], [14], [15]. The Flask
microframework was installed on the PC to act as an API
server for controlling the capturing process [39]. To capture
and store traffic, Dumpcap was used [40]. The sequence of
events is depicted in the diagram in Fig. 2, which shows
generation of both normal and malicious traffic.

This process was automated; the normal and malicious
datasets were generated at different timings with different
pcap files. The steps are as follows:

1) The Traffic_Generating_node(ESP) sends a Get request
with a flag to the Receiving_node(PC) to begin capture.

2) The Receiving_node(PC) sends a receive confirmation
for the Get request.

3) The Receiving_node(PC) directs this message to the
Flask server to begin the capture process.1,2

4) The Flask server runs the Dumpcap program to capture
the traffic and store it in a pcap file.

5) The Traffic_Generating_node(ESP) sends normal/
malicious traffic.

6) The Traffic_Generating_node(ESP) sends a Get request
with a flag to the Receiving_node(PC) to close/end the
capture.

1Screenshots of the Flask API can be found in [41].
2The Flask server code can be found in [42].
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FIGURE 2. Sequence diagram for the process of packet creation and capturing into CSV files.

7) The Receiving_node(PC) sends a receive confirmation
for the Get request.

8) The Receiving_node(PC) directs this message to the
Flask server to close the capture process.

9) The Flask server closes the Dumpcap program to save
the captured traffic in a pcap file.

10) The Receiving_node(PC) uses the Zeek tool to process
the pcap files and outputs log files. The log files in Zeek
are an overall abstraction (summary) of what traffic
passed through the network.3 A sample can be seen
in Fig. 3.

11) After the log files are produced, the zeek-cut subtool
and some other Linux programs are executed to filter
and extract the summaries from the ‘‘conn.log’’ file.4

The ‘‘conn.log’’ file shows the overall ICMP traffic for
a sequential type of traffic.

12) The results produced in Step 11 are put into a CSV file.
The normal and malicious traffic summaries are put into
different CSV files.5

IV. INTERNET OF THINGS NETWORK INTRUSION
DETECTION FRAMEWORK
This section outlines the development of INIDF for detecting
ICMP echo request flood attacks generated from embedded
devices. The overall architecture of the framework is
illustrated in Fig. 4, showing the four modules:

• Knowledge building consists of four areas that were
researched to build the framework.

3The conn.log files can be found in https://doi.org/10.5281/zenodo.
8111635

4The script files can be found in https://doi.org/10.5281/zenodo.8112222
5The CSV files can be found in https://doi.org/10.5281/zenodo.8111635

• The generating data module involves configuring,
managing, capturing, and storing the two scenarios of
network traffic: normal and malicious traffic. There are
many datasets for DoS and DDoS attacks generated
using traditional computers; however, the focus of this
work is to generate ICMP echo request flood attacks
from embedded devices.

• The feature extraction module involves transforming the
data and identifying useful ML features in the dataset.

• The ML module trains and tests three ML algorithms:
SVM, LR, and K-NN.

In the following subsections, each module of INIDF is
described in more detail.
An overview of the data generation, feature extraction, and

ML modules is depicted in Fig. 5. As shown in this figure,
the ESP device generates the normal and malicious network
traffic. The traffic is captured and stored by Dumpcap, then
the features (duration and received ICMP echo request) are
extracted from the pcap and log files using the Zeek tool.
Finally, the produced CSV dataset is injected into the ML
algorithms for training and testing.

A. MODULE (1): KNOWLEDGE BUILDING
This module is the foundation of all other modules: it is
the assembly of knowledge on various aspects of building
and detection using prediction analysis. We have gone
through the state-of-the-art literature resources to develop an
understanding of previous models and their implementation.
This module does not take any input: it is the research

one has to go through in order to generate the dataset,
extrapolate its features, and predict its status as either normal
or malicious. This step provides knowledge to the rest of
the modules. We have gone through various learning and
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FIGURE 3. A sample of the information obtained from the Zeek ‘‘conn.log’’ file. The red columns are important features which are: protocol, duration,
original packets received from sender, response packets replied to the sender.

FIGURE 4. Architecture of IoT network intrusion detection framework (INIDF).

experimental steps through our journey to implement this
framework. Table 8 lists all the learning steps and their
categories.

The knowledge is divided into four categories: a) ICMP
Protocol, b) IoT configuration, c) Managing Capture and
Storage, and d) Machine learning implementations. All four
categories forked into sub-steps that are carried out to develop
the understanding and implementation. Every step acquired
went toward building the rest of the modules.

B. MODULE (2): GENERATING DATA
The input to this module is a strategy derived through the
first module, specifically, the ICMP Protocol, IoT Con-
figuration, and Managing Capture and Storage categories.

The information from these three categories helped in
selecting the traffic-generating device, that is, the ESP 01S
device. The ICMP (ping) code was programmed for normal
and malicious scenarios on the embedded device (ESP 01S)
using the C++ language. Coordination with the receiving end
(the Python server in the PC) was performed using an API to
manage capture and storage.

This phase was established because the current literature
lacks ping flood data generated from embedded devices.
The aim of this step is to emulate two scenarios, normal
and malicious traffic, generated from real IoT devices. The
following subsections discuss the dataset generation steps.

To create a normal or attack ping, a raw socket is needed in
the code [43]. This raw socket is created from the LwIP stack

VOLUME 11, 2023 119129



O. M. Almorabea et al.: IoT Network-Based Intrusion Detection Framework

TABLE 8. Knowledge building steps.

FIGURE 5. Breakdown of the data generation process.

that supports embedded devices. LwIP helps in providing the
Ethernet and IP headers. However, we had to create the ICMP
echo request header from scratch, i.e., all the fields in Table 1.
In the normal scenario, we bind the socket to the IP of the
network interface, i.e., the IP of the network. Conversely,
in the malicious scenario, we bind the socket to a different
IP each time a new packet is sent.

1) DATASET GENERATION SCENARIOS (EMULATION OF
NORMAL ICMP TRAFFIC)
To generate normal ICMP traffic, the process followed by
normal continuous ICMP traffic is illustrated in the sequence
diagram shown in Fig. 6. This normal process was coded and
configured for the ESP device to generate normal traffic from
an embedded device. The normal experiment was repeated
500 times, producing 500 pcap files. The implementation of
this normal process can be performed either by an embedded
device or a PC because its process allows for a 1 second
interval, thus, there is no dependence on heavy computational
processes, unlike the malicious traffic. However, we wanted
to be consistent with the implementation of the testbed, so it
was implemented using an embedded device. The steps of
the conventional ICMP request/response sequence, depicted
in Fig. 6 are as follows:

a) PC_A sends an echo request to PC_B then awaits a
response. This response can be a reply, an error, or noth-
ing, with the latter resulting in ‘‘Request timeout.’’

b) PC_A waits one second regardless of response, then it
sends another ICMP echo request to PC_B.

c) PC_B does not actually wait one second, however;
it replies as soon as the request arrives, usually taking
a fraction of a second.
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FIGURE 6. Normal ICMP request/response sequence.

2) DATASET GENERATION SCENARIOS (EMULATION OF
MALICIOUS ICMP TRAFFIC)
The creation of attack traffic is automated, with the config-
uration of the attacks as follows. Each packet generated has
a unique IP address, which is spoofed. The time duration is
set as the condition for stopping the attack in the ESP device
(attack device). The maximum time duration result achieved
from the genuine dataset is 500 000 milliseconds. This value
is set as the maximum time for the attack emulation, with
the minimum duration set at one second. A random number
between the maximum and minimum durations is generated
by the ESP; this number is used as a condition for stopping
the attack. The malicious experiment is repeated 500 times,
producing 500 pcap files. This balances the genuine and
malicious datasets.6

The normal and malicious traffic generation processes
were developed using C++ and Python code.7 The C++
code is uploaded to the ESP, while Python/Flask is used
to control the capturing and storing process. This code is
automated to create 500 pcap files for each scenario (normal
and malicious). The emulation files and the contents of the
normal and malicious ICMP traffic are shown in Table 9.

3) EVALUATION OF LEGITIMACY OF ATTACK DATASET
To evaluate the legitimacy of the produced attack dataset,
a report [44] and paper [45] on detecting ping flood attacks
using snort have been examined. In [44], a ping flood attack

6The genuine and malicious datasets’ pcap files can be found in
https://doi.org/10.5281/zenodo.8111635

7The C++ code can be found in https://doi.org/10.5281/zenodo.8112222

was identified if 500 packets were received in 3 seconds.
In [45], a ping flood was defined as 400 packets being
received in 4 seconds. We apply the definition of [44].
The produced attack testbed has achieved an average of
3071 packets in six instances of the attack in 3 seconds.
This result surpasses the reported threshold of 500 packets
in 3 seconds. Therefore, the established dataset has met the
criterion and has been designated as a ping flood.

4) TRAFFIC MANAGEMENT AND CAPTURE
The framework applies the capturing phase through Dump-
cap, a utility embedded in the Wireshark suite. The capture is
triggered by a Get request made from the ESP to the Flask
server. Afterward, the Flask server executes the Dumpcap
program in a shell. Following that, the ESP reaches the end of
its transmission in either the genuine or malicious scenario.
It sends a Get request to the Flask server to end the capture.
The Flask server closes off the capture/shell. There is a folder
for each scenario, genuine and malicious.

Each folder contains 500 pcap files. Dumpcap is config-
ured to only capture the attacker IP address because this work
is only interested in detecting an ICMP packet from the ESP.
Other traffic such as TCP and others will increase the pcap file
size. Other research on DDoS attacks has tended to collect
all traffic to detect general attacks associated with multiple
protocols. The output of this module is the 500 pcap files for
each of the normal and malicious scenarios.

Algorithm 1 describes the detection process in more
detail. Algorithm 2 contains the pseudocode for generating
malicious traffic, and Algorithm 3 for normal traffic. The
capturing process of these two traffic generation routines
is controlled by the Flask framework, as illustrated by
Algorithm 4.

C. MODULE (3): FEATURE EXTRACTION
This module takes inputs from the first and second modules,
the knowledge and the pcap files respectively. The knowledge
gained from the first module is from theML implementations
category. The output of the second module is the set of pcap
files, which are raw data from which features need to be
extracted. The size of the captured pcap for the genuine
dataset is 21.9 megabytes (MB), and the captured pcap for the
malicious dataset is 17.2 gigabytes (GB). Both were captured
over a duration of over 34 hours. From the experience of
creating, experimenting with, configuring, and testing ICMP
packets, it was concluded that the features of the ICMP
packets cannot be trusted: the header information and payload
can be manipulated. The reason for this phenomenon is that
an ICMP packet is mutable. Any competent hacker could
configure their own ICMP packet, similarly to how they were
configured for this framework testbed. However, the flow
information of traffic cannot be manipulated.

Flow information is the compendium of all traffic in a
window of time, which summarizes the sequential traffic into
one record. This record shows the protocol, service, duration,
originating packets, and other information, as exhibited in
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TABLE 9. Files and packets content.

Algorithm 1 Traffic Detection
Input: Time: Ts = 1 sec, Packet Size: Ps = 74 bytes
Output: Detection of Normal and Malicious Traffic
NT = Ts ∗ Ps ; /* NT: Normal Transmission

*/
MT = (Ts ∗ Random(1 000− 500 000)) ∗ Ps ;
/* MT: Malicious Transmission */
for i =1 to 500, increment by 1 {DC ← (NT ,MT )} ;
/* DC: Data Capture (each scenario
transmission has 500 time windows)

*/
PD← DC ; /* PD: Processed Data
(Tuple set) */
MLA← PD ; /* MLA: Machine Learning
Algorithm */
PM ← MLA ; /* PM: Predictive Model */
PM - applies (LR, K-NN, SVM), each algorithm
calculates different PM
(0, 1)← PM ; /* Predicting Normal or
Malicious traffic */
PM is analyzed based on true positives, true negatives,
false negatives, false positives, accuracy, precision,
recall, F1-score, and misclassification.

Fig. 3. Sequential traffic is the key here, because if time
passes, the traffic is perceived as a new record. For example,
if attack traffic is captured in one minute, it shows continuous
bombardment of the victim, which results in a single record.
The record shows the duration of communication between the
two devices, and the number of received echo request packets.
However, if there is a large time window of communication
absence between packets, then it is perceived to be another
record.

Because the value of the ICMP attack lies in its volume
instead of its contents, unlike many other attacks, reviewing a
single packet does nothing but legitimize the received packet.
In essence, any individual ICMP attack packet is legitimate,
but the quantity is problematic. Therefore, reviewing the
traffic as a whole is necessary to distinguish its state; this
is done using the Zeek tool, which summarizes sent and
received traffic.

INIDF uses Zeek to read the pcap files and process
them to create logs. Zeek has a sub-tool called zeek-cut,
which performs extraction on the log files. This work uses

Algorithm 2 Generating Malicious Traffic

SET serverName/IP to destination variable;
Function sendSignal(signal):

Build a GET request with signal value embedded
in the request;
SEND the GET request to destination;
if a response is not received such as response code
200 then

DELAY for 2 seconds;
CALL function sendSignal (signal) ;
/* recursive call */

end
return
Function Main():

SET timer to 0;
SET counter to 1;
while counter less than or equal 500 do

CALL function sendsignal (3);
; /* 3 indicates start capture
of malicious traffic at the
server side */
DELAY for 2 seconds ;
SET timer equals currentSystemTime plus
random value from 1 second to 8.3 minutes;
while timer > currentSystemTime do

CALL function pingAttack
(destination_IP);

end
DELAY for 1 sec;
CALL function sendSignal(4) ; /* 4
indicates close capture of
malicious traffic at the server
side */
INCREMENT counter;

end
return

a shell script that inputs pcap into Zeek for processing to log
files, then extracts summaries from the log files using zeek-
cut. These summaries are used as (piped) inputs to Linux
programs such as awk and sed for filtering and insertion by
using regular expressions [46], [47], [48], [49], [50]. The
filtration is used for ICMP packets only, and the insertion
part is used for labeling the data. Afterward, the results
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Algorithm 3 Generating Genuine Traffic

COPY here lines 1–12 from the second algorithm;
Function Main():

for ( i← 1 to 500 by 1 ) {
CALL function sendSignal(1) ;
; /* 1 indicates start capture
of genuine traffic at the
server side */
DELAY 3 seconds ;
for ( j = 1; j ≤ i; j = j+ 1 ) {

PING(destinationIP);
DELAY 1 second;

}

CALL function sendSignal(2);
; /* 2 indicates close capture
of genuine traffic at the
server side */

}

return

are inserted into a CSV file, to prepare them for the ML
algorithms.

Two kinds of experiment were done using the Zeek tool;
the first experiment was conducted for ping floods with a
static IP address (not spoofed). The Zeek tool transforms the
traffic flow to one record, showing the flow information for
the whole time window, i.e., the duration and the sum of all
echo requests. This is because one IP address is flooding the
system. However, in the second experiment, ping floods with
dynamic (spoofed) IP addresses were carried out.

In the second experiment, Zeek transforms each echo
request into one record. Put differently, if there is a 1000 ping
flood, the ‘‘conn.log’’ file (flow information file) shows
1000 records. This is due to each echo request having a
different IP address. As a result, there is no cumulative
duration provided nor a sum of echo requests, and thus
calculating the duration and sum of echo requests needed to
be handled. This rendered the Zeek tool useless. To overcome
this hurdle, the duration needed to be calculated using the
following formula:

Tα − Tβ = 1t

where Tα is the time of the last echo request, Tβ is the time
of the first echo request, and 1t is the duration.

The time mentioned in the formula is epoch time, which
is in seconds. Epoch time determines the date and time
for a computer clock, with the starting time varying from
one OS to another. As mentioned, if there are 1000 echo
requests, and each request is from a different IP address,
then Zeek extracts 1000 flow records, and each record has
its arrival epoch time attribute. This time attribute can also
be found while inspecting a packet in Wireshark-Ethernet
Frame-Epoch time. Another way of extracting the epoch time

Algorithm 4 Flask Microframework (API Server
Side)

Function killProcess(processObject):
GET processObject.ID
CALL function from the language library to kill
the process by ID

return
Function Main():

SET arg variable equal to the retrieved signal from
the GET request
SET process1 to an empty shell ; /* for
genuine traffic */
SET process2 to an empty shell ; /* for
malicious traffic */
if arg equals 1 then

PRINT (‘‘start genuine traffic’’);
SET cmd equal to a string ‘‘dumpcap -i 1 -f
‘ICMP’ -P -w output_destination’’;
PASS cmd string to process1 ;
START process1 ;

else if arg equals 2 then
CALL function kill_process (process1);
PRINT (‘‘finished genuine traffic’’);

else if arg equals 3 then
PRINT (‘‘start malicious traffic’’);
SET cmd equal to a string ‘‘dumpcap -i 1 -f
‘ICMP’ -P -w output_destination’’;
PASS cmd string to process2;
START process2;

else if arg equals 4 then
CALL function kill_process (process2);
PRINT (‘‘finished malicious traffic’’);

RETURN code 200 as a response
return

is by using the TShark tool, which exports it to a CSV file
directly.

Despite that, we used the Zeek tool and extracted the time
attribute from the ‘‘conn.log’’ file. This step required using
bash scripting to handle the value storing and subtracting
the time as shown in the duration formula. Additionally,
the echo request tally was computed, after which, these
two values were appended to the malicious CSV file.
It should be noted that the ‘‘conn.log’’ file contains the
records in disorderly fashion. Thereby, sorting needed to be
performed first.

The features extracted from the conn.log file are the
duration and number of originating packets known to be
echo requests. The third column is the label, which is named
‘‘attack’’ and contains either one for an attack or zero for
normal traffic. Ten-record samples of both CSVs are provided
in Table 10. The dependent and independent features are
illustrated in Table 11. The outputs of this module are the two
CSV files, normal and malicious.

VOLUME 11, 2023 119133



O. M. Almorabea et al.: IoT Network-Based Intrusion Detection Framework

TABLE 10. Sample of CSV files for normal and malicious traffic.

TABLE 11. Dependent and independent features.

D. MODULE (4): MACHINE LEARNING DETECTION
This module receives inputs from the first module and the
third module: knowledge and CSV files, respectively. The
knowledge required here is how to train and test the modules.
The CSV files with data on normal and malicious traffic are
inserted into the ML process.

The data uses binomial/binary prediction, with normal
traffic represented by ‘‘0’’ and malicious traffic by ‘‘1.’’
There are three columns in the two CSV files: duration,
number of originating packets (echo requests), and attack.
The dataset does not have null or missing values. All values
in the normal dataset are unique and do not follow the normal
data distribution. On the other hand, the malicious dataset has
a random data distribution.

The ML model predicts, on the basis of each record (time
window), either normal or malicious traffic. The testbed uses
Python and Jupyter to perform the ML process.8 The Python
version used in the experiment was 3.8.3, and the IPython
version was 7.16.1, with jupyter_core 5.1.0. Several libraries
were imported to be used in the ML process:
1) pandas.
2) time.
3) sklearn.linear_model.LogisticRegression.
4) sklearn.svm.SVC.
5) sklearn.neighbors.KNeighborsClassifier.
6) sklearn.preprocessing.MinMaxScaler.
7) sklearn.model_selection.train_test_split.
8) sklearn.metrics.
9) sklearn.model_selection.cross_validate.
The pandas library reads the two CSV files (normal

and malicious) and places them in separate variables.

8The Jupyter ML file can be found in https://doi.org/10.5281/zenodo.
8112222

A number_range array variable, containing the values 50,
100, 150, 200, 250, 300, 350, 400, 450, and 500, is used to
increment the size of records/observation for each scenario to
see the trend of performance and execution time.

A for loop iterates through the array and assigns records
from each dataset to the number_range current iteration. For
example, in the first iteration, 50 records are placed for each
scenario, normal and malicious, then these two variables are
combined into one variable that has a total of 100 records
(normal and malicious). Thus, the data have a balanced
distribution.

Next, the data are segregated into dependent and inde-
pendent variables, which are passed to the train_test_split
method to be split into training and test data in a 70:30 ratio,
respectively. The split validation shuffles the data using a
fixed seed of value 177, and uses stratified sampling to ensure
a balanced dataset, i.e., a 50%:50% ratio of normal and
malicious traffic.

The training data are scaled using the MinMaxScaler,
which transforms them to values between 0 and 1. Since
the malicious dataset has very large values compared to the
normal dataset, scaling is necessary for accurate detection.
The scaling first obtains the minimum and maximum values
from each feature and then applies the scaling formula to each
field. The MinMaxScaler formula [51] is as follows:

Scaled Dataset =
D− D.min

D.max − D.min

Next, each model is trained on the data. The test data are
also scaled based on the minimum and maximum values of
the training data. Subsequently, the test data are predicted and
compared to their known classes. Afterward, the performance
is evaluated based on comparing the confusion matrix and
its derivatives. Cross-validation is applied to the dataset with
5 and 10 K-folds, and also with stratified sampling. After the
normal and malicious datasets are merged, the independent
data are scaled as a whole, and cross-validation is applied.

Pattern recognition is a type of ML technique that
enables more advanced learning. A model trained with data
can perform better than statistical techniques. The three
supervised classification algorithms used in this framework
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are LR, K-NN, and SVM. Referring to [20], [21], and [23],
these algorithms were chosen based on their high detection
accuracy.

1) SUPPORT VECTOR MACHINE
SVM is a supervised ML algorithm that can be used for both
classification and regression problems. The classifier is non-
probabilistic and uses a hyperplane with maximum margin,
which is calculated using a convex optimization problem
[52], [53], [54]. The SVM linear mathematical model is [55]

minω,b,ζ
1
2
ωTω + C

n∑
i=1

ζ i

yi(ωTφ(xi)+ b) ≥ 1− ζi

ζi ≥ 0, i = 1, . . . , n

2) LOGISTIC REGRESSION
The LR algorithm computes a value ranging from 0 to 1 from
any input value by using the sigmoid function. A cutoff or
threshold is placed at 0.5 to distinguish between the binary
classes. Finally, the produced probability classifies which
side of the line the value lies on [56]. LR is sensitive to
outliers. The LR mathematical model is [57]

p(Xi) = expit(Xiω + ω0) =
1

1+ exp(−Xiω − ω0)

3) K-NEAREST NEIGHBOR
The K-NN algorithm calculates the distance from a given
point x to all points in the data. Afterward, the data points
are sorted in order of increasing distance from x. Finally,
the majority label of the K closest points is predicted [58].
The optimal K parameter in the testbed is 5. The K-NN
mathematical model is [59]

argL max
N−1∑
i=0

ζpi

E. HYPOTHESIS VALIDATION THROUGH A
RECURRENT EXPERIMENT
While researching and experimenting it was found that a
hypothesis claimed in [22] is not true. The work in [22]
created a dataset for normal and malicious traffic for ping
flooding detection. After analyzing both datasets, the authors
concluded that an ICMP packet can be identified by two
features: frame size and IP flag. Table 12 shows the features
and a rebuttal verified by the testbeds implemented under this
framework.

V. RESULTS, ANALYSIS, AND DISCUSSION
The three ML models are evaluated using the confusion
matrix. This is used in classification problems to assess the
locations of errors in the model. There are four cells in the
confusion matrix to identify the whereabouts of the mistakes.

The true negative (TN) rate describes traffic that is
correctly predicted as normal ICMP traffic. The false

positive (FP) rate, sometimes called type 1 error, describes
normal ICMP traffic that is incorrectly predicted as ping
flood traffic. The false negative (FN) rate, also known as
type 2 error, describes ping flood traffic that is incorrectly
predicted as normal ICMP traffic. The true positive (TP) rate
represents ping flood packets that are correctly predicted.
Table 13 shows the obtained confusion matrix. There are five
performance metrics that can be derived from the confusion
matrix, as listed below:
• The F-score measures a model’s accuracy on a dataset:

2×
Precision× Sensitivity
Precision+ Sensitivity

• The sensitivity (recall) measures the percentage of
predicted positives among all positive cases:

TP
TP+ FN

× 100

• The precision measures the percentage of actual posi-
tives among predicted positives.

TP
TP+ FP

× 100

• The misclassification (error rate) measures the percent-
age of observations that are incorrectly predicted:

FP+ FN
Total Predictions

× 100

• The accuracy measures how often the model is correct:

TP+ TN
Total Predictions

× 100

The time taken for training and testing was measured using
Python’s time.perf_counter method, and the results are shown
in Fig. 7. The results of testing the models in split validation,
using the confusion matrix and its derivative performance
metrics, can be seen in Figs. 8–11. The cross-validation result
is illustrated in Fig. 12.

These measurements were carried out on a PC using
64-bit Microsoft Windows 10, running on an Intel i7-7700K
CPU at 4.20 GHz with 16 GB RAM. The best training time
was achieved by K-NN; however, the best testing time was
achieved by the LR algorithm. The SVM algorithm required
intermediate amounts of time.

The bar chart in Fig. 7 illustrates the time consumed in
training and testing the three algorithms across data incre-
ments. These data increments are for split validation, that is,
all dataset increments are divided into 70:30 training:testing
ratios. First, we discuss the training execution times. Overall,
as can be seen in Fig. 7, the execution times for training
LR and SVM are higher than for K-NN, with LR taking the
longest time. One can observe that the time to train SVM
increases steadily with the data size. The growth percentage
of SVM from its initial 10% to 100% is 356.297%.

Growth Percentage =
presentValue−pastValue

pastValue
× 100
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TABLE 12. Hypothesis validation.

FIGURE 7. Execution time for training and testing of three algorithms over data increments for split validation.

TABLE 13. Confusion matrix.

As for the testing execution times, generally, K-NN and
SVM consumed more testing time than LR, as can be seen in
Fig. 7. In contrast to the LR training time, it requires little
testing time. This means that the data size and proportion
do not affect the LR algorithm. Unlike K-NN training, the

K-NN testing time inconsistently rose, with a growth rate of
329.736%, which makes it the highest among the other two.
SVM also gradually increases in testing time, but at an acute
angle, unlike K-NN.

Figs. 8-11 show the performance metrics for the three
models in 20% data increments. This measurement is for
70:30 split validation. In Fig. 8, we can observe that
K-NN began with 93.33% detection accuracy at the 10%
increment, after which the data size increased and the
accuracy began steadily increasing. K-NN achieved the best
detection accuracy among the three models at 99.67%.
In contrast, SVM achieved the lowest with 97% detection
accuracy. LR scored a little higher than SVM at 97.67%.
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In Fig. 9 misclassification, i.e., the error rate, is depicted
for three ML models over a 20% increment of the dataset.
Misclassification is the complement of accuracy, so it is
high when accuracy is low. K-NN has the lowest error rate
at 0.33%.

Fig. 10 demonstrates how often the models fail to spot
malicious traffic. Because all precision values are 100%,
only the recall values affect the accuracy. If the accuracy
and precision are examined side by side, they have the
same distribution but at different ranges. K-NN achieved the
highest recall, meaning that it was the most accurate.

Fig. 11 illustrates the F-score for all three ML models in
20% dataset increments. Because F-score is a combination
of precision and recall, the same distributions can be seen as
for those metrics. K-NN has the highest recall value, which
means it was the most accurate.

1) 5-fold cross-validation:
Fig. 12 presents 5-fold cross-validation performance
metrics for the three ML models. Once more, K-NN
outperformed the others in accuracy at 93.20%, and
similarly had the best recall and F-score performance.
In second place is SVM, and in third place is LR.

2) 10-fold cross-validation:
Fig. 12 shows 10-fold cross-validation performance
metrics for the three ML models. Even in the 10-fold
case, K-NN performs the best with 96.29% accuracy,
similarly high recall and F-score values. One can see
that the recall is particularly high, which implies that
the model is good at detecting malicious traffic. The
LR model was outperformed by SVM in 5-fold cross-
validation; however, LR in 10-fold cross-validation
performed better than SVM.

While experimenting with a 0-byte payload using two PCs,
it was noticed that a discrepancy inWireshark is found, which
is detailed in Table 14, and observation notes are added.
During the emulation, six different ESP units were tried. Each
generated different numbers of packets per second. The more
control flow statements (loops or conditions) are used in the
code, the fewer the packets it generates per minute i.e., the
more the code written, the greater the computational process
required.

It is worth mentioning that for normal ICMP request pack-
ets, a one-second delay is maintained as an interval between
sending consecutive packets. In one of the experiments, this
was exploited by ignoring this delay and sending an ICMP
request packet as soon as the reply arrived. Waiting for a
reply usually takes a fraction of a second. This style of
attack does not saturate the buffer of the target, but keeps
it busy.

A solution to this kind of attack is measuring the time
difference between the request and response. If the difference
is around 1 second, then it is considered to be normal traffic.
However, if it is a fraction of a second, then it is concluded
to be malicious. This calculation should be taken over an

average of multiple instances, because timing is not entirely
predictable in such IoT networks.

When performing the ping flood, after some time, the pcap
logs showed that there were no echo responses to the ping
flood. This is interpreted as the memory buffer being full.

To profile the memory usage for the Python ML program,
memory_profiler and Scalene were used [61], [62]. It was
found that most of the memory usage is for importing
libraries, such as pandas and sklearn. In contrast, handling
the dataset and training and testing the ML models had a
tiny impact on the memory usage. This can be observed in
Fig. 13, where the ML function resides below the edge of the
maximum memory usage at 120 MB. Fig. 13 was produced
for LR prediction using the memory_profiler library. This
small memory usage for the ML function is to be expected
because only 1000 samples/records were used. However, if a
larger dataset were used, the memory usage would increase
accordingly.

This framework also measured the amount of time for
feature extraction from the Zeek tool until the production of
CSV files, which is mentioned in Section IV-C (the spoofed
experiment). This involved processing the pcap files and
producing the CSV files. The time measurement, i.e., the
execution time, was measured for both normal and malicious
traffic at two specific times. The first is around 1 s and the
second is near 60 s. Table 15 presents the detailed results of
these experiments. The measurement was performed using
the ‘‘time’’ command from the Linux OS. An executable shell
script was passed as an argument, containing Zeek, zeek-cut,
awk, and sed commands.

Fig. 14 presents the execution time or time consumption
for Zeek and other tools up to the production of CSV files,
for both normal and malicious traffic. One can observe that
the malicious traffic required more time than the normal
traffic. The normal traffic in both instances resulted in similar
execution times, even after an increase in traffic.

1) COMPARATIVE ANALYSIS
The research in the literature applies a normal dataset that
contains various protocols to train a model to detect ping
flood attacks; however, our normal dataset only contains
normal ping traffic. Furthermore, the normal dataset is
unbiased in terms of uniqueness, i.e., no observation is
duplicated.

Although researchers have applied numerous stateless
(packet header information) and stateful (flow information)
features, our work employs the optimal and base minimum
of flow features based on the experience of generating ping
flood packets from scratch. The two features chosen offer
efficient training and testing times.

Table 16 presents the differences in accuracy between this
work and others. The work [20] has a publicly available
dataset that contains many attacks. One of the files in
the dataset [35] has a single ping flood attack pcap file,
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FIGURE 8. Accuracy of three ML models across data increments for split validation.

FIGURE 9. Misclassification of three ML models across data increments for split validation.

named ‘‘DDoS ICMP Flood Attacks.pcap’’ (their dataset
was generated from hping3, implying a PC was used). After

downloading and applying INIDF feature extraction, one
record (time window) was obtained from the extraction,
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FIGURE 10. Recall of three ML models across data increments for split validation.

FIGURE 11. F-score of three ML models across data increments for split validation.

the results of which are as follows: the duration was
403.675 seconds and the number of echo requests was

2 411 190 packets. Subsequently, ML was applied, producing
the following results: LR=1, K-NN=1, and SVM=0. In this
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FIGURE 12. 5- and 10-fold cross-validation performance metrics for the three ML models.

TABLE 14. Performance metrics.

TABLE 15. Time measurement for using Zeek tool up to CSV files.

case, 1 is the desired outcome, because the file contains a ping
flood and ‘‘1’’ means malicious. Even though the dataset is
larger than the dataset generated in this work, in terms of echo

requests in a time window, K-NN, the best model achieved
in this study, was able to distinguish malicious traffic. This
result demonstrates the abilities of INIDF.
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FIGURE 13. Memory usage for Python program, ML_function, which performs dataset handling, training, and testing. The image was produced
using the memory_profiler library.

FIGURE 14. Execution time for Zeek and other tools up until CSV files, i.e., feature extraction.

2) LIMITATIONS AND FUTURE WORK
The framework is able to detect if the time window
is malicious or normal; however, because attackers use

spoofed IP addresses, differentiating between legitimate
and malicious IP addresses is still an unattainable goal.
As mentioned above, inspecting individual packets is futile,

VOLUME 11, 2023 119141



O. M. Almorabea et al.: IoT Network-Based Intrusion Detection Framework

FIGURE 15. Snapshot of Wireshark portraying an echo request with zero data size.

FIGURE 16. Snapshot of Wireshark portraying an echo response with zero data size but with an increased frame length to 60 bytes
because of the added padding field.

so future solutions should revolve around flow information.
Furthermore, this work does not address ICMP fragmentation

attacks, also other ML and DL algorithms can be explored
to see which can perform best in accuracy as well as time
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TABLE 16. Comparison table of our work with other research.

TABLE 17. Nomenclature for key terms.

consumption. These matters are left as potential avenues for
future extension of the framework.

VI. CONCLUSION
This work has investigated current research for a ping
flood attack dataset generated from an embedded device.
However, all datasets reviewed were either generated from
a tool originating from a higher processing speed device
or had IPs manipulated to appear as if they came from an
embedded device. This work adds to the body of knowledge
with regard to embedded device attack volumes and offers
a new methodological approach. The framework developed
two datasets: normal ping traffic and a malicious ping flood
attack. Since we developed the ping packets, we know
their characteristics; therefore, we extracted the optimal and
base minimum of features from the ping packets. We then
trained and tested threeML algorithms. Themodels produced
were evaluated by calculating the confusion matrix and its
derivatives. The execution times for feature extraction and
ML were measured, and the difference in bandwidth between
different classes of devices was exhibited. The memory
usage of the ML process was also analyzed. The best model

achieved by the framework was the K-NN model, with an
accuracy of 99.67%.

The most important future extension of this work would
be to develop a method to identify legitimate ping request
users. Despite detectingmalicious ping flood attacks in a time
window, we were not able to distinguish between legitimate
users and attackers, due to the fact that malicious parties use
spoofed IP addresses to conceal themselves. Additionally,
further ML and DL algorithms could be explored.

NOMENCLATURE
See Table 17.
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