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ABSTRACT Representation learning of multivariate time series is a crucial and complex task that
offers valuable insights for numerous applications, including time series classification, trend analysis, and
regression. Unsupervised learning approaches are often favored in practical scenarios due to the limited
availability of labeled data. However, most existing studies focus more on the global information of
time series and ignore the local information, especially the representation learning based on the self-
attention mechanism. This affects representation performance and may lead to the failure of downstream
tasks. This study proposed an unsupervised representation learning model for multivariate time series by
comprehensively considering multivariate time series data’s global and local information. Specifically,
a specially designed local binary pattern (LBP) method for multivariate time series (multivariate LBP) is
introduced to the self-attention mechanism to improve the representation performance of modeling in terms
of local information. Additionally, we propose a novel unsupervised approach for learning multivariate time
series representations. The experimental results demonstrate significant advantages of our model over other
representation learning methods and can be well applied in various downstream tasks.

INDEX TERMS Unsupervised representation learning, local binary pattern, global and local features,
multivariate time series.

I. INTRODUCTION

Multivariate time series analysis is widely used in science,
finance, social media, and various other fields [1], [2].
In the era of information explosion, a large amount of
multivariate time series data is generated daily. Compared to
other sequence data, multivariate time series data are more
ubiquitous and thus have huge application prospects. This
brings new challenges to discovering knowledge from big
time series data. For example, in the stock market, multi-
variate time series analysis of stocks requires experienced
and competent analysts to analyze the market changes and
behavioral logic implied behind the complicated market
data [3].
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Recent interdisciplinary research on deep learning has
positively impacted the analysis of multivariate time series
[5]. A few pre-training approaches from computer vision
(CV) and natural language processing (NLP) research have
been applied to time series data to enhance the connection
between data [6], [7]. Transformer is a typical example.
The first Transformer model was proposed for natural
language translation [8]. Due to the potent capabilities of
self-attention in global feature extraction, this disruptive
research has since inspired developments in other fields. The
Vision Transformer (ViT) [9] model, proposed for image
classification, broke the domain barrier and encouraged
us to apply the self-attention mechanism to multivariate
time series. In particular, with the widespread adoption of
transformer architecture across various domains, attention
mechanisms-based time series representation has become a
hot research topic.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by/4.0/

118595


https://orcid.org/0000-0002-3706-8805
https://orcid.org/0000-0003-3430-9244
https://orcid.org/0000-0001-5274-6646

IEEE Access

C. Ye, Q. Ma: LBP4MTS: LBP-Based Unsupervised Representation Learning

Like text data, multivariate time series data is another
important sequence data type. On the one hand, both
multivariate time series and text data are sequential, meaning
the order of the data points matters. But on the other, there
are some differences between text data and multivariate time
series data. Compared to the input in most NLP sequential
models, which comprise embedded text data vectors in a
semantic space via pre-training, multivariate time series data
are naturally formed. This prevents individual timestamped
data points within the time series from carrying more implicit
information, such as trends, patterns, or dependencies. More-
over, for text data, the correlation between words is mainly
determined by semantic information and is independent
of their distance within the text. However, the temporal
distance is directly proportional to the multivariate time series
data correlation. The further the time points apart, the less
significant their mutual influence becomes. These differences
place more complex demands on the original self-attention
mechanism.

Compared to text data, multivariate time series data
exhibits similarities with image data regarding global and
local characteristics [12]. Local features can emphasize trend
information, a significant attribute for downstream tasks
of multivariate time series data. Although attention-based
characterization methods have unique advantages in learning
global features, more and more studies have demonstrated
that local representation learning still needs to be improved
[10]. Much research on applying self-attention mechanisms
in CV has focused on enhancing local features [11], which
also encourages research in the multivariate time series field.
A representation learning approach incorporating local and
global features, without adding extra computational burden,
is beneficial for multivariate time series analysis.

In addition, due to the lack of labeled data, there is
widespread interest in providing efficient analysis using
large amounts of unlabeled multivariate time series data
[4]. Data augmentation is required for multivariate time
series to constitute the training sample pairs. However,
standard data augmentation techniques for time series are
often inspired by CV and NLP field practices and are usually
unsuited for multivariate time series. These practices carry
strong inductive biases, such as transformation-invariance
and cropping-invariance. Some research has already proved
this issue may lead to learned representations that do not
accurately encapsulate the complete information inherent to
the multivariate time series [13]. This presents a significant
challenge in designing sample pairs necessary for unsuper-
vised learning in multivariate time series data.

To address these issues, this study proposes a novel
unsupervised learning model named LBP4MTS (Local
Binary Pattern for Multivariate Time Series). Our model
enables the representation learning of multivariate time series
and considers both global and local features of multivariate
time series. First, the proposed model introduces a specially
designed local binary pattern (LBP) method, multivari-
ate LBP, for multivariate time series in a self-attention
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mechanism to improve the representation performance of the
model in terms of local information. Subsequently, a variant
of Dropout for multivariate time series representation,
named DropLine, is designed to generate comparison sample
pairs for unsupervised representation learning. Compared
to conventional data augmentation methods in unsupervised
representation learning, our method constructs sample pairs
by network architecture instead of modifying the multivariate
time series input. In this way, it’s not necessary to introduce
inappropriate inductive biases and assumptions.

In summary, the main contributions of our work are
summarized as follows:

- We propose LBPAMTS, a novel model that can learn
the representation of multivariate time series with global
and local features. This model introduces an LBP-based
self-attention mechanism in the transformer encoder
layer (Section III-C) to learn a more comprehensive
representation of multivariate time series.

- We develop an unsupervised training method
(Section III-D). A variant of Dropout is also designed to
construct the unsupervised sample pairs of multivariate
time series.

- We conduct extensive experiments on several datasets
from different fields (Section IV). The proposed model
achieves better results than other baseline methods and
demonstrates its applicability to various tasks.

Portions of this work have been presented at the IEEE 25th
International Conference on Computer Supported Coopera-
tive Work in Design (CSCWD) in 2022 under the title “TS2V:
A Transformer-Based Siamese Network for Representation
Learning of Univariate Time Series Data” [14]. In this
work, we improved the extant model for univariate time
series data to multivariate time series data by introducing
an LBP-based self-attention mechanism in the transformer
encoder. Meanwhile, TS2V is a supervised representation
learning model. In this work, we proposed its unsupervised
learning version for various application scenarios. The results
of experiments conducted on multivariate time series data
demonstrate the effectiveness of the proposed model.

The remainder of this paper is organized as follows.
Section II outlines previous studies on representation learning
for multivariate time series, various variants of the LBP
algorithm, and modifications of the Dropout method from
existing literature. Section III describes the architecture of
the proposed model in detail. Finally, Section IV presents
the experimental results, and the study conclusions are
summarized in Section V.

Il. RELATED WORK

A. REPRESENTATION LEARNING OF TIME SERIES DATA
Representation learning of time series data has become
a popular research topic. Most models aim to discover
the spatio-temporal dependencies in time series data.
Time2Graph [15] begins from Shapelet [16], which can auto-
matically mine time series subsequences with representative
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features and constructs graphs for representation learning by
analyzing the direct relationship between different shapelets.
Time2Graph provides an inferred and interpretable temporal
model with desirable performance.

Additionally, contrastive learning has been introduced into
this aspect of time series analysis [17]. Constructing positive
and negative data pairs achieves unsupervised representation
learning of unlabeled time series data. On this basis, triplet
loss is further combined with a CNN with dilation [18] to
tackle long time series data. This approach is fairly easy to
implement and only requires distinguishing the main features.

Studies have also been devoted to applying data augmen-
tation to raw data inputs [19]. These models tend to construct
the input view of time series data with some designed
embedding methods and learn the representation of these
input views by contrastive learning. These models employ the
novel idea that constructing suitable time series embedding
vectors as input could increase the learning performance of
the model in representation learning.

The time series transformer (TST) model [20] is a recently
proposed representation learning model for multivariate time
series. This model essentially fills the gap in applying the
transformer model to the representation learning of time
series. This model achieves better learning performance than
supervised training methods by introducing a transformer-
based pre-training mechanism. However, the TST model
is based on the original self-attention mechanism. It has
limitations in capturing local information, which can empha-
size trend information. Moreover, TST applied generative
pre-training tasks for unsupervised representation learning.
It used the masking task in the same manner as the original
transformer architecture. Consequently, in the unconstrained
scenario, the model could potentially learn trivial solutions,
such as constant mapping, which would offer minimal utility
for downstream tasks [21].

B. LBP AND ITS VARIANTS

LBP is a simple yet efficient texture operator that labels an
image’s pixels by thresholding each pixel’s neighborhood and
considers the result a binary number. LBP is wildly used
in the CV field, including medical image analysis and face
recognition. Many extensions have been made to the original
LBP method to enhance its performance.

To reduce computational complexity and improve texture
classification performance, Uniform LBP [22] was proposed
to calculate uniform patterns to account for a vast majority of
all patterns in texture images. In addition, Rotation Invariant
LBP [23] was designed to be invariant to the rotation of the
image. Furthermore, Volume Local Binary Patterns (VLBP)
[24] extended LBP into three dimensions, making it suitable
for the analysis of dynamic textures in videos.

For the analysis of temporal signals such as voice,
audio, and electroencephalography (EEG) signals, Chatlani
and Soraghan introduced the 1D-LBP [25]. ID-LBP is an
extension of the LBP operator to one-dimensional data.
It demonstrates the potentiality of applying LBP methods
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FIGURE 1. lllustration of structures of (a) LBP, (b) 1D-LBP, respectively.
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FIGURE 2. Schematic of structures of (a) Standard Dropout,
(b) DropBlock, and (c) Spatial Dropout, respectively.

in time series. Like the original LBP, there can be various
extensions of 1D-LBP to capture more complex patterns or
provide robustness against certain signal variations. Based on
1D-LBP, TTLBP [26] extend 1D-LBP from univariate series
to multivariate series data.

While these methods significantly streamline the feature
extraction process for time series, they essentially remain
manual feature extraction techniques, transforming the time
series into histograms or distributions. Unfortunately, this
transformation does not lend itself well to integration with
deep learning models. Fig. 1 illustrates the original LBP
method alongside the 1D-LBP variant.

C. DROPOUT AND ITS VARIANTS

Dropout is a regularization technique for reducing overfitting
in neural networks. The technique temporarily drops out,
or ‘“deactivates,” neurons in a layer with a certain probability
during training. This forces the network to learn more robust
features that are useful in conjunction with many different
random subsets of the other neurons.

DropBlock [27] is a form of structured dropout for the
convolution layer. In standard dropout, neurons are dropped
individually and randomly. In the convolution layer, other
neurons in the same region may carry similar information due
to spatial correlation. In DropBlock, a contiguous region of a
feature map is dropped during training.

Spatial Dropout [28] performs dropout along specific
dimensions only. During training, Spatial Dropout randomly
selects a certain percentage of the channels in a convolutional
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FIGURE 3. Structure of proposed unsupervised representation learning
for multivariate time series.

layer and sets all values in these channels to zero for a given
forward pass. This can often result in improved generalization
and better performance on unseen data. Fig. 2 shows these
four Dropout methods.

Some research [29] applied Dropout in contrastive unsu-
pervised learning. These methods use random characteristics
of Dropout to generate sample pairs by passing one input
through the model with the Dropout layer twice. This inspired
us to apply unsupervised contrastive learning for multivariate
time series.

lll. METHODOLOGY

A. OVERVIEW

This section describes the proposed model LBP4AMTS and the
relevant algorithms. The structure of LBP4AMTS is shown in
Fig. 3. First, each sequence of multivariate time series goes
through the encoder part twice to generate positive pairs in
contrastive learning. In traditional unsupervised contrastive
learning, data augmentation is usually applied to generate
sample pairs. However, most existing data augmentation
methods may change the original data’s distribution or
multivariate time series pattern information. Model-based
methods are then widely used for a variety of data and tasks.
These methods construct sample pairs by stochasticity in
specially designed models. This can avoid issues of changing
certain information of original data.

Subsequently, an LBP-based self-attention mechanism is
introduced to the encoder of transformer architecture as a
representation learning model. It uses a specially designed
LBP module, multivariate LBP, to extract local features of
multivariate time series. Inspired by 1D-LBP and other LBP
methods, such as TTLBP, The multivariate LBP module is
designed for calculating the local feature relationship matrix
of tensors.

Furthermore, a novel Dropout method, DropLine, is pro-
posed. It can be regarded as a one-dimension version of
DropBlock [27]. Like DropBlock, DropLine also obstructs
the transfer of pertinent information from units adjacent to
the dropped unit to the subsequent layer. Then, a contrastive
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loss is employed to train the representation of multivariate
time series.

B. PROBLEM DEFINITION

Given a training sample X € R"*”, which is a multivariate
time series of length n and dimensions m, the input sequence
with n vector is x; € R™ : X € R™" = [x1,x2,...,X,].
The proposed unsupervised representation learning model
aims to train a mapping function that transforms each input
data point x; into its corresponding representation r;. Such
a representation is designed to capture the input data’s
most informative and distinguishing features, allowing it to
describe itself effectively.

Therefore, the representation of the training sample is
denoted as R = [ry,12,...,ry], where each vector r; €
R¥ represents the learned representation of the input at a
particular timestamp . Here, k denotes the dimension of
representation vectors. Essentially, the model transforms each
input data point x; into a representation vector r; of size
k, capturing the essential features and characteristics of the
input. The resulting representation sequence R consists of
these vectors corresponding to the individual timestamps.

C. LBP-BASED TRANSFORMER ENCODER
As previously discussed, the original self-attention mech-
anism falls short of adequately representing the local
characteristics inherent in multivariate time series data.
Hence, numerous modifications have been suggested for the
original self-attention model to improve its ability to portray
local features found in sequential and multivariate time series
data. The feature dependence of multivariate time series in
local space is similar to that of image data, i.e., for any
given encoded data point, its neighboring data points exert
a more significant influence than data points located further
away. Thus, convolutional Layers, a widely-used module to
extract local information in CV, could be used to improve the
performance of self-attention in extracting local information.
A straightforward method to encode local information
is to use a convolutional layer before the self-attention
mechanism. This allows the model to extract local features
in the input sequence. However, both the convolutional layer
and self-attention mechanism use learnable structures that
are continuously updated during training. This continuous
updating can lead to high computational costs, especially for
deep networks with many layers and extensive training data.
Several studies have opted for using non-learnable modules,
like LBP, as substitutes for convolutional layers within a
network [30]. These techniques can enhance computational
efficiency and reduce susceptibility to overfitting. This
motivates us to use LBP in the self-attention mechanism to
improve the performance of extracting local features.

1) LBP FOR MULTIVARIATE TIME SERIES
Our multivariate LBP method is an operator for multivariate
time series. Given a training sample of multivariate time
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FIGURE 4. lllustration of calculation process of multivariate LBP.

series X = [x1,x2,...,x,], for each timestamp of
multivariate time series, x;, multivariate LBP defines the
variant M; as a combined similarity vector between x; and p
timestamp data points before x;.

Sii—1] (1)

where S; ;_; is the similarity value between x; and the j' data
point before x;. It can be expressed as follows:

Sii—j = s(x;, xi—j),j € [1, p] ()

where s(-) denotes similarity calculation. The similarity
determination in multivariate LBP cannot be made directly,
as in LBP, by comparing the values of two scalars. There are
numerous similarity measures for vectors that can be utilized.
The selection of an appropriate similarity measure can be
tailored according to the specific situation. A commonly
employed measure is Cosine similarity. For any timestamp
data point x; and its neighboring data point x;_;, the Cosine
similarity is calculated as follows:

M; = [Si,i—p, Siji—p+1s--+»

(Xi, Xi—j)
Vi, xi) - /i, xisg)
where (-) represents the inner product.

Unlike the LBP and most variants, multivariate LBP is
not symmetric and has no central point. This asymmetrical
design ensures that the multivariate LBP value for each
timestamp data point in multivariate time series is solely
influenced by its neighboring historical data but not by
any future data. Thus, the coefficient of each timestamp
data point, x;, is influenced by its immediate p neighboring

3

cos(x;, Xj—j) =
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FIGURE 5. Schematic of LBP-based self-attention mechanism.

data points, [X;—p,Xi—pt1,.-.,Xi—1]. Fig. 4 illustrates the
calculation process of multivariate LBP. As for parameter p,
i.e., the number of neighboring historical data, the experiment
in TTLBP proved that eight neighboring historical data get
the best performance for multivariate time series. Therefore,
we also choose eight neighboring historical data in this paper
to calculate multivariate LBP value. For the initial timestamp
data point input of multivariate time series, i.e., x; where
i < 9, we populate their historical data using the constant
composition to compute its multivariate LBP operation.
Furthermore, unlike other LBP-based methods for extract-
ing local features from multivariate time series, our approach
does not rely on histograms to represent the local information.
Instead, we directly employ the computed similarity results
to create a similarity vector. This vector is then utilized to
calculate an affinity matrix (AM), like the weight matrix in
the self-attention mechanism. The resulting affinity matrix
captures the local features of the multivariate time series
in the encoder layer and is combined with the attention
mechanism to enhance the overall representation.

2) LBP-BASED SELF-ATTENTION MECHANISM

Based on the similarity vector calculated by the multivariate
LBP method, we propose an LBP-based self-attention
mechanism in the encoder of the transformer architecture
to add local features to the representation learning of
multivariate time series. The diagram of the proposed
LBP-based self-attention mechanism is shown in Fig. 5,
where X represents the entire sequence of multivariate time
series. In this mechanism, the local feature is represented
by similarity vector M; calculated by the multivariate LBP
method. An affinity matrix is then generated according to the
similarity vector to reveal the degree of similarity between
inputs. To enhance the robustness of the affinity matrix,
we can utilize the Pearson correlation coefficient among
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similarity vectors of timestamp data points in the multivariate
time series. The correlation coefficient serves as a centered
version of cosine similarity since it involves subtracting the
mean from the data points before computation.

The formula to calculate the Pearson correlation coefficient
is as follows:

(M; — Mi, M; — M)

“

bij =

\/(Mi_ﬁz’Mi_M)'\/<M/_AZ7M,'—A7/')

where M; is the mean of similarity vector m;. By calculating
the Pearson correlation coefficient of among each timestamp
data point in multivariate time series, the affinity matrix is
formed as follows:

P11 P12 Pln
P2,1P22 - P2n
AMX)=| . . . . &)
Pn,1 Pn2 * DPnn
where AM is an abbreviation for affinity matrix.
In original self-attention, for any input X, the function of
self-attention is expressed as follows:

0=XW% K =xwk;v =xw" (6)

Attention = softmax (QKT) Vv @)
Vi
where Q,K,V represent the matrices of queries, keys (with
dimension dj),and values (with dimension d,), respectively.
As shown in equation (3), queries, keys, and values are
transformed through linear projections by W2 e Rém>d
WK e Réxd and WY e R¥*4 respectively, where d,,
is the dimension of the input.
After adding a multivariate LBP module, the function of
LBP-based self-attention can be described as follows:

LBPAttenti ft (QKT) 14
ention = soyftimax |\ —— .
A dk

+ softmax (AM (X)) - X (8)
. . okT
In Equation (8), the first component softmax i) Vv

represents the global feature and the second component
softmax (AM (X)) - X represents local feature.

D. UNSUPERVISED TRAINING

Unsupervised learning is particularly pertinent to multivariate
time series data analysis, given the considerable effort and
expense often associated with obtaining labeled data.

Most existing research on unsupervised learning for multi-
variate time series relies on data augmentation from fields of
CV or NLP to generate sample pairs. These techniques might
not always be suitable due to the unique characteristics of
multivariate time series data, such as temporal dependency.
The inductive biases transformation-invariance, like rotating
an image in CV, or cropping-invariance, like cropping part
of a sentence in NLP, might not hold true in the case of
multivariate time series data.
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Besides utilizing data augmentation to create sample pairs
during the preprocessing phase, a rising number of studies are
now turning to apply model stochasticity, like the Dropout
layer, in the training phase to generate positive training
pairs [29]. This strategy aims to avoid the potential negative
impacts that data augmentation could impose on the input
data. Inspired by these, a variate of Dropout is proposed
for multivariate time series to generate training sample pairs
without traditional data augmentation methods. This method
is named DropLine and can be added to most training models
for multivariate time series. The diagram of DropLine is
shown in Fig. 6.

Compared with standard Dropout, DropLine randomly
discards continuous neuron units within the layer, i.e., a line
of neuron units is dropped. This design is based on the
understanding that for any given timestamp data point,
neighboring neural nodes could potentially hold similar
information because of temporal continuity. Essentially,
it suggests that random deactivation of individual nodes does
not necessarily lead to a total loss of relevant information.

After the DropLine operator, the sample pairs of unsu-
pervised training are obtained. Then, the training object of
contrastive learning is to learn an encoder such that:

score (f (x), f(xT)) > score (f(x), f(x7)) )

where x* is the positive sample, and x~ is the negative
sample. score is often expressed as a distance function,
which means that the training object can be formulated
by computing the distance among the anchor, positive, and
negative samples. It is articulated as follows:

max(d(x, xT) — d(x, x~) + margin, 0) (10)

where d(-) is the distance between the sample pairs, and the
margin is a hyperparameter to control the distances. The loss
function can be defined as follows:

ecos(x,-,x;')/r

2}1:1 (ecos(xhxj*)/r + ecos(xi,xj’)/f)

—log (11

where 7 is a temperature hyperparameter and »n is training
batch size.
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TABLE 1. Summary of UEA multivariate classification datasets.

Dataset Train Size Test Size Length Classes Dimensions Type
EthanolConcentration 261 263 1751 4 3 Other
FaceDetection 5890 3524 62 2 144 EEG
Handwriting 150 850 152 26 3 HAR
Heartbeat 204 205 405 2 61 AUDIO
Japanese Vowels 270 370 29 9 12 AUDIO
PEMS-SF 267 173 144 7 983 MISC
SelfRegulationSCP1 268 293 896 2 6 EEG
SelfRegulationSCP2 200 180 1152 2 7 EEG
SpokenArabicDigits 6599 2199 93 10 13 SPEECH
UWaveGestureLibrary 2238 2241 315 8 3 HAR
TABLE 2. Accuracy results of classification of the proposed and baseline methods.
Dataset LBP4AMTS DTW_D XGBoost TST TS2Vec
EthanolConcentration 0.429 0.305 0.417 0.258 0.288
FaceDetection 0.661 0.526 0.635 0.535 0.500
Handwriting 0.361 0.278 0.175 0.215 0.479
Heartbeat 0.725 0.727 0.732 0.739 0.694
Japanese Vowels 0.951 0.909 0.917 0.980 0.943
PEMS-SF 0.692 0.703 0.967 0.737 0.677
SelfRegulationSCP1 0.845 0.753 0.823 0.714 0.818
SelfRegulationSCP2 0.597 0.528 0.489 0.550 0.570
SpokenArabicDigits 0.997 0.959 0.712 0.931 0.973
UWaveGestureLibrary 0.910 0.907 0.772 0.900 0.912
Average Accuracy 0.717 0.660 0.664 0.656 0.686
Average Rank 1.9 35 33 3.2 3.1

IV. EXPERIMENTS

In this section, we assess the performance of our model by
analyzing its performance across various tasks. We employ
classification and regression tasks as downstream tasks to
evaluate the value of local features in the representation
learning of multivariate time series.

In the subsequent experiments outlined below, we employ
the predefined training-test splits of the benchmark datasets
and ensure all models are sufficiently trained to achieve
convergence. An initial adjustment of the hyper-parameters
(such as the number of training batch sizes, the number of
encoder blocks, or the representation dimension) for each
distinct dataset can contribute to enhanced performance.
After the hyper-parameters were determined, the complete
training set was leveraged for model training, which was
ultimately assessed using the test set.

To more accurately assess the performance of our algo-
rithm, we employed K-fold cross-validation (ten-fold cross-
validation) on each dataset and repeated the experiment
5 times for each fold.

A. CLASSIFICATION

In this subsection, we report the experiments conducted to
evaluate the effectiveness of our proposed model on the UEA
dataset [31], using the classification task as a downstream
task. The UEA dataset is significant for researching and
analyzing multivariate time series time data. Benefited from
its expansive collection of real-world multivariate time series
data, the UEA dataset provides a consistent benchmark for
researchers. Its ongoing updates and expansions not only
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ensure its enduring relevance in the ever-evolving research
landscape but have also led to its increasing adoption in
a multitude of time series studies worldwide. It currently
has 128 univariate and 30 multivariate time-series classi-
fication datasets. We conducted repeat experiments on ten
multivariate time series datasets to verify the performance,
providing multiple datasets from different domains, with
varying dimensions, unequal length dimensions, and missing
values. The summary of these datasets is shown in Table 1.

In the classification task, the output vector of our
model was passed through a SoftMax function to obtain
a distribution over classes, and its cross-entropy with the
categorical ground truth labels was considered as the sample
loss. This experiment can directly verify the performance of
the proposed representation learning model.

The UEA archives also provide an initial benchmark
for the existing models, with accurate baseline information
including classification accuracy. The benchmarks facilitate
consistency in evaluations, ensuring that methodologies are
compared under standardized conditions. Based on these
information, we chose these four models as our baseline for
multivariate time series classification: dimension-dependent
dynamic time warping (DTW_D) [32], TST [20], XGBoost
[33] and TS2Vec [13]. Adhering to the approach outlined
by the TST model, we utilize the best-performing method,
DTW_D that the authors of the UEA archive examined,
as our benchmark for comparison. Meanwhile, as the first
and the most famous model that introduces transformer
architecture to representation learning of multivariate time
series, TST is also considered as the baseline. Additionally,
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TABLE 3. Details of multivariate regression datasets.

Dataset Train Size Test Size Length Dimensions Missing Values
AppliancesEnergy 96 42 144 24 No
BenzeneConcentration 3433 5445 240 8 Yes
BeijingPM 10Quality 12432 5100 24 9 Yes
BeijingPM25Quality 12432 5100 24 9 Yes
LiveFuelMoistureContent 3493 1510 365 7 No
IEEEPPG 1768 1328 1000 5 No

cD
—

1 2 3 4 5

LBPAMTS Q _‘-— DTW_D

TS2Vec XGBOOST
TST

FIGURE 7. Critical Difference (CD) diagram of representation learning
methods on time series classification tasks with a confidence level
of 95%.

XGBoost is among the most frequently utilized models for
both univariate and multivariate time series analysis, which
can also be used as a baseline to evaluate the performance of
our model. Finally, TS2Vec is currently the most advanced
representation learning model for multivariate time series,
which also be included for comparison. These methods are
the best-performing methods studied by the creators of the
archive. Among these four methods, TST and TS2Vec are
neural network-based models, while DTW_D and XGBoost
are traditional methods. Table 2 presents our model’s and
baseline models’ classification results for the multivariate
time series, where bold indicates the best values. The Critical
Difference diagram for the Nemenyi test applied to these
datasets is depicted in Fig. 7. Classifiers not linked by a bold
line exhibit significant differences in their average ranks. This
provides strong evidence that our algorithm notably surpasses
other methods.

Table 2 reveals that our proposed model exhibited superior
performance on five out of the ten datasets, achieving an aver-
age ranking of 1.9, This was followed by TS2Vec and TST,
which outperformed the remaining two datasets and achieved
average ranks of 3.1 and 3.2 respectively. XGBoost
performed best on the remaining 1 dataset, ranked 3.3 on
average. The table clearly indicates that methods based on
neural networks generally yield superior results, aligning
with the current understanding of the significant role neural
networks play in the advancement of multivariate time series
analysis. We note that all datasets where TS2Vec surpassed
our model’s performance were extremely low-dimensional,
specifically 3-dimensional. Compared with other methods,
TST achieves the best result of performance in multivariate
time series with the type of AUDIO. In terms of XGBoost,
it demonstrates robust performance on highly dimensional
data, highlighting potential limitations of methods grounded
in neural networks.

Interestingly, the data presented in the table also suggests a
clear positive relationship between the efficacy of our model
and the volume of available data, especially for large-scale
training data. This indicates that as the quantity of data
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increases, the performance of our model also significantly
improves. It further underscores the importance of large
datasets in enhancing the model’s predictive power and
generalization capabilities, which is crucial in machine
learning and data-driven decision-making. This correlation
between data volume and model effectiveness could pave the
way for future research and developments in optimizing data
collection and utilization methods.

B. REGRESSION

In this subsection, the regression task is introduced as the
downstream task to evaluate the effectiveness of our proposed
model. multivariate Time series regression is a statistical
method that is used to analyze multivariate time series
data. multivariate Time series regression aims to create a
mathematical model that can predict future responses based
on the behavior observed in past data. This method can be
used to forecast trends, cycles, or other patterns in the data
that tend to repeat over time.

We chose various datasets from UEA&UCR Time Series
Regression Archive [34]. Table 3 presents detailed character-
istics of these datasets. As mentioned in experiments of TST,
this selection was made to ensure a diverse representation
concerning the dimensionality and length of multivariate time
series samples and the number of samples.

In the regression task, we choose root mean square error
(RMSE) to evaluate the performance of different models.
RMSE is a commonly used metric in regression analysis
and forecasting to measure the model’s prediction error.
The RMSE represents the sample standard deviation of
the differences between predicted and observed values.
Essentially, it tells you how concentrated the data is around
the line of best fit. RMSE is defined as follows:

1
= E (P — 0;)?
n-

i=1

where n is the number of observations, P; is the predicted
value for observation i and O; is the observed value for
observation i.

Meanwhile, inspired by the TST paper, we also incorporate
the ‘“‘average relative difference from the mean” evaluation
criterion. This addition can help RMSE in mitigating the
impact of different magnitudes across various datasets,
thereby providing a more accurate measure of different
models’ performance across diverse datasets. The metric
average relative difference from the mean (represented as r;

RMSE = (12)
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TABLE 4. Performance of regression task for our and baseline models on multivariate regression datasets (RMSE).

Dataset LBP4MTS ROCKET XGBoost 1-NN-ED Random Forest TST
AppliancesEnergy 2.355 2.240 3.494 5.273 3415 2.359
BenzeneConcentration 0.461 3.160 0.662 6.296 0.815 0.506
BeijingPM10Quality 84.783 113.943 94.589 130.583 96.946 82.996
BeijingPM25Quality 55.789 60.874 60.352 84.806 65.905 53.153
LiveFuelMoistureContent 43.795 44.651 48.897 57.901 47.685 44.785
IEEEPPG 23.909 35.115 30.877 31.685 30.879 26.469
Ave Rel. diff. from mean -0.280 0.095 -0.110 0.650 -0.084 -0.270
Average Rank 1.5 3.8 3.6 5.8 4.1 2

(o]

1 2 3 4 5 6

LBPAMTS J L 1-NN-ED

TST ————— L Random Forest
XGBOOST ROCKET

FIGURE 8. Critical Difference (CD) diagram of representation learning
methods on time series regression tasks with a confidence level of 95%.

for each model j) can be defined as follows:

N -
1 < RG,j) — R;
=y 13
i N; 3 (13)
1M
&=M§MM) (14)

where R(i,j) is the RMSE of model j on dataset i, N is
the number of datasets, and M is the number of models.
Upon analyzing this particular metric, it is obvious that a
smaller value of the average relative difference from the mean
corresponds to superior model performance.

As same as the classification task, The UEA&UCR Time
Series Regression Archive also provides an initial benchmark
for the existing models, with accurate baseline information.
Based on the performance metrics provided by the archives,
we chose these five models as our baseline for multivariate
time series classification: ROCKET [35], XGBoost [33],
1-NN-ED [36], Random Forest [37], and TST [20]. Accord-
ing to the results reported in the archive, these methods
emerge as the top five-performing algorithms. Table 4
presents the RMSE of regression results of our model and
baseline models for the multivariate time series, where
bold indicates best values. The Critical Difference diagram
illustrating the results from the Nemenyi test for various
datasets can be seen in Fig. 8. If algorithms are not connected
by a bold line, it indicates significant disparities. Such
evidence compellingly underscores the superiority of our
algorithm over the other methods.

As the results in Table 4 indicate, our model yields the
best performance on three datasets, outperforming all other
models. On the remaining three datasets, where our model
didn’t achieve optimal performance, it secured the second
position. The second one is the TST model, which proves
optimal on two datasets, while the ROCKET model, securing
the third position, is optimal on one dataset. Thus, the overall
ranking for our model stands at 1.5. The outcomes from
both TST and our model underscore the efficacy of deep
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learning models in the representation learning of multivariate
time series. Even though our model managed to achieve
second rank on three datasets, the analysis of these datasets
uncovers a limitation in our model’s capability to utilize
local features when dealing with multivariate time series
data of shorter lengths (such as BeijingPM10Quality and
BeijingPM25Quality datasets). Moreover, deep learning-
based models tend not to perform well with smaller sample
datasets (such as the Appliances dataset). Several factors
might contribute to these limitations. For one, smaller
datasets limit the diversity and variability within the data,
constraining the model’s learning process. Without a broad
range of data to train on, the model might miss subtle patterns
or nuances. When working with compact datasets, the model
may not have sufficient information to train effectively,
potentially leading to overfitting or reduced generalization
capabilities. Furthermore, short data lengths may not offer
a comprehensive view of the temporal dependencies and
patterns inherent in longer sequences, which can be vital
for accurate predictions in time series analysis. Meanwhile,
by comparing the results of our model with those of the TST
model, it can be seen that generative unsupervised learn-
ing could potentially outperform contrastive unsupervised
learning when it comes to learning representations of shorter
sequences. This insight outlines our prospective direction for
enhancement.

C. ABLATION STUDY

To validate the efficacy of the proposed components in
our model, i.e., the LBP-based self-attention and DropLine,
we compare the full LBPAMTS model against its three
variants across ten UEA datasets outlined in Table 1.
To swiftly and effectively demonstrate the efficacy of each
module within the proposed LBPAMTS model, a classifica-
tion experiment is adopted for the ablation study. The results
of the ablation study were evaluated based on the accuracy of
the classification results and their percentage change.

Table 5 presents the results of this ablation study, where
(1) w/o LBP removes the LBP-based self-attention module
and employs original self-attention mechanism, (2) w/o
DropLine removes DropLine designed in this paper and
applies Dropout to unsupervised train the model, (3) w/o
LBP & DropLine remove both LBP-based self-attention
module and DropLine. The results demonstrate that every
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TABLE 5. Ablation results for LBPAMTS and its variants.

Average Accuracy Accuracy Decline

LBP4AMTS 0.719 -
w/o LBP 0.681 -3.8%
w/o DropLine 0.693 -2.6%
w/o LBP & DropLine 0.670 -4.9%

component within the LBPAMTS structure is essential and
irreplaceable.

Meanwhile, the comparison of the results from LBPAMTS
and its variate without LBP-based self-attention suggests
that local features play a pivotal role in the representation
learning of multivariate time series. This is attributed to
the fact that the trends of its neighboring data heavily
influence the timestamp data points within a multivariate
time series. Capturing local features enables the model to
more accurately depict the underlying pattern of change
within the multivariate time series. In addition, by comparing
the difference in results between LBPAMTS and its variate
without DropLine, we can observe that the DropLine module
is more adept at constructing sample pairs for unsupervised
training of multivariate time series. This outcome is credited
to DropLine’s capacity to avoid the leakage of information
from neighboring timestamp data points, resulting in a more
effective unsupervised model training process.

V. CONCLUSION

Given the inherent nature of multivariate time series data,
local features play a crucial role in the representation learning
process. The identification of local patterns and trends can
provide a wealth of insights that global analysis might
miss. However, in the original self-attention mechanism,
these local aspects were not effectively captured, potentially
losing important information. In this study, our LBP-based
transformer encoder is proposed as a mechanism to represent
multivariate time series. This model aims to overcome the
shortcomings of the original model in local feature extraction.
In addition, a variate of Dropout, DropLine, is designed
to construct the sample pairs of multivariate time series
and to achieve unsupervised contrastive learning. DropLine
is based on the understanding that neighboring neural
nodes could potentially hold similar information because
of temporal continuity. The conducted experiments reveal
that the proposed model exhibits substantial improvement
in the representation learning of multivariate time series.
An ablation study proves the effectiveness of components
within the LBP4MTS structure. Consequently, it can be
employed in various downstream tasks, such as classification
and regression.

In future research, our efforts will be devoted to improving
the performance of our model in datasets with small
data sizes and short data lengths. These include leverag-
ing transfer learning from pre-trained models, integrating
domain-specific or external data sources for added con-
text, and exploring hybrid models to bolster the model’s
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adaptability to short data sequences. By harnessing these
approaches, we anticipate marked improvements in model
efficacy across diverse data scenarios. Meanwhile, we find
the design of the loss function to be a captivating aspect
of unsupervised representation learning of multivariate time
series. So far, a variety of loss functions have been engineered
to cater to diverse applications. Thus, we believe that
optimizing the loss function could further enhance the
performance of our model.
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