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ABSTRACT An uncontrolled growth of brain cells is known as a brain tumor. When brain tumors are
accurately and promptly diagnosed using magnetic resonance imaging scans, it is easier to start the right
treatment, track the tumor’s development over time, and select the best surgical techniques. This paper applies
advanced and popular methods for preprocessing, segmentation, grading of tumors and lifetime prediction.
On exploring various encoder-decoder architectures, UNet++ architecture was chosen for detecting brain
tumor and obtained an accuracy of 98% and intersection over union score of 0.7483 during the testing phase.
The segmented image is used to extract the radiomics features. Despite of several difficulties, data imbalance
among the dataset is the common obstacle for survival prediction. To solve and increase the sample size
and preserve the class distribution, the synthetic minority oversampling technique and adaptive synthetic
approaches are used. After balancing the dataset, the important characteristics are selected using principal
component analysis and tree-based feature selection techniques. The collected characteristics are used as
input for machine learning techniques including stochastic gradient descent, decision tree, random forest,
and support vector machine. The distinction between low-grade glioma and high-grade glioma is investigated
as a binary classification. Accuracy, precision, recall, and Flscore are used in the performance evaluation.
The highest accuracy of 96% is achieved using stochastic gradient descent. Lifetime prediction of high-grade
glioma patients is made using regression techniques: Linear, ridge, stochastic gradient descent, and extreme
gradient boosting. We have obtained the least mean square error of 93726.45 using the extreme gradient
boosting method. The proposed approach is contrasted with the most recent segmentation, grading, and
lifetime prediction methods described in the literature.

INDEX TERMS Brain tumor, data imbalance, glioma, machine learning, data augmentation, UNet++.

I. INTRODUCTION start in the brain or another area of the body and enlarge
Brain tumors can be either non-cancerous or cancerous, with to the brain. The most frequent primary brain tumors that
the former being benign and malignant [1]. These cells can originate in supportive glial cells are known as Gliomas

[2]. For distinguishing between various grades of gliomas,
The associate editor coordinating the review of this manuscript and medical PrOfessmnalS ljefer to LGQ gLO‘.N_Grade Glioma) and
approving it for publication was Behrouz Shabestari. HGG (High-Grade Glioma) classifications [3], [4]. Tumors
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that are fast-growing and aggressive are known as HGGs,
while LGGs are tumors that proliferate slower.

MRI (Magnetic Resonance Imaging) is a critical imaging
instrument that depicts gliomas’ phenotypic and intrinsic
heterogeneity for diagnosis, treatment planning, and track-
ing the tumor’s reaction to therapy. It can provide minute
details about the tumor’s size, position, and features [5], [6].
Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted,
T1-weighted, and diffusion-weighted imaging are some radi-
ology sequences that can bring out specific variations in
different regions of gliomas. These sequences are effective
in highlighting diverse tissue characteristics.

Patients and their family members are severely impacted
by a grave medical condition known as a brain tumor.
To make well-informed decisions about care, it’s crucial to
comprehend the diagnosis, potential treatments, and progno-
sis. Predicting how long a patient with a brain tumor will
survive is a complex procedure considering numerous fac-
tors. Brain tumor survival prognosis can be challenging, but
it’s crucial for developing appropriate treatment plans and
ensuring optimal outcomes. In recent years, it’s possible to
predict brain tumor survival rates by implementing machine
learning algorithms [7], [8]. The algorithms study massive
patient information datasets to find patterns used for survival
predictions. Brain tumor survival prediction using machine
learning algorithms involves training models on relevant fea-
tures to estimate the likelihood of a patient’s survival [9].

Early diagnosis of the brain tumor is the most important
factor to increase the survival rate. It also helps in the appro-
priate treatment, monitor the tumor’s progression over time
and decide on proper surgical methods. However, life time
prediction is a critical task due to variability in tumor sizes or
shapes, tumor identification, area computation, segmentation,
classification, and discovering ambiguity in the segmented
region. The motivation behind this research is to improve the
outcome of the patient lifetime by enhancing the quality of
treatment and care. The data imbalance among the dataset
are solved with SMOTE (Synthetic Minority Oversampling
Technique) and ADASYN (Adaptive Synthetic) methods
which fine tunes the classification and prediction results of
machine learning algorithms. The major phases involved in
this work are brain tumor segmentation, grading and life time
prediction. The contributions of this proposed paper are as
follows:

o Initially, the BraTS2020 (Brain Tumor Segmentation)
dataset are collected and preprocessed to make the MRI
images appropriate for segmentation.

o The proposed framework incorporates the brain tumor
segmentation using advanced and popular UNet++
architecture. Accuracy, precision, sensitivity, specificity
IOU score and Jaccard Loss are metrics employed to the
evaluation of segmentation.

« Radiomics features are extracted from the segmented
image. SMOTE (Synthetic Minority Over-sampling
Technique) and ADASYN (Adaptive Synthetic
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Sampling) upsampling techniques are used to increase
the samples.

o After applying Tree-Based and Principal Component
Analysis (PCA) techniques, the selected features are
used to build predictive machine learning classifiers,
such as support vector machines (SVM), random forest
method, decision tree and SGD (Stochastic Gradient
Descent). The evaluation metrics such as precision,
recall and F1-score are used.

« Finally, regression models such as linear, ridge, SGD,
and Extreme gradient boost (XGBoost) are used to pre-
dict the overall survival of the brain tumor patients.
Mean square error (MSE) and R-squared (R?) metrics
are used for evaluation.

o The results are compared with the alternate approaches
mentioned in the literature and the superiority of the
proposed framework.

The rest of this manuscript is organized as follows: the
related previous work of this study is explained in Section II.
The proposed method is explained in Section III with a dataset
description and the metrics used for the evaluation. Section IV
describes the experimental results and the comparison of the
work. Finally, the conclusion and future work are given in
Section V.

II. LITERATURE REVIEW

The task of completely automated segmentation of brain
tumors in the field of medical image analysis is com-
plex. It was introduced to overcome the difficulties of
manual and semi-automated segmentation [10]. Initially,
Long et al. implemented a Fully Convolutional Network
(FCN) in 2015 for the semantic segmentation in which each
pixel was labelled to the particular defined classes [11].
To achieve dense predictions at various spatial resolutions,
FCN swaps out the fully connected layers in conventional
Convolutional Neural Network (CNN) for convolutional lay-
ers. Several machine learning models were introduced and
implemented using the BraTS Challenge brain tumor dataset.

UNet is well known adopted architecture explained by
Ronnebergeret al. in 2015 for biomedical image segmentation
[12]. It involves an encoder pathway to capture context and
also a similar decoder pathway for exact localization. The
encoder and decoder are linked with skip connections, which
assist in transmitting fine-grained details. The enhancement
of the UNet architecture is Attention UNet, proposed by
Oktayet al. in 2018 [13]. The added attention gates help
to highlight important features and decrease irrelevant data
during the fusion of features. As a result, Attention UNet is
more efficient when medical image segmentation is consid-
ered [14].

Introducing the concept of residual learning with UNet,
He et al. in 2015 proposed deep convolutional neural net-
work architecture known as ResNet (Residual Network
[15]. ResNet made waves in computer vision and paved
the way for training intense neural networks with better
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performance. Much other architecture has been built upon
its fundamental building block, and it continues to inspire
new deep-learning research. Further improving and adapt-
ing the algorithm, several variants such as GoogLeNet [16],
ResNet-34 and ResNet-50 [17] have been proposed to address
specific challenges in various domains and tasks. On the
other hand, ResidualU-Net (ResUnet) uses a blend of the
UNet and ResNet models by fusing residual connections.
This model permits a straightforward exchange of informa-
tion between the encoder and decoder pathways, tackling the
vanishing gradient issue and increasing gradient propagation.
Zhou et al. 2018 proposed another extension of the UNet
architecture with a nested and dense skip pathway structure,
UNet++ [18]. The UNet++ approach incorporates several
nested U-shaped subnetworks within the UNet structure to
construct a more intricate and intricate network. These sub-
networks are composed of encoder-decoder pathways that are
reminiscent of the UNet architecture, with the addition of
further skip connections. Not only are connections inserted
between the corresponding encoder and decoder blocks, but
they are also established across different nested subnetworks.

These models are used for various applications. Loss
functions and Optimizers are utilized to fine tune the perfor-
mance of convolutional models for semantic segmentation.
Data augmentation artificially expands the training dataset
to make the model becomes more adaptable to new datasets
through image manipulation techniques. The ultimate goal
is to allow the model to study the generalization of unseen
data. The training’s optimizers and loss function have a sig-
nificant impact on the model’s performance. The dice loss
and cross-entropy are frequently employed loss functions
for semantic segmentation. Adam and SGD are the most
commonly used optimizers.

After detecting the tumor region from the MRI brain
images, relevant features must be extracted to guide clinical
diagnosis and treatment. Robert et al. in 2016 introduced the
concept of radiomics that aims to extract quantitative infor-
mation to characterize tumors, determine treatment response
and predict patient outcomes [19]. Kickingereder et al.
explained the potential of radiomics in cancer research and
emphasized the importance of tumor treatment from robust
feature extraction methods [20]. Cho et al. [8] extracted the
radiomics features from the MRI modalities and used for
the glioma classification with machine learning classifiers
such as support vector machine, logistics and random forest
classifiers. This study utilized radiomics features extracted
from MRI to discriminate between different subtypes of
glioblastoma. Then the Tree-based and PCA methods were
employed to choose the relevant features from the extracted
radiomics features. The selected features were upsampled
using the SMOTE [21] and ADASYN [22] techniques. These
upsampled features were fed as input to the binary grading
classifiers such as SVM, decision tree, random forest method
and SGD [23], [24], [25]. This results in the classification
of low-grade and high-grade gliomas. After applying PCA,
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the selected features were given as input to linear regres-
sion, ridge, SGD and XGBoost regressor models to outcome
the survival prediction of the brain tumor [25], [26], [27],
[28], [29].

The inference from this detailed study implies that the
previous work didn’t the address the data imbalance problem
which has to focus for the improvement of the accuracy and
performance. Also, selecting the most important and relevant
features play a vital role in the classification and prediction
process using machine learning algorithms. These limitations
are resolved using this proposed approach.

IIl. MATERIALS AND METHODS

The overall lifetime survival process includes preprocessing,
segmentation of the images, PyRadiomics feature extraction,
feature selection, classifications and predictions. Fig. 1 shows
the overall brain tumor survival prediction process.

A. DATASET DESCRIPTION

In the domain of medical imaging, the Multimodal Brain
Tumor Segmentation Challenge 2020 dataset, also known
as BraTS2020, is a well-known standard for brain tumor
segmentation and classification activities [26], [30]. It is the
collection of brain MRI images using several modalities, such
as FLAIR, T1, T2, and T1-CE (Contrast Enhanced) images.
Fig. 2(a) shows the sample MRI image for each modality.
Various information about the brain tumor are scanned and
highlighted in a different modality. Each MRI modality is
made up of 155 slices per volume. Segmentation annotation
labels for the tumor sub-regions are categorized as 0 for back-
ground, 1 for Necrotic/Non-Enhancing tumor (NCR/NET),
2 for Peritumoral Edema (ED), and 4 for an Enhancing tumor
(ET). BraTS2020 has training and testing subsets, with the
former including 369 cases with ground truth annotations that
identify the tumor parts of the brain scans. Conversely, the
testing subset doesn’t have any ground truth annotations and
is explicitly used for testing and evaluating the performance
of various models and algorithms.

B. DATA PREPROCESSING

The BraTS2020 dataset consists of four distinct MRI modal-
ities such as T1, T2, T1_CE and FLAIR. These four images
are considered as the input to the UNet++ architecture to
train the model. This dataset image already underwent pre-
processing steps, including the same anatomical template
registration, exact resolution interpolation and skull-striping
for brain tissue sectionalization. However, it is necessary to
remove the extra black background from each MRI modality
to improve the computing process time of the machine learn-
ing algorithms. Thus the dimension of each image is cropped
from 240 x 240 x 155 to 128 x 128 x 128. Also, the data
augmentation was done to increase the size of the dataset.
Then the augmented dataset is divided as 80% for training,
10% for validation, and 10% for testing.
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FIGURE 1. Brain tumor segmentation, feature extraction, grading and
lifetime survival prediction process.
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FIGURE 2. (a) Sample MRI of FLAIR, T1, T1-CE, T2 images from BraTS2020
dataset. (b) UNet++ brain tumor segmented image with labels.

C. UNet++ ARCHITECTURE

In the realm of medical image analysis, UNet++ architecture
favored deep learning for semantic segmentation tasks [18].
Essentially, the UNet++ structure is comprised of two core
building blocks: the encoder and the decoder. The encoder
component executes a contracting path, like the UNet, lead-
ing to each level down sampling the feature map’s spatial
resolution while intensifying channel numbers. Instead of
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the traditional UNet decoder, UNet++ incorporates several
nested

U-shaped subnetworks, each comprised of an encoder-
decoder pair. Fig.3 shows the network architecture of
the UNet++4 model. The preprocessed images of size
128*128*128 are used as input for the training of the model.
The contracting path involves two 3*3 kernel convolution
with ReLu (rectified linear unit) as activation function. It is
followed by max pooling with 2*2 kernel for downsample.
In the extracting path 2*2 transposed convolution are carried
out for upsampling the feature map and concatenated with
contracting path convolution to enhance the feature map.
As contrast to encoder path which decrease the feature map
size and doubles the number of kernels, decoder path doubles
the feature map size and halves the number of kernels at
each layer. At the last layer, 1*1 convolution is employed
with softmax activation function to get the segmented image.
Introducing several modifications, UNet++ upstage U-Net
through aspects such as:

1) NESTED DENSE SKIP CONNECTIONS

UNet++ improves segmentation accuracy by using nested
dense skip connections that connect the encoder and decoder
sub-networks at multiple levels as shown in the Fig 3 with
dotted blue color arrows. This innovative approach sig-
nificantly enhances the information flow between the two
sub-networks.

2) DEEP SUPERVISION

By utilizing deep supervision, UNet++ encourages more
detailed representations of input images by incorporating the
output of every layer in the decoder sub-network into the loss
calculation as indicated by red line in Fig 3. This leads to
improvement of segmentation accuracy.

Using a series of convolutional layers and max-pooling
layers, the encoder sub-network in UNet++ is built. Con-
versely, the decoder sub-network employs upsampling layers
and convolutional layers. Multiple levels of nested dense skip
connections connect the encoder and decoder sub-networks.
To normalize data, a min-max scalar was used. The learning
rate of 0.001 was employed with the Adam optimizer for
training the model across 50 epochs. The batch size of 1 is
selected to generalize the model well on both training and
testing dataset. Table 1 shows the parameters used for training
the model. This segmented MRI image using this architecture
is shown in Fig. 2(b). The sub regions of the tumor were clas-
sified with different color modes as shown in the segmented
MRI brain image. The green color depicts a Necrotic/Non-
Enhancing tumor (NCR/NET), blue color shows Peritumoral
Edema (ED), and red color displays Enhancing tumor (ET).
Accuracy, IoU score and Jaccard Loss are the metrics used to
evaluate the algorithm performances.

D. FEATURE EXTRACTION
Tumor or tissue characteristics can reveal valuable infor-
mation for diagnostic, prognostic, and treatment planning
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FIGURE 3. UNet++ architecture model.

TABLE 1. Parameters used for training model.

Parameters Value

Input Size 128*128*128
Convolution Kernel size 3*3

Max pool size 2%*2

Stride 2

Learning rate 0.001

No. of epochs 50

Batch size 1

Optimizer Adam
Activation Function Softmax
Loss Categorical cross-entropy

purposes by determining numerous quantitative features
through Radiomics feature extraction in medical images.
Magnetic Resonance Imaging (MRI), Computed Tomogra-
phy (CT) or Positron Emission Tomography (PET) scans can
capture various aspects of these features.

PyRadiomics has become a widely-used open-source
Python package that offers a broad set of functionalities
for extracting radiomics features from medical images. It’s
become an essential tool for feature extraction with the
collection of 1000 radiomics features like texture-based,
intensity-based, wavelet-based, and higher-order features.
Radiomics features were extracted individually for every
tumor segmented image. To ensure consistency and elimi-
nate noise or artifacts, preprocessing was necessary before
the feature extraction of the images. Each resampled image
was resized to fit the tumor mask’s size. Wavelet and
Log transform was employed to recover valuable data and
enhance the tumor’s edges with 3.0 as the Sigma value.

120872

N S

Input & Output: 128*128*128
Convolution (3*3), Relu, Stride =2
Max Pooling (2*2)

Upsampling (2*2)

Softmax

Concatenate

- Skip Connection

Deep supervision — Convolution (1*1)

Normalization, Adaptive Histogram Equalization, Noise Cal-
culation, Speckle noise and Laplace sharpening filters were
also applied. As a result, 944 features were collected from
each sample.

E. DATA AUGMENTATION

To proceed with the grading process, data augmentation has
to be done to overcome the class imbalance. Followed by the
segmentation process, 369 segmented images were available
in each class, namely T1, T2, TI-CE and FLAIR. Out of
369 images, 76 images belong to LGG type and 293 images
belong to HGG type of tumor class. Hence SMOTE and
ADASYN upsampling techniques were employed to enhance
the progress of the ML (Machine Learning) models and to
decrease the bias in these classes. In this work, the most
popular SMOTE and ADASYN upsampling techniques are
used.

SMOTE methods wad introduced by Chawla et al. in 2002
[21]. SMOTE is one of the prevalent techniques for dealing
with a class imbalance in machine learning models. To com-
bat this problem, the SMOTE algorithm produces synthetic
samples for the minority class, which balances the class
distribution. This is achieved by creating current minority
class samples in the feature space between new synthetic
instances. In doing so, the machine learning model gains a
more balanced and representative training set which leads
to superior generalization and performance in the minority
class.

The pseudocode of the SMOTE algorithm is explained
in the Algorithm 1. This is applied to 369 samples in each
modality. The number of samples increased in FLAIR, T1, T2
and T1-CE modalities using SMOTE are 581, 578, 574 and
576, respectively.
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Algorithm 1 Pseudocode for SMOTE

Algorithm 2 Pseudocode for ADASYN

Input:
Samples of minority class
Number of synthetic samples to generate
Output:
Generated synthetic samples
for each sample in minority class do
Locate the nearest neighbour samples
Calculate the difference between a randomly selected
sample and current sample
Select a random number between 0 and 1
Generate the new synthetic sample using the formula
New synthetic sample = current sample + random
number * difference

end for

ADASYN is an extension of the SMOTE algorithm pro-
posed by He et al. in 2008, designed to address further
the class imbalance problem in machine learning [22]. Both
ADASYN and SMOTE create synthetic samples for the
minority class.

Unlike SMOTE, ADASYN has an adaptive feature that
concentrates on generating synthetic samples in areas with
significant class imbalance. ADASYN adjusts synthetic sam-
ple generation by focusing on local density distributions in
regions with greater class imbalance. This adaptive strategy
enables ADASYN to effectively mitigate class imbalance
problems, particularly in datasets with distinct degrees of
class imbalance across different areas.

On applying the ADASYN Pseudocode shown in
Algorithm 2 to 369 samples in each modality, the number
of samples increased by 581 in FLAIR, 578 in T1, 579 in T2
and 568 in T1-CE modalities.

F. FEATURE SELECTION AND GRADING

Feature selection is a fundamental process to enhance the
performance of machine learning models and reduce compu-
tational complexity. It is the process of selecting the relevant
and essential features from a vast dataset. Here, from the
extracted 944 features, a subset of relevant and informative
features is chosen using the Tree-based feature selection
method followed by PCA.

Tree-based feature selection is a technique for taking
objective features based on decision tree algorithms. The
essential 276 features from FLAIR, 238 from T1, 239 from
T2 and 267 from T1-CE were selected in SMOTE method.
While using the ADASYN method, 314 features from
FLAIR, 299 from T1, 313 from T2 and 307 from T1-CE were
selected.

Likewise, a statistical technique, PCA is employed to
reduce the dimensionality. This technique can be help-
ful for pattern identification, data visualization, clustering,
noise reduction and other data analysis tasks. In this task,
102 features from FLAIR, 92 from T1, 94 from T2 and
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Input:
Samples of minority class
Samples of majority class
Number of synthetic samples to generate
Output:
Generated synthetic samples
for each sample in minority class do
Calculate the ratio of class imbalance
d = Spin /Smaj
where Syin and Sy,4; are the number of
minority and majority
samples respectively.
Let dyy, be the predefined maximum tolerated class
imbalance threshold value
if d < dy, then do
Calculate the total number of examples to be
generated for each minority sample
G= ,3 (Smin - Smaj )
where B € (0,1] is the parameter value that
indicates the balance level. If B = 1, the class is
perfectly balanced after generalization
for each example i = (1,...Smin ) in the current
minority sample do
Locate the k nearest neighbour and calculate
ri=An/k
where An is the number of examples in k
nearest neighbour i Normalize r; as

Smin
ri =ri/ Zizl i
Calculate the number of synthetic examples to
be generated for each minority sample as
Gi = f, *G
Generate G; samples and append new samples
end for
end if
end for

83 from T1-CE were chosen for both SMOTE and ADASYN
methods.

When it comes to medical imaging, grading brain tumors
is crucial. To determine their malignancy or aggressiveness,
these tumors are typically categorized into various groups.
Some of the commonly used machine learning classification
algorithms is explained as follows.

Support Vector Machine (SVM): A practical approach to
this classification task is using SVM, a supervised learning
algorithm. This algorithm is to identify an optimal hyperplane
that effectively separates differing classes in the feature space.
One of the commendable strengths of SVM is its ability
to handle high-dimensional feature spaces, making them a
viable option for brain tumor grading in conjunction with
suitable features.
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Decision Tree: One of the frequently used machine learn-
ing algorithm for grading or classification tasks is decision
tree. The training data undergoes recursive splits into smaller
subsets based on various features, intending to create subsets
with similar grades.

Random Forests Method: Individual decision trees are
combined to make predictions in the ensemble learning
method known as random forests. The predictions of each
tree, which is trained on distinct portions of the data, are
aggregated to produce an outcome. With their ability to tackle
both regression and classification tasks, random forests have
earned a reputation for their resilience and capacity to detect
intricate connections within datasets.

Stochastic Gradient Descent (SGD): The SGD Classifier
is a classification algorithm that optimizes the model param-
eters using the stochastic gradient descent algorithm. Instead
of updating based on the loss function gradient over a whole
dataset, it focuses on a data point or mini-batch at each
iteration. With this working strategy, this is computationally
efficient for larger datasets.

These ML classifiers are exploited to classify Low-Grade
Glioma (LGG) from High-Grade Glioma (HGG). Accuracy,
Precision, Recall and F1score metrics are explored to evaluate
and compare the performance of the classifiers.

G. SURVIVAL PREDICTION

Predicting brain tumor survival is an area where machine
learning regression algorithms have proven their importance
by predicting continuous numerical values based on input fea-
tures. This method learns the relationship between the target
variable and features from a dataset and makes predictions for
new data. The most popular regression methods are described
below.

Linear Regression: The widely used and simple model
assumes a linear relationship between the target variable and
input features. It decreases the variance of predicted values
by fitting a line or hyperplane and minimizing the sum of
squared differences between predicted and actual values.

Ridge Regression: Ridge regression is mainly used to min-
imize the variance of the model’s predictions. It is employed
to decrease overfitting the data.

Extreme Gradient Boost (XGBoost): This learning tech-
nique makes predictions by combining weak models. The
feature space is recursively divided into regions by decision
tree-based regression models, which are then assigned a con-
stant value (average or median). This method can capture
the intricate non-linear relationships and interactions between
attributes, resulting in a tree structure.

In the proposed work, the ML-based regression mod-
els, namely Linear Regression, Ridge, SGD regressor and
XGBoost regressor, were trained to predict the lifetime of
brain tumor patients. As machine learning algorithms become
better, their capacity to prognosticate brain tumor survival is
sure to improve even further. The radiomics feature selection
uses PCA to extract 89 features from FLAIR, 87 from T1,
83 from T2 and 75 from T1-CE. These models are evaluated
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with the predefined dataset value using Mean Square Error
(MSE) and R-squared metrics.

H. EVALUATION METRICS

According to segmentation tasks, a pixel that aligns with the
ground truth and is identified as belonging to a specific class
is called a true positive (TP). By contrast, a true negative
(TN) is a pixel properly recognized as not belonging to the
specified class. Whenever the model inaccurately predicts
a pixel as not part of a class, it’s called a false positive
(FP). In contrast, a false negative (FN) is where the model
predicts a pixel to belong to the class inaccurately. Tumor
classification tasks are similar, where TP denotes a correctly
predicted tumor class that belongs to the given type. TN,
in this regard, is the perfectly-identified part of a tumor as
not in the given class. When the model inaccurately predicts
a tumor class as belonging to a given class, it’s called a
false positive (FP). False negatives (FN) denote erroneous
predictions of a class. The performance metrics employed in
brain tumor segmentation and classification literature have
been listed below.

Accuracy computes the correct identification of all classes
or pixels, whether positive or negative and evaluates the
ability of the model.

Accuracy = P + IN (1)
TP+ TN + FP + FN

Sensitivity is the process of identifying positive sam-
ples/pixels among all real positive samples that determine

how well the model performs this task.
Sensitivi TP )
ensitivity = TPLEN 2)
Specificity relates to how many true negatives were correctly
predicted compared to the actual negatives. This provides
insight into the number of pixels or classes that could not be

identified correctly.

Specificity = d 3)
pecificity = IN T+ FP
Precision is a measure for predicting the accurate class/pixel
by a model, revealing the proportion of positive predictions
made correctly.
. TP
Precision = ——— 4)
TP + FP
Recall reveals the proportion of classes/pixels annotated in
the ground truth that is also present in the model’s prediction
to describe the completeness of the model.
N
Recall = ——— Q)
TP + FN
Fl1-score effectively merges precision and recall into a har-
monic mean to provide a balanced performance assessment.
Precision * Recall

F1Score =2 — (6)
(Precision + Recall)
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The Intersection over Union (IoU) or Jaccard index quantifies
the overlap percentage between the predicted output of a
model and the mask of the actual annotated truth.

. P
~ TP+FP+FN
IoU loss (Jaccard loss) is used in optimizing the segmentation

metric and can be calculated by subtracting the IoU score
from 1.

IoU @)

IoU (Jaccordloss) = 1 — IoU ®)

Mean squared error (MSE) is measured by computing the
mean squared difference between the predicted and real
values.

I (. 2\
MSE=ZZi:1(y1—YI) )

R-squared is a statistical indicator of how much variance in
the dependent variable might be taken into account by the
independent variables.

, 2
2 (yi - yi)
RP=1-—> 7 (10)

2 (yi —§)2

IV. RESULTS AND DISCUSSION

A. RESULTS OF UNet++ SEGMENTATION

The BraTS2020 MRI images were preprocessed and split-
ted into 80%, 10% and 10% for training, validation and
testing datasets, respectively. UNet++ architecture model
was implemented to train the training set MRI images. The
saved model was then applied to segment the tumor in the
validation and testing phase. Table 2 shows the outcome of
the training, validation and testing phases. Accuracy, IOU
score and Jaccard Loss are the metrics used to compute the
improvement of the segmented model with the equations (1),
(7) and (8), respectively.

TABLE 2. UNet++ segmentation results.

Parameters Training Validation Testing
Accuracy 0.9825 0.9802 0.9881
Jaccard Loss 0.2433 0.2646 0.2517
ToU Score 0.7567 0.7354 0.7483

This proposed segmentation model obtained higher accu-
racy of 98%, an IoU score of 0.7483 greater than 0.5 (good
score) and a Jaccard loss of 0.2517 in a testing phase. The
graphical representation of these metrics in the testing phase
is shown in Fig. 4.

1) COMPARISON OF SEGMENTATION MODELS
The UNet++ model is compared with the well-known related
segmentation models such as UNet, Attention UNet and
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FIGURE 4. Graphical representation of accuracy, loU score and jaccard
loss.

ResNet50. The TP, FP, TN, and FN parameters of the con-
fusion matrix were employed to determine the performance
metrics. The parameters chosen to evaluate the segmentation
results are Accuracy, Sensitivity Specificity and Precision
which are measured using the equations (1), (2),(3) and (4),
respectively. As shown in Table 3, UNet++ obtained the best
values as 98.42%, 0.9947, 0.9858 and 0.9789 of Accuracy,
Precision, Sensitivity and Specificity respectively.

TABLE 3. Comparison analysis of segmentation models.

MODEL Accuracy(%) Precision Sensitivity Specificity
UNet 97.76 0.9837 0.9786 0.9832
Attention 96.41 0.9626 0.9692 0.9703
UNet

Resnet50 96.83 0.9725 0.9739 0.9625
UNet++ 98.42 0.9947 0.9858 0.9789

B. EVALUATION AND COMPARISON OF CLASSIFIERS

As discussed in the above section, the SMOTE and ADASYN
upsampling techniques were exploited after extracting
944 features using PyRadiomics. Instead of implementing
all these features, Tree-based and PCA feature selection was
done. Then the four classification machine learning algo-
rithms were trained to classify the LGG and HGG classes.
The experiment was done individually for SMOTE and
ADASYN methods. The SGD classifier’s confusion matrix
and Area Under Curve (AUC) for FLAIR, T1, T2 and T1-
CE modalities are shown in Fig.4 and Fig.5 for SMOTE and
ADASYN methods, respectively.

Precision, Recall, and F1-score are widely used metrics for
assessing classification models and are measured using the
equations (4), (5) and (7), respectively. The obtained values
for four classifiers are depicted in Table 4 while applying
SMOTE technique. The SVM method gives a good F1-score
of 0.93 on the FLAIR and 0.91 on the T1 modality. The
SGD classifier yields 0.95 on the T2 and 0.91 on the T1-CE
modality.
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TABLE 4. Classification performance analysis for SMOTE technique with four grading classifiers.

SVM DT RF SGD
Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore
HGG 0.95 0.92 0.93 0.87 0.89 0.88 0.89 0.97 0.93 0.90 0.93 0.92
FLAR 166 001 094 093 0.87 085 086 0.96 087 091 0.92 089 091
HGG 0.93 0.89 0.91 0.89 0.93 0.91 0.85 0.98 0.91 0.88 0.93 0.90
1 LGG 0.88 0.93 0.90 0.92 0.87 0.90 0.98 0.80 0.88 0.92 0.85 0.88
HGG 0.94 0.96 0.94 0.84 0.85 0.85 091 0.98 0.94 0.94 0.97 0.95
T2 LGG 0.95 0.91 0.93 0.83 0.81 0.82 0.98 0.89 0.93 0.96 0.93 0.94
HGG 0.89 0.91 0.90 0.92 0.85 0.88 0.89 0.96 0.93 0.88 0.92 0.91
TI-CE 166 092 090 091 0.88 094 0091 0.97 090 093 0.93 089 091
TABLE 5. Classification performance analysis for ADASYN technique with four grading classifiers.
SVM DT RF SGD
Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore
HGG 0.88 0.98 0.93 0.78 0.93 0.85 0.86 1.00 0.92 0.83 0.98 0.90
FLAR 166 098 089 093 0.92 078  0.84 1.00 086 092 0.98 083 090
HGG 0.79 0.96 0.87 0.81 0.87 0.84 0.87 0.95 0.90 0.89 0.98 0.93
1 LGG 0.96 0.77 0.85 0.88 0.82 0.85 0.95 0.87 091 0.98 0.89 0.93
HGG 0.92 0.99 0.95 0.80 0.85 0.82 0.90 0.95 0.93 0.92 0.98 0.94
T2 LGG 0.98 091 0.95 0.83 0.77 0.80 0.94 0.89 0.92 0.98 0.91 0.94
HGG 0.96 0.88 0.92 091 0.70 0.79 0.93 0.87 0.90 1.00 0.92 0.96
TICE 166 088 0.96 0.92 0.74 0.93 0.82 0.86 0.93 0.89 0.92 1.00 0.96

Predicted tabel =

10 ———
—
o AN
o g |
2oef |
e | |
£ouf |
o £
af |
10
= ) A =098
o o o o Sa o
abee Positve Rave

Predicted label T1CE

10] E——
- T —
f
e |
o |
/
o] |
o £ |
ae] |
|
2 /
|
0z{ |
|
10 /
— Ac=os1

04 0.
False Postive Rate

ot el

e label
e ositive Rate

Predicted label T

FIGURE 5. SGD classifier's confusion matrix and AUC for SMOTE.

Table 5 shows the classifier parameter values for the
ADASYN method. In this case, SVM got the high F1-score
on the FLAIR and T2 modality as 0.93 and 0.95, and SGD
obtained 0.93 and 0.96 on the T1 and T1-CE modality.
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FIGURE 6. SGD classifier's confusion matrix and AUC for ADASYN.

The better result of 96% accuracy was acquired on T1-CE

modality as compared with other modalities using the SGD

classifier, as shown in Table 6.
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TABLE 6. Accuracy comparison for smote and adasyn techniques.

TABLE 8. Segmentation comparison analysis with literature models.

Modality SMOTE ADASYN

SVM DT RF SGD SVM DT RF SGD

FLAIR 093 087 092 091 093 0.85 092 0.90
T1 090 090 090 089 086 0.84 091 093
T2 095 083 094 091 095 0.81 092 0.95
T1-CE 091 090 093 095 092 0.81 0.89 0.96

C. EVALUATION OF SURVIVAL PREDICTION

REGRESSION METHODS

Brain tumor survival was predicted using Linear, Ridge, SGD
and XGBoost regression models. The 233 HGG-graded sam-
ples and PCA selected radiomics features were considered as
input to the regressor models. The graphical representation
for the four regression models of the FLAIR image is shown
in Fig.7.

Linew Regesim R Regesin SGD Regessor XeBoost

{ lw ' {im ¥ ; '

FIGURE 7. Graphical representation of regression models for FLAIR
image.

Mean Square Error (MSE) and R-squared (R?) values
were calculated using the formula (9) and (10) to evalu-
ate their performance. As shown in Table 7, the XGBoost
regressor acquired the least MSE value and high R? value as
93726.45and 0.988, respectively.

TABLE 7. Survival prediction analysis of four regression methods.

Modality Linear Ridge SGD XGBoost
MSE 186413.72 205782.54 175693.69 93726.45
FLAIR R-squared 0.53 0.50 0.386 0.988
MSE 197853.47 145792.54 139754.14 96317.56
T R-squared 0.496 0.439 0.319 0.985
MSE 165431.23 156753.57 145669.57 119713.47
T R-squared 0.48 0.44 0.353 0.982
MSE 178952.41 157812.85 175269.53 107459.25
TI-CE R-squared 0.44 0.39 0.323 0.985

D. COMPARATIVE ANALYSIS OF THE PROPOSED METHOD
WITH STATE-OF-THE-ART LITERATURE

To emphasize the outcomes of this paper work, it is contrasted
against suggested start of the art methods for segmentation,
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Reference Segmentation Models Accuracy (%)
[31] CNN 81.35
[8] 2D CNN 88.20
[32] UNet 89.60
[33] CNN & SVM 97.10
[34] ANN 98.00
[14] DL with Attention mechanism 92.03
[35] UNet& VGG16 98.00
[36] CNN with Data Augmentation 96.50
[37] 3D-UNet 95.85
This Work Proposed UNet++ Model 98.81

TABLE 9. Classification methods comparative analysis.

Reference Grading Classifiers Accuracy (%)
[24] Random Forest 89.00
[38] AdaBoost 89.90
[39] Random Forest 88.00
Support Vector Machine 87.00
[40] 3D CNN 96.49
[41] 3D UNet 90.00
[42] Resnet-50 95.00
[43] BrainMRNet 96.05
This Work Proposed SGD with ADASYN 96.87

TABLE 10. Lifetime prediction comparative analysis with state of the art
methods.

Reference Lifetime Prediction Methods MSE
[27] Random Forest 6109105.6
Multilayer Perceptron 5955021.1
[28] Random Forest 268310.586
Support Vector Machine 107569.325
Multilayer Perceptron 102839.036
XGBoost 127478.649
[44] 3D CNN 104773.00
[45] Median Regression 101877.80
[29] Random Forest 96470.98
This Work Proposed XGBoost Regressor 93726.45

classification and survival prediction. The segmentation mod-
els are compared based on accuracy in Table 8.

In our proposed work, UNet+-+ model got higher accu-
racy of 98.42% which confirms its effectiveness in detecting
the brain tumor pixels matched with ground truth regions.
As depicted in the Table 9, SGD method with ADASYN
data augmentation technique yields the higher accuracy of
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96.87% that shows its prominence by evaluated against the
already published machine learning classification techniques
for grading. Table 10 records the performance analysis of
the brain tumor survival prediction methods with litera-
ture techniques. When evaluated with the literature meth-
ods, XGBoost regression method achieved least MSE of
93726.45 on BraTS dataset.

V. CONCLUSION AND FUTURE WORK

This paper discusses the machine learning based MRI image
analysis method for brain tumor segmentation, grading and
lifetime prediction. The challenges involved in the seg-
mentation of tumor portion include low contrast imaging,
uncertainty in location, unclear boundary, and annotation
in bias. In the proposed method, after exploring differ-
ent segmentation architectures, we obtained a high accu-
racy of 98% using UNet++. The segmentation accuracy
highly influences the model performance concerning grading
and lifetime prediction. After performing radiomics feature
extraction, SMOTE/ADASYN upsampling, feature selection
and classification, we have obtained the highest accuracy of
96% for grading of LGG and HGG using SGD. The sequen-
tial procedure, as stated above, gives the best classification
accuracy compared to the machine learning techniques in
the literature. As stated in the literature, lifetime prediction
accuracy using regression is significantly less due to vari-
ous difficulties such as brain tumor heterogeneity, limited
knowledge about tumor progression, individual variability
in response to treatment and the development of secondary
complications. We have obtained the MSE of 93726.45 using
the XGBoost regression technique, which is a considerably
good quantitative figure compared to the other methods in
the literature. Though the proposed approach increases the
classification and prediction accuracy with data augmentation
and feature selection, there may be loss of in depth informa-
tion. So recurrent neural network and different deep learning
models can be exploited to facilitate the better performance
and to reduce the information loss. Also many alternative
benchmarking models would be used with explainable arti-
ficial intelligence (XAI) for improving the clarity of the
models.
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