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ABSTRACT Widespread deployments of optimally placed real-time power quality (PQ) monitoring tools
such as distribution level micro-phasor measurement units (D-PMUs or µPMU), digital fault recorders, and
PQ analyzers are expected to play a critical role in improving the stability and reliability of the smart grid.
In this paper, an improved PQ disturbance (PQD) classification method using discrete wavelet transform
(DWT)with a cubicmulti-class support vector machine (CMSVM) classifier is proposed, which incorporates
a decade’s worth of high-quality continuous waveform PQ data from the Australian power network. This
research also introduces misclassification cost (MC) and cost-sensitive classification theory into the area of
PQD classifiers to build improved and more robust network models for the future. The method is evaluated
using four case studies of synthetic and real-world PQD field data combinations and five application case
studies using optimally placed µPMUs. The results indicate similar classification performance for standard
PQDs than previous literature, alongside improved MC for complex PQD classes. Comparative analysis
with previous literature highlights the importance of using high-quality real PQD field data to improve the
fidelity of classifiers to provide better PQ insights as more complex components are added to the distribution
network.

INDEX TERMS Distribution network, micro-PMU, optimal placement, power quality insights.

NOMENCLATURE
µPMU: Micro phasor measurement unit.
ADALINE: Adaptive linear network.
ADN: Active distribution network.
CMSVM: Cubic multi-class support vector machine.
CNN: Convolutional neural network.
CWT: Continuous wavelet transform.
DFR: Digital fault recorder.
DL: Deep learning.
DPMU: Distribution phasor measurement unit.
DSO: Distribution system operator.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Raza .

DT: Decision tree.
DWT: Discrete wavelet transform.
EEMD: Ensemble empirical mode decomposition.
FFNN: Feedforward neural network.
KNN: K-nearest neighbor.
LSTM: Long short-term memory.
MC: Misclassification cost.
ML: Machine learning.
MRA: Multi-resolution analysis.
MSVM: Multi-class support vector machine.
OCA: Overall classification accuracy.
PNN: Probabilistic neural network.
PQ: Power quality.
PQA: Power quality analyzer.
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PQD: Power quality disturbance.
RF: Random forest.
RNN: Recurrent neural network.
SNR: Signal-to-noise ratio.
ST: Stockwell transform.
UDNA: Unique distribution network attributes.
UNP: Unknown network parameters.
UZIP String Usable zero-injection phase strings.
VMD: Variable mode decomposition.
XAI: Explainable artificial intelligence.

I. INTRODUCTION
The increasing number of complex power electronic com-
ponents with widespread renewable adoption has made the
active distribution network (ADN) prone to instability, caus-
ing power quality (PQ) issues. Previously unseen demand
dynamics have made it difficult for distribution system
operators (DSOs) to provide reliable electrical supply with
the appropriate voltage, frequency, and waveform shape
while staying within acceptable standard limits [1]. In this
context, there is a significant push to enhance real-time sit-
uational awareness with better PQ in all system conditions.
To improve PQ, it is necessary to proactively identify the
sources and causes of PQ disturbances (PQDs). This requires
detecting, localizing, and classifying the type of PQD so
appropriate mitigating action can be taken.

Recent literature [2], [3] has highlighted the importance
of using a high sampling rate of modern measurement
tools in classifying PQDs. Hence, increased grid visibility
can be realized by incorporating heterogeneous data from
PQ analyzers (PQA), digital fault recorders (DFRs), and
distribution-level micro phasor measurement units (D-PMUs,
micro-PMUs or µPMUs) into a new consolidated framework
[4] for better PQD identification and fault analysis. However,
previous literature [2], [3], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32] and
their proposed methods which performed proficiently with
synthetic data, have not incorporated high-quality, real-field
data into their PQD classification methodology. They have
been limited to data from less accurate legacy measurement
devices such as transmission level PMUs, a small subset of
field data, or experimental setups.

There are two sequential steps in developing a PQD clas-
sification technique: feature extraction and classification.
Optimal feature extraction for PQD classifiers plays a piv-
otal role in a specific method’s overall efficiency, accuracy,
and real-time applicability. In [33], an automatic feature
selection algorithm was developed, with the most useful
parameters defined for the classifier to optimize speed and
accuracy. However, the features extracted using other tech-
niques such as variable mode decomposition (VMD) [22],
ensemble empirical mode decomposition (EEMD) [32], and
adaptive linear network (ADALINE) [14] were stated to

be computationally intensive and unsuitable for real-time
implementation.

The authors in [29] evaluated various classifiers such as
k-nearest neighbor (KNN), random forest (RF), and support
vector machines (SVM). The authors noted that feature selec-
tion plays a crucial role in the performance and sensitivity
of the classifier; however, real-world performance cannot be
evaluated with synthetic data alone. Whereas, in [34], the
SVM classifier achieved higher real-PQD accuracy when
trained on a combination of real power networks and syn-
thetic data.

The discrete wavelet transform (DWT) feature extraction
technique used in [17] indicated a good equilibrium of accu-
racy with improved computational efficiency compared to
previous Stockwell transform (ST) methods. In [8] and [19],
the author used DWT to extract energy and entropy char-
acteristics at various resolutions to classify PQDs using a
probabilistic neural network (PNN) with suitable real-time
applicability.

In [19], an eight-level DWT optimal feature selection
algorithm was developed. However, there are marginal gains
in performance compared to a more efficient four-level [29]
or six-level [27] wavelet decompositionmethod. In both stud-
ies, important PQ indies, such as total harmonic distortion
(THD) and flickermeasurements, and their effect on classifier
performance were not explored.

Various kernel SVM types were evaluated in [9], [11],
[18], [32], and [34]. However, there is limited research on the
performance of the cubic multi-class SVM (MSVM) kernel
with standard and complex PQDs.

There have been many other combinations of approaches
developed to detect and localize PQDs, including ST and
PNN approaches [7], [12], ST and decision trees (DT)
[3], [10], and DWT multi-resolution analysis (MRA) with
decision-making architecture [5]. Researchers have also
explored threshold-based approaches using a feedforward
neural network (FFNN) classifier with synthetic synchropha-
sor data [20], showing good overall classification accuracy
(OCA) of standard PQDs. However, it is difficult to obtain
real field data of µPMUs, since it is a new technology that
has been recently embraced.

With more convoluted elements added to ADNs, it is
expected that more advanced or complex PQDs combining
double, triple, or quadruple PQDs will occur more frequently.
In [27], OCA deteriorated as the number of PQD classes
increased, especially with complex PQDs. Therefore, a PQD
classifier method must be developed to accommodate such
scenarios. Previous literature [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [29], [31], [33], [34], [35] has
only evaluated their proposed method with basic or standard
PQDs listed in the IEEE standards or a few complex PQDs.
Research into more complex PQD classifier performance has
been largely unexplored.

Recently, deep learning (DL) models [21], [24], [26], [36],
[37], [38], [39], [40], [41], [42], [43], [44] have gained a
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TABLE 1. Comparison of Different Classifiers for PQD Classification in Literature.

lot of traction, which include techniques such as recurrent
neural networks (RNN), long short-term memory (LSTM),
and convolutional neural networks (CNN), among others.
However, they utilize no real-field data [36], [37], [39], [40],
[41], [42], [44] or extremely limited legacy datasets [21],
[26], [38], [43] with low instrument sampling rates [37], [40],
[41], [42], [43], [44].

As shown in [38], where limited real-field data is used,
if misclassification occurs, then the subsequent decisions will
be critically affected. Consequently, the manual labeling of
tens of thousands of real-field PQDs is required [36], [38],
[43] to develop a robust DL method in the future. Moreover,
when synthetically trained DL models were tested on a small
subset of real-field data, there was a significant drop in OCA
of 6% [21] and 9% [26]. Accordingly, the limitations of DL
techniques are the increased complexity of network models,
poor generalization, overfitting, and lack of high-quality field
PQDs to make them suitable for deployment.

It is also difficult to understand why a particular machine
learning (ML) algorithm performs better than others with
a simple OCA metric. The authors in [34] evaluated dif-
ferent combinations of synthetic and real-field datasets and
their effect on the MSVM classifier. Similarly, researchers in
[31] developed a CNN with explainable artificial intelligence
(XAI) for evaluating and measuring the trustworthiness of
ML techniques for PQDs classifiers. Despite this, all previous
studies have neglected the importance of cost-sensitive clas-
sification in the problem formulation of PQD classification.
The evaluation of different classifier methods is shown in
Table 1.
The idea of misclassification costs (MC) is frequently

seen in the medical field [45] and relates to the potential
consequences of incorrectly classifying a high-risk class as a
low-risk class.MC is critical for specialized PQ engineers and
DSOs who will rely upon the precise classification of PQDs
to improve their productivity. This aspect is missing from all
previous publications.

While some PQD classificationmethods have incorporated
smart meter data [16], [46], these non-standardized devices
cannot capture dynamic responses affecting PQD classi-
fication and distribution system state estimation (DSSE).
Measurement tools such as DFRs and PQAs with integrated
µPMU functionality [47] have been recently developed,
making it possible for real-time and historical PQ emis-
sions capture and assessment through newly developed linear
DSSE [48] and PQ software. These devices are smaller, more
accurate, and less expensive than conventional transmission
level PMUs [49], with reporting rates between 10-240 frames
per second, improved total vector error (TVE) [47], and
better dynamic performance as per the updated IEC/IEEE
60255-118-1 standard [50].
Class P µPMUs are used for protection applications,

whereas Class M µPMUs are suitable for PQ applications
due to their greater embedded filtering. The resultant GPS
time-stamped measurements from µPMUs placed through-
out ADNs enables precise tracking of magnitude and phase
fluctuations at the node and nearby feeders.

However, the valuable PQ insights of deploying these
devices for DSOs heavily depend on their optimal place-
ment. Our paper [51] presented a new state-of-the-art
µPMU ADN optimal placement method which considers
the unique distribution network attributes (UDNA) in the
usable zero-injection phase string (UZIP String) placement
algorithm.

This paper makes the following significant contributions to
address the shortcomings of previous literature.

• An improved traditional ML method using DWT and
cubic-kernel MSVM (CMSVM) that combines previous
literature’s best attributes is developed and evaluated for
both standard and complex PQDs.

• For the first time, the notion of MC is introduced in
PQD classificationmethodology, and how it is beneficial
and valuable to build robust DL methods in the future.
A hand-crafted feature set to reduce MC is established
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alongside new features like flicker measurements. This
is unseen in previous literature.

• The uniqueness of this study is that it uses decades’
worth of high-quality, real-world field PQD data from
the Australian Distribution Network and is not limited
to legacy PQ databases and instruments.

• The assessment and implications of ML behavior when
the classifier is trained on combinations of synthetic and
a large stream of real-field data is evaluated.

• Computational efficiency is improved by utilizing
the most effective pre-processing techniques, such as
segmentation, normalization, and noise filtering with
the same DWT MRA decomposition as the feature
extraction.

• The importance of optimal µPMU placement infras-
tructure in ADNs to provide valuable PQ insights is
explored through five in-depth PQ application case stud-
ies considering the state-of-the-art UZIP String µPMU
placement method. This application aspect is missing
from previous literature.

• Other contributions include evaluating different wavelet
types, decomposition levels, and their effect on OCA.
The impacts of various instrument sampling rates on
the proposed method. Additional laboratory tests with
µPMUs, DFRs, and PQAs, their latency, and com-
putational burden with the proposed method are also
assessed.

This paper is organized as follows. Section II introduces
MRA elements of DWT and concepts for the cost-weighted
CMSVM classifier. Section III details the synthetically gen-
erated dataset and real PQDfield data. Section IV presents the
proposedmethodology. In Section V, performance evaluation
for four case studies is presented. Section VI, the importance
of optimally placed µPMUs in ADNs is assessed with five
application case studies. Lastly, Section VII compares the
proposed method with previous literature, limitations, practi-
cal constraints, and added benefits with some future research
directions.

II. IMPROVED DWT MRA WITH MC WEIGHTED
CLASSIFIER
A. DISCRETE VS CONTINUOUS WAVELET TRANSFORM
The DWT is a mathematical technique that decomposes a
signal into a set of wavelets, which are functions that are
localized in both time and frequency. The difference between
DWT and continuous wavelet transform (CWT) is based
on the translation and scaling parameters. In CWT, both
parameters can be tuned finely, whereas DWT is fixed and
has discretized scaling factor of two. DWT is preferred for
real-time computational environments [33] such as detection
of PQDs and will be used in this research.

B. CHOICE OF MOTHER WAVELET AND DECOMPOSITION
LEVEL
The choice of the mother wavelet and coefficient choice
impacts the detection and localization of PQDs due to time

delay and overdamping of transients [2]. Many studies [5],
[8], [9] imply four-coefficient Daubechies’ wavelet (Daub4
or Db4) performs better than other wavelets with a small
computational cost due to the short wavelet filter. However,
there has not been conclusive comparative analysis to validate
these claims.

Consequently, in preliminary tests, different wavelet fam-
ilies and their best members were tested alongside different
levels of decomposition with an equal combination of syn-
thetic and real field data. It was found that the best performing
wavelets were the Biorthogonal 3.7 and Db4 wavelets.
As shown in Fig. 1, the Bior3.7 and Db4 wavelets had
identical OCA performance at four, six, and eight level
decomposition levels. In all wavelet types, going from three
to four-level decomposition had the biggest improvement in
OCA. In this study, the Db4 mother wavelet is chosen with
eight-levels of decomposition for the best OCA.

FIGURE 1. Relationship between different mother wavelet types,
decomposition levels, and overall classification accuracy of PQDs.

C. IMPLEMENTATION OF NOISE FILTER
Themajor drawback of DWT is its ability to reject noise given
different types of mother wavelets. Different wavelet types
were tested in noisy environments [9], showing that the best-
performing Db4 wavelet can still achieve great classification
accuracy. In this study, a noise filter that uses the same
Db4 wavelet and eight-level decomposition is utilized for the
denoising algorithm to improve the efficiency of the proposed
method. Impulse noise, which closely resembles electrical
noise, is used alongside a universal hard-thresholding method
for denoising. This DWT noise filter can be turned on or off
depending on the noise level or signal-to-noise ratio (SNR)
of the incoming signal or considering the type of filtering
used in the instrument itself. For example, Class M µPMU
has greater filtering than Class P µPMUs. In this research,
the noise filter was turned off for the real-field data. Practical
noise considerations for PQ monitoring are later discussed.

D. CUBIC MULTI-CLASS SUPPORT VECTOR MACHINE
(CMSVM)
This research uses the cubic kernel MSVM and DWT for
MRA to classify standard and complex PQDs. Previous stud-
ies [9], [11], [18], [32], [34] have used popular kernels such
as linear, radial basis function (RBF), or sigmoid kernels.
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Different kernel types were evaluated, and it was found that
the cubic SVM kernel produced consistently better results
than other types in the proposed method. This was especially
evident as the number of complex PQDs increased. The
CMSVM kernel utilizes a degree-3 polynomial, excels in
modeling non-linear or unbalanced decision boundaries such
as PQD classification and can capture more intricate details
than a lower-degree polynomial kernel.

For instance, the decision boundary overlaps with more
complex triple and quadruple PQDs. The disadvantage is that
the training time is greater. The kernel type and performance
depend heavily on the type, quality, and quantity of data. For
instance, a purely synthetically trained classifier may prefer
an RBF kernel over a polynomial kernel, which performs
better with various PQD data types. The most appropriate
MSVM method, as highlighted by previous literature [23],
is the one vs one (OvO) method compared to one vs all
(OvA) or directed acyclic graph (DAG) for PQD classifica-
tion. In OvA, a single binary SVM is trained for each PQD
class, and prediction occurs on the highest confidence level.
In contrast, in the OvO method, a binary SVM is trained for
every PQD class pair in the dataset. During classification,
the input is compared to each trained PQD model, and the
output is the PQD class predicted by most models. The OvO
method is used in this research and has distinct advantages
when considering cost-sensitive classification.

E. MISCLASSIFICATION COSTS (MC)
The concept of MC is introduced in this paper in the pro-
cess of classifying PQDs. The cost or loss associated with
erroneously classifying a data point in an ML algorithm is
the MC and has been widely used in the field of medicine
[45]. MC varies between PQD classes since the objective is
to predict one of themultiple possible classes for each sample.

PQDs that pose the most risk can cause substantial damage
to electrical equipment or interrupt the power infrastruc-
ture. High-risk PQDs include voltage sags, swells, voltage
spikes, and interruptions. Lower MC risks include harmonic
distortions, which can cause overheating and damage to trans-
formers, and voltage flicker, which can interfere with the
functioning of sensitive industrial control systems. These are
considered low-risk PQDs for MC because they are not an
immediate threat and are usually compensated for after a
period of PQ monitoring with either capacitor banks or with
active dynamic filters (ADFs), for instance.

For better understanding, the cost of mistakenly classi-
fying a high-risk data point, such as harmonics with sag,
into a low-risk class, such as harmonics only, will increase
the MC. Considering these costs, it is possible to tune the
ML algorithm to reduce the MC by adjusting the weights
of each type of PQD class. This is accomplished by adjust-
ing the algorithm’s parameters, such as the regularization
strength, feature set, and classifiers MC to find the equilib-
rium between MC and OCA. The proposed DWT-CMSVM
method has been weighted towards MC classes that are
high-risk.

Different DSOs will have different goals when it comes
to PQ indices. For example, in our method, the classification
is weighted towards the sag and swell component and their
subsequent related subclasses. Thus, the MC value will be
closer to zero than previous literature for these PQD classes.
This indicates that high-risk misclassifications (non-related
PQD subclasses) are minimized.

The multiclass MC formulas below differ from the conven-
tional method of calculating MC, in that it considers MC of
unrelated PQD classes and not all misclassifications.

CA is the cost matrix (1) associated with misclassifying a
sample from the true or predicted PQD class.

(1)

For cost values:

• TPi,j: True Positive
• FN i,j: False Negative
• FPi,j: False Positive

After defining individual costs for FN i,j and FPi,j then the
MC for a specific PQD class i and related subclasses can
be calculated by (2). Here, a lower MC i value indicates that
high-risk misclassification is minimized for PQD Class i.

MC i =

∑
[CA(i, j) ∗ CM (i, j)]

n
(2)

where:
• MC i is misclassification cost for PQD class i
• CAi,j is the summation of costs that are not related to
Class i in the CA matrix.

• CM i,j is the confusion matrix
• n is the total number of samples in the dataset.

III. SYNTHETIC AND REAL PQD DATA
As shown in Table 2, the previous literature was limited
to laboratory/experimental, simulation, or old/limited legacy
field PQD datasets [100]. Consequently, previous literature
has not evaluated their methods with both synthetic and large
streams of high-quality real PQ field events from modern
instrumentation with higher accuracy and sampling rates.

To avoid overfitting, it is important to have a high variance
of PQD data segmented and normalized for training and
testing [101]. This paper contains 29 PQD classes, including
13 standard and 16 complex classes.

A. SYNTHETIC PQD DATASET
For synthetic data generation, the duration, starting and
ending time of each PQD class is varied randomly within
appropriate parameters to avoid overfitting.

The synthetic data of standard and complex PQD classes
and case numbers evaluated in this paper is shown in Table 3
and was adapted from previous literature [101] and IEEE
standards.
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TABLE 2. Measurement Data, Pre-processing, and Feature Extraction Characteristics of Previous Literature and Proposed Method.

B. REAL FIELD DATASET
The uniqueness of this study is that real field data will be
used to train and test the algorithm. µPMU manufacturers
have embedded PQA abilities in their instruments. However,
due to the lack of accessible real synchrophasor field data
in Australia, real-world data from PQAs will be used. This
field dataset is limited to only 13 standard PQDs because
complex PQDs occurred far less in the field (later discussed
in limitations).

Elspec’s PQSCADA Sapphire Software was used to seg-
ment and export the PQ field events, which contain over
a decade’s worth of continuous historical recording from
different projects in Australia, including distribution feeders,
large-scale industrial projects, renewables, airports, produc-
tion plants, hospitals, and more. The PQ data from the Elspec
G4430/G4500 [102] is compliant with standards EN50160,
IEEE519, IEC-61000-4-30 and has a voltage sampling rate
of 512 samples/cycle (20ms), similar toµPMU reporting rate
of 50 frames per second. The Elspec G5DFR, G5PMU [47],
G4500, and PureBB was also used.

Fig. 2-6 show examples of real PQD field data used in this
research including parameters used in the proposed feature
set.

C. DATA WINDOW, SAMPLING RATE, AND LATENCY
In accordance to the IEEE standard [103], the PQ sampling
window is set at ten cycles at 50Hz. Table 4 shows the sam-
pling rate and its effect on the performance of the proposed
method for standard PQDs. This aspect has not been explored
in previous literature. Deteriorated performance occurs at
128 samples/cycle due to the boundary effects of wavelet
decomposition after seven levels, but adequate performance
at 256 samples/cycle. The recommended instrument sam-
pling rate is 512 or 1024 samples/cycle for the proposed
method.

Moreover, additional laboratory tests were conducted from
the Elspec G4430 PQA [102] to a Raspberry Pi (single phase
µPMU). The latency is 18ms using standardModbus protocol

TABLE 3. Cases of Standard and Complex PQDs.

and 6-8ms using priority Modbus for cyclic measurements.
This makes the proposed method suitable for real-time and
critical applications considering fault ride-through (FRT)
requirements.

As exemplified in earlier sections, there are two opti-
mal choices for the choice of decomposition level. Firstly,
if accuracy is the priority, an eight-level decomposition is
recommended. Secondly, if speed is the priority or the com-
putational burden is too high due to the hardware limitations,
then a four-level decomposition method is recommended for
faster computation with satisfactory OCA results, as shown
in Fig. 1.

Another factor that dictates which decomposition is suit-
able is the sampling rate. If a low sampling rate is used with
the proposed method, then there are marginal gains in OCA
after four-level decomposition, as discussed in Section II.
It is also important to note that transmission delay, which

can be tens of milliseconds, is not considered since it varies
by protocol and hardware variance.

This research used an eight-level decomposition level to
achieve the best OCA with a high-sampling rate for all case
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TABLE 4. Instrument Sampling Rate vs OCA.

studies. For the proposed method, when standard PQD cases
are considered, the computational time is a minimum of 48ms
without the noise filter, to a maximum of 84ms with the noise
filter. The proposed method is still computationally efficient
at eight-levels of decomposition with high-sampling rates,
and under the PQ sliding window of 10 cycles (200ms).

IV. PROPOSED PQD CLASSIFICATION METHODOLOGY
By considering all the attributes discussed in earlier sections,
an improved DWT-CMSVM PQD classification method is
presented, as shown in Fig. 7. The number and benefit of all
DWT features have been extensively discussed in previous
literature [29]. After experimenting with all the features,
an optimal set of features was handcrafted for evaluation in
this paper for efficiency improvements. In addition to µPMU
voltage synchrophasors, the DWT feature vectors include
RMS, Shannon’s entropy, energy, mean value, max percent-
age, and approximate and detailed coefficients. In addition,
THD and instantaneous flicker measurement as additional
features are used in the extraction process. This is new and
unseen from previous literature [16], [19], [27], [29], [33],
[104] using the DWT method. All values are normalized.

A. DWT MATHEMATICAL FORMULATION
The different versions of the original signal are represented
by the detailed coefficients and approximate coefficients. The
best standard DWT feature set for eight-level decomposition
is shown in [19] in addition to the new ones presented in this
paper.

DWTψf (j, k) =
1

√
aj0

∞∑
n=−∞

f (n) ψ

[
n− aj0kb0

aj0

]
(3)

where: j, k, n ∈ Z and a0 > 1 and ψ
( t
s

)
s > 0

The DWT discretized wavelet is:

ψj,k (t) =
1

√
2
j
v

ψ

(
t − k2

j
v

2
j
v

)
dt (4)

where: scaling parameter j ∈ z, time shifting parameter
k ∈ z, voices per octave v = 1
MRA is performed using awavelet transform that produces

approximate and detailed coefficients to extract the following
features.

B. SHANNON’S ENTROPY
Shannon’s Entropy

SE i = −

N∑
j=1

S2i,jlog
(
S2i,j
)

(5)

Si,j is the orthonormal coefficents of the original signal S.
Entropy Approximate

φi = 2
i
2

N∑
j=1

cj,nφ
[
2jt − n

]
(6)

Entropy Detailed

ψj,n = 2
j
2

N∑
j=1

cj,nψ
[
2jt − n

]
(7)

C. COEFFICIENT ENERGY, MAX PERCENTAGE, MEAN
VALUE
Coefficient Energy

CE =

N∑
j=1

∣∣Si,j∣∣2 (8)

Max Percentage of Detailed Coefficients

MP =

N∑
j=1

∣∣Di,j∣∣2 (9)

Mean Value of Detailed Coefficients

µi =
1
N

N∑
j=1

(Di,j) (10)

D. ROOT MEAN SQUARE (RMS)

RMS i =

√√√√√ 1
N

N∑
j=1

C2
i,j (11)

E. TOTAL HARMONIC DISTORTION (THD)

THD (%) =

√∑
∞

n=2 V
2
nrms

Vrms
.100 (12)

F. INSTANTANEOUS FLICKER
Flicker has been neglected in previous studies in feature
selection, especially when differentiating complex PQD
classes. The flicker phenomenon is non-linear and is initiated
by sudden load changes making it difficult to incorporate into
any method. Thus, a flicker meter to measure instantaneous
flicker (Pfs), short-term flicker (Pst), and long-term flicker
(Plt) was developed in MATLAB compliant with the IEEE
1453-2015 standards [105]. The Pfs and Pst indices can be
used for real-time classification, whereas the Plt can be used
for long term view of PQ over the 120 min period. The Pfs
measurement is normalized over the sampling window of
10 cycles.
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FIGURE 2. Normal PQD Condition - Real Field Data - 11kV Australian Distribution Feeder:
Continuous L-L Voltage Waveform, RMS Voltage, Magnitude and Angle Voltage Phasors, THD
Voltage.
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FIGURE 3. Sag PQD Condition – Real Field Data - 11kV Australian Distribution Feeder:
Continuous L-L Voltage Waveform, RMS Voltage, Magnitude and Angle Voltage Phasors, THD
Voltage.
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FIGURE 4. Harmonics PQD Condition – Real Field Data - 22kV Australian Distribution Feeder:
Continuous L-G Voltage Waveform, RMS Voltage, Magnitude and Angle Voltage Phasors, THD
Voltage.
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FIGURE 5. Normal and Harmonics PQD Condition – Real Field Data - 11kV Australian
Distribution Feeder: Continuous L-G Voltage Waveform, RMS Voltage, Magnitude and Angle
Voltage Phasors, THD Voltage.
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FIGURE 6. Flicker PQD Condition – Real Field Data - 11kV Australian Distribution Feeder: Continuous L-L Voltage Waveform, RMS Voltage, Magnitude and
Angle Voltage Phasors, THD Voltage, Short-Term PST Voltage Flicker, Long-Term Voltage Flicker PLT, Instantaneous Voltage Flicker.
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FIGURE 7. Simplified Flowchart of Proposed DWT-CMSVM Method.

TABLE 5. Case Study Overview.

G. DISTINCTIVE FEATURE CHARACTERISTICS
CONSIDERING MC
The distinctive feature characteristics to show the
MC-weighted classification are shown in Fig. 8 for standard
PQDs. The most likely source of misclassification will occur
at overlapping features, and the objective is to minimize MC.
For instance, if harmonics with sag is misclassified, it will
most likely be misclassified as flicker with sag and not flicker
only, thus lowering MC risk.

The proposed method has no problem classifying
high-frequency fluctuations such as notching since it has
a unique mean energy characteristic and will not overlap
with other features. As a result, classes with unique feature
characteristics are less likely to be misclassified.

V. RESULTS AND DISCUSSION
Case studies evaluated in this paper are shown in Table 5,
including PQD type, training, and testing signal splits. While
synthetically generated data can be increased to any number,
it has been limited to maintain between 20-50% of real field
PQD data.

A. CASE STUDY 1 – SYNTHETIC VS. SYNTHETIC
The results for Case Study 1 are shown in Table 6 when
the proposed DWT-CMSVM method is trained and tested on
synthetic data only. The diagonal elements of a confusion
matrix represent the correctly classified PQDs, whereas the

FIGURE 8. Distinctive Feature Characteristics considering
Misclassification Costs: Max Percentage vs THD (top), Mean Energy
(middle), and Entropy Approximate (bottom).

off-diagonal elements represent misclassifications. Empty
elements represent a zero value for readability.

Notable points from Case Study 1
• C06 oscillatory transient was misclassified once as C10
flicker and C01 pure

• C10 flicker was classified as C01 pure once
• C11 flicker with sag was classified as C02 sag once, and
C08 harmonics with sag twice

• Similarly, there was one instance where C12 flicker
with swell was classified C03 swell, and twice as C09
harmonics with swell.

The high OCA of 99.65% is in-line with all previous stud-
ies using synthetically trained and tested datasets. In terms of
MC, it is safer for any method to misclassify C11 and C12 as
C02-03 or C08-09, respectively. This is because voltage sag,
swells, and interruptions are at higher MC risk than flicker
alone, especially for real-time control. The proposed method
has a pattern and tendency to correctly classify sag and swells
withmoreweight than other PQDs. This highlights the impor-
tance of selecting the right feature set and optimizing the OvO
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TABLE 6. Case Study 1 - Confusion Matrix.

TABLE 7. Case Study 2 - Confusion Matrix.

CMSVM classifier through cost weights during the training
stage, as previously discussed and shown in Fig. 8.

B. CASE STUDY 2 – SYNTHETIC VS. REAL
Table 7 highlights the importance of using field PQDs in any
classification method. Here, the DWT-CMSVM was trained
only on synthetically generated signals and tested on real
field data. The OCA significantly dropped from 99.65% to
96.70%. Overall, there is a severe deterioration in OCA and
increased risk in MC when tested on real PQDs.

Notable Points from Case Study 2

• C01 pure was misclassified as C02 sag three times
• C02 sag was misclassified as C01 pure four times, with
C03 swell misclassified as C01 pure twice

• C04 interruption was misclassified as C03 sag

TABLE 8. Case Study 3 - Confusion Matrix.

• C05 transient was misclassified six times as C01 pure
and swell three times

• C06 oscillatory transient was misclassified as C01 pure
five times; C10 flicker, C12 flicker with swell, and C09
harmonics with swell twice each

• C08-C09 harmonics related sag and swell were misclas-
sified favourably as C02-C03 to minimize MC

• MC for C10-C12 flicker sag/swell-related PQDs are
much higher than in Case Study 1. It is preferred to
classify these as sag related C02/C08 and swell related
C03/C09 swell, respectively, to lower MC risk.

• C10 flicker was misclassified as C01 pure seven times,
C11 flicker with sag three times, and, C12 flicker with
swell twice. A similar situation occurs with C11-C12
flicker with sag and swell related distortions.

• Higher frequency energy components such as C05 tran-
sients and C13 notching had OCAs of 95.50% and
99.00%, respectively.

C. CASE STUDY 3 – SYNTHETIC/REAL VS. REAL
In Case Study 3, OCA improved by 1.65% over the pre-
vious case study, alongside valuable enhancements to MC,
as depicted in Table 8. Here, the proposed DWT-CMSVM
method is trained and tested with an even combination of
synthetic and field PQDs.

However, the OCA is still substantially lower than purely
synthetic Case Study 1. In the only other literature of this
kind, authors in [34] achieved similar improvements to their
MSVM classifier for five basic PQDs, when it was trained
on a combination of data from a real power network and
synthetic data.

Notable Points from Case Study 3
• OCA is worse than Case Study 1, and highlights the
importance of using high-quality field data

• Variations in MC with better performance compared
to Case Study 2. This phenomenon is seen through
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TABLE 9. Case Study 4 - Confusion Matrix - Heat Map.

appropriate misclassification of C04 interruption as C02
sag three times and C05 transient as C03 swell four
times.

• The proposed method has trouble classifying field C06
oscillatory transients, namely as C11-C12 flicker-related
sag and swell, as shown in Fig. 8. This is a disadvantage
of using fixedwavelet size in DWT compared to variable
wavelet sizes in CWT.

• In Case Study 2, C11 flicker with sag was misclassified
as C10 flicker. Here, it has been classified as sag-related
distortions C02 and C08 harmonics with sag, reducing
the MC.

• There are instances of C12 flicker with swell classified
as C03 swell or C09 harmonics with swell. The misclas-
sifications are not entirely incorrect and improve MC
compared to the previous Case Study.

D. CASE STUDY 4 – SYNTHETIC/REAL VS.
SYNTHETIC/REAL
The results of Case Study 4 are shown in Table 9 heatmap.
Using the proposed DWT-CMSVM method, 800 syntheti-
cally generated signals and 200 standard field PQDs were
trained and tested with different datasets. As previously dis-
cussed, due to the lack of a large stream of complex field
PQDs, only Cases C01-C13 have been trained on a combi-
nation of real and synthetic PQDs, whereas, Cases C14-C29
have been purely synthetically trained and tested. The syn-
thetic data has been limited to 800, to maintain at least 20%
of real field data.

Notable points from Case Study 4

• The OCA performance significantly dropped from
98.35% to 90.74% when the proposed technique was
evaluated with 29 standard and complex PQDs.

• Themethod performs the best for Cases C01-C13, shows
moderate performance between C14-C17, and degraded

performance when faced with triple and quadruple
PQDs from C18-C29.

• PQD cases C18-C29 averaged 79.54% classification
accuracy. While this number is lower than in previous
case studies, the incorrectly classified cases have favor-
able MC as shown in Table 9.

• For example, C18 (harmonics with sag with flicker)
was favorably misclassified as C11 (flicker with sag) or
C26 (harmonics with sag with flicker with oscillatory
transient).

• However, there were 77 instances where C18 (harmonics
with sag with flicker) was misclassified as C20 (sag
with harmonics with flicker). A similar pattern is seen
in all subsequent complex PQD cases to varying extents.
TraditionalMLmethodswill have trouble distinguishing
between these.

• C19 (harmonics with swell with flicker) was favorably
misclassified mainly as C26 (harmonics with swell with
flicker with oscillatory transient)

• A greater spread of incorrect classification cases exists
in other cases, such as C22/C23 (sag/swell with harmon-
ics with oscillatory transient).

• However, the sag/swell component for which the pro-
posed method is weighted indicates low-risk MC, which
is more valuable than entirely incorrect classifications.

• Due to their unique energy high-frequency notching
components can be detected confidently.

• With only a few exceptions, this trend for the proposed
method to misclassify more complex PQDs (C14-C29)
to lower MC is favorable compared to previous
literature.

VI. APPLICATION CASE STUDIES
The following section presents five unique application case
studies highlighting how the proposed PQD classification
method can be used with an optimal µPMU placement
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FIGURE 9. Optimal Placement of µPMU in IEEE-34 Distribution Test System using UZIP String algorithm [51].

TABLE 10. Application Case Study 1 - Line-to-Line Fault – Phase B and
Phase C - IEEE-34 Distribution Network with Optimally Placed µPMUs.

scheme to provide DSOs with better PQ insights and evaluate
the distribution network’s overall PQ health. The optimal
µPMU placement occurs at either side of the transformer
at Node 16 and Node 33 as per the UZIP String opti-
mal placement algorithm developed in [51] and shown
in Fig. 9. The validated Class M µPMU model [106] is
simulated in MATLAB/Simulink software with PQ studies
presented in [107]. The only modifications are the 25.9 kV to
400V Delta-Wye (Dy11), 1 MVA transformer between Node
16 high-voltage (HV) side and Node 33 low-voltage (LV)
side. Node 33 remains a zero-injection bus (ZIB), and the line
parameters are identical to match the original IEEE-34 node
test feeder design.

A. APPLICATION CASE STUDY 1 – FAULTS
A line-to-line fault between Phase B and Phase C is simulated
between Node 16 and the HV side of the transformer with
a high fault impedance of 50 �. For this example, the load
is rated at 15 kW and 125 Var at Node 34. The fault starts
at 1.1 seconds with a duration of 5 cycles, as shown in
Fig. 10. At Node 16, Phase B on the HV side experiences
a slight voltage drop and rises beyond the nominal voltage,
whereas a voltage sag occurs in Phase C. In contrast, the
Node 33 LV side experiences a voltage sag in Phases B and C,
and a voltage swell in Phase A. The classification results per
voltage channel are shown in Table 10 and achieved 100%
OCA.

TABLE 11. Application Case Study 2 - Induction Motor DOL
Start – IEEE-34 Distribution Network with Optimally Placed µPMUs.

TABLE 12. Application Case Study 3 – Capacitor Bank Energizing LV & HV
Sides – IEEE-34 Distribution Network with Optimally Placed µPMUs.

The voltage dip/rise experienced in Phase B on the HV
side is within the IEEE standard sag/swell magnitude limits
of 0.9 p.u to 1.1 p.u. The swell experienced by Node 33 Phase
B is due to the high fault impedance and the nature of line-to-
line fault having no ground [107]. A basic threshold-based
sag/swell event detection can also be easily implemented
alongside the proposed method for added PQ insights.

Another factor is the Dy11 configuration of the trans-
former. Here, the LV side leads the HV side, causing a
+30-degree phase shift, as shown by the phase angles in
Fig. 10. This will be present in subsequent case studies.
An additional 72 fault scenarios were generated by altering
fault type and impedances (1�, 25�, and 50�), achieving an
OCA of 100%.

This unique application case study shows the importance of
µPMU placement in its ability to pick up PQDs on either side
of a transformers or automatic voltage regulators (AVRs),
which are treated as unknown network parameter (UNP) by
the UZIP String optimal µPMU placement method [51].
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FIGURE 10. Application Case Study 1 - Line-to-Line Fault (Phase B and Phase C) - IEEE-34 Node Test Network, Node 16 µPMU (top) and Node 33 µPMU
(bottom); Continuous L-G Voltage Waveform (left), Voltage Magnitude (middle), and Phase Angle (right).

FIGURE 11. Application Case Study 2 – Induction Motor Direct On-Line (DOL) Starting - IEEE-34 Node Test Network, Node 16 µPMU (top) and Node 33
µPMU (bottom); Continuous L-G Voltage Waveform (left), Voltage Magnitude (middle), and Phase Angle (right).

B. APPLICATION CASE STUDY 2 – INDUCTION MOTOR
STARTING
A standardized 400V 160 kW squirrel cage induction motor
is connected alongside the same load per the previous case
study. This situation simulates voltage sag curves due to large
induction motor direct on-line (DOL) starting. In Fig. 11,
Node 33 µPMU indicates a voltage sag of 0.86 p.u when
the motor is connected at 0.1 seconds before settling to

steady-state at 0.97 p.u at 0.7 seconds. In contrast, no voltage
sag is present at Node 16 µPMU on the HV side, where mea-
surements show a similar voltage drop and recovery curve,
but at 0.99 p.u as the disturbance propagates from the LV
to the HV side of the transformer. Table 11 shows the 100%
OCA results for this scenario. Moreover, 100 additional DOL
motor starting scenarios (voltage drops, sags, and normal)
were tested with 100% accuracy. This case study highlights
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FIGURE 12. Application Case Study 3 – Capacitor Energizing HV Side - IEEE-34 Node Test Network, Node 16 µPMU (top) and Node 33 µPMU (bottom);
Continuous L-G Voltage Waveform (left), Voltage Magnitude (middle), and Phase Angle (right).

FIGURE 13. Application Case Study 3 – Capacitor Energizing LV Side - IEEE-34 Node Test Network, Node 16 µPMU (top) and Node 33 µPMU (bottom);
Continuous L-G Voltage Waveform (left), Voltage Magnitude (middle), and Phase Angle (right).

the importance of µPMU placement closer to critical radial
loads, which is also considered in the UZIP String optimal
µPMU placement algorithm [51].

C. APPLICATION CASE STUDY 3 – CAPACITOR BANK
ENERGIZING
By energizing capacitor banks on the HV and LV sides of
the transformer, oscillatory transients can be simulated. The

energizing start time is at 0.1s. In Fig. 12, the large HV side
capacitor energizing causes a severe oscillatory transient that
propagates to the LV side. The oscillations are damped over
a duration of 0.3 seconds in this example. In Fig. 13, when
the LV side capacitor is energized, the oscillatory behavior
can also be clearly seen on both sides of the transformer with
varying degrees of severity. The duration of the disturbance
is around 0.1 seconds.
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Table 12 shows identical results for both the LV and HV
side. The voltage magnitude after the capacitor is energized
is slightly higher than before and is the expected behavior in
this scenario. By varying the load and capacitor bank param-
eters to alter the oscillatory frequency and damping factors,
100 capacitor energizing simulations (50 HV and 50 LV)
were conducted with an OCA of 96%. The UZIP String
µPMU placement algorithm [51] also considers the location
of capacitor banks, making it possible to check equipment
health.

TABLE 13. Application Case Study 4 – Non-linear Loads – IEEE-34
Distribution Network with Optimally Placed µPMUs.

D. APPLICATION CASE STUDY 4 – NON-LINEAR LOADS
A three-phase six-pulse bridge rectifier is now connected
at Node 34 with a large inductive load. There is a sizeable
periodic notching closer to the load, as shown by Node
33 µPMU in Fig. 14. However, notching is also present on
the HV side at Node 16 in this scenario, as shown in Table 13.

The notching waveform signatures, such as location,
width, and depth, can be altered by changing the firing angle
(30 degrees in this scenario) and the type of load. For instance,
a more significant load will cause greater notching depth, and
at certain firing angles, notching may not be present at all.
Moreover, in other lighter loading conditions, while notching
may be present on the LV side, it may not propagate to the
HV side and be insignificant. One hundred different notching
scenarios, including normal conditions, were also tested by
varying parameters within the appropriate limits with anOCA
of 100%.

E. APPLICATION CASE STUDY 5 – ELECTRIC ARC FURNACE
An electric arc furnace MATLAB model developed in [107]
is connected at Node 34 in addition to the resistive load used
in previous case studies. Fig. 15 shows severe flicker, which
is clearly visible in the fluctuation of voltage magnitude from
the Node 33 µPMUmeasurements. As the flicker propagates
upstream through the transformer, the severity of the flicker
is minimized by the time it reaches Node 16 HV side but is
still present as per Table 14. The large instantaneous flicker
(Pfs) value was between 321 to 377, similar to the real field
flicker PQD data shown in Fig. 6.

For 100 different scenarios, the OCA was 94%. Misclas-
sification occurred with extreme cases where the THD is
greater than 20% over the 10-cycle window on the LV side,
causing it to be misclassified as harmonics instead of flicker.
Moreover, borderline flicker cases on HV side were some-

times classified as normal conditions. This misclassification
behavior was previously discussed in Sections IV and V.

TABLE 14. Application Case Study 5 – Electric Arc Furnace – IEEE-34
Distribution Network with Optimally Placed µPMUs.

VII. COMPARATIVE ANALYSIS, LIMITATIONS,
PRACTICAL CONSTRAINTS, ADDITIONAL BENEFITS, AND
FUTURE RESEARCH DIRECTION
A. COMPARISON TO PREVIOUS LITERATURE
As shown in Table 15, previous literature [3], [7], [9], [10],
[12], [14], [17], [22], [23], [27], [28] has failed to incor-
porate a large subset of high-quality real PQD field data
in their classification methods. Consequently, their proposed
methods and ability to detect real-world PQDs are limited and
unknown.

Compared to previous studies, this research has evaluated
the largest amount of the most commonly occurring standard
and complex PQDs. In [30], standard plus 11 complex PQDs
were considered; however, there is ambiguity in the compo-
sition of the complex synthetic PQDs evaluated. Similarly,
in [28] the type of transient was not clearly defined.

The classification of single and double PQDs C01-C17
is 98.65%, whereas the classification of complex triple and
quadruple PQDs C18-C29 is 79.54%. As more complex
PQDs classes are added, the overall OCA will drop. This is
the most common problem with traditional ML techniques.
While the OCA is lower for the proposed method at 90.74%,
other key aspects are missing from all previous studies, which
were limited to simulation or experimental setups, or a small
subset of legacy PQD field data, and did not address all
the 29 PQDs presented in this paper.

As shown in Table 15, under noisy conditions with SNR of
30, the proposed DWT-CMSVMmethod with a computation-
ally efficient eight-level denoising algorithm performed well,
falling 2.40% compared to the clean noise-free signal tested.

Additionally, the effect of MC, and the high-risk nature of
incorrect classification for critical applications is introduced
in this study to better understand the behaviour of PQD
classifiers so they can be tuned for favourable MC. This key
aspect is missing from all previous PQD classifier methods.

B. LIMITATIONS
In ADNs, there is a non-linear relationship between the PQD
class type and the number of times each class occurs. For
example, in the field recordings, sags, swells, and interrup-
tions account for approximately 80% of the total PQDs.
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FIGURE 14. Application Case Study 4 – Non-linear Load - Notching - IEEE-34 Node Test Network, Node 16 µPMU (top) and Node 33 µPMU (bottom);
Continuous Voltage Waveform (left), Voltage Magnitude (middle), and Phase Angle (right).

FIGURE 15. Application Case Study 5 – Electric Arc Furnace - Flicker - IEEE-34 Node Test Network, Node 16 µPMU (top) and Node 33 µPMU (bottom);
Continuous Voltage Waveform (left), Voltage Magnitude (middle), and Phase Angle (right).

While a few instances of complex PQDs occurred in the
field recordings, such as harmonics with flicker with sag,
the dataset for complex classes was too small to include in
this research or any DL method. Therefore, each PQD class
dataset was restricted to a fixed number to understand MC
and classifier behavior better. The capture of greater complex

field PQDs (tens of thousands) is required to establish a robust
classifier.

C. PRACTICAL CONSTRAINTS
Previous studies have added different levels of noise while
others have tested their methods under different SNR ratios;
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TABLE 15. Comparative Analysis of PQD Classification Methods.

these quantities are not comparable and are not indicative of
real-world PQ measurements.

For example, the field data from the output of the Elspec
DFRs, PQAs, and µPMUs used in this paper contained high
SNR and less noise. This is due to the filtering embedded
in the instrument itself, which also needs to be considered.
Therefore, as previous studies have done, it is not reasonable
to test PQ classifiers using arbitrary SNRs.

Moreover, PQ monitoring in ADNs requires tighter toler-
ance to capture useful information. Thus, simulating large
amounts of noise is redundant. For instance, for PQ moni-
toring, a Class M µPMU will be used over Class P due to
greater filtering. Other practical constraints that influence PQ
measurement accuracy and noise, are the type of potential
transformer (PT) or current transformer (CT) class used,
burden, and impedance matching.

D. ADDITIONAL INSIGHTS USING OPTIMALLY PLACED
MICRO-PMUs
The method presented in this paper also have added PQ
insights whenµPMUs are optimally placed in the distribution
network. In [51], an advanced µPMU placement technique
for ADNs considering UDNA elements was established.
By placing optimally placed µPMUs and gathering voltage

sag characteristics using the PQ insights methods presented
in this paper, it is also possible to have additional benefits
such as accurate fault detection and localization using ML
techniques. This is an area of future research.

E. FUTURE RESEARCH DIRECTION: DEEP LEARNING WITH
REAL FIELD DATA
DL methods are the future of PQD classification. However,
there are major hurdles, such as the complexity of network
models, overfitting, and the lack of high-quality field PQDs
to make them suitable for deployment. Overfitting occurs
when the model has been trained too well on a specific PQD
training dataset, to the point where it has memorized the PQD
training data but has not generalized well to new PQD data.

Thus, it will perform well on the training data but struggle
with new field PQDs. Moreover, [31] has brought to light the
inherent difficulty for PQ specialists to assess the trustworthi-
ness of a particular ML method over another. Therefore, the
large-scale deployment of any PQD classification method has
been limited.

In this aspect, traditional techniques, such as the proposed
method with better MC, can be used to collect complex PQDs
making it easier to manually label PQ events for DL methods
collected from optimally placed DFRs, PQAs, and µPMUs.
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VIII. CONCLUSION
With optimal placement of measurement devices, the use of
real-time and historical PQmonitoring tools and an improved
PQD classification method can potentially improve the sta-
bility and reliability of the smart grid. This research has
incorporated high-quality real PQD field data, an improved
feature set and a computationally efficient extraction and
noise-filtering process. The proposed method showed similar
performance to previous literature in OCA of standard PQDs,
while improving the MC for complex PQD through cost-
sensitive analysis, which was also introduced in this research.
This research also demonstrated the importance of training
and testing PQD classifiers using real field data to improve
the fidelity and trustworthiness of PQD classifiers. Moreover,
by conducting five application case studies, it was found that
the optimal placement of µPMUs in ADNs is critical to pro-
vide additional valuable PQ insights to DSOs. The proposed
method can be used to collect standard and complex PQDs
from the field to establish a robust DL PQD classification
method in the future as more complex components are added
to the distribution network.
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