
Received 15 September 2023, accepted 14 October 2023, date of publication 23 October 2023, date of current version 2 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3326847

Explainable Time Series Tree: An Explainable
Top-Down Time Series Segmentation Framework
VITOR DE CASTRO SILVA1, BRUNO BOGAZ ZARPELÃO 1, ERIC MEDVET2,
AND SYLVIO BARBON JR. 2
1Department of Computer Science, State University of Londrina, Londrina, Paraná 86057-970, Brazil
2Department of Engineering and Architecture, University of Trieste, 34100 Trieste, Italy

Corresponding author: Sylvio Barbon Jr. (sylvio.barbonjunior@units.it)

This work was supported in part by Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná,
Brazil (Novos Arranjos de Pesquisa e Inovação (NAPI)-Norte Centro de Inteligência Artificial (CIA)-Agro), under Grant 137/2021.

ABSTRACT A wide range of Machine Learning algorithms can model time series to address classification,
forecasting, and clustering problems. However, time series may exhibit characteristics that complicate these
tasks, such as repeating patterns and seasonal variations. Time series segmentation could be a solution to
these problems, but current approaches need to be improved. Most of them employ linear regression to solve
problems such as detecting changes in a series’ behaviour, bypassing tools specifically designed for these
challenges, such as change detectors. Moreover, explainability is seldom taken into account during time
series segmentation. To automatically identify different time series patterns using appropriate techniques
while leveraging explainability, we proposed the eXplainable Time Series Tree (XTSTree). XTSTree divides
a time series into a binary tree, hierarchically splitting it according to a criterion based on change detectors,
ideally finding a cutting point that creates the two most different sub-series. The segmentation process
continues until it reaches a stopping condition, which relies on a stationarity test that assesses whether
the series has a sufficiently homogeneous behaviour. Based on well-behaved segments, XTSTree paves
the way for a more comprehensive pattern explanation and also supports the application of explainable
approaches. Our experimental study applied XTSTree on several real-life time series to isolate the series’
different behaviours. To evaluate the effectiveness of our method, we used Symbolic Regression to find the
best representation of the time series and its splits using algebraic expressions, comparing the differences
before and after XTSTree.We show an improvement in terms of expression complexity, improving the model
accuracy compared to the original time series.

INDEX TERMS Concept drift, time series, meta-learning, time series segmentation, symbolic regression.

I. INTRODUCTION
Temporal data is a common type of data that has been
increasingly used in several tasks from different areas, such
as e-health [1], IoT (Internet of Things) systems [2], and
autonomous vehicles [3]. The most common way to represent
temporal data for modelling and prediction is through the use
of time series. Several studies have already demonstrated that
time series classification and prediction can be used to build
relevant applications. In [4], a model for human behaviour is

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

created and subsequently used to indicate and suggest actions
for other humans. Another study [2] uses data from a blood
pressure monitor to predict blood pressure levels and point
out which routine changes caused the most amount of change
in blood pressure.

One problem these techniques face is the change in data
behaviour through time [5], which often happens due to the
nature of data, such as a temperature drop during a rain period
or a heart rate rise during stress. Often defined as concept
drift, these changes require retraining models along the time
series, or assuring models are suited for every behaviour
present. Moreover, these behaviours can repeat over time,

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 120845

https://orcid.org/0000-0001-9172-3578
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-1711-3007


V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

such as in seasons over a year or Internet traffic over a week.
Identifying areas with different behaviours can ease time
series modelling since different behaviours can be treated
individually. One way to identify similar behaviours in a time
series is through time series segmentation [6].

Time series segmentation is the process of obtaining
segments of a time series that either have similar behaviour
or behave differently from the rest of the series [6]. There are
three main types of segmentation algorithms: sliding window
algorithms, which create and repeatedly increase the size of
a window from the start of the series until it reaches an error
threshold, repeating the process with a new window at that
point [7]; bottom-up algorithms, which partition the time
series into several small pieces and merge the least influential
ones until a threshold is met [8]; and top-down algorithms,
which find the best cutting point in a series, and then repeat
the process for each sub-series that falls above a user-defined
threshold [9].
Proposed top-down algorithms often derive the error value

and stopping condition from a linear regression model [9].
Furthermore, the best cutting point is either tied to the
linear regression or is found through an exhaustive search of
possible partitions [10]. In the former, the position where the
series deviates the most from the expected value given by the
linear regressionmodel is chosen as a split point. This process
is similar to detecting a concept drift, a problem for which
there are existing tools, such as change detectors [11].

In this paper, we present the eXplainable Time Series
Tree, or XTSTree, a top-down segmentation algorithm
that uses a statistical test as a stopping criterion for
the segmentation process, and a change detector to find
the cutting position. Unlike other top-down segmentation
methods, our approach uses a change detector to identify
the best cutting positions, instead of relying on an error
function based on linear regression. The primary goal of
the XTSTree framework is to provide a tree-based structure
that enables in-depth comprehension of the patterns within
a time series in an explainable manner. By representing
each leaf as a contiguous pattern, XTSTree facilitates
intuitive modelling and analysis of individual segments.
This tree-based approach ensures interpretability through the
hierarchy of cuts, allowing users to understand and interpret
the diverse range of patterns captured within the time series.
Additionally, XTSTree is scalable due to the binary tree’s low
memory cost and the change detector’s efficiency, making
it suitable for processing large and complex datasets, and
since it treats the sub-series as individual time series, it allows
for the integration of advanced techniques and algorithms,
further enhancing its accuracy and versatility in real-world
time series analysis scenarios. In this study, we created
an implementation using the Page-Hinkley change detector
(PH) [11] and the Augmented Dickey-Fuller test (ADF) [12].

To test the effectiveness of XTSTree, we segmented
several different weather-related time series using both the
original XTSTree and other splitting methods and stopping
criteria as baselines. Afterwards, we used an implementation

of Symbolic Regression (SR) using Genetic Programming
(GP) to create algebraic formulas that describe the series’
behaviour as a whole and segmented. Finally, we compared
formula complexity, prediction errors, and the number of cuts
made.

The manuscript is organised as follows. Section II
presents definitions of concepts related to explainability, time
series segmentation, and tools used by the methodology.
Section III discusses related work in the field of time series
segmentation. Section IV introduces the proposed approach.
Section IV-A contains a toy experiment explaining the step-
by-step process for the segmentation of a synthetic time
series and the formulas obtained from SR before and after
segmentation. Section V presents the experimental evaluation
and analysis. Finally, Section VI makes the concluding
remarks.

II. BACKGROUND
In this section, we explain concepts relevant to understanding
the segmentation method and stopping criterion implemented
by XTSTree, as well as the evaluation method for its
effectiveness.

A. EXPLAINABILITY AND INTERPRETABILITY
Nauta et al. [13] define the concept of an explanation in the
context of explainable AI as ‘‘a presentation of (aspects of)
the reasoning, functioning and/or behaviour of a machine
learning model in human-understandable terms’’. In the
context of this definition, reasoning is the process behind a
decision, functioning is how data is stored and manipulated
inside a model, and behaviour is how the model works from
an outside view, such as what input created a given output.

The quality of explanations given by an explained model
can be defined as a balanced combination of interpretability
and completeness [14]. Interpretability can be defined as
the description of the components and results of a model in
a meaningful way to humans. Completeness is an accurate
definition of how the model works that enables a predictable
sequence of actions and results. Good explanations achieve a
good balance of interpretability and completeness.

A machine learning model can be explained through a
range of different explanationmethods [13]. The explanations
created can be represented by different representation types,
such as decision trees, visual representations, and natural
language. A model can also be intrinsically interpretable,
providing explanations through its functioning and results.

B. TIME SERIES SEGMENTATION
Time series segmentation is a form of data pre-processing
for time series data mining [6]. Given a time series X such
that X = [x1, x2 . . . xn], xi ∈ R, the segmentation process
aims to find k ∈ N distinct points such that k0 = 0, kK =
N and F(X ) ≥ F(X[ki,ki+1]), i ∈ [1 . . .K ], where F is
a modelling technique that outputs a score or error value.
There are several different implementations of time series
segmentation in the literature, the majority of them being

120846 VOLUME 11, 2023



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

based on Piecewise Linear Representation (PLR), which is
the process of reducing a time series to a sequence of lines [6],
using mostly Linear Regression as a modelling technique.
There are three main types of segmentation algorithms:
sliding window, bottom-up, and top-down [10].
Sliding window algorithms work by setting an anchor

at the start of the time series and increasing the size of a
window towards the end of the series until a user-specified
error threshold for a prediction model is met, at which
point the window becomes a segment, the stopping point
becomes the anchor, and another window is created [10]. The
bottom-up algorithm starts by dividing a series into several
small segments. Then, the adjacent segments that create
the smallest increase in error when together are merged.
This process is repeated until either a specified number of
segments is obtained, or a maximum approximation error
for the complete series is met [6]. The top-down algorithm
initially handles the complete series as a segment. If the
segment produces an error value greater than a user-specified
threshold, a cut that results in the most different segments
is made, and the error value is calculated for both segments.
This process is repeated until no cuts are made [10].

C. PAGE-HINKLEY CHANGE DETECTOR
The Page-Hinkley test is a change detector, an algorithm to
detect concept drifts, for univariate time series. It continu-
ously observes values from a time series and compares them
to a moving average, storing the accumulated difference [11].
When the accumulated difference exceeds a predefined
threshold value, an alert is raised, signalling a change in the
series’ behaviour. It has three main parameters: α, used as
a forgetting factor for the accumulated difference; δ, used to
disregard changes smaller than it, and threshold, representing
the minimum accumulated difference needed for an alert.

D. AUGMENTED DICKEY-FULLER TEST
The Augmented Dickey-Fuller test is a unit root test that is
primarily used to determinewhether a time series is stationary
or non-stationary [12]. The null hypothesis is that a unit
root is present, meaning it is non-stationary. A statistic test
is calculated and compared to critical values computed as
specified in [15] to decide if the null hypothesis should be
rejected. Then, if the p-value obtained is significant and the
statistic test result is smaller than the corresponding critical
value, the null hypothesis is rejected and the time series is
stationary.

E. SYMBOLIC REGRESSION
Symbolic Regression is a form of regression model that
creates algebraic expressions fitted to a given numerical
dataset [16]. Values can then be passed through the formula
to create predictions based on the values used for the
regression. In the context of time series, this means finding a
mathematical model that can accurately predict future values
of a time series based on its past values. One of the most
common methods to find the best expressions for the formula
is by using GP to create a syntax tree that represents the

formula [17]. The syntax trees are created in a process similar
to natural selection, where trees with the worst performances
are ignored and the best trees of the previous generation
create the trees for the next. GP is both effective in terms
of accuracy [18] and interpretability due to being able to
produce smaller formulas that are easier for humans to
understand [19].

III. RELATED WORK
There are several different segmentation algorithms in the
literature. The majority of works create divisions by finding
the least amount of linear regressions that need to be used
to represent a time series such that every regression has
an error below a user-specified threshold. These works can
be mostly divided into those that use top-down algorithms,
those that use bottom-up, and those that use sliding windows.
Martí et al. [9] propose a top-down segmentation algorithm
that applies linear regression on the time series and performs
a statistical test to evaluate if the linear regression and the
time series are statistically equal. If they are different, then a
division is made at the point with the greatest residual error,
and the whole process is repeated on the created sub-series.
While achieving good results and reducing computation time,
Martí et al. use linear regression to find the segmentation
point instead of a change detector.

Li et al. [20] uses a bottom-up algorithm to create segments
and then filters redundant segments using the R2 statistic
of linear regression, achieving either better performance or
comparable performance using fewer segments. Once again,
segmentation points are decided based on the error of linear
regression instead of change detection.

Wee and Nayak [21] implement a sliding-window algo-
rithm to reduce a time series to a simpler representation.
Elements of the time series are added to the window until
the window’s mean is bigger than the next element, at which
point a new window is created. Instead of updating the mean
whenever adding a new element to the window, it is updated
periodically according to a user-defined value to speed up
the reduction process at the expense of accuracy. Although
a good reduction is achieved and an algorithm similar to
Page-Hinkley is used to find the segment position, comparing
the next time series value to the window mean can lead
to interference from values at the start of a big window.
Keogh et al. [10] use a combination of sliding window
and bottom-up algorithms to create some form of simplified
representation by dividing the time series and creating simple
representations of each segment.

Fillon and Bartoli [22] propose a new approach for
symbolic regression based on GP called Hyper-Volume Error
Separation (HVES). This approach consists of running a pre-
liminary GP model and locating discontinuity boundaries by
analysing the errors given by the model. These discontinuity
boundaries are then used to partition the dataset into two
different partitions, where the previous process is recursively
applied until either a user-specified threshold is met or no
boundaries are found. Tests made on synthetic time series

VOLUME 11, 2023 120847



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

Algorithm 1 Finds Cut Positions for Given Series
1 Function find_splits(series) begin

Data: series: Series to cut
Result: XTSTree: Binary tree containing cut positions

2 XTSTree← Noderoot
3 XTSTree.root ← find_recursive_splits(series, depth = 0)

/* recursively creates the tree and
returns the root */

4 return XTSTree
5 end

showed an improvement in final formula accuracy and overall
runtime.

Another less common class of segmentation algorithms
is viewing segmentation as a classification problem. The
segments of a time series can be divided by classifying
stretches into different classes, resulting in a segmented time
series. These algorithms often use neural networks, such as
in [23], where a Temporal Convolution Network is used to
create a latent representation of the time series, which is then
sent to a clustering and classification layer. The segments are
represented by the clusterization, which then are classified
into the same or different classes.

Segmentation algorithms in general resort to some form
of linear regression or error-based heuristic to find the best
segmentation point, essentially employing a detector for a
change in behaviour of the time series. These solutions may
not be the best ones, since there are more robust change
detector algorithms. Moreover, explainability is seldom
approached in these studies, and although there are studies
on explainability for time series algorithms and machine
learning in general [13], [14], [24], these are more present in
classification problems, and rarely seen in the segmentation
field.

IV. PROPOSED APPROACH
XTSTree is an algorithm for top-down segmentation of time
series that also aims to provide insight into the segmentation
process. The time series’ segmentation is recursive: first
deciding where to split the data using a change detector,
referred to as the splitting step; and then deciding when to
stop splitting by using a stationarity-based stopping criterion.
The cutting position is the point where a change was detected
with the highest possible threshold value for the change
detector, such that only the point with the most amount of
change was detected. To stop the recursion, a stationarity test
is applied to the series, and the recursion stops when the series
is sufficiently stationary.

A binary tree is used to store the cutting points, which can
then be retrieved in an ordered manner to create the segments.
We chose a binary tree data structure because it treats each
sub-series independently for the splitting step. The binary tree
also provides explainability in a similar way to a decision tree.
Due to how cuts are made, divisions made closer to the root of
the tree signal a more drastic change in the behaviour of the
time series, and divisions made closer to the leaves represent

FIGURE 1. XTSTree’s flowchart.

Algorithm 2 Recursive Function to Decide If Cuts
Should Be Made
1 Function find_recursive_splits(series) begin

Data: series: Series to cut
Result: Node: Root node containing cut position and children

nodes
2 if should stop cutting then return null ;

/* find best cut according to cut method
*/

3 cut_position← find_cut(series)
4 if cut_position = ∅ then return ∅ ;
5 node← newNode(cut_position)
6 node.right_child ← find_recursive_splits(series[0 :

cut_position])
7 node.left_child ← find_recursive_splits(series[cut_position :

series.length])
8 return node
9 end

less drastic changes in behaviour that are still deemed relevant
by the stopping criterion.

Algorithm 1, and 2 show the recursive segmentation
process and creation of the binary tree. Algorithm 1 starts
the recursive call of Algorithm 2. Algorithm 2 checks the
stopping condition, and if it is not met, finds the best cutting
point, stores it in a new node in the tree, and repeats the
described process on the sub-series before and after the
cutting point. Figure 1 shows a flowchart of the XTSTree
segmentation process.

For this work, we implemented two stopping conditions
to validate the results of our proposed tree. The first one

120848 VOLUME 11, 2023



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

uses a max depth for the tree, effectively creating a fully
balanced binary tree as long as there are cuts to be found
by the segmentation step. This acts as our baseline for
the stopping condition since we can set multiple depths
as stopping points for testing purposes. The other stopping
condition we explored uses the stationarity detection method
Augmented Dickey-Fuller (ADF) Test to determine if a series
is stationary, meaning its values are dependent on the instant
they are observed. We use a version of the ADF test that
does not take the series’ seasonality into account, meaning
that if a series is said to be stationary, it either is indeed
stationary, or it is non-stationary but the ADF test deems it as
stationary due to a seasonal pattern. In our implementation,
we assume that if a series is stationary before a cut and
becomes non-stationary after a cut, it has a seasonal pattern
that is divided by the splitting step. Therefore, we stop
the segmentation process when a series is deemed non-
stationary, and the score provided is the difference between
the approximate p-value given by the test (computed as
in [15]) and the p-value threshold provided on the XTSTree
instantiation.

While the depth stopping condition serves as a fixed
baseline, the ADF stopping condition aims to prevent
unnecessary cuts by deeming that the series is non-stationary
and consequently has a distinct enough behaviour from the
rest of the series. Moreover, we show that the ADF stopping
conditions can maintain a stable improvement in accuracy as
the length of the series grows, making it scalable.

Algorithm 3 describes the ADF stopping condition. If the
series has the minimum length required by the ADF test, the
test values for the series are calculated. Then, the difference
between the specified stop value and the calculated p-value
is returned as the test score, and the segmentation stops if the
score is positive.

We suggest an implementation for the find_cut method
shown in Algorithm 2 that uses the Page-Hinkley change
detector to find the point with the most significant change
in the series’ behaviour. To achieve this, the threshold value
for the detector is chosen such that only one change is
detected for the whole series. The method finds the best
Page-Hinkley threshold value by performing a binary search,
reducing the threshold value if no cuts are found on the
series, and increasing it if more than one cut is found. The
cutting process stops either after a threshold that produces
only one cut is found, or after a specified number of iterations
have passed. If the cutting process stopped due to exceeding
the iteration limit, the threshold that created the smallest
number of cuts is chosen as the best. The best candidate
for the cut position is the one among cuts created by the
best threshold that has the smallest combined score given by
the stopping condition on the sub-series’ created by the cut.
If there is not a threshold that produces at least one cut, then
the series is not cut at all. For control purposes, the periodic
cut and random cut methods were also implemented for the
find_cutmethod, where the series is cut in half and randomly,
respectively.

Algorithm 3 Augmented Dickey-Fuller Test Stop-
ping Condition Function
1 Function adf _stop_condition(series; stop_value) begin

Data: series: Series to be checked
Input: stop_value: Minimum critical value required to stop

cuts
Result: test_confidence: The more positive the value, the more

confidence that the series is non-stationary
2 if series is too small then return 0 ;
3 test_confidence← adfuller(series)− stop_value
4 return test_confidence
5 end

The three splitting methods address different biases.
Periodic cuts produce predictable sub-series of the same
size, whereas random cuts may create sub-series that are
bigger or smaller than needed, and may even remove
seasonality by chance. The Page-Hinkley method creates
splits that balance the reduction of complexity with the need
to provide explanations, since only the change detectors
provide a meaningful hierarchy of cuts, thus contributing
to the explainability as a XTSTree feature. It also refrains
from creating more segments than needed, since it chooses
the point with the most amount of change in behaviour for
cutting.

Algorithm 4 describes the Page-Hinkley splitting method.
The Page-Hinkley detector is executed over the full series
until either it is completely analysed or more than one cut
is found. If only one cut is found, the splitting step ends,
otherwise, the binary search process starts. If no cuts are
found, the threshold value decreases, and if more than one cut
is found, the threshold increases. After the maximum number
of iterations, the cuts created by the biggest threshold value
are used to create pairs of sub-series for each cut, and the
scores given by the stopping condition for each sub-series in
each pair are added. The chosen cut is the one that creates the
greatest total value.

A. XTSTREE EXAMPLE
To better illustrate the proposed solution, we present an
application example for a synthetic time series that highlights
the performance difference of SR before and after XTSTree
is used. In this example, as well as throughout the rest of
the paper, SR is leveraged as a powerful tool to enhance
explainability. Symbolic regression provides a concise math-
ematical representation of a numerical sequence, thereby
offering improved interpretability. This formal mathematical
transcription not only gives a clear understanding of the
underlying patterns but also facilitates a more comprehensive
explanation of the time series data. The series used in the
example, presented in Figure 2, is a combination of several
sinusoidal-like series with added noise, as shown below,
f (x), as shown at the bottom of the next page.
The first step of our example is to apply Genetic

Programming for SR over the whole series, without any
segmentation, to extract a formula that can represent the

VOLUME 11, 2023 120849



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

Algorithm 4 Page-Hinkley Segmentation Method
1 Function find_page_hinkley_cut(series; starting_threshold, max_number_iterations, delta) begin

Data: series: Series to be cut
Input: starting_threshold : Starting value for the page-hinkley threshold
Input: max_number_iterations: Maximum number of iterations before deciding on the cut
Input: delta: Delta parameter for the Page-Hinkley change detector
Result: cut_position: Position that yields the best cut

2 min_threshold ← 0
3 max_threshold ←−1
4 threshold ← starting_threshold
5 for iteration in max_number_iterations do
6 pagehinkley← newPageHinkley(threshold, delta)
7 initiate cuts as empty lists
8 for element in series do
9 update pagehinkley with the element
10 if drift detected by pagehinkley then adds index of element to cuts ;
11 end
12 if cuts.length = 1 then return cut[0] index ;
13 if cuts.length > 1 then
14 min_threshold ← threshold
15 if max_threshold is negative then
16 threshold ← threshold + threshold/2
17 else
18 threshold ← (maxthreshold − threshold)/2
19 end
20 end
21 if cuts.length = 0 then
22 max_threshold ← threshold
23 threshold ← (threshold − min_threshold)/2
24 end
25 end
26 if no cuts found after max_number_iterations then return null ;
27 if cuts.length > 1 aftermax_number_iterations then
28 pagehinkley← newPageHinkley(min_threshold, delta)
29 initiate cuts as empty lists for element in series do
30 update pagehinkley with the element
31 if drift detected by pagehinkley then adds index of element to cuts ;
32 end
33 final_cut ← first_cut_in_cuts
34 max_stat ← stop_function(series[0 : cut])+ stop_function(series[cut : series.length])
35 if stat > max_stat then
36 max_stat ← stat
37 final_cut ← cut
38 end
39 end
40 return final_cut
41 end

entire series. Figure 3 shows SR results along with the actual
series. The presented model was the one that yielded the

best accuracy. As can be seen, the formula found can barely
describe the series’ behaviour. The formula should ideally

f (x) =



5− 0.05x + sin x/20+ ϵ, if x ≤ 100
sin x/20+ ϵ, if x ≥ 100 and x ≤ 300
0.03x − 10+ sin x/20+ ϵ, if x ≥ 300 and x ≤ 450
50− 0.1x + sin x/20+ ϵ, if x ≥ 450 and x ≤ 500
sin x/20+ ϵ, if x ≥ 500 and x ≤ 700
0.03x − 23.3+ sin x/20+ ϵ, if x ≥ 700 and x ≤ 850
90− 0.1x + sin x/20+ ϵ, if x ≥ 850 and x ≤ 900
sin x/20+ ϵ, if x ≥ 900 and x ≤ 1100
0.03x − 36.7+ sin x/20+ ϵ, if x ≥ 1100 and x ≤ 1250
130− 0.1x + sin x/20+ ϵ, if x ≥ 1250 and x ≤ 1300

, ϵ ∈ {−0.2, 0.2}

120850 VOLUME 11, 2023



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

FIGURE 2. Time series used in the example.

FIGURE 3. Symbolic Regression applied using accuracy for formula
selection. RSME was computed for the formula against the complete
series. Complexity is a combination of number of operators and how
nested they are in the formula, as computed by PySR [25].

FIGURE 4. Time series used in the example after cuts performed by
XTSTree. The colour scale ranges from 0 to 1.

reproduce not only the more prominent periodic behaviour
seen every 400 steps, but also the smaller repetitions every
100 steps. Aiming to get better results from SR, we now
employ XTSTree to cut the series, with ADF-test as the
stopping condition and Page-Hinkley as the cut method. The
outcome is presented in Figure 4.

XTSTree subdivided the original time series into 8 sub-
series, which have a way simpler behaviour. The colours used
in the series help us understand the reasoning behind the cuts.
The darker the series’ colour, the more it has deviated from
the initial behaviour according to the Page-Hinkley change
detector, and when it reaches the threshold, the series is cut.
With the series now divided into stationary segments, SR can
be applied to each of them. Figure 5 depicts these results.

Employing SR on the stationary segments yielded a set
of formulas that describe the series significantly better than

FIGURE 5. Symbolic Regression applied on the resulting leaves. The
colour scale ranges from 0 to 1. RSME was computed for each formula
against the corresponding sub-series. Complexity is a combination of the
number of operators and how nested they are in each formula,
as computed by PySR [25]. In both metrics, the mean and standard
deviation were taken for each leaf.

FIGURE 6. Formulas applied on the extended series used in the example.

before, as can be seen in Figure 5. Moreover, if the initial
series was actually part of a seasonal time series, such as
in temperature or energy consumption over a week, the
extracted formulas could be applied to future time steps,
as seen in Figure 6. In this figure, the same pattern from
the initial time series is repeated but using a different seed
for random components and concatenating both series. Then,
the formulas given by the leaf models were reapplied for
the newly created series. As shown in Figure 6, the values
obtained from the formulas are visually well-adjusted to the
new series.

Figure 7 provides an overview of the generated XTSTree,
illustrating the segmented series and associated formulas.
The tree structure follows a binary tree formation with six
depth levels. At the root level, the complete time series is
depicted. Moving to the first layer of depth, we observe
the split generated by the most divisive sample, resulting
in two nodes without any leaves. This indicates a point
where a change in the time series pattern occurs but does
not present leaves capable of representing the expected level
of simplification. Each split was designed to avoid complex
formulas by merging segments with completely different
behaviours.

In the second layer, we can observe three leaves and a node.
Each leaf displays an optimised formula obtained through SR.
The corresponding nodes represent large windows from the

VOLUME 11, 2023 120851



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

FIGURE 7. Representation of the XTSTree obtained from a synthetic time series using ADF and Page-Hinkley.

120852 VOLUME 11, 2023



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

original time series, where it is not possible to produce the
expected level of explanation according to the experimental
setup. Layers 3 to 5 illustrate a sequence of multiple splits
identifying small segments represented by simple formulas
based on sine and hyperbolic sine functions. These formulas
typically consist of less than five trigonometric operators.

As we delve deeper into the layers, more complex
formulations become apparent, but they remain less complex
than the complete formula. XTSTree effectively represents
each segment as a simple formula. Moreover, the XTSTree’s
structure can be utilised to assess the time series’ complexity,
serving as a meta-feature in the observed domain.

V. EXPERIMENTAL STUDY
We conducted experimental studies on the capabilities of
XTSTree from two perspectives: accuracy increase and sim-
plification of expressions by reducing original complexity.

We carried out the experiments using real data that consists
of humidity data collected by the Rural Development Institute
of Paraná (IDR-PR), Brazil. Readings were collected by a
sensor every fifteen minutes starting from January 2015 up to
November 2021, totalling 96 samples per day. These readings
were then split into segments of 5, 10, 15, and 20 days,
resulting in 747 univariate time series of four different lengths
(480, 960, 1440, and 1920 readings).

These time series were chosen because they fit the expected
scenario for XTSTree: seasonal time series that change over
time and demand explanations, preferably formal ones, about
their behaviour. Table I briefly describes these datasets.

TABLE I. Meta-data of the time series used in the experiments.

Six different versions of XTSTree were tested by com-
bining three splitting methods (Page-Hinkley, Periodic, and
Random) and two stopping criteria (ADF test and depth).

To compare the quality of the six XTSTree versions and
showcase their potential for explainability, we used the SR
algorithm presented in [25]. First, we modelled the original
time series with SR using the timestamp as a feature and the
value as the prediction target. Then the series is segmented
and the signals on the XTSTree leaves are modelled
using the same parameters as before. In our experiments,
we utilised the PySR [25] and Julia [26] implementations
of SR. We selected both because they are high-performance
platforms for implementing SR algorithms, which can be
particularly useful for time series data.

The hyperparameters used for the Page-Hinkley splitting
method were delta: 0.005, alpha: 0.999, max number of
iterations: 100. The other splitting methods require no
parameters. We used a stop value of 0.5 for the ADF stopping

FIGURE 8. RMSE by series’ length in days, Symbolic Regression on
XTSTree leaves using ADF test as stopping condition. Red dots represent
formulas fitted to the original series while blue dots represent average
RMSE for formulas fitted on the XTSTree leaves.

criterion and a depth value of 3 for the Depth stopping
criterion. Moreover, we used the following parameters for
PySR: 20 populations; population size of 40; 10 iterations;
model selection ‘accuracy’ and ‘best’. The XTSTree imple-
mentation can be accessed in this public repository.1

A. ACCURACY IMPROVEMENT
The length of a time series is evidently an important factor
when trying to create a model for it. As a time series grows
in length, so does its complexity. However, identifying the
proper segmentation point in a series to best improve its
representation is a tricky task. To assess the XTSTree’s
capacity to improve model accuracy, we compared the error
obtained for the whole signal (original series) and the mean
of the models’ error obtained from the signal of each leaf.
We used Root Mean Square Error (RMSE) to measure the
error, and it is defined by the formula:

RMSE =

√∑n
t=1(yt − ŷt )2

n
.

where yt is the value of Y at time t , ŷt is the predicted value
of Y at time t and n is Y ’s length.

Figure 8 shows the RMSE according to the series’ length.
The red and blue dots represent the RMSE for SR models
applied on the whole series and for models applied on the
XTSTree with ADF as the stopping criterion, respectively.
The lines represent the average RMSE for both methods. The
results show the contribution of the ADF test as the stopping
criterion, improving the XTSTree’s scalability. As presented
in Fig. 8, the average RMSE for models applied using
XTSTree remains constant regardless of the series length,
whereas the ones that were applied on the whole series exhibit
increased error as the series length increases.

To highlight the significance of ADF as a stopping
criterion, we carried out further experiments using different
stopping criteria. A fixed depth of three levels was also used

1github.com/BobVitorBob/XTSTree

VOLUME 11, 2023 120853



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

FIGURE 9. RMSE by series’ length in days, Symbolic Regression on
XTSTree leaves using a fixed depth of 3 as stopping condition. Red dots
represent formulas fitted to the original series while grey dots represent
average RMSE for formulas fitted on the XTSTree leaves.

as the stopping criterion for XTSTree. Figure 9 presents the
same graph as Figure 8, but with grey dots representing
models relying on XTSTrees with depth as the stopping
criterion. Although XTSTree obtained more accurate models
in comparison to the original time series, both results show
a similar error-increasing pattern proportional to the original
signal length. This demonstrates the benefits of using the
ADF test as the stopping criterion to improve the accuracy
and scalability of XTSTree.

As mentioned before, we evaluated different splitting
methods for XTSTree. To determine if there are any
significant differences between using Periodic, Random,
or Page-Hinkley as the splitting method, we conducted a
statistical analysis based on the non-parametric Friedman
test over 140 time series. We used the post hoc Nemenyi
test to infer which differences are statistically significant.
To find statistical superiority in terms of RMSE reduction,
we compared the three splitting methods using ADF as the
stopping criteria. Figure 10 shows the Nemenyi post hoc test
results on the obtained error (RMSE), where we can observe
that Random and PH obtained the most accurate models, with
no significant differences between them, and the Periodic
splitting methods performed the worst.

It is important to mention that the number of splits
and the depth obtained from the Random splitting method
were higher than Page-Hinkley’s, which means that even
though Page-Hinkley and Random are equal in terms of
accuracy improvement, Page-Hinkley is better because it
produces fewer leaves, whichmeans fewer segments tomodel
using SR.

B. COMPLEXITY REDUCTION ANALYSIS
We performed an analysis of complexity reduction based on
default PySR hyperparameters for inducing SR. We define
complexity reduction as the difference between the complex-
ity of the formula, as calculated by [25], for the original
series and the average complexity of the leaves’ formulas.
The XTSTrees used had all three different splitting methods

FIGURE 10. Critical Distance diagram based on the Nemenyi post hoc test
using CD of 0.282 considering the RMSE of three splitting methods
(Periodic, Random, and PH) with 140 paired time series.

FIGURE 11. Average complexity reduction using three splitting methods
(PH, Random, and Periodic) with ADF stopping criterion.

and used ADF as the stopping criterion. Figure 11 shows
a positive difference when using PH as a splitting method
for all series lengths. It is important to mention that the
highest reduction of complexity was observed for series with
15 days of signal acquisition. The random splitting method
was able to deliver slight improvements with 5-day signals
and remarkable results with 10 and 15-day. However, when
processing 20 days, the random selection of a splitting point
led to more complex equations. The periodic splitting method
presented a slight improvement with 10 days, but for other
signal lengths, it resulted in more complex representations
than the whole signal.

To verify the statistical validity of the complexity reduc-
tion, we followed the same statistical test that was previously
employed (Friedman and Nemenyi post hoc test). Figure 12
shows the Nemenyi post hoc test results on the obtained
complexity analysis. In the figure, it is possible to observe
that all results were statistically different, with PH being the
most promising method for reducing complexity, followed by
Random and Periodic, respectively

We considered that interpretability could also be evaluated
in terms of the XTSTree number of splits, i.e., the number of
recommended segmentations on a time series. Using the same
experimental setup, we observed that the Periodic splitting
method generates fewer segments driven by the hyperparam-
eters employed. Conversely, Random as a splitting method
generates more cuts without reaching the improvements in

120854 VOLUME 11, 2023



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

FIGURE 12. Critical Distance diagram using CD of 0.282 based on the
Nemenyi post hoc test considering the difference of complexity between
XTSTree and original series using three splitting methods (Periodic,
Random, and PH) with 140 paired time series.

FIGURE 13. Number of segments (cuts) with various time series lengths
for different splitting methods.

terms of the reduction of complexity provided by PH. Finally,
the PH splitting method proved to deliver the best trade-off,
improving the accuracy and reducing complexity when using
XTSTree to process a time series. Figure 13 presents the
relation between the number of segments (cuts) with various
time series lengths with the different splitting methods.

C. COMPUTATION TIME COMPARISONS
To study how XTSTree affects computation time, we inves-
tigated several scenarios and observed that the impact is
mainly related to the final size of the tree. The time cost of
using XTSTree was negligible during our experiments when
compared to the time spent on SR, hovering around less
than 1 s. When using the max depth stopping criterion, there
was a small increase in the time cost of modelling the original
series. However, when growing a XTSTree using the ADF
stopping criterion, deeper trees are created, more splits are
processed, and more time is spent on modelling. Figure 14
shows the difference obtained using ADF and Max Depth of
3 levels. Experiments were performed on a computer with an
Intel Core i5-1035G1 processor and 16 GB of RAM.

Figure 15 shows the Nemenyi post hoc test results on the
obtained time. We investigated the influence of the different
splitting methods. Due to the nature of the Periodic method,
it was the fastest one to create the cuts, and since it creates
fewer leaves, it was also the fastest to apply SR. The Random
method provided deep trees, but the computational cost of this
criterion is very low. Finally, PH provided average depth trees
but is the slowest to create splits. The statistical evaluation

FIGURE 14. Average time consumption by length of series in days with
ADF and Depth as stopping criterion.

FIGURE 15. Critical Distance diagram using CD of 0.282 based on the
Nemenyi post hoc test considering the time of three splitting methods
(PeriodicC, RandomCut, and PageHinkl) with 140 paired time series.

based on the Friedman and Nemenyi post hoc tests shows that
there are no statistically similar methods, with Periodic being
the fastest to create splits, and Page-Hinkley the slowest.

VI. CONCLUSION
In this paper, we proposed an algorithm for top-down
segmentation that leverages explainability in the form of the
XTSTree. XTSTree combines a segmentation method based
on change detectors with a stopping condition that uses a
stationarity test to cut a time series into several sub-series
with similar behaviour. The use of a change detector and a
stationarity test allows XTSTree to approach the time series
segmentation problem while leveraging the explainability of
the cuts. We implemented two other segmentation methods,
as well as a one-stop condition, for control purposes.
Performance tests using SR were performed on several time
series, and XTSTree managed to improve formula accuracy
by a considerable amount. Among the several combinations
of segmentation methods and stopping conditions, the ADF
stopping condition proved to be the most adaptable to the
series’ length. The Page-Hinkley segmentation method also
performed better than other methods, having a statistically
lower error and a more consistent number of cuts and mean
leaf error while achieving a level of explainability through the
hierarchy of cuts.

In future work, other segmentation methods and stopping
conditions can be implemented, and a deeper exploration of
explainability can be done. There are also tree optimisations
that can be done through the tree structure used to reduce
the number of cuts and cluster sub-series created after
segmentation.

REFERENCES
[1] T. V. Sushmitha, C. P. Deepika, R. Uppara, and R. N. Sai, ‘‘Vehicle

trajectory prediction using non-linear input-output time series neural
network,’’ in Proc. Int. Conf. Power Electron. Appl. Technol. Present
Energy Scenario (PETPES), Aug. 2019, pp. 1–5.

[2] P.-H. Chiang and S. Dey, ‘‘Personalized effect of health behavior on blood
pressure: Machine learning based prediction and recommendation,’’ in
Proc. IEEE 20th Int. Conf. E-Health Netw., Appl. Services (Healthcom),
Sep. 2018, pp. 1–6.

VOLUME 11, 2023 120855



V. D. C. Silva et al.: XTSTree: An Explainable Top-Down Time Series Segmentation Framework

[3] P. Ni, C. Zhang, and Y. Ji, ‘‘A hybrid method for short-term sensor data
forecasting in Internet of Things,’’ in Proc. 11th Int. Conf. Fuzzy Syst.
Knowl. Discovery (FSKD), Aug. 2014, pp. 369–373.

[4] K. Doki, K. Hashimoto, S. Doki, S. Okuma, and T. Ohtsuka, ‘‘Estimation
of next behavior and its timing based on human behavior model with time
series signal,’’ in Proc. Comput. Intell. Control Autom. (CICA), Apr. 2011,
pp. 102–107.

[5] R. Anderson, Y. S. Koh, G. Dobbie, and A. Bifet, ‘‘Recurring con-
cept meta-learning for evolving data streams,’’ Expert Syst. Appl.,
vol. 138, Dec. 2019, Art. no. 112832. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0957417419305342

[6] M. Lovric, M. Milanovic, and M. Stamenkovic, ‘‘Algorithmic methods for
segmentation of time series: An overview,’’ J. Contemp. Econ. Bus. Issues,
vol. 1, pp. 31–53, Jan. 2014.

[7] C. Wang and X. S. Wang, ‘‘Supporting content-based searches on time
series via approximation,’’ in Proc. 12th Int. Conf. Sci. Statistica Database
Manage., 2000, pp. 69–81.

[8] J. Hunter and N. Mcintosh, ‘‘Knowledge-based event detection in complex
time series data,’’ in Proc. Joint Eur. Conf. Artif. Intell. Med. Med. Decis.
Making, vol. 1620. Aalborg, Denmark, Jun. 1999, pp. 271–280.

[9] L. Marti, N. Sanchez-Pi, J. Molina, and A. C. Garcia, ‘‘YASA: Yet
another time series segmentation algorithm for anomaly detection in big
data problems,’’ in Proc. 9th Int. Conf. Hybrid Artif. Intell. Syst., 2014,
pp. 697–708.

[10] E. Keogh, S. Chu, and M. Pazzani, ‘‘Segmenting time series: A survey and
novel approach,’’ inData Mining in Time Series Databases, vol. 57. World
Scientific Publishing Company, Mar. 2003.

[11] R. Sebastiao and J. M. Fernandes, ‘‘Supporting the page-Hinkley test with
empirical mode decomposition for change detection,’’ in Proc. Int. Symp.
Methodologies Intell. Syst., 2017, pp. 492–498.

[12] D. A. Dickey and W. A. Fuller, ‘‘Distribution of the estimators for
autoregressive time series with a unit root,’’ J. Amer. Stat. Assoc., vol. 74,
no. 366, p. 427, Jun. 1979.

[13] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt,
J. Schlötterer, M. van Keulen, and C. Seifert, ‘‘From anecdotal evidence
to quantitative evaluation methods: A systematic review on evaluating
explainable AI,’’ 2022, arXiv:2201.08164.

[14] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
‘‘Explaining explanations: An overview of interpretability of machine
learning,’’ in Proc. 5th Int. Conf. Data Sci. Adv. Anal., 2019, pp. 80–89.

[15] J. Mackinnon, ‘‘Critical values for cointegration tests,’’ in Long-Run
Economic Relationships. USA: Oxford University Press, Feb. 1990.

[16] Y. Jin,W. Fu, J. Kang, J. Guo, and J. Guo, ‘‘Bayesian symbolic regression,’’
2019, arXiv:1910.08892.

[17] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, vol. 1. Cambridge, MA, USA: MIT Press,
1992.

[18] W. La Cava, P. Orzechowski, B. Burlacu, F. O. de França, M. Virgolin,
Y. Jin, M. Kommenda, and J. H. Moore, ‘‘Contemporary symbolic regres-
sion methods and their relative performance,’’ 2021, arXiv:2107.14351.

[19] M. Virgolin, A. De Lorenzo, F. Randone, E. Medvet, and M. Wahde,
‘‘Model learning with personalized interpretability estimation (ML-PIE),’’
in Proc. Genetic Evol. Comput. Conf. Companion, New York, NY, USA,
Jul. 2021, pp. 1355–1364, doi: 10.1145/3449726.3463166.

[20] G. Li, J. Wang, X. Jia, and Z. Yang, ‘‘A new piecewise linear representation
method based on the R-squared statistic,’’ in Proc. 3rd Int. Conf. Mach.
Learn., Big Data Bus. Intell. (MLBDBI), 2021, pp. 515–519.

[21] C. K. Wee and R. Nayak, ‘‘Alternate approach to time series reduction,’’ in
Proc. Int. Conf. Soft-computing Netw. Secur. (ICSNS), Feb. 2018, pp. 1–4.

[22] C. Fillon and A. Bartoli, ‘‘Symbolic regression of discontinuous and
multivariate functions by hyper-volume error separation (HVES),’’ inProc.
IEEE Congr. Evol. Comput., Sep. 2007, pp. 23–30.

[23] H. Min and J.-G. Lee, ‘‘Temporal convolutional network-based time-
series segmentation,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput.
(BigComp), Feb. 2023, pp. 269–276.

[24] T. Rojat, R. Puget, D. Filliat, J. D. Ser, R. Gelin, and N. Díaz-Rodríguez,
‘‘Explainable artificial intelligence (XAI) on TimeSeries data: A survey,’’
2021, arXiv:2104.00950.

[25] M. Cranmer. (May 2023). Interpretable Machine Learning for
Science With PySR & SymbolicRegression.jl. [Online]. Available:
https://github.com/MilesCranmer/pysr_paper

[26] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, ‘‘Julia: A fresh
approach to numerical computing,’’ SIAM Rev., vol. 59, no. 1, pp. 65–98,
Jan. 2017.

VITOR DE CASTRO SILVA received the B.Sc.
degree in computer science from the State Uni-
versity of Londrina, Brazil, in 2021, where he is
currently pursuing the M.Sc. degree in computer
science. His research interests include machine
learning and data science, with current emphasis
in time series.

BRUNO BOGAZ ZARPELÃO received the B.Sc.
degree in computer science from the State Uni-
versity of Londrina (UEL), Brazil, and the Ph.D.
degree in electrical engineering from the Uni-
versity of Campinas, Brazil. He is currently an
Associate Professor with the Computer Science
Department, UEL, where he joined in 2012. From
March 2018 to February 2019, he was a Visiting
Postdoctoral Researcher with the City, University
of London. His research interests include data

science in cybersecurity, intrusion detection, and the Internet of Things.

ERIC MEDVET received the degree (cum laude)
in electronic engineering and the Ph.D. degree
in computer engineering from the University of
Trieste, Italy, in 2004 and 2008, respectively.
He is currently an Associate Professor of com-
puter engineering with the University of Trieste,
the Director of the Evolutionary Robotics and
Artificial Life Laboratory, and the Co-Director of
the Machine Learning Laboratory. His research
interests include evolutionary robotics, artificial

life, evolutionary computation, and applications of machine learning.

SYLVIO BARBON JR. received the B.Sc. degree
in computer science and the M.Sc. degree in
computational physics from the University of São
Paulo, in 2005 and 2007, respectively, and the
degree in computational engineering and the Ph.D.
degree in computational physics from IFSC/USP,
in 2008 and 2011, respectively. He is an Associate
Professor with the Department of Engineering
and Architecture, University of Trieste (UNITS),
Italy. He is also the Co-Director of the Machine

Learning Laboratory. Prior to this, he led a research group dedicated to
the study of machine learning with the Computer Science Department,
State University of Londrina (UEL), Brazil, from 2012 to 2021. His research
interests include computer vision, pattern recognition, and machine learning,
with a current emphasis on meta-learning, stream mining, and process
mining.

Open Access funding provided by ‘Università degli Studi di Trieste’ within the CRUI CARE Agreement

120856 VOLUME 11, 2023

http://dx.doi.org/10.1145/3449726.3463166

