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ABSTRACT Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men
worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from
magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring
of the disease, however, this is a challenging task even for the specialized clinicians. This study presents
SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a
transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on
11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image
modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing
steps. The performance of SAM-UNETR is compared with three other models using the same strategy
and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in
csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the
adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an
AUROC of 0.77 for csPCa prediction.

INDEX TERMS Artificial intelligence, deep learning, prostate cancer, semantic segmentation.

I. INTRODUCTION
PCa presents a significant global health challenge, impacting
millions of men worldwide, with 1.4 million new cases
and 375,000 deaths recorded in 2020 alone [1]. The
early detection and prompt treatment of PCa are critical
for improving patient outcomes, given the poor prognosis
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associated with advanced-stage PCa. However, the complex
nature of PCa detection poses a significant challenge that
requires a high level of expertise and skill from radiologists.

MRI is a powerful imaging modality that can provide
detailed images of the prostate gland and surrounding tissues,
facilitating the detection and diagnosis of PCa by clinicians
[2]. Nonetheless, the interpretation of MRI images can be a
daunting task, even for experienced radiologists, given the
intricate nature of prostate anatomy and the variability of the
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disease. Artificial intelligence (AI) models are computational
techniques that use existing data to learn patterns and make
predictions on new, unseen data [3]. In the past, traditional
machine learning approaches were used, which involved
two steps: domain experts designing features to extract
quantitative variables from the data, and then feeding these
features into computational models to learn how to combine
them to maximize accuracy in classifying data into categories
[4]. Recent advances in graphics processing unit (GPU)
computing power have enabled the development of deep
learning models, which automate the process of identifying
features and using them for downstream tasks [5]. Deep
learning (DL) models have revolutionized the field of AI
by achieving unprecedented performance that often exceeds
human performance, particularly in image analysis tasks.
Medical imaging is one of the areas where AI has shown
immense potential to improve the accuracy and efficiency of
cancer detection and diagnosis. AI models can analyze large
amounts of imaging data quickly and accurately, potentially
improving the speed and accuracy of PCa detection and
diagnosis [6]. In particular, deep learning models have
shown promise in analyzing MRI images for PCa detection,
with several studies demonstrating improved sensitivity and
specificity [7], [8], [9], [10].

For example, the work by Haozhe Jia et al. [11] uses
a 3D Convolutional Neural Network (CNN) to segment
the prostate, following an encoder-decoder architecture
and involving novel elements such as anisotropic convolu-
tional decoder with pyramid convolutional skip-connections.
Furthermore, this segmentation CNN is trained in an
adversarial-style, where an additional CNN differentiates
between a segmentation result and its corresponding ground
truth, achieving model regularization. Another approach by
Zhu et al. [12] proposes a boundary-weighted loss function
that makes the CNN segmentation model more sensitive
to object borders, aiming to tackle the lack of clear edges
between the prostate and other anatomical structures, as well
as, large annotated datasets. On the other hand, Ushinsky et al.
[13] proposed a 3D-2D hybrid CNN to leverage information
from multiple axial slices simultaneously, imitating how
radiologists interpret multiple axial images before making
decisions about one 2D slice, this approach also favors rapid
prostate organ segmentation, taking only 0.363 seconds per
image as reported by the authors. In a different line of work,
specific to csPCa detection and segmentation, the work by
Singla et al. [14] uses a transformer-based U-Net architecture
for the detection and segmentation of PCa using MRI scans,
achieving a 0.80 Dice Score on the PROMISE-12 dataset
outperforming other conventional DL models. Similarly,
Dai et al. [15] aimed to detect and delineate intraprostatic
lesions for PCa radiation therapy, they used T2-weighted
(T2w) images and a 2D Mask R-CNN architecture. They
report high Dice Scores, 0.88 and 0.86, for two different
cohorts of patients.

As such, the integration of AI into MRI-based PCa detec-
tion and diagnosis has the potential to revolutionize clinical

practice and lead to better patient outcomes. However,
the successful implementation of AI in clinical practice
requires robust validation and ongoing evaluation of the
AI algorithms to ensure their reliability and effectiveness.
For this, PI-RADS (Prostate Imaging - Reporting and Data
System) was developed by an international collaboration of
the American College of Radiology (ACR), the European
Society of Urology (ESUR) and the AdMetech Foundation
to promote global standardization and reduce variation in
the acquisition, interpretation and reporting of prostate
multiparametric Magnetic Resonance Imaging (mpMRI)
exams. PI-RADS v2 uses a 5-point scale based on the
likelihood that a combination of mpMRI findings correlates
with the presence of clinically significant cancer for each
lesion in the prostate [16].

• PI-RADS 1: Very low (csPCa is highly unlikely to be
present).

• PI-RADS 2: Low (csPCa is unlikely to be present).
• PI-RADS 3: Intermediate (the presence of csPCa is
equivocal.

• PI-RADS 4: High (csPCa is likely to be present).
• PI-RADS 5: Very high (csPCa is highly likely to be
present).

This grading is underpinned by careful evaluation of
MRI scans. The primary indicators are the detection and
localization of nodules or shadows, often characterized as T2-
weighted morphology. At the same time, Diffusion-Weighted
Imaging (DWI) and Apparent Diffusion Coefficient (ADC)
maps evaluate the density of these abnormalities and
measures the diffusion rate of water molecules, as diffusion
differs between healthy and cancerous prostate tissue.
In addition, Dynamic Contrast Enhanced (DCE) images
provide insight into the uptake of contrast agents, revealing
blood flow patterns characteristic of tumour cells. These
parameters are complemented by MRI spectroscopy, which
compares the secretions or metabolites of suspicious regions
with those found in normal prostate tissue. Together, these
nuanced assessments provide the PI-RADS score, which
serves as an indicative measure of the likelihood of PCa [16].
Acknowledging the potential of automated computer-aided

diagnosis (CAD) systems in medical imaging, csPCa repre-
sents a key area where early and accurate detection can make
a significant difference in patient outcomes and treatment
trajectories. A critical challenge is the design and training
of highly complex and novel DL architectures, which often
require massive computational resources and specialized
infrastructure.

Against this backdrop, our research is centered in twomain
goals:

• Exploiting transfer learning in high-end architec-
tures: Large companies have invested heavily in
developing and training complex DL models that, while
incredibly powerful, are often beyond the reach of many
researchers due to their computational requirements.
This study seeks to leverage these efforts through the
use of transfer learning. By leveraging the pre-trained
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weights of these sophisticated models, we aim to initiate
and adapt them for PCa imaging tasks, bypassing the
enormous computational overhead typically associated
with training such models from scratch.

• A novel architecture for csPCa detection: The
promise of automated CAD systems to improve medical
diagnostic workflows is undeniable. Building on this
potential, we present a DL-based methodology for
prostate lesion segmentation in MRI scans using our
novel architecture, SAM-UNETR. This architecture is
a harmonious blend of the SAM image encoder and
a UNET-style transformer decoder. By leveraging the
pre-trained weights of complex models, SAM-UNETR
provides a powerful yet efficient approach to csPCa
detection, combining the richness of transfer learning
with the precision of custom segmentation.

The rest of the paper is organized as follows: Section II
Materials and Methods describes the dataset, DL architec-
tures, experiments and training set-up; Section III Results
goes over the results at lesion and patient level and Section IV
Discussion analyze the presented results; finally Section V
presents the conclusion of this work and some future work
directions.

II. MATERIAL AND METHODS
The proposed methodology entails a systematic approach
involving preprocessing of MRI data obtained from two
distinct datasets. These datasets encompass T2w and DWI
sequences accompanied by ADC maps. The preprocessing
procedure comprises multiple stages aimed at extracting
relevant information from the MRI scans.

Initially, a 3D-UNET architecture is employed to perform
segmentation of the entire prostate volume. Subsequently,
the same network is utilized to discriminate and segment
the Central Zone (CZ) and Peripheral Zone (PZ) of the
prostate. Following this step, the MRI data is cropped
to isolate the region of interest, specifically the prostate
area, thereby facilitating subsequent analysis. In the final
stage of the methodology, four distinct DL networks
are trained for the purpose of detecting and segmenting
prostate lesions. Three of these networks are well-established
models widely employed in the field, while the fourth
network represents a novel approach proposed in this
research.

A. DATASETS
We utilized two datasets for our study: Prostate158 and the
dataset from the PI-CAI Challenge. Each dataset provides
unique insights and values to our research, and their details
are elaborated below:

1) PROSTATE158 DATASET
The Prostate158 dataset [17] includes 158 carefully curated
biparametric 3T prostate MRI scans. These scans encompass
sequences such as T2w, DWI, and ADC maps. Expert radiol-
ogists provided annotations to ensure accurate segmentations

TABLE 1. Dataset distribution summary.

at the pixel level for different regions of interest: CZ, PZ, and
PCa lesions. PCa lesions were demarcated as areas with a
PI-RADS score of 4 or higher. For zonal segmentations, axial
T2w sequences were primarily used, with segmentations
being pixel-specific.

2) PI-CAI CHALLENGE DATASET
Introduced as a significant grand challenge, the PI-CAI
Challenge acts as a benchmarking platform for advanced
AI algorithms and also evaluates radiologist performance
in diagnosing csPCa [18]. The challenge has over 10,000
prostate MRI scans. However, for research purposes, only
1,500 cases are made public. Of these, 328 cases are sourced
from the ProstateX dataset [19], a dataset with the same
data distribution but collected under different conditions and
scanners, which ensures a diverse representation of clinical
scenarios. Each MRI case in the dataset includes T2w, DWI,
and ADC sequences.

Out of the 1,500 cases:

• 1,075 cases present benign or indolent PCa.
• 425 cases are associated with csPCa, but only 220 of
these have expert annotations.

For consistency, all annotations are rescaled to the T2w
sequence’s dimension and resolution.

3) UTILIZATION OF DATASETS
In our study, the Prostate158 dataset was used exclusively
for prostate segmentation tasks, primarily due to its com-
prehensive zonal segmentation. However, for the purpose
of lesion detection, the Prostate158 and PI-CAI Challenge
datasets were merged to increase the variability of the data.
During the pre-processing phase, nine corrupted images
from the PI-CAI Challenge dataset were identified and
subsequently discarded. This left 1,491 images from the
original data. These were distributed in a 3:1:1 ratio for
training (60%), validation (20%) and testing (20%) - a
distribution that protects the integrity of the patient data and
ensures a sufficient number of cases to accurately assess
model performance. This resulted in a configuration of
895 training images, 298 validation images and 298 test
images for the PI-CAI Challenge dataset. The Prostate158
dataset had predefined partitions: 139 for training and 19 for
validation. From the initial 139 training images, 20 were
reallocated to the validation set. Cumulatively, the inclusion
of the Prostate158 data resulted in a final distribution of
1,014 images for training, 318 for validation and 317 for
testing. Table 1 shows a summary of the full dataset
partitions.
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B. PREPROCESSING
Prior to model training, it is essential to preprocess the data
in order to enhance results and promote data homogeneity.
Specifically, for prostate zonal segmentation, T2w images
were utilized. To ensure uniformity, these images underwent
a series of preprocessing steps. Firstly, the images were
resampled to a spacing of 0.5 × 0.5 × 0.5 mm and oriented
in the radiological anatomical system (RAS) orientation.
Subsequently, a two-step normalization process was imple-
mented, encompassing both min-max normalization and
z-score normalization. These measures contribute to aligning
the intensity values across the dataset, facilitating consistent
and reliable segmentation outcomes.

Regarding lesion segmentation, a similar preprocessing
pipeline was employed. The modalities utilized for this task
included T2w,ADCmaps, andDWI images. In order to estab-
lish compatibility between the modalities, the ADC and DWI
images were resampled to match the shape and spacing of the
T2w images, then images were cropped using the dimensions
of the complete prostate segmentation. Subsequently, all
images were resized to dimensions of 128 × 128 × nc,
where nc corresponds to the number of channels required for
2D segmentation. Then, in order to ensure the preservation
of crucial image information while mitigating any potential
bias, each image was individually normalized using z-score
normalization as shown in Equation 1 where µ represents the
mean and σ the standard deviation of every image.

Xnormalized =
X − µ

σ
(1)

To enhance the robustness and generalizability of the
trained models, multiple random data augmentation tech-
niques were employed. These augmentations included spatial
transformations such as rotations, the addition of Gaussian
noise, and slight intensity variations. These augmentation
strategies promote the creation of a more diverse training set,
effectively increasing the model’s ability to handle variations
and generalize well to unseen data.

C. PROSTATE SEGMENTATION AND CROPPING
Building on the successful results of Adams et al. on the
Prostate158 dataset [17], our study applies the same
methodology and network architecture to prostate segmen-
tation. For training, we extract random patches of size
96 × 96 × 96 pixels from each image and use them
during each training iteration. From the Prostate158 dataset,
119 images are specifically selected for training.

The chosen architecture for our prostate segmentation task
is a 3D-UNET, which will be explained in Section II-D.
The input to this network is a T2w image, and it outputs
a segmentation mask with three channels: background, CZ,
and PZ. When the model produces these masks, the CZ and
PZ zones are merged into a single semantic segmentation
representing the entire prostate region. This combined mask
is then transformed into a bounding box, and its boundaries
are extended by 20 pixels in all directions. The prostate region

is then cropped based on these expanded dimensions, in T2w,
ADC maps, and DWI images. Figure 1 shows the mentioned
process.

D. DEEP LEARNING NETWORKS
As mentioned above, a 3D model architecture was chosen
for the zonal segmentation of the prostate. However, only
2D networks were chosen for lesion segmentation, driven
by two key considerations. Firstly, this decision was made
to facilitate a direct and meaningful comparison with SAM-
UNETR, a model purposefully designed for 2D images,
since it utilizes the image encoder from the SAM, which
was exclusively trained on 2D image modalities. Further
details regarding the training of SAM will be expounded
upon in subsequent sections of this paper. By employing
2D networks, the study aims to establish a fair and
insightful evaluation of the selected models in relation to
SAM-UNETR. Secondly, the utilization of 2D networks
ensures the preservation of vital information during the lesion
segmentation process. By conducting segmentation in the
2D space, the risk of losing valuable details on individual
image slices is mitigated. This approach safeguards against
the potential loss of crucial spatial context and ensures that the
segmentation algorithms can effectively capture important
features within the lesions.

1) UNET
UNET is a CNN architecture commonly used for image
segmentation tasks. It was introduced by Ronneberger et al.
in 2015 [20]. UNET has gained significant popularity in
the field of medical image analysis due to its effectiveness
in segmenting anatomical structures and abnormalities. This
architecture consists of an encoder-decoder structure with
skip connections. The encoder part of the network gradually
reduces spatial dimensions while increasing the number
of feature channels through successive convolutional and
pooling layers. This process captures hierarchical feature
representations at multiple scales. The decoder part, on the
other hand, performs upsampling and convolution operations
to progressively reconstruct the segmented output. Skip
connections are established between corresponding encoder
and decoder layers to enable the integration of both low-level
and high-level features, aiding in the preservation of fine
details during the segmentation process.

The 3D-UNET previously mentioned for prostate segmen-
tation is a derivative of the standard UNET architecture. The
main difference between the 3D-UNET and the conventional
UNET is that the former uses 3D convolutional kernels,
as opposed to the 2D counterparts used by the latter. This
adaptation allows the 3D-UNET to exploit enhanced spatial
information from the input volumes. As described in [17]
and Figure 2 shows, the proposed architecture consists
of five residual blocks accompanied by five successive
downsampling stages. These downsampling processes result
in a systematic reduction in spatial dimensions while
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FIGURE 1. Prostate cropping process. The network takes a T2w image as input and generates a segmentation mask with three
channels: background, CZ, and PZ. The CZ and PZ channels are then combined to form a single mask that represents the whole
prostate region. We then compute a bounding box around this mask and expands it by 20 pixels in each direction. The
expanded bounding box is used to crop the prostate region from the T2w image, as well as from the ADC maps and DWI
images that correspond to the same slice.

FIGURE 2. 3D-UNET for prostate zonal segmentation. Multiple random patches of size 96 × 96x96 are
extracted from the images, then these patches are sent to the 3D-UNET model which employs five residual
blocks and five downsampling steps. The downsampling progressively reduces spatial dimensions and
increases channel count, starting from 16 and doubling to 512. The input is a T2w image, and the output is a
segmentation mask with three channels: background, CZ, and PZ. Adapted from [17].

simultaneously increasing the number of channels, starting
from an initial 16 channels and successively doubling at each
stage, culminating in 512 channels and batch normalization.
Such a design configuration is instrumental in the extraction
of hierarchical features, thereby enhancing segmentation
efficiency. For lesion segmentation, a 2D version of the
network, originally designed for zonal segmentation of the
prostate, was implemented.

2) UNETR
UNETR, derived from the renowned UNET architecture,
represents a novel variation that incorporates Transformers.
This network was introduced by Hatamizadeh et al. in 2021
[21], specifically designed to address the challenges encoun-
tered in 3D Medical Image Segmentation. By integrating
a transformer encoder, UNETR excels at capturing and
comprehending global multi-scale information. Furthermore,
it employs a UNET decoder, enriched with multiple layers
of convolutions and skip connections, to facilitate precise

segmentation. The architectural design proposed for this task
is a 2D version of the model with a feature size of 16, a hidden
size of 768, 24 attention heads and batch normalization.

3) SwinUNETR
SwinUNETR is an advanced model derived from UNETR,
a state-of-the-art U-shaped network renowned for its effec-
tiveness in 3D medical image segmentation. Building upon
the foundation of UNETR, SwinUNETR introduces a sig-
nificant enhancement by replacing the transformer encoder
with a Swin transformer encoder. The Swin transformer is
a hierarchical transformer architecture that employs shifted
windows to compute self-attention in an efficient and highly
effective manner [22]. In SwinUNETR, the transformer
encoder operates by extracting features at five distinct
resolutions, capitalizing on the utilization of shifted windows
for self-attention computation. This approach facilitates the
capture of intricate spatial dependencies across different
scales, enabling the model to discern fine details and
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contextual information crucial for accurate segmentation.
Through the integration of skip connections, the transformer
encoder at each resolution is seamlessly connected to a
Fully CNN-based decoder [23]. This connectivity ensures the
fusion of both local and global information, enabling the net-
work to generate precise segmentation outputs. For the
specific task at hand, a 2D version of the SwinUNETR
model is employed. This variant exhibits a feature size of
48, incorporates instance normalization to enhance stability
during training, and integrates a dropout rate of 0.15 for each
layer.

4) SAM-UNETR
The proposed method combines the image encoder from
the SAM, a pioneering segmentation model introduced by
Kirillov et al. [24], with the decoder architecture inspired
by UNETR. SAM, as implied by its name, serves as a
foundational segmentation model that exhibits remarkable
versatility in accommodating various types of input prompts,
including points, boxes, or text. It proficiently generates
masks for all objects present in an image.

SAM’s training procedure involved an extensive dataset
comprising 11 million images and 1.1 billion corresponding
masks, called SA-1B. The creation of the dataset involved
a unique ‘‘data engine’’ approach that included three
stages: assisted-manual, semi-automatic, and fully automatic
annotation. In the first phase, the Segment Anything Model
(SAM) assists annotators in annotating masks, similar to
traditional interactive segmentation. In the subsequent semi-
automatic phase, SAM autonomously generates masks for
certain objects while human annotators focus on the rest.
In the final stage, SAM produces an average of about
100 high-quality masks per image when prompted with a
grid of foreground points. Impressively, SA-1B has 400 times
more masks than any existing segmentation dataset, ensuring
both quality and diversity. It should be noted that all this
procedure was developed by Kirillov et al. [24].
SAM architecture encompasses an image encoder respon-

sible for extracting comprehensive features from the input
image. Additionally, a prompt encoder is employed to encode
the input prompts into a spatial representation. The mask
decoder harmoniously integrates the image features with the
prompt representation, effectively generating masks for each
prompt in a coherent and precise manner.

To take advantage of the knowledge gained from training
on the large SA-1B dataset, our method emphasizes the
extraction of pre-trained weights from the image encoder.
This encoder, a Masked Autoencoder Vision Transformer,
is optimized for high-resolution images. Given our transfer
learning goals, it’s important to be able to adapt to
different image resolutions and channel counts, ensuring the
adaptability of the weights.

The encoder has 32 attention blocks, where blocks 8, 16,
24, and 32 are special global attention blocks (GABs). These
GABs are modified to handle any image size, ensuring the

model’s versatility across different resolutions. For a smooth
integration into our transfer learning framework, we also
adapted the weights shape and input channels as mentioned
before. Additionally, for potential skip connections, the
encoder returns the hidden states from each transform block.
However, as in [24], most of the structure of the encoder
is equal to the original SAM encoder, maintaining an
embedding size of 1,280.

Similar to the Swin-UNETR andUNETR architectures, the
image encoder employed in this study adopts a vision trans-
former approach. The U-shaped architecture incorporates
skip connections to facilitate the transmission of information
from the encoder to the decoder, being GABs used for
this purpose. The output of each GAB assumes a shape
of H

16 ×
W
16 ×

Es
16 , where Es corresponds to the embedding

size. These outputs are processed by a deconvolution block,
which involves a 3×3 convolution followed by normalization
layers, as highlighted in [21]. At the bottleneck of the
SAM encoder, a deconvolution layer increases the resolution
of the feature map by a factor of two. The enhanced
feature map is then merged with the feature map from the
previous transformer output. This combined feature map
undergoes 3 × 3 convolutional layers and is upscaled using a
deconvolutional layer. This cycle is repeated until the original
resolution is restored. Finally, the output is processed through
a 1 × 1 convolutional layer with softmax activation, allowing
for pixel-wise semantic prediction. The architecture is shown
in Figure 3.

E. EXPERIMENTS
After preprocessing the T2w, ADC, DWI, and zonal masks,
we concatenate the images. The zonal masks (CZ and
PZ) are encoded using a one-hot representation, yielding a
two-channel image. The final concatenated image has five
channels. We transpose the three-dimensional images from
H × W × D × 5 to D × H × W × 5, with D indicating the
number of slices. This format supports batch processing with
dimensions B× H ×W × 5 for 2D models.
It’s worth noting that for SAM-UNETR training we

slightly adjusted the preprocessing steps described in section
II-B to suit our transfer learning methodology, especially
since the images from SA-1B have different intensity range.
First, we applied min-max normalization as in equation 2
to adjust image pixel values to fall within the [0, 255]
range of the SA-1B dataset. Then, we used the z-score
method (Equation 1) by subtracting the mean and dividing
by the standard deviation derived from the SA-1B dataset.
It’s important to note that while the SA-1B dataset contains
RGB images, our dataset consists entirely of concatenated
gray images. The SA-1B dataset has mean pixel values
of 123.675, 116.28, and 103.53 for each of the RGB
channels, and standard deviations of 58.395, 57.12, and
57.375, respectively. From this, we derived an overall mean
(µ) of 114.495 and a standard deviation (σ ) of 57.63. This
calculated mean and standard deviation were then used
for z-score normalization on each individual channel (T2w,
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FIGURE 3. SAM-UNETR Architecture. This model uses a SAM transformer-based image encoder with 32 attention blocks.
It has a U-shaped architecture with skip connections using Global Attention Blocks (GAB). The resolution of feature maps is
enhanced using deconvolutional blocks. The feature maps are then combined with preceding transformer output and
processed through convolutional layers and upsampling. This process continues until the original input resolution is
reached. Finally, the output is passed through a 1 × 1 convolutional layer with softmax activation. Based on [21].

ADC, DWI). This preprocessing adjustment ensures that
our dataset remains compatible and maintains consistent
performance when merged with the transferred model. For
reference, SAM-UNETR is trained in two different ways:
either without pretraining (via random initialization) or with
pretraining that uses weights from the SAM model.

X0-255 =
X − Xmin

Xmax − Xmin
(2)

Our methodology is outlined in Figure 4 and involves:
1) Segmenting the entire prostate using only the T2w

sequence and cropping the segmented region.
2) Resampling the ADC and DWI sequences to match the

T2w sequence, followed by cropping to the prostate
region.

3) Applying the preprocessing techniques detailed in II-B.
4) Concatenating all images, including the CZ and PZ.
5) Transposing the images for compatibility with 2D

models, resulting in a format of Batch size x channels x
H x W.

6) Training each model with a Dice-Focal Loss Function.
We use the Novograd optimizer [25] and an initial
learning rate of 0.001, running for 200 epochs.

Following this methodology, we obtain the lesion seg-
mentation map for each model, facilitating accurate prostate
lesion identification.

Training was conducted on an Nvidia Tesla V100 with
32GB of memory using PyTorch 2.0 and MONAI Core
library version 1.1.0. These tools were chosen for their
robustness in handling medical imaging analysis. Table 2
provides a breakdown of each model’s complexity, capturing
number of parameters, Multiply-Accumulate Operations
(MACs), which means multiply and add two numbers,
basic operations for many linear algebra operations, such as
matrix multiplications, convolutions, and dot products; and
an approximate of epoch training time. While SAM-UNETR

stands out with higher values, it’s justified given its versatile,
large-scale encoder designed for broad segmentation tasks.

All code used for this project is available at https://github.
com/BIMCV-CSUSP/SAM-UNETR

III. RESULTS
After the training process is completed, all models are
evaluated on the test partition of the dataset, which contains
317 images from different patients. The evaluation procedure
can be divided into two main phases: lesion level and patient
level. The lesion level evaluation focuses on the ability of
the model to detect and segment the entire lesion in the
prostate region, regardless of its malignancy. To measure
this ability, two common metrics are used: Dice Score and
Intersection over Union (IoU) Score. These metrics compare
the overlap between the predicted lesion mask and the ground
truth lesion mask. The higher the Dice Score and IoU, the
better the model’s performance. These metrics are suitable
for evaluating segmentation tasks, as they account for both
the size and shape of the lesions. The patient level evaluation,
on the other hand, concentrates on the ability of the model
to detect csPCa. To do this, the model’s predictions are
compared with the biopsy results of each patient. If the
patient has lesions that are confirmed to be csPCa by biopsy,
then the model should also detect lesions in that patient.
If the patient has no lesions, then the model should not
detect any lesions in that patient. The Area Under Receiver
Operating Curve (AUROC) is used as a metric for this phase.
The AUROC measures how well the model can distinguish
between patients with csPCa and patients with without csPCa
(no-csPCa), based on their predicted lesion scores. The higher
the AUROC, the better the model’s performance. This metric
is suitable for evaluating classification tasks, as it accounts for
both true positives and false positives, Equation 3 shows how
AUROC is calculated, where TPR(f ) is the True Positive Rate
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FIGURE 4. Methodology overview: Prostate segmentation on the T2w sequence followed by cropping. ADC
and DWI sequences are then resampled, cropped, and preprocessed. Post concatenation, the images are
transposed for 2D models. Training is done using Dice-Focal Loss and the Novograd optimizer over
200 epochs.

TABLE 2. Model complexity and epoch training time.

TABLE 3. General lesion level results.

(Sensitivity) at a given threshold f , d[FPR(f )] represents the
change in False Positive Rate (1 - Specificity) as the threshold
f changes. The integral sums up the TPR values over all
possible thresholds, effectively calculating the area under the
ROC curve.

AUROC =

∫
∞

−∞

TPR(f ) d[FPR(f )] (3)

A. LESION LEVEL
As previously stated, the metrics used for lesion level
detection are Dice Score and IoU. Table 3 presents the results
of these two metrics for each model. The best performing
model is SwinUNETR, followed by SAM-UNETR pre-
trained, which outperforms the non-pretrained variant. These
metrics reflect the performance of the model in detecting the
entire lesion, regardless of its PIRADS score.

TABLE 4. Results based on each PIRADS score.

In addition, the models are assessed on their performance
in predicting lesions in each PIRADS category. For this
purpose, only images with an assigned PIRADS score
are considered, which implies that only human annotated
images are utilized for this task. Table 4 presents the
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FIGURE 5. Lesion detection based on PIRADS score.When the PIRADS score is low, the
detection of lesions becomes more challenging. However, the proposed SAM-UNETR
algorithm exhibits a commendable detection rate for both difficult-to-detect lesions,
characterized by low PIRADS scores, as well as relatively easier lesions such as those
categorized as PIRADS 4 and 5.

FIGURE 6. AUROC curve for each model. This curve accurately assesses the
ability of a model to detect csPCa in images that genuinely exhibit csPCa.
Remarkably, the proposed SAM-UNETR model surpasses all other models.

outcomes of each model on every PIRADS classification.
SAM-UNETR was the most accurate model in almost all the
PIRADS categories except PIRADS 2, where SwinUNETR

achieved the highest score, albeit with a marginal difference.
Furthermore, the pretrained version of the model consistently
outperformed its non-pretrained counterpart.
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Figure 5 illustrates the performance of the models on
images with different levels of lesion severity, as indicated
by the PIRADS score. The models are able to detect lesions
even in images where the detection is challenging due to
the low severity of the lesions, such as those corresponding
to PIRADS 2 and 3. In PIRADS 2, only SAM-UNETR
and SwinUNETR were able to detect the lesion, while
in PIRADS 3, only SAM-UNETR detected the lesion.
Moreover, SAM-UNETR can detect a larger area of the
lesion compared to the other models in images where the
lesion is more prominent and easier to detect, such as those
corresponding to PIRADS 4 and 5.

B. PATIENT LEVEL
As previously stated, the models were also trained with
no-csPCa images, which implies that no lesions were
segmented in those images. Therefore, it is essential to
evaluate the performance of the models in discriminating
between csPCa and no-csPCa cases. Figure 6 illustrates the
results of this evaluation, based on the AUROC metric. The
higher the AUROC, the better the model’s performance.
Among the models, SAM-UNETR pretrained achieved the
highest AUROC of 0.77, followed by SwinUNETR and
its non-pretrained variant. These results demonstrate the
superior ability of SAM-UNETR pretrained to detect csPCa
lesions accurately and reliably.

IV. DISCUSSION
The presented results demonstrate that SAM-UNETR pre-
trained generally surpasses all other models in this work
in the challenging task of csPCa lesion segmentation. Even
though overall results show that SwinUNETR performs better
in lession level segmentation, as evidenced by Table 3,
when evaluating images labeled for human experts at each
PI-RADS score, SAM-UNETR shows more robustness and
better results in most categories compared to all other models
as reported in Table 4. A possible explanation for this
difference could be that SAM-UNETR is better tuned to
understand and detect the subtle features associated with
specific PI-RADS scores. The benefit of pre-training is
evident here, suggesting that such a model may benefit from
an inductive bias that aids its ability to handle complex
patterns in the dataset.

Moreover, it is important to note that while segmentation
metrics provide a detailed view of model performance, their
translation into clinical utility remains to be seen. A patient-
level evaluation provides a clearer perspective on the potential
real-world performance of these models, particularly in
differentiating csPCa from no-csPCa scenarios. At this
point, SAM-UNETR achieves the highest AUROC score
(Figure 6) in discriminating between csPCa and no-csPCa
cases, indicating its reliability and effectiveness in detecting
csPCa lesions. It is noteworthy that SAM-UNETR pretrained
consistently outperforms its non-pretrained version, which
validates the value of using a transfer learning strategy for
this task, even when the pretrained weights originate from a

different task and the decoder architecture differs from the
original SAM model.

Regarding the presented results, comparing them directly
to other studies is complex. Many factors can cause a model
to perform differently, such as the dataset size, the metrics
used, and the complexity of the methods. In particular, the
work by Adams et al. on the Prostate158 dataset [17] used
the same type of images and a simple 3D UNET model.
They got a dice score of 0.453 but only used images with a
PI-RADS score higher than 3 while our model methodology
included a comprehensive range of PI-RADS scores. On the
other hand, Bosma et al. [26] had access to the entire
PICAI challenge dataset since they were the organizers of
the challenge [18]. Their study included a large dataset of
6,578 MRI scans with a PI-RADS score of 4 or higher. They
reported a high AUROC of 0.91 but used an ensemble of
15 models and a semi-supervised learning method, which
makes their approachmore costly and less practical for places
with limited resources, such as some developing countries.

V. CONCLUSION
This study demonstrates the adaptability of existing model
architectures through a transfer learning approach to address
multiple tasks. Specifically, the SAM-UNETR architecture
is proposed, leveraging the spatial representations of a
transformer-encoder derived from a large pretrained model
like SAM, in combination with a decoder utilizing residual
convolutions of the UNETR. Multiple 2D models were
trained using a consistent methodology for the purpose of
clear comparison with SAM-UNETR.

Results show that the proposed SAM-UNETR architecture
achieves a general dice score of 0.467 for lesion detection,
demonstrating its effectiveness despite not being the best
performing model. Further analysis shows that the proposed
methodology outperforms alternative models in accurately
identifying lesions labeled by human experts, as well
as demonstrating superior performance across different
PIRADS levels. In particular, SAM-UNETR exhibits an
AUROC of 0.77 in the detection of csPCa, providing greater
confidence in its lesion detection capabilities compared
to other models. This shows that while our model may
not delineate the entire lesion with perfect accuracy, its
predictions can be invaluable in suggesting potential lesion
locations. This may then serve as an additional tool for
radiologists, allowing them to make more informed decisions
based on their expertise and the model’s indications.

Additionally, a comparison between the pretrained and
non-pretrained versions of the model reveals the beneficial
impact of the learned weights from the SAM encoder, trained
on a large dataset. This highlights the value of employing a
transfer learning approach, even when the task at hand and
the original architecture significantly differ, particularly in
challenging tasks such as those addressed in this study.

As previously discussed, direct comparison of detection
percentages is inherently complex due to the variety of
metrics used and the unique characteristics of the dataset.
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While a larger image dataset may improve model per-
formance, it is important to recognize that the adoption
of complex methodologies may negatively impact clinical
feasibility in terms of both resource allocation and time
commitment. While the proposed methodology may not be
the most superior approach documented in the literature,
this work elucidates the efficacy of the transfer learning
approach in conjunction with contemporary large-scale
models. SAM-UNETR can potentially be applied in tandem
with other methodologies, as it accommodates images of
varying shapes due to the modifications made to the original
encoder.

As future work, efforts will be directed towards training
SAM-UNETR to enhance further the results pertaining to the
detection and segmentation of csPCa lesions. Additionally,
future studies on diverse datasets can further cement these
findings and guide the development of clinically robust
algorithms. An alternative decoder approach based on a
transformer-decoder, akin to the original SAM model, will
be explored.
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