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ABSTRACT This work proposes a novel image encryption algorithm that integrates unique image
transformation techniques with the principles of chaotic and hyper-chaotic systems. By harnessing the
unpredictable behavior of the Chua system and the hyper-chaotic nature of the Chen system, the algorithm
carries out rescaling, rotation, and randomization on the target image. The intrinsic unpredictability and
sensitivity to initial conditions of these chaotic systems endow the encryption algorithm with an expansive
key space of 25208. This feature not only bolsters its resilience against brute-force attacks but also magnifies
its overall security profile. The algorithm’s efficiency is evident in its rapid computational speed and lean
resource consumption, making it suitable for real-time applications. To gauge its robustness, a battery of
rigorous tests and analyses, spanning differential attacks, statistical attacks, and brute-force assaults, were
employed. The results validate its ability to resist a diverse spectrum of threats. With its expansive key space,
exceptional efficiency, and sturdy defenses, the proposed algorithm emerges as a potential cornerstone for
safeguarding digital images in arenas like secure communication, data storage, and multimedia transmission.
In sum, this research pushes the boundaries of high-security image encryption methodologies, catering to
the burgeoning demands of the digital age.

INDEX TERMS Chaos theory, Chen hyper-chaotic system, Chua chaotic system, image cryptosystem, image
encryption, rotation.

I. INTRODUCTION
With multimedia data transmission over public networks
growing exponentially in recent years, the criticality of
efficient image encryption techniques has surged. These
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techniques are vital for safeguarding images from unautho-
rized access [1]. While the Advanced Encryption Standard
(AES) is adept at text encryption [2], adapting it for image
data poses challenges, given the unique properties of images,
such as vast data capacity and significant pixel correlation.
Recent literature has presented image encryption methods
rooted in chaos theory [3], compressive sensing [4], and deep
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learning [5]. However, these often grapple with inadequate
security, computational intricacy, and less-than-optimal real-
time performance [6]. This backdrop has fueled the pursuit of
streamlined image encryption algorithms that promise potent
security while sidestepping these limitations. In response, this
paper unveils an innovative image encryption scheme that
interweaves permutation and diffusion operations, adhering
to Shannon’s secure communication tenets [7]. This scheme
is engineered to deliver staunch encryption with modest
computational demands, positioning it as a prime candidate
for real-time secure image transmission.

The ensuing discussion expounds on the significance
of rotation techniques in sculpting pseudo-random number
generators (PRNGs). This discourse segues into the pivotal
role of chaos theory in image encryption. Furthermore,
substitution boxes (S-boxes) are spotlighted as quintessential
nonlinear elements in image encryption. Recognizing the
gaps in existing research, we present our novel R3 algorithm
as a robust remedy for prevalent real-time image encryption
challenges.

Rotation techniques are pivotal in contemporary image
cryptosystems, predominantly amplifying the complexity and
randomness of sequences generated by PRNGs, attributes
that are essential for image encryption algorithms [8]. Despite
the promise of these techniques, it is paramount to realize
that their efficacy is not standalone. Several variables,
including the initial seed, PRNG’s caliber, and the meticulous
integration of cryptographic strategies, exert significant sway
over the encryption’s fortitude.

The chaotic behavior and initial condition sensitivity
inherent in chaos theory render it a linchpin for robust image
encryption algorithms [9], [10]. Chaotic maps, with their
intricate dynamics and expansive parameter spaces, augment
encryption strength. The myriad benefits they offer, from
extensive key sensitivity to resistance against a diverse attack
spectrum, spotlight chaos theory as an enthralling research
domain [11], [12].

Solving chaotic and hyper-chaotic systems of differential
equations at a fractional-order, rather than an integer-
order can significantly enhance unpredictability and system
dynamics complexity [13], [14]. When applied to image
cryptosystems, this increased complexity can potentially
bolster the security of such algorithms [15], providing a larger
key space and enhancing unpredictability and nonlinearity,
thereby improving diffusion and confusion properties.

The literature review also underscores the importance of
S-boxes in image encryption algorithms [13], [16], [17], [18],
[19], and [20]. Incorporating an S-box into the proposed
R3 algorithm enhances the image encryption process’s
security. An S-box provides a non-linear transformation of
the input data, making it significantly harder for an attacker
to decipher the encrypted image [13]. In this research,
S-boxes contribute to the proposed R3 algorithm’s robustness
against various attacks, thereby improving digital image
security.

Drawing insights from the above discussions, this paper
champions the efficacy of PRNG rotation and fractional-
order solutions to chaotic systems. As outlined in the
subsequent section (Section II), despite noteworthy strides
in image encryption, achieving a harmonious blend of
security, efficiency, and real-time performance remains
elusive. Our endeavor, through the R3 (Rescale, Rotate, and
Randomize) algorithm, is to bridge this chasm. By hinging
on the unpredictable facets of the Chua and Chen systems,
R3 aspires to redefine the paradigms of image encryption
efficiency and security. Its offerings span an expansive key
space, staunch defenses against a plethora of attacks, and
potential applications in secure communication, data storage,
and multimedia transmission. The salient contributions of our
proposed image cryptosystem encompass:

1) A 2-stage image encryption predicated on fractional-
order chaotic and hyper-chaotic system solutions.

2) Enhanced security and robustness through rotation,
rescaling, and randomization algorithms.

3) Enhanced encryption efficiency via advanced parallel
processing, achieving an average rate of 2.13 Mbps.

4) A colossal key space of 25208, renders brute-force
attacks futile.

5) Unyielding resistance against an array of cryptanaly-
ses, spanning from visual to differential.

6) Conformity with all NIST SP 800 − 22 randomness
tests, along with TestU01 analyses.

The remainder of this article is structured as follows:
In Section II: Related Works, a literature review of related
image cryptosystems is presented. Section III: Preliminary
Studies introduces the chaotic and hyper-chaotic systems of
differential equations used in the proposed image cryptosys-
tem. Section IV: Proposed Scheme details the encryption
and decryption procedures, complete with their algorithms
and flowcharts. Section V: Performance Analysis showcases
the results of various analyses conducted to evaluate the
performance of the proposed image cryptosystem. Lastly,
Section VI: Conclusions and Future Work concludes the
article and suggests potential directions for future research.

II. RELATED WORKS
This section attempts to delve into the significant prior
research and developments in the field of image encryption.
It examines various methodologies and techniques that have
been proposed, highlighting their strengths and limitations.
This review not only provides context for our study but also
underscores the innovation and necessity of our proposed
image encryption algorithm. The following studies were
instrumental in shaping the research direction and method-
ology of this work:

The authors of [21] propose an image encryption algorithm
based on chaos theory, the use of the hash functions SHA-
256 and SHA-512, as well as an image rotation matrix.
While a limited security analysis is provided in their work,
their proposed algorithm is shown to perform well. In [22],
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an image encryption algorithm that carries out permutation
and substitution based on 4 Chebyshev chaotic maps and
rotation equations is proposed. Their proposed algorithm is
shown to be highly efficient, encrypting 512 × 512 images
in only 290 ms. Multiple rounds of DNA coding are carried
out in an image cryptosystem proposed by the authors of
[23], where they generate a 16× 16 rotational DNA Playfair
matrix using the chaotic logistic map. While their proposed
algorithm is shown to pass various security analyses, it is very
inefficient, encrypting 256 × 256 images in only 7 to 9 s.
The work proposed in [24] makes use of a bit-plane matrix
rotation, the Lorenz hyper-chaotic system, as well as a 6D
hyper-chaotic system, in addition to the MD5 hash function,
to carry out image encryption. A large key space of 2544

is the strongest metric computed and presented in the work
of [24]. The authors of the work described in [25] carry
out a rotational mechanism in a very interesting manner by
rotating the axes of the 3 employed chaotic systems (Newton-
Leipnik, Liu, and Financial) by an angle θ . Furthermore,
their work applies a dynamic switched synchronized scheme.
However, a limited security analysis is offered, and no
mention of the algorithm’s efficiency is made therein. The
authors of [26] propose a medical image cryptosystem that
is based on chaotic functions, block rotation, and DNA
coding. In their cryptosystem, several chaotic maps under
the sine transform framework are utilized to produce seeds
for block rotation. Next, DNA coding is carried out. The
proposed cryptosystem is shown to be resistant to various
cryptanalyses. An interesting work is proposed in [27], where
the rotation of pixels is related to the idea of the rotation of
planets around their orbits. This is achieved by the authors by
viewing the changes in the locations of planets around their
orbits and associating themwith the pixel shuffling technique.
Further, they combine the rotations with chaotic sequences
to scramble the pixel positions in plain images. Novel
S-boxes are constructed in [28], where the authors realize
the importance of introducing non-linearity into an image
cryptosystem and the effectiveness of S-boxes at achieving
just that. In their work, they employ the Hindmarsh-Rose
system to generate S-boxes of chaotic nature. Two S-boxes
are proposed in [28]. The first is based on a rotation
algorithm in relation to the rows and columns, while the
other is based on a zigzag transform. The proposed S-boxes
are tested using the commonly utilized metrics found in
the literature and are shown to perform well in an image
cryptosystem. A gray-scale image encryption algorithm is
proposed in [29] that is based on the scrambling rotations
in a Rubik’s cube to emulate pixel position permutations.
Moreover, the work in [29] makes use of the quantum
XOR operation and the quantum SWAP operation. The main
advantage of this work is the improved efficiency achieved
through the use of quantum methods over traditional ones.
A very recent work by the authors of [30] develops an
unsupervised deep learning algorithm trained on chaotic
maps to build a generative adversarial network (GAN). This
GAN is then utilized to provide encryption keys as input to

newly designed S-boxes and P-boxes. The proposed GAN-
based algorithm in [30] is shown to carry out encryption
both at the bit-level and byte-level, performing very well
in comparison to counterpart algorithms from the literature.
In [31], the authors re-imagine 2D images as circular objects,
or rotors, which can be rotated in clockwise or anti-clockwise
directions, such that these rotations can be used to substitute
the image pixels. The adopted rotation mechanism in [31]
is jointly applied with a permutation that is based on a
logistic sequence. Next, a Piece-wise Linear Chaotic Map
(PWLCM) and the Chen system of differential equations are
utilized to induce further rotations. Moreover, the seeds for
the Chen system are based on the SHA-512 of the plain
images input to the algorithm. Various performance analyses
are conducted, showcasing the superior security of the work
in [31].

In conclusion, the body of existing literature clearly
indicates the increasing significance of robust and efficient
image encryption techniques in the age of ubiquitous mul-
timedia data transmission. While there have been numerous
methodologies proposed, many of them have been found
to exhibit significant shortcomings, such as susceptibility to
various types of attacks, high computational complexity, and
inadequate real-time performance. Notably, the exploration
of chaotic and hyper-chaotic systems in the context of image
encryption has shown promising results due to their inherent
unpredictability and high sensitivity to initial conditions.
However, there remains awide scope for further improvement
and innovation in this domain, particularly in terms of
leveraging advanced concepts like fractional-order solutions
and rotation mechanisms to enhance security. The subsequent
sections of this article will introduce and detail a novel image
cryptosystem that aims to address the existing gaps in the field
by employing a unique combination of image transformations
and the principles of chaotic and hyper-chaotic systems.

III. PRELIMINARY STUDIES
The proposed image cryptosystem is mainly divided into
2 main stages. Each stage utilizes a dynamical system
(Chen and Chua) and consists of 3 main subroutines, namely,
rotation, S-box, and XOR. Each of the HD systems and the
subroutines utilized in the cryptosystem are discussed below.

A. CHEN SYSTEM
The Chen system is characterized as a hyper-chaotic system
with more than one positive Lyapunov exponent. For such
a characterization, it presents itself as a sufficient candidate
for PRNG sequence generation, which is later utilized in
3 separate encryption subroutines (rotation, S-box, and XOR,
as later discussed). Moreover, as a system in 4D space,
many variables and coefficients present themselves as control
parameters. The role of these control parameters is to change
the behavior of the solution of the system, which changes
the resulting PRNG sequence generated in the process.
Alongside that, from the perspective of image encryption,
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it is beneficial to construct a cryptosystem with a large key
space.

The hyper-chaotic 4D Chen system is equated as per
the following 4 differential equations (for x, y, z, and u,
respectively) [32], [33]:

Dαx x = a(y− x)+ u,

Dαyy = γ x−xz+ cy,

Dαzz = xy− bz,

Dαuu = yz+ du,

(1)

In (1), the control variables are divided into 3 groups. The
first group is the initial values for x, y, z, and u (or x0, y0, z0,
and u0). The second group, a, b, c, γ , and d , are the scale
coefficients. The last group, αx , αy, αz, and αu are values
of fractional-order differentiation. These 3 groups combined
introduce 13 variables, contributing a total of 52 variables to
the overall cryptosystem (as this system is utilized 4 times).
For demonstration, Fig. 1 shows an example plot for the 4D
Chen system in (1). Hue colors are utilized in Fig. 1, where
warmer colors present initial values and cooler colors present
terminal ones.

Bifurcation diagrams of the system in (1) are plotted
in Figs. 2, 3, and 4 for changing values of the variables
b, c, and d , respectively. These diagrams present a visual
representation of the transitions or bifurcations the system
in (1) undergoes as a parameter is varied. Such diagrams
are a powerful tool for analyzing the complex behavior
of the Chen system. In the context of a 4D hyper-chaotic
system, a bifurcation diagram can reveal a multitude of
dynamical behaviors, including fixed points, periodic orbits,
bifurcations, chaos, and hyperchaos. More specifically,
a bifurcation happens when a small, smooth change made
to the system parameters causes a sudden ‘qualitative’ or
topological change in its behavior. In Figs. 2, 3, and 4, the
horizontal axes represent the varied parameters (b, c, and d),
while the vertical axes show the possible long-term values
(equilibrium values or periodic orbits) of the Chen system in
(1) for each value of those parameters.

Lyapunov exponents are a measure of the rate at which
nearby trajectories in a system diverge or converge over
time. In a 4D system, there are 4 Lyapunov exponents.
A positive Lyapunov exponent indicates that trajectories
diverge exponentially over time, which is a signature of
chaotic behavior. Conversely, a negative exponent suggests
that trajectories converge, indicating stable behavior. The 4D
Chen system in (1) is shown to be hyper-chaotic in Fig. 5,
displaying positive Lyapunov exponents.

B. CHUA SYSTEM
Another system that exhibits chaotic behavior is the Chua
system [34]. As in the case with the Chen system, the chaotic
behavior along with the large number of control variables
enlarges the potential benefit of utilizing the Chua system as
a component of image cryptosystems, as in this work. The

Chua, as a 3D system, is equated as follows:
Dαx x = p(y−x − f (a, b, x)),

Dαyy = x−y+ z,

Dαzz = −qy,

(2)

given that,

f (a, b, x) = bx +
1
2
(a− b)(|x + 1| − |x − 1|) | a < b < 0.

(3)

As presented in (2), there are a total of 10 control variables,
which can be divided into 3 groups. The first group contains
the initial values for x, y, and z (or x0, y0, and z0). The second
group consists of scale factors: p and q for the main axis
equations (2), and a and b for (3). The last group contains
the fractional-order differential values αx , αy, and αz. All
3 groups combined contribute a total of 40 variables to the
overall cryptosystem (as they are utilized 4 times). As an
illustration, Fig. 6 displays an example plot for the fractional-
order 3D Chua system. As earlier, hue colors are utilized
in Fig. 6, such that warmer colors present initial values and
cooler colors present terminal ones. To test for and showcase
the chaotic behavior of the 3DChua system in (2), bifurcation
diagrams are plotted and shown in Figs. 7, 8, and 9, while a
Lyapunov characteristic exponents’ plot is shown in Fig. 10.

C. SYSTEMS’ SOLUTION PRIME ROTATION EXPANSION
As discussed earlier, the utilization of fractional-order
differential equations has had a great effect on the field
of image encryption. In this work, to add an extra layer
of confusion to the systems’ solution, a novel approach is
proposed. In this approach, instead of solving the system for
the full length needed (the image size, for example), only
a subset of that is generated. For the remaining sequence
length in demand, the generated set is recursively duplicated
post-rotation by a changing prime factor. Given a required
sequence length l, a prime seed p, and a PRNG sequence s of
length less than l, Algorithm 1 is used to generate a PRNG
sequence of the required length.

Algorithm 1 Prime Rotation Expansion for a Sequence s,
Using Prime Seed p, to Reach Length l
1: s′← s≪ p
2: Appendto(s, s′)
3: p← NextPrime(p)
4: if Length(s) < l then
5: GoTo 1
6: else
7: return the first l elements of s
8: end if

D. KEY APPLICATION USING ROTATION
Aside from the common mechanism of key application using
the logical XOR operator, in this work, a different approach
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FIGURE 1. The fractional-order 4D Chen system is numerically solved and plotted here in various 3D spaces for {x0, y0, z0, u0} = 0.3,
a = 35, b = 3, c = 12, γ = 7, d = 0.5, and {αx , αy , αz , αu} = 0.97 (a) X-Y-Z space; (b) X-Y-U space; (c) X-Z-U space; (d) Y-Z-U space.

is applied. As this approach is based on bit-wise rotation,
transforming the image into a higher numerical base than
bit-level, performed by forming subsets of the bit set of an

image, becomes a necessity. In this perspective, the direction
of the rotation (left or right) can be changed independently
from one subset of bits to the other, utilizing a bit stream as a
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FIGURE 2. Bifurcation diagrams of the fractional-order 4D Chen hyper-chaotic system in (1) with changing b values over the different axes (a) x ; (b) y ;
(c) z ; (d) u.

direction selection factor (0 for left and 1 for right).Moreover,
for a certain base of rotation, rot , a PRNG sequence of values
rotKey ∈ [1, rot − 1] is demanded as well. Given a flattened
system’s solution, such a PRNG sequence can be acquired by:

rotKey
α′2
α′1
(i) =

(
rotKeyα2α1 (i)− α1

α2 − α1
× (α′2 − α′1)

)
+ α′1, (4)

such that α1 and α2 are the old minimum and maximum
values (retrieved from the system’s solution), and α′1 and
α′2 are the new minimum and maximum values (1 and
rot − 1 in this case). Accordingly, given an image I ,
a rotation key rotKey, and a bit-stream d , Algorithm 2
demonstrates the encryption process that is used to generate
encrypted image I ′. Respectively, Algorithm 3 showcases the
decryption process.

IV. PROPOSED SCHEME
A. THE ENCRYPTION PROCESS
In the proposed approach, the encryption process is dis-
tributed among 2 stages, with 3 subroutines for each stage,
resulting in a total of 6 encryption steps. Within each step, the
performed process subsumes the involvement of a seed with

Algorithm 2 Encryption for Image I Using Rotation Given
a Base of Rotation rot , List of Rotation Keys rotKey, and Set
of Directions d , Generating I ′

1: Irot ← TransformBase(I , 8, rot)
2: for each Iroti in Irot and di in d do
3: if di = 0 then
4: Irot ′i ← Iroti ≪ rotKeyi
5: else
6: Irot ′i ← Iroti ≫ rotKeyi
7: end if
8: end for
9: I ′← TransformBase(Irot ′, rot, 8)

the output of the step prior. Accordingly, the following steps
showcase the sequence followed to produce the encrypted
image:

1) Stage 1: Chen.

a) Rotation:

i) First, the input color image, I , of dimensions
M × N , is converted into a 1D bit-stream to
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FIGURE 3. Bifurcation diagrams of the fractional-order 4D Chen hyper-chaotic system in (1) with changing c values over the different axes (a) x ;
(b) y ; (c) z ; (d) u.

Algorithm 3 Decryption for Image I ′ Using Rotation Given
a Base of Rotation rot , a List of Rotation Keys rotKey, and
Set of Directions d , Generating I
1: Irot ′← TransformBase(I ′, 8, rot)
2: for each Irot ′i in Irot

′ and di in d do
3: if di = 0 then
4: Iroti← Irot ′i ≪ rotKeyi
5: else
6: Iroti← Irot ′i ≫ rotKeyi
7: end if
8: end for
9: I ← TransformBase(Irot, rot, 8)

produce I ′1, alongside calculating the length of
this bit-stream:

BitStreamLength = M × N × 24 (5)

ii) Given the rotation base rot1, I ′1 is divided into
subsets of size rot1, generating Irot1.

iii) Given a seed for the Chen rotation, a sequence
of numbers, seqChenRot , is generated, with a
length less than BitStreamLength/rot1.

iv) Given a prime rotation seed, Algorithm 1 is
used, generating seqChenRot .

v) Each Element in seqChenRot is scaled to the
range of rot1 using (4) such that α1 and
α2 are the old minimum and maximum values
retrieved from seqChenRot , and α′1 and α′2 are
1 and rot1− 1, generating Chenrot1.

vi) Given a seed for the Chen direction selection,
a bit-stream dirChenRot is generated.

vii) Using Algorithm 2, I ′1 is encrypted using
Chenrot1 and dirChenRot .

viii) The resulting set is then flattened into a 1D bit
stream I ′1.1

b) S-box:

i) The set I ′1.1 is converted to base 8 by grouping
each consecutive 8 bits and transforming them
to decimals.

ii) Given a seed for the S-box, a solution of the
Chen system of length 256 is computed, then
scaled using (4) with α′1 = 0 and α′1 =

256, resulting in a list S1 ∈ [0, 255], and
|S1| = 256.
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FIGURE 4. Bifurcation diagrams of the fractional-order 4D Chen hyper-chaotic system in (1) with changing d values over the different axes (a) x ;
(b) y ; (c) z ; (d) u.

FIGURE 5. Lyapunov characteristic exponent plot of the
fractional-order 4D Chen hyper-chaotic system in (1).

iii) List S1 is provided as input to Algorithm
4, producing the S-box; following that, the
S-box gets evaluated.

iv) For the same S-box seed, the next 256 values
in the Chen system’s solution are calculated
and used in repeating the previous steps until
a target set of evaluation values is achieved.

v) After n attempts, if the target set of evaluation
values is not achieved, the S-box with the best
evaluation values is used.

vi) After deciding on an S-box (as shown in
Table 1), it is applied to I ′1.1 producing I

′

1.2.
c) Bit XOR:

i) The set I ′1.2 is converted into a 1D bit-stream.
ii) Given a seed for the Chen system’s XOR

step, the system’s solution is calculated,
generating a sequence seqChenXor , which is
further expanded using Algorithm 1 and a
prime seed to be equal in length to the 1D
bit-stream of I ′1.2.

iii) Themedianµ of seqChenXor is calculated, then
used to convert seqChenXor into a bit-stream
using:

seqChenBits[i] =

{
1, if seqChenXor [i] ≥ µ

0, otherwise

(6)

iv) The XOR operator is used on seqChenBits and
I ′1.2 producing I

′

1.3.
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FIGURE 6. The fractional-order 3D system is numerically solved and
plotted here for {x0, y0, z0, u0} = 0.3, a = −1.3, b = −0.7, p = 10 and
q = 14.87.

2) Stage 2: Chua.
a) Rotation:

i) First, I ′1.3 is converted into a 1D bit-stream
generating I ′2.

ii) Given the rotation base rot2, I ′2 is divided into
subsets of size rot2, generating Irot2.

iii) Given a seed for the Chua rotation, a sequence
of numbers seqChuaRot is generated, with a
length less than BitStreamLength/rot2.

iv) Given a prime rotation seed, Algorithm 1 is
used to generate seqChuaRot .

v) Each element in seqChuaRot is scaled to the
range of rot2 using (4) such that α1 and
α2 are the old minimum and maximum values
retrieved from seqChuaRot , and α′1 and α′2 are
1 and rot2− 1, generating Chuarot2.

vi) Given a seed for the Chua direction selection,
a bit-stream dirChuaRot is generated.

vii) Using Algorithm 2, I ′2 is encrypted using
Chuarot2 and dirChuaRot .

viii) The resulting set is then flattened into a 1D
bit-stream I ′2.1

b) S-box:
i) The set I ′2.1 is converted to base 8 by grouping

each consecutive 8 bits and transforming them
to decimals.

FIGURE 7. Bifurcation diagrams of the fractional-order 3D Chua chaotic
system in (2) with changing a values over the different axes (a) x ;
(b) y ; (c) z .

ii) Given a seed for the S-box, a solution of the
Chen system of length 256 is computed, then
scaled using (4) with α′1 = 0 and α′1 =

256, resulting in a list S2 ∈ [0, 255], and
|S2| = 256.

iii) List S2 is provided as input to Algorithm
4, producing the S-box; following that, the
S-box gets evaluated.
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M. Gabr et al.: R3—Rescale, Rotate, and Randomize

FIGURE 8. Bifurcation diagrams of the fractional-order 3D Chua chaotic
system in (2) with changing p values over the different axes (a) x ;
(b) y ; (c) z .

iv) For the same S-box seed, the next 256 values
in the Chen system’s solution are calculated
and used in repeating the previous steps until
a target set of evaluation values is achieved.

v) After n attempts, if the target set of evaluation
values is not achieved, the S-box with the best
evaluation values is used.

vi) After deciding on an S-box (as shown in
Table 2), it is applied to I ′2.1 producing I

′

2.2.

FIGURE 9. Bifurcation diagrams of the fractional-order 3D Chua chaotic
system in (2) with changing q values over the different axes (a) x ;
(b) y ; (c) z .

c) Bit XOR:
i) The set I ′2.2 is converted into a 1D bit-stream.
ii) Given a seed for the Chua system XOR

step, the system’s solution is calculated,
generating a sequence seqChuaXor , which is
further expanded using Algorithm 1 and a
prime seed to be equal in length to the 1D
bit-stream of I ′2.2.

VOLUME 11, 2023 119293



M. Gabr et al.: R3—Rescale, Rotate, and Randomize

FIGURE 10. Lyapunov characteristic exponents plot of the
fractional-order 3D Chua chaotic system in (2).

iii) Themedianµ of seqChuaXor is calculated, then
used to convert seqChuaXor into a bit-stream
(6).

iv) The XOR operator is used on seqChuaBits and
I ′2.2 producing I ′2.3, which is later converted
back into an image, forming I ′.

Fig. 11 demonstrates a flow chart for the encryption
procedure.

B. THE DECRYPTION PROCESS
Starting with I ′ and the set of keys and S-boxes (generated
in the same way as discussed in Subsection IV-A), the
decryption procedure is as follows:

1) Stage 2: Chua.
a) Bit XOR:

i) The image I ′ is converted into a 1D bit-stream
I ′2.3.

ii) The XOR operator is used on seqChuaBits and
I ′2.3 producing I

′

2.2.
b) S-box:

i) The set I ′2.2 is converted to base 8 by grouping
each consecutive 8 bits and transforming them
to decimal.

ii) The inverse of Chua S-box is applied on I ′2.2
producing I ′2.1.

c) Rotation:
i) Given rotation base rot2, I ′2.2 is divided into

subsets of size rot2, generating Irot2.
ii) For each set in Irot2, given the rotation direc-

tion selection set dirChuaRot , and Chuarot2,
Algorithm 3 is used.

iii) The resulting set is then flattened into a 1D
bit-stream I ′1.3

2) Stage 1: Chen.
a) Bit XOR:

i) The set I ′1.3 is converted into a 1D bit-stream.
ii) The XOR operator is used on seqChenBits and

I ′1.3 producing I
′

1.2.

b) S-box:

i) The set I ′1.2 is converted to base 8 by grouping
each consecutive 8 bits and transforming them
to decimal.

ii) The inverse of Chen S-box is applied on I ′1.2
producing I ′1.1.

c) Rotation:

i) Given rotation base rot1, I ′1.1 is divided into
subsets of size rot1, generating Irot1.

ii) For each set in Irot1 given the rotation direc-
tion selection set dirChenRot , and Chenrot1,
Algorithm 3 is used.

iii) The resulting set is then converted back into
an image, re-producing the input image I .

Fig. 12 demonstrates a flow chart for the decryption
procedure.

Algorithm 4 Generate an S-Box Given a Scaled System’s
Solution Sol, the Number of S-Box Trials n, and Target
Performance Metrics MEvls = {NL, SAC,BIC,LAP,DAP}
(an Adaptation From That Proposed in [18])
1: Seq← Partition(Sol, 256)
2: SB←[]
3: M ← MEvls
4: for each Seqi ∈ Seq (total of n) do
5: Sorted ← [0− 255]
6: SBi←[]
7: for each sj ∈ Seqi do
8: Locj← Mod(sj,Length(Sorted))
9: Append(Sorted[Locj], SBi)

10: Delete(Sorted[Locj], Sorted)
11: end for
12: Mi← {NLi, SACi,BICi,LAPi,DAPi}
13: if |Mi −MEvls| < M then
14: M ← |Mi −MEvls|

15: SB← SBi
16: end if
17: end for
18: return SB

V. PERFORMANCE ANALYSIS
To ensure the security and efficiency of the proposed encryp-
tion scheme, a series of statistical and mathematical tests are
applied to images passed through the proposed R3 encryption
algorithm. These tests output metrics that are commonly
utilized and cited in image encryption research. Each test
is discussed and described before the results relevant to
the proposed R3 encryption algorithm are displayed and
commented on. Those results are also compared to the results
from similar research in order to gain an understanding of
just how effective the algorithm is when compared to its
counterparts.
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FIGURE 11. Flow chart of the encryption algorithm of the proposed image cryptosystem.

TABLE 1. Proposed Chen-based S-box.

A. EXPERIMENTAL ENVIRONMENT
All the images tested in this section are from the University of
Southern California’s Signal and Image Processing Institute
(USC-SIPI)’s miscellaneous image database. These images
are commonly cited in research and make comparisons
straightforward. All the taken images are compared at a
size of 256 × 256, unless mentioned otherwise. To maintain
consistency in comparing across the different metrics, the
following 5 studies are used as sources of comparison
for the proposed scheme in this section: [18], [22], [25],
[31], and [23]. However, it should be noted that not all
researchers report the same metrics. For this reason, some of
the evaluation tables may have empty cells without values,
and in the case of subsections like V-B15, where little

to no comparison is available, other research is used for
comparison.

The machine employed for testing is characterized by the
following specifications: An AMD® Ryzen™ 5600HMobile
CPU with a maximum frequency of 3.3 GHz and 16 GB of
RAM. The software of choice is Wolfram Mathematica®

v.13.1. This allowed for the parallelization of code wherever
possible.

B. RESULTS AND DISCUSSION
1) VISUAL AND HISTOGRAM ANALYSES
The first measure taken to ensure the security of an encryption
system is a basic visual analysis of its performance.
Figures 13 – 15 all show the plain, encrypted and decrypted
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TABLE 2. Proposed Chua-based S-box.

FIGURE 12. Flow chart of the decryption algorithm of the proposed image cryptosystem.

versions of the Lena, F16, and House images, respectively.
A basic visual comparison of each image with its encryption
reveals no visual symmetry or correlation. No features from
the original images, be they colors, edges, or structures,
appear in the encrypted images, at least not in a way that
is visible to the human eye. This indicates that, at the very
least, the contents of the original image are scrambled and
altered enough by the encryption scheme that an accidental
interceptor of the image data would be unable to access
it without employing additional methods of decryption.
On the contrary, a visual comparison between the encrypted
and decrypted images reveals no differences, indicating the

ability of the proposed algorithm to carry out lossless image
decryption.

Figures 13 – 15 also contain the color histograms of the
presented images, their encryptions and decryptions. While
the original images’ color histograms display the unique color
‘‘fingerprint’’ of the original image, the encrypted images
fail to communicate any such information. An image’s color
distribution is another piece of information about that image.
The proposed encryption scheme completely normalizes any
unique peaks and troughs in the color histograms of the input
images, forming histograms that are completely uniform
and homogenized. This is useful because certain statistical
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FIGURE 13. Plain, encrypted and decrypted versions of the Lena image and their respective histogram plots (a) Plain Lena image; (b) Encrypted Lena
image; (c) Decrypted Lena image; (d) Histogram of plain Lena image; (e) Histogram of encrypted Lena image; (f) Histogram of decrypted Lena image.

FIGURE 14. Plain, encrypted and decrypted versions of the F16 image and their respective histogram plots (a) Plain F16 image; (b) Encrypted F16
image; (c) Decrypted F16 image; (d) Histogram of plain F16 image; (e) Histogram of encrypted F16 image; (f) Histogram of decrypted F16 image.

cryptanalysis techniques may take advantage of the unique
features of a color distribution, if not homogenized by the

encryption, to glean information about the source image. All
such properties have been eradicated by the proposed scheme.
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FIGURE 15. Plain, encrypted and decrypted versions of the House image and their respective histogram plots (a) Plain House image; (b) Encrypted
House image; (c) Decrypted House image; (d) Histogram of plain House image; (e) Histogram of encrypted House image; (f) Histogram of decrypted
House image.

On the contrary, a comparison of the histogram plots of the
plain and decrypted images reveals no differences, indicating
excellent lossless decryption.

2) CHI SQUARE TEST
The Chi-Square (χ2) test is a statistical test that is used
to determine if the observed frequencies of a categorical
variable match the expected frequencies. In the context of
analyzing the pixel distribution in an encrypted image, the
χ2 value can be computed using the following formula:

χ2
=

∑ (Oi − Ei)2

Ei
, (7)

where Oi and Ei represent the observed and expected
frequencies of the ith pixel value, respectively.
For an ideal encrypted image with a uniform distribution,

each pixel value from 0 to 255 (for an 8-bit grayscale image)
should occur with equal probability. Therefore, the expected
frequency Ei for each pixel value is N/256, where N is the
total number of pixels in the image. The χ2 value is then
computed by summing up the squared differences between
the observed and expected frequencies, each divided by the
expected frequency, over all pixel values.

A χ2 value close to 256 for an 8-bit grayscale image
suggests that the pixel values in the encrypted image are
uniformly and randomly distributed, indicating a high degree
of security offered by the encryption algorithm. Table 3

TABLE 3. χ2 values of various encrypted images.

displays the computed χ2 values for the RGB color channels
of a number of encrypted images. It is clear from the table
that the computed values are close enough to the ideal value
of 256.

3) MEAN SQUARED ERROR
A simple visual analysis of the differences between an
image and its encryption is not quite enough to determine
the efficacy of an encryption scheme. To ensure that the
differences that exist are great enough to show strong
encryption, additional mathematical metrics are computed.
One suchmetric, often utilized in image encryption literature,
is themean squared error (MSE), which is typically expressed
as follows:

MSE =

∑M−1
i=0

∑N−1
j=0 (P(i,j) − E(i,j))2

M × N
. (8)
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In the equation, P(i,j) and E(i,j) represent pixels located
in the plain and encrypted images, respectively, at the
locations denoted by (i, j). The images are both of the same
dimensions M × N . The MSE calculates the mean squared
difference between respective pixels in both images, giving
an idea of just how different the encrypted image is from
its source. Ideally, this value would be as high as possible,
showing a minimal relationship between the source image
and its encryption. Table 4 shows the results computed
for encryptions produced by the proposed scheme as well
as those in comparable literature. Although the compared
literature does not representmuch in terms ofMSE, the values
presented by [25] are definitely comparable to the equivalent
encryption presented by the proposed scheme.

4) PEAK SIGNAL-TO-NOISE RATIO
Another metric used to measure image differences is the peak
signal-to-noise ratio (PSNR). It measures the ratio between
the MSE and the maximum intensity of a pixel (Imax) in that
image. The PSNR is generally expressed as:

PSNR = 10 log
( I2max
MSE

)
. (9)

Typically, Imax is taken as 255, which is the maximum
value a grayscale pixel can take in the encrypted image.
Because of the use of the MSE in inverse form in the
equation, lower PSNR values are considered ideal for image
encryption. Table 5 shows the PSNR values calculated for
encryptions produced by the proposed algorithm, as well
as some of those produced by similar schemes in modern
research. The table clearly shows that the proposed scheme,
although somewhat inferior, generally performs comparably,
in terms of PSNR, to the compared literature’s encryptions.
A complete comparison of PSNR is hard to make given the
limited number of images tested in the adjacent literature.

5) INFORMATION ENTROPY
Evaluating the difference between the encrypted image and
its source input is useful, but metrics that analyze the
encrypted image directly can also assess the effectiveness of
the encryption scheme. One such measurement is an analysis
of the Shannon Information Entropy of the encrypted image’s
three separate color channels. Typically a measurement of the
amount of randomness in a dataset, the Information Entropy
of a grayscale image is typically calculated as follows:

H (m) =
M∑
i=1

p(mi) log2
1

p(mi)
, (10)

where p(mi) represents the probability of occurrence of each
symbol m in the total number of M symbols in an image.
In essence, the entropy of an image gives an idea of just
how random its contents are by giving an idea of how many
bits are needed on average to encode the data in each pixel.
A completely uniform image would require no bits, while a
completely, truly random image would require exactly 8 bits,

the maximum value [35]. This is generally impossible, but
strong encryption schemes will approach this value, as can
be seen in Table 6. The proposed encryption scheme performs
very well, generally exceeding the entropy values shown by
other encryption schemes in the literature, which indicates
that the images produced by the proposed encryption scheme
show high properties of randomness.

6) CORRELATION COEFFICIENT ANALYSIS
Another metric used to analyze the contents of an encrypted
image alone is the correlation coefficient r . By analyzing the
correlations between adjacent pixels in an image, it becomes
possible to determine whether any natural structures–like
edges, boundaries, and color gradients–from the original
image are preserved in the image. In this research, corre-
lations between adjacent pixels are calculated for the three
directions: horizontal (H), vertical (V), and diagonal (D).
The equations (11)–(14) show the process of calculating the
coefficient r . First, (14) calculates the mean distribution,
E(x), of the pixels in each image. Equation (13) then
calculates the dispersion, D(x), in each image, which is
followed by (12) calculating the linear direction similarity
in the chosen direction for each of the images’ distributions,
cov(x, y). These values are then used by (11) to calculate the
correlation coefficient, rxy. Since the correlation coefficient
represents the strength of the relationships between adjacent
pixels, the ideal value in an encrypted image is 0 for all
directions, indicating no correlation whatsoever. Values close
to ±1 are expected from source images, which indicate the
maximum possible correlation between adjacent pixels.

rxy =
cov(x, y)
√
D(x)
√
D(y)

, (11)

where

cov(x, y) =
1
N

N∑
i=1

(xi − E(x))(yi − E(y)), (12)

D(x) =
1
N

N∑
i=1

(xi − E(x))2, (13)

and

E(x) =
1
N

N∑
i=1

(xi). (14)

Here, the variables x and y represent 2 images, and N is
the length of the bit-stream representing their pixels. That
bit-stream’s length is calculated by multiplying the number
of pixels in the image by the number of bytes per pixel. For
our tested RGB images, that would output a stream of length
256× 256× 3× 8 = 1572864.
Tables 7 and 8 show the correlation coefficient values for

a number of plain and encrypted images. The tables clearly
show that while the plain images have relatively high values
of r (as shown in 7), with most values approaching the
maximum values of ±1, the respective encrypted values of
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TABLE 4. MSE values comparison of different images.

TABLE 5. PSNR values comparison of different images.

TABLE 6. Comparison of the entropy values of the combined Lena image
of the proposed cryptosystem and various algorithms from the literature.

TABLE 7. Correlation coefficients of adjacent pixels in plain images.
Shown here in 3 directions: horizontal, diagonal and vertical.

TABLE 8. Correlation coefficients of adjacent pixels in encrypted images.
Shown here in 3 directions: horizontal, diagonal and vertical.

r are all close to the ideal value of 0. This indicates little to
no correlation between adjacent pixels in all directions in the
encrypted images. Figure 16 shows those values visually for
the plain Lena image and its encrypted counterparts. Figures
16a, 16b, and 16c show strong central streaks, indicating
high levels of correlation among adjacent pixels in all three
directions of the plain image, while 16d, 16e, and 16f all
show a uniform distribution of points. Such a scrambled
distribution of values indicates a lack of correlation. Similar
plots can be seen for the red, green, and blue channels of
the plain and encrypted Lena images, shown respectively in
Figs. 17, 18, and 19.

TABLE 9. Correlation coefficient comparison between plain and
encrypted Lena images.

Table 9 shows the calculated correlation coefficient
values when compared to some of the values produced by
algorithms in similar research. The table shows comparable
performance in terms of correlation coefficients for the
proposed algorithm.

7) FOURIER TRANSFORMATION ANALYSIS
Another technique useful for measuring the destruction of
artifacts from the input image in the encryption is the analysis
of the Fourier transform of the image contents. By comparing
the Discrete Fourier Transform (DFT) of a plain image and
its encryption, the presence of common frequencies can
be determined and compared between the image and its
encryption. The DFT of an image f (i, j) with size N × N in
the frequency domain is calculated as follows:

F(k, l) =
N−1∑
i=0

N−1∑
j=0

f (i, j)e−i2π(
ki
N +

li
N ), (15)

where f (a, b) is the image representation in the spatial
domain, such that the exponential term is the basis function
that matches every point F(k, l) in the Fourier space. From
this calculation, it is seen that F(0, 0) is the component of the
image that translates into average brightness, and F(N − 1,
N − 1) translates into the highest frequency.
Figure 20 shows the effect of applying the DFT to the

plain and encrypted versions of the Mandrill image. It is clear
from Fig. 20a that the plain image contains large bands of
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FIGURE 16. Correlation coefficient diagrams of the plain and encrypted Lena images (a) Horizontal, plain; (b) Vertical, plain; (c) Diagonal, plain;
(d) Horizontal, encrypted; (e) Vertical, encrypted; (f) Diagonal, encrypted.

frequencies with the same brightness, a property typical of
real images. This manifests as a large cross-like object in the
center of the DFT. Applying the DFT to the encryption of
the Mandrill image, however, reveals a completely uniform
field where all such frequencies are distributed evenly. This
indicates that, where the original image had special features
like edges, vertices, and fields of uniform coloring, the
encryption of the image lacks those features, which is a
desirable outcome for any strong encryption system.

8) HISTOGRAM DEPENDENCY TESTS
Although Section V-B1 briefly displayed and examined the
color histograms of the plain images and their encrypted
counterparts, a more thorough analysis of those graphs
is warranted to ensure a complete lack of dependency
between them. To ensure that this is the case, a number
of linear dependency tests are carried out on those color
histograms, namely Blomqvist β, Goodman-Kruskal γ ,
Kendall τ , Spearman ρ, and Pearson correlation r . These
tests all measure the linear dependency between 2 histograms,
producing a value that ranges from 1, indicating a strong
positive correlation, to −1, which indicates a strong negative

correlation. The ideal value is 0, which indicates no relation.
The 5 tests are defined as follows:
• The Blomqvist metric assesses the correlation between
2 histogram distributions (X and Y ) as a medial
correlation coefficient (for medians x and y). Blomqvist
correlation is equated as follows:

β = {(X − x)(Y − y) > 0} − {(X − x)(Y − y) < 0},

(16)

where X and Y are the two distributions, with their
medians x and y, respectively.

• The Goodman-Kruskal measure works cumulatively,
identifying whether subsequent elements in both his-
tograms either promote or regress the linear correlation
between the 2 histograms. This is done by comparing
pairs of values from the 2 histograms. The Goodman-
Kruskal correlation is defined as:

γ =
nc − nd
nc + nd

, (17)

where nc is the number of pairs of cases ranked in the
same order on both variables, while nd is the number of
pairs of cases ranked in reversed order on both variables.
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FIGURE 17. Correlation coefficient diagrams of the red channels of the plain and encrypted Lena images (a) Horizontal, plain; (b) Vertical, plain;
(c) Diagonal, plain; (d) Horizontal, encrypted; (e) Vertical, encrypted; (f) Diagonal, encrypted.

• Kendall’s τ evaluates correlation in relation to sample
size by using a similar concept reliant on concordant and
discordant pairs. The correlation is defined as:

τ =
nc − nd
n(n−1)

2

. (18)

• The Spearman rank correlation test compares the
position of the element in the sorted list of elements
forming the histogram to themean rank value. Spearman
rank correlation is equated as:

ρ =

∑
(Rix − Rx)(Riy − Ry)√∑

(Rix − Rx)2
∑

(Riy − Ry)2
, (19)

where x and y are the two distributions, Ril is the rank of
element i in list l, and Rl is the mean of the ranks of l.

• The Pearson correlation, which is generally the most
ubiquitous and straightforward correlation metric,
simply connects components of the distributions to
their mean averages. The Pearson correlation can be
calculated as:

r =

∑
(Xi − X )(Yi − Y )√∑

(Xi − X )2
∑

(Yi − Y )2
. (20)

where X and Y are the means of the distributions X and Y ,
respectively.

Table 10 contains the outcomes for applying all 5 of
the above tests to various plain and encrypted images’
histograms. All of the produced values are very close
to 0, indicating a very weak correlation between the color
histograms of the plain and encrypted images, as discussed
in Subsection V-B1.

9) DIFFERENTIAL ATTACK ANALYSIS
One type of malicious attack that a strong encryption system
needs to protect against is the differential attack. Differential
attacks rely on comparing encryptions made to slightly
modified images to retrieve information about the encryption
key using analytical techniques. A strong encryption system
would be able to resist attacks by having its encryption
system widely alter its encryption with even the smallest
of modifications to its input. Two metrics are useful in
measuring an encryption system’s resistance to differential
attacks: the number of pixel changing rate (NPCR) and
the unified average change intensity (UACI). The NPCR is
calculated as follows:

NPCR =

∑
i,jDi,j

M × N
× 100, (21)
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FIGURE 18. Correlation coefficient diagrams of the green channels of the plain and encrypted Lena images (a) Horizontal, plain; (b) Vertical, plain;
(c) Diagonal, plain; (d) Horizontal, encrypted; (e) Vertical, encrypted; (f) Diagonal, encrypted.

TABLE 10. Histogram dependency tests for various images.

where Di,j is given by

Di,j =

{
0 C1(i,j) = C2(i,j),

1 C1(i,j) ̸= C2(i,j).
(22)

The NPCR effectively calculates the proportion of an
encrypted image that is different from its input. The UACI

is mathematically expressed as:

UACI =
1

M × N

∑
i,j

C1(i,j) − C2(i,j)

255
, (23)

where C1(i,j) and C2(i,j) are 2 images of dimensions M × N .
The UACI calculates the difference in the average pixel
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FIGURE 19. Correlation coefficient diagrams of the blue channels of the plain and encrypted Lena images (a) Horizontal, plain; (b) Vertical, plain;
(c) Diagonal, plain; (d) Horizontal, encrypted; (e) Vertical, encrypted; (f) Diagonal, encrypted.

TABLE 11. NPCR values of the encrypted Lena image in comparison with
other research.

values between the plain image and its encrypted counterpart.
Both the NPCR and UACI of the encrypted Lena image are
presented in Tables 11 and 12, and compared to the NPCR
and UACI values in similar research. While the NPCR values
are found to be quite high, all above 99%, the UACI values are
somewhat low, never approaching the ideal value of 33.35%
as close as some of the compared research has.

10) MEAN ABSOLUTE ERROR
A third test that can be employed to check the effectiveness
of an encryption strength against differential attacks is the
mean absolute error (MAE). Just like the MSE, the MAE
determines the average difference between the respective

TABLE 12. UACI values of the encrypted Lena image in comparison with
other research.

pixels in an encrypted image when compared to its plaintext
counterpart. However, instead of relying on the square of
those differences, the MAE uses the absolute value to
aggregate the difference values. For a plain image P(i,j) and
its encryption E(i,j) for all its pixels that range from i to j, the
MAE can be calculated as follows:

MAE =
1

M × N

M−1∑
i=0

N−1∑
j=0

P(i,j) − E(i,j). (24)

As with the MSE, higher values of MAE indicate
greater differences between the input images and their
encryptions, making them preferable. ComputedMAE values
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FIGURE 20. DFT of the plain and encrypted Mandrill images (a) The plain
Mandrill image after DFT; (b) The encrypted Mandrill image after DFT.

are presented in Table 13, alongside values reported from
similar algorithms in modern research.

11) KEY SPACE ANALYSIS
The proposed image encryption system requires a total of
98 variables to operate. The Chen and Chua systems are both
instantiated 4 times each, with each instantiation of the Chen
system needing 13 inputs and each call of the Chua system
needing 10. Additionally, 2 input keys are needed as bases for

TABLE 13. MAE values comparison of various images.

TABLE 14. Key space values comparison.

the rotations, and 4 seed values are required for generating
the rotation prime base values. This adds up to a total of
98 variables, and with the maximum machine precision for
real numbers being 10−16, the effective key space of the
proposed algorithm is 1098×16 = 101568 ≈ 25208. This
makes the proposed encryption system resistant to brute-
force attacks, according to [36]. Table 14 shows that this
value is superior to most encryption schemes found in similar
literature.

12) ENCRYPTION TIME ANALYSIS
The efficiency of the proposed encryption algorithm is a
critical factor in its practical applicability. Encryption time,
in particular, plays a crucial role in real-time applications
where timely data transmission is essential. In this context,
the proposed R3 algorithm is specifically designed to
prioritize computational efficiency, and its implementation is
optimized to further enhance this attribute.

At the heart of the R3 algorithm lie three core phases:
rescaling, rotation, and randomization. These phases are built
upon relatively straightforward mathematical operations,
which inherently minimize the time complexity of the
algorithm. The simplicity of these computations allows for
swift execution, thus ensuring that the encryption process is
as efficient as possible. This design choice was intentional,
emphasizing computational efficiency to meet the demands
of real-time applications.

To further enhance the computational efficiency of
the proposed encryption algorithm, we implemented the
R3 algorithm using a variety of optimized programming
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TABLE 15. Encryption time comparison of the Lena image of dimensions
256 × 256.

techniques and tools. For instance, efficient data structures
and algorithms are employed to ensure that the underlying
computations are carried out as quickly and effectively as
possible.Moreover, the power of computational parallelism is
leveraged, splitting tasks into sub-tasks that can be computed
simultaneously. This strategy is particularly effective for
operations that can be performed concurrently, significantly
reducing the overall computation time.

The proposed R3 algorithm is programmed in
Mathematica® 13.1, and while most of the steps were
executed quite efficiently, the central rotation step bottle-
necked the performance of the algorithm somewhat,
accounting for over half of the encryption time. Regardless,
the actual encryption time and its comparison to similar
schemes are presented in Table 15. The table clearly shows
that, despite the programming issues, the algorithm performs
better than all the compared algorithms except one, with
a sub-1-second encryption time for a 256 × 256 image.
It should be noted that this comparison is not absolute:
the actual encryption time of an image will depend highly
on software and hardware implementation, making these
values difficult to compare overall. Furthermore, AES is also
employed to encrypt an image of the same dimensions on the
same machine to showcase that the proposed scheme is more
efficient, as shown in Table 15.

13) THE NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY ANALYSIS
The United States’ National Institute of Standards and
Technology (NIST) has a statistical analysis suite designed
specifically for assessing the effectiveness of pseudo-random
number generators. While not exactly designed for encryp-
tion schemes, applying the testing suite to the encryption
of a test image can yield some information about the
overall efficacy of the encryption scheme. Mostly, passing
all of the tests in the NIST SP 800 − 22 test suite can
confirm that the output of the encryption scheme is of high
randomness–high enough, in fact, to work as a pseudo-
random number generator in its own right. Table 16 shows
the result of a NIST analysis performed on the bit-stream of

TABLE 16. NIST analysis of the image-data bit-stream from the encrypted
Sailboat image of size 256 × 256.

the encrypted 256×256 Sailboat image. The table shows that
all of the tests passed, and are statistically significant, with
p-values greater than 0.01. Thus, it can be concluded that the
output of the encryption scheme is random enough to act as
a PRNG independently.

14) TestU01 FOR RANDOMNESS
The randomness of the output encrypted images produced by
the proposed R3 image encryption algorithm was evaluated
using the TestU01 suite, which includes the federal infor-
mation processing standards (FIPS) 140 − 2, Alphabit, and
Rabbit tests. The FIPS 140 − 2 test suite, consisting of the
Monobit, Poker, Runs, and Longest Run of Ones in a block
tests, was passed successfully by the R3 algorithm, indicating
a balanced distribution of zeros and ones, an equivalent
frequency of all possible 4-bit sequences, an acceptable
range of total runs, and a non-significant length of the
longest run of ones. Furthermore, the Alphabit and Rabbit
tests were also passed, demonstrating excellent randomness
of the generated bit sequences in both 32-bit integer and
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TABLE 17. Analysis of TestU01.

floating-point representations. The results are shown in
Table 17. These results affirm the effectiveness and security
of the R3 algorithm, showcasing its ability to produce
highly random and unpredictable encrypted images, a crucial
characteristic for resisting potential attacks.

15) S-BOX PERFORMANCE ANALYSIS
Substitution boxes are key components of any encryption
scheme, including the one proposed here. Several metrics
exist to measure the efficiency of an S-Box at operating as
a component of an encryption scheme, namely the following
5 tests:
• Nonlinearity (NL) [50] tests the S-Box to check how
many bits in a Boolean function’s truth table need to be
changed to approach the nearest affine function.

• Linear approximation probability (LAP) [51] deter-
mines the likelihood for an S-box to be biased.

• Differential Approximation Probability (DAP) [52]
measures the effect of some changes to the inputs on the
output.

• Bit Independence Criterion (BIC) [53] assesses the
relationship between the encryption and patterns in the
encrypted output.

• Strict Avalanche Criterion (SAC) [53] measures the rate
of change in the encryption relative to the rate of change
in the input on a bit-by-bit basis.

Both the Chen and Chua systems were used to generate
S-boxes. The results of the 5 S-box evaluation tests discussed
are found in Table 18. While one of the metrics, namely the
DAP, showed outputs equal to the ideal DAP value, the other
tests did not fare quite as well, falling somewhat short of the
ideal values. This can be attributed mainly to the dynamic
method of generating S-boxes applied in the research, where
pseudo-randomness is used as a source input for the S-box.
Typical S-boxes are purposely designed to ensure a wide
distribution of values, not necessarily a random one, making
some of the tests look for qualities not apparent in an S-box
generated using a random sequence. In any case, this method
of generating S-boxes serves to create dynamic S-boxes of
acceptable performance and increases the key space by an
additional 13 variables per Chen S-box and 10 variables per
Chua S-box, working to protect the system as a whole from
brute-force interference.

Table 19 shows the computed S-box evaluation metrics
for 2 of the sample S-boxes used in the proposed scheme
in comparison to S-boxes taken from a number of other
sources, including the AES encryption. While not the worst-
performing S-boxes, especially when compared to some other

TABLE 18. Evaluation metrics for the S-box generated using the 4D
hyper-chaotic Chen system of fractional-order (shown in Table 1) and the
Chua-based S-box (shown in Table 2).

TABLE 19. Comparison between the proposed S-boxes and those
provided in the literature.

S-boxes generated in the wake of chaotic encryption systems,
the generated S-boxes still fail to match the performance of
dedicated, non-dynamic S-boxes, like those used inAES [54],
for example.

16) FURTHER TESTS
This subsection discusses and showcases the ability of the
proposed image cryptosystem to fend off some further types
of attacks, including known text attacks, occlusion attacks,
and various noise attacks.

In relation to known text attacks, either a known plaintext
attack (KPA) or a known ciphertext attack (KCA), the pro-
posed image cryptosystem is provably semantically secure.
In aKPA, an attacker has access to both the plain image and its
encrypted version. The attacker’s goal is to analyze the pairs
of plain and encrypted images to derive the encryption key
or discover the encryption algorithm. In a KCA, the attacker
has access to the encrypted image but not its corresponding
plain image. The goal of the attacker is to derive the plain
image or the encryption key from the known encrypted image.
Since the proposed image cryptosystem has 2 stages of data
XORing and the application of S-boxes, an attacker is not able
to derive the encryption key in either attack. The utilization of
2 S-boxes provides the needed non-linearity, thus completely
eradicating the relationship between a plain image and its
corresponding encrypted output version.

In relation to chosen plaintext attacks (CPA), an attacker
can choose arbitrary plain images and obtain the correspond-
ing encrypted versions. The goal is to obtain the encryption
key or learn more about the encryption algorithm. Such an
attack assumes that the attacker has full knowledge of the
cryptosystem. Even in such a case, without knowledge of
the encryption keys, the vast key space that the proposed
cryptosystem possesses prohibits such an attack from ever
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FIGURE 21. Various occlusion attacks on encrypted images (a) 12.5%; (b) 25%; (c) 56.25% and the resulting decrypted ones (d) 12.5%;
(e) 25%; (f) 56.25%.

FIGURE 22. Various strengths of S&P attacks on encrypted images (a) 1%; (b) 5%; (c) 10% and the resulting decrypted ones (d) 1%; (e) 5%;
(f) 10%.

being successful. It was shown in Subsection V-B11 that a
key space of 25208 is achieved. On the other hand, in a chosen

ciphertext attack (CCA), an attacker can choose arbitrary
encrypted images and learn their corresponding decrypted
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FIGURE 23. Various standard deviations of Gaussian noise attacks on encrypted images (a) σ = 0.0008; (b) σ = 0.001; (c) σ = 0.002 and
the resulting decrypted ones (d) σ = 0.0008; (e) σ = 0.001; (f) σ = 0.002.

plain versions. However, this type of attack is particularly
relevant for public-key cryptographic systems, which is not
the case here as the proposed image cryptosystem depends
on the use of symmetric encryption keys.

An occlusion attack is a type of attack where a portion
of the encrypted image is deliberately altered or occluded
to decipher the encryption algorithm’s behavior or even
retrieve the original image. The attacker can either remove
or replace part of the encrypted image with arbitrary data and
observe the effect on the decrypted image. The key reason
for testing image encryption algorithms against occlusion
attacks lies in the inherent structure of image data. Unlike
text or other forms of data, images usually have strong
correlations between neighboring pixels. If an encryption
algorithm does not sufficiently randomize these correlations,
an attacker might be able to exploit them. For example,
an attacker could replace a region of an encrypted image
with another part of the same image. If the algorithm does
not sufficiently randomize the image, the decrypted image
might show recognizable parts of the original image in the
occluded region. This could potentially enable the attacker
to retrieve parts of the original image or understand the
behavior of the encryption algorithm, thereby compromising
its security. Therefore, it’s essential to test image encryp-
tion algorithms against occlusion attacks to ensure they
sufficiently randomize the image and are resistant to these
types of attacks. This enables the encryption algorithm to
provide robust security for image data, ensuring its integrity

and confidentiality even in the face of sophisticated attacks.
Figure 21 provides examples of occlusion attacks carried out
on different portions of encrypted images using the proposed
cryptosystem. It is clear that the corresponding decrypted
images are all still recognizable as those of the Mandrill
image, albeit increasingly deteriorated with increases in the
portion of their occluded encrypted versions.

In the context of cryptanalysis and rogue cyber operations,
an attacker might introduce various types of noise to acquired
encrypted images. The reasons for introducing such noise
could be manyfold. First, the attacker may want to disrupt
the viewing of the decrypted image, making it harder for the
legitimate recipient to extract useful information from the
image. Second, the attacker may introduce noise and observe
its effect on the decrypted image. Depending on how the
encryption algorithm handles noise, this could potentially
give the attacker insights into the workings of the algorithm
or the content of the original image. The literature on image
cryptosystems mainly shows interest in 2 such types of noise:
salt and pepper (S&P) noise and Gaussian noise.

Testing an image cryptosystem against noise attacks is
important for a number of reasons. First, it helps evaluate
the cryptosystem’s robustness against noise. In real-world
scenarios, images can be subject to various kinds of noise
during transmission or storage. Therefore, it is important for
an encryption algorithm to maintain the confidentiality and
integrity of the image data in the presence of such noise.
Second, by introducing noise and observing its effect on
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the decrypted image, an attacker might gain insights into
the encryption algorithm. Therefore, testing against this type
of attack can help ensure the algorithm does not reveal
any information about the original image or the encryption
process when subjected to noise. Lastly, in some cases, noise
in a small part of the encrypted image can lead to errors in a
large part of the decrypted image due to the cryptosystem’s
error propagation characteristics. Testing against S&P noise
can help evaluate and minimize this error propagation.
Figure 22 showcases the effect of introducing a S&P noise to
encrypted images of Mandrill with increasing strengths. It is
clear that despite the deteriorating quality of the decrypted
images as the S&P strength increases, the images are all
clearly identifiable as those of Mandrill. Similar observations
and conclusions can be drawn from Fig. 23 in relation to
Gaussian noise attacks with increasing severity.

VI. CONCLUSION AND FUTURE WORK
This article has presented a novel image cryptosystem
that harnesses the principles of chaotic and hyper-chaotic
systems. By employing unique image transformation tech-
niques, including rescaling, rotation, and randomization,
the R3 algorithm leverages the unpredictable behavior of
the Chua system and the hyper-chaotic nature of the
Chen system. The proposed algorithm has demonstrated
significant robustness against various types of attacks, such
as differential, statistical, and brute-force attacks. Moreover,
its output was shown to satisfy a wide array of randomness
tests, through passing both the NIST suite of tests as well
as TestU01. The vast key space of 25208 enhances its
resistance to brute-force attacks and amplifies the overall
security of the system. Importantly, the algorithm has shown
remarkable efficiency in terms of computational speed and
minimal resource consumption, making it ideal for real-
time applications. With the rising demand for superior
security in the digital information era, the proposed algorithm
serves as a vital tool for securing digital images in diverse
applications, including secure communication, data storage,
and multimedia transmission. This research contributes
significantly to the ongoing development and evolution of
high-security image encryption methodologies.

Despite the promising results, there is still room for further
exploration and enhancement of the proposed algorithm.
Future work may focus on several aspects. First, while the
proposed algorithm has shown robustness against several
types of attacks, further testing against other potential threats
could strengthen its overall security profile. This includes,
but is not limited to, testing against adaptive and intelligent
attacks that leverage machine learning techniques. Second,
the practical implementation of this algorithm in real-world
applications can be investigated. This includes integrating
the algorithm into existing digital communication systems
or storage solutions and conducting empirical studies to
assess its performance in these environments. The proposed
algorithm opens a new avenue in the field of image encryp-
tion. The underlying principles and techniques employed in

the proposed algorithm could potentially be extended to other
multimedia types, such as video and audio, thus broadening
its applicability and impact.
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