
Received 20 August 2023, accepted 18 October 2023, date of publication 23 October 2023, date of current version 30 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3326718

Quantization-Based Adaptive Deep Image
Compression Using Semantic Information
ZHONGYUE LEI 1, (Student Member, IEEE), XUEMIN HONG 1, (Member, IEEE),
JIANGHONG SHI1, (Member, IEEE), MINXIAN SU2,
CHAOHENG LIN3, AND WEI XIA4
1School of Informatics, Xiamen University, Xiamen 361005, China
2Xiamen Satellite Positioning Application Company Ltd., Xiamen 361008, China
3Xiamen Beidou Key Laboratory of Applied Technology, Xiamen 361008, China
4Fujian Centerm Information Company Ltd., Fuzhou 350028, China

Corresponding author: Xuemin Hong (xuemin.hong@xmu.edu.cn)

This work was supported by the Science and Technology Key Project of Xiamen under Grant 3502Z20221027.

ABSTRACT Deep image coding (DIC) for hybrid application contexts has recently attracted significant
research interest because of its potential to support both human and machine visual tasks. Since the regions
of interest (ROI) are different for different application contexts, it is important to design an adaptive image
coding mechanism in practical DIC. In this paper, we propose the first quantization-based adaptive DIC
framework for hybrid contexts of image reconstruction and classification. This framework can be applied
to upgrade existing fixed-rate DIC models into adaptive DIC for hybrid contexts. It consists of two key
modules: a semantics-based ROI mask generation module and a module for generating ROI gain and
inverse gain matrices. These matrices are used to control the quantization accuracy of different latent vector
elements, thereby achieving encoding at different rates while prioritizing the reconstruction quality of the
ROI. Moreover, we propose a five-stage training method for the quantization-based adaptive DIC model to
optimize the rate-distortion-classification-perception (RDCP) tradeoff. Experiments over a wide rate range
show that our method achieves superior RDCP tradeoff performance. Compared to the benchmark scheme
BM-CHENG, the proposed algorithm improves the classification accuracy by an average of 15%. The
average relative improvements on various metrics, such as natural image quality evaluator (NIQE), learned
perceptual image patch similarity (LPIPS), and feature similarity index measure (FSIM), are about 22%,
47%, and 1%, respectively. The proposed algorithm is a promising candidate for fast adaptive coding with
low-complexity constraints.

INDEX TERMS Deep image compression, semantic importance, adaptive coding, hybrid contexts.

I. INTRODUCTION
Image compression aims to reduce the number of bits needed
to represent an image while retaining essential information
[1], [2]. Conventional image compression algorithms, such
as JPEG [3], JPEG 2000 [4], and BPG [5], include
modules such as transform coding, entropy coding, and
quantization. Typically, these modules are manually designed
and optimized by experts to enhance encoding efficiency.
In contrast, deep image coding (DIC) utilizes deep neural
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networks (DNN) to construct the image codec and optimize
its modules through end-to-end learning [6], [7]. DIC has
demonstrated superior performance over traditional methods.

A key advantage of DIC is its ability to effectively learn
the most important features in specific contexts, thereby
better preserving these features in lossy compression [8], [9].
The term ‘‘context’’ here refers to the external environment
of image coding. In this paper, different DIC contexts are
distinguished based on application types and objectives.
The most common context is image reconstruction, which
can serve both human visual perception and downstream
computer vision tasks [10], [11], [12]. However, image
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reconstruction is semantically indifferent and treats each
pixel as equally important [13]. On the contrary, high-
level computer vision tasks usually have focused features or
regions on the image, depending on their specific application
context [14], [15]. The DIC that is jointly optimized for
the context of reconstruction and high-level computer vision
is called hybrid context DIC [16], [17], [18]. The high-
level task context can be further categorized according to
specific tasks such as image classification [19], semantic
segmentation [20], and object detection [21], etc. Features
that are relevant to the task are called semantic features and
should be prioritized during lossy compression [22].

DIC can be optimized for single context of image
construction or task-relevant feature extraction. For image
reconstruction, the codec is optimized for the highest fidelity
of the reconstructed image at the receiver end [23]. Although
the reconstructed images can be used as task inputs, the
task performance is poor at high compression rates [24],
[25], [26]. This is because reconstruction-oriented DIC
cannot preserve task-relevant features with high priority.
On the contrary, in DIC optimized for high-level task context,
the receiver directly obtains task results from the latent
vector (i.e., features) without generating the reconstructed
image [15]. This can yield better task performance at lower
rates, but the latent vector cannot be used for human
perception or other tasks.

In hybrid contexts DIC, the model is optimized for
both image reconstruction and high-level tasks, resulting in
high-quality reconstructed images and superior task perfor-
mance [27]. In hybrid contexts DIC, capturing the semantics
of the specific task target and selectively preserving the
corresponding information during lossy coding is essential to
ensuring optimized performance. In this paper, we study DIC
for hybrid contexts of image reconstruction and classifica-
tion, where the semantics vary for the same image depending
on the specific classification task. Semantics is mainly related
to the region where the target is located. For example,
in traffic surveillance, DNNmodels should focus on different
regions in the image when detecting pedestrian and vehicle
violations. Therefore, DIC requires flexible mechanisms to
adapt to different regions of interest (ROI) in different
contexts. Moreover, in communication scenarios, bandwidth
resources are usually limited and vary, especially in wireless
communications [28]. Therefore, rate-adaptive image coding
is essential for DIC used for real-time communications. The
conventional approach of creating multiple DIC models for
rate-adaptive coding requires significant computational and
storage resources. To address this drawback, our goal is
to design a single DIC model that can flexibly adapt to
variable rates and hybrid contexts of image reconstruction
and classification.

As shown in Figure 1, we propose a novel quantization-
based adaptive ROI deep image coding scheme in this paper.
The proposed codec can achieve rate and context adaption
using a single DNNmodel, and the reconstructed images have

good visual quality and high accuracy in downstream image
classification tasks, supporting both human visual perception
and image classification. The proposed design includes three
features. First, the scheme considers the importance of
different regions of the image for classification semantics
and prioritizes the reconstruction quality of semantic salient
regions within the rate range. To this end, a pair of ROI
gain matrix (GM) and inverse-gain matrix (IGM) generation
modules are proposed. These modules are deployed at the
encoding and decoding ends to generate ROI GM and IGM
for scaling the latent vector and controlling the quantization
accuracy of the latent vector at different code rates.Moreover,
the quantization-based adaptive ROI DIC mechanism can
quantize elements of the latent vector corresponding to
semantic salient regions at a finer grain, resulting in better
reconstruction quality in these regions. Second, a semantics-
based ROI mask generation module is proposed to obtain
the ROI mask that can identify semantic salient regions. The
issue of DICmodel training is formulated as a rate-distortion-
classification-perception (RDCP) trade-off problem, which is
initially defined in work [29]. The weighted sum of overall
imagemean squared error (MSE) loss, ROIMSE loss, seman-
tic feature matching (SFM) loss, and generative adversarial
network (GAN) loss is adopted as the objective functions
to optimize the distortion, classification, and perception
objectives simultaneously. Third, a DIC model training
method with incremental optimization of each objective is
designed to obtain the quantization-based adaptive ROI DIC
model.

Our contributions can be summarized as follows: (1) The
proposed quantization-based adaptive ROI DIC for hybrid
contexts of image reconstruction and classification can
achieve superior RDCP trade-off performance. (2) The
proposed ROI mask generation module and ROI GM and
IGM generation modules can be directly embedded into
existing DIC models to achieve arbitrary bit-rate coding
and prioritize the reconstruction quality of semantic salient
regions. (3) The proposed quantization-based adaptation
mechanism reduces the complexity and processing latency of
adaptive coding by avoiding repeated calls to the encoder and
is suitable for realizing fast adaptive coding in hybrid contexts
with low complexity constraints.

II. RELATED WORK
Tables 1 and 2 provide an overview of existing studies on DIC
and position our paper in the literature. A brief review of the
related literature is given below.

A. FIXED-RATE DIC WITH HYBRID CONTEXT
The goal of hybrid context DIC is to obtain reconstructed
images that have both high visual quality and good perfor-
mance in high-level tasks. There are two main approaches to
improving the performance of hybrid context DIC: one is to
add loss terms related to specific high-level tasks during DIC
model training, and the other is to use ROI coding to improve
the fidelity of task-relevant pixels.
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TABLE 1. Fixed-rate hybrid context DIC.

In the first approach, DIC algorithms incorporate task-
relevant loss terms into the rate-distortion-optimized loss
function for DNN model training. This can directly improve
the accuracy of the reconstructed image in downstream tasks.
Typical works of such were proposed in [27] and [30]. In [30],
the proposed DIC algorithm used pre-trained object detection
and instance segmentation models to compute the object
detection and instance segmentation task losses, respectively.
This DIC codec outperforms the state-of-the-art Versatile
Video Coding (VVC) standard on the object detection
and instance segmentation tasks, achieving −37.87% and
−32.90% of BD-rate gain, respectively. In [27], the identity
preserving loss was taken as the task loss term, saving about
38% of bpp at the same detection rate compared to the HEVC
standard.

As the second approach, ROI coding is widely used to
improve the high-level task performance of the reconstruction
image obtained from traditional image/video codecs. In [31]
and [32], ROI video coding methods were proposed to
improve task accuracy based on the HEVC and VVC
standards, respectively. These works used machine learning
models to detect salient regions in the images and subse-
quently assign higher bit rates to the salient regions. The
bit rate can be significantly reduced while maintaining the
same detection accuracy as standard video coding algorithms.
In [33], a ROI codingmethod that adapts the image quality for
prioritized or non-prioritized parts for DIC was proposed to
improve the accuracy of road damage detection. This method
can reduce the bpp by 31% compared to the original method.

The above two approaches can be combined to further
enhance the reconstructed images’ visual quality and task
performance. In [34], the proposed DIC algorithm added
semantic-aware loss terms to DIC model training and
designed an attention module based on semantic prior
information to implement ROI coding in the compressed
feature domain. Compared to DIC algorithms for the context
of image reconstruction, the implemented algorithm has
comparable visual quality performance, but better classifi-
cation accuracy. In [26], the proposed DIC algorithm added
SSIM loss and distortion terms in the task feature domain
to improve the perceptual quality and computer vision task
performance of the reconstructed images. Moreover, this
algorithm designed a latent vector spatial mask generating
network, where the generated mask was multiplied with the
latent vector, and task-irrelevant elements were set to zero to
obtain a higher compression rate.

TABLE 2. Adaptive DIC.

The DIC algorithms introduced above can be categorized
as fixed-rate DIC and have obvious limitations. First, because
they need to train different DNN models for different bit
rates and specific tasks, the training and storage of different
DNN models may consume severe computation and storage
resources. Second, at low bit rates, the reconstructed images
may suffer from blurring due to excessive information loss,
which affects the overall image perception.

B. ADAPTIVE DIC WITH SINGLE CONTEXT
Unlike fixed-rate DICs introduced above, adaptive DIC
can encode an image into varying rates based on a single
DNN model. Adaptive DIC can be classified into three
types: encoder-based, quantization-based, and latent-based.
Encoder-based adaptive DIC manipulates control conditions
upon the encoder to generate different latent vectors at
different rates. For example, the DIC proposed in [35]
conditioned the encoder and decoder on λ, which balances
distortion and rate. The encoder scaled the output features
by λ at each layer to achieve discrete multi-rate coding. For
continuous multi-rate coding, the authors in [36] extended
[35] by adding a λ-interpolation mechanism. Quantization-
based adaptive DIC assigns different quantization intervals
to the latent vector elements by scaling them with different
coefficients. In [37], a high-rate DIC model was pre-trained,
and then several pairs of GM and IGM were trained to scale
each channel of the latent vector at different rates. A more
flexible method was proposed in [38], which trained the GM
and IGM generation modules at the codec sides. Latent-based
rate-adaptive DIC, on the other hand, generates a single latent
vector that can be encoded to produce a bitstream for various
bitrates. For example, the DIC proposed in [39] transformed
the original image into layered latent vectors with ordered
dependencies using a residual network, while [40] used
a spatial mask to modulate the channel and achieve the
desired rate.

C. ADAPTIVE DIC WITH HYBRID CONTEXTS
The above-mentioned studies about adaptive DIC are all
optimized for a single context/goal of image construction.
Efforts were made in the following literature to extend
the adaptive capability of DIC from single context to
multiple contexts. In [41], an encoder-based adaptive DIC
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for hybrid contexts of image reconstruction and classification
was proposed. It prioritized the reconstruction quality of
semantic salient regions in variable-rate coding. However,
during DIC model training, only the distortion objective was
optimized, resulting in an essentially reconstruction-oriented
ROI coding method with limited classification accuracy.
To further improve the classification accuracy, the authors
in [42] proposed a RDCP joint optimization framework to
train the neural network for hybrid contexts. Averaged over
the tested rate range, it outperforms [41] in classification
accuracy, NIQE, LPIPS, and FSIM by 11%, 12.4%, 32%,
and 1.3%, respectively. In [18], the RDCP joint optimization
framework was also used to train a latent-based adaptive DIC.
Compared with the benchmark algorithm [40], it achieves
relative performance gains ranging from 4% to 90% in
various metrics corresponding to distortion, perception, and
classification.

The adaptive DIC methods introduced above used either
encoder-based or latent-based architecture. These two types
of DIC require significant modifications to the original DNN
architectures and are difficult to design. Compared with
these two types, quantization-based adaptive DIC has two
advantages. First, it does not need to modify the backbone
DNN network and can be easily generalized to existing
DNN models. Second, during adaptive coding, the encoder
is executed only once to generate the latent vector. This
can save computational resources and reduce the processing
delay. Existing quantization-based methods [37], [38], [43]
are restricted to the single context of image reconstruction.
To our best knowledge, this paper makes the first effort in
proposing a quantization-based adaptive DIC for multiple
contexts.

New image coding standards are under development based
on the DIC approach, notably the JPEG-AI [44] and video for
machine (VCM) standard [45]. The JPEG-AI standardmainly
aims for high-fidelity reconstruction of images. In other
words, it mainly concerns the single application context of
image reconstruction. In contrast, the VCM standard aims
for a broader scope incorporating both human and machine
visual tasks. To put our work into perspective, the proposed
hybrid context DIC can be seen as a candidate scheme for the
VCM standard and a complementary extension to the JPEG-
AI standard.

III. PROPOSED QUANTIZATION-BASED ADAPTIVE
DIC FOR HYBRID CONTEXTS
Adaptive DIC for hybrid contexts of image reconstruction
and classification aims to produce reconstructed images with
high visual quality and classification accuracy at different
rates. High-quality reconstructed images have low distortion
and high perceptual quality. Therefore, the proposed adaptive
hybrid context DIC model in this paper should be optimized
for multiple objectives, including distortion, classification,
and perception. Moreover, the classification accuracy is
related to the reconstruction quality of the region where
the classification target is located, which is defined as the

semantic salient region. Thus, classification accuracy can
be enhanced by prioritizing the reconstruction quality of
the semantic salient region during adaptive coding. In this
paper, we extend the quantization-based rate-adaptive DIC
to multiple contexts in two ways. First, by using the RDCP
optimization framework for DIC model training. Second,
by using the quantization-based ROI adaptive DIC.

A. THE FRAMEWORK OF PROPOSED ADAPTIVE DIC
Figure 1 shows the framework of our proposed quantization-
based adaptive DIC for hybrid contexts. The framework
comprises threemainmodules: ROIGMand IGMgeneration,
a semantics-based ROI mask generation, and a GAN-based
DIC network. ROI GM and IGM generation modules are
deployed at the encoder and decoder sides, respectively.
They produce ROI GM and IGM for scaling the latent
vectors at various bit rates, depending on the quality factor
and ROI mask. The quality factor is proportional to the
bit rate. Unlike other quantization-based rate-adaptive DIC
methods, our method assigns larger values to the ROI
positions in each channel of the ROI GM and IGM. This
enables finer quantization of the latent vector elements
corresponding to the ROI, resulting in better reconstruction
quality for the ROI at various bit rates. The ROI mask
generation module produces a binary mask that indicates
the ROI, depending on the image encoding context. The
implementation of this module varies according to the
context. In this paper, we design a semantics-based ROI
mask generation module for the hybrid context of image
reconstruction and classification. The size of the ROI mask
area is dynamically adjusted according to the quality factor.
As the bit rate increases, our method prioritizes maintaining
classification accuracy while also improving overall image
reconstruction quality. A GAN generator acts as the decoder
for image reconstruction, ensuring that the distribution of the
reconstructed images is close to that of the original images
and achieves a higher perceptual quality.

The encoding and decoding processes of our framework
are as follows. Given an input image x ∈ RH×W×3, the
encoder generates a latent vector y ∈ R

H
K ×

W
K ×C by downsam-

pling the input image by a factor of K and extracting features.
The latent vector represents the compressed representation of
the input image. The ROI mask generation module generates
a binary ROI mask m ∈ {0, 1}H×W×1 corresponding to the
target bit rate based on the input image and the quality factor
q, q ∈ [0, 1]. The elements with a value of 1 in the ROI mask
indicate that the corresponding pixels belong to regions of
interest (ROI) that should have better reconstruction quality,
while the rest are non-ROI pixels. The ROI GM generation
module generates the corresponding GM g ∈ R

H
K ×

W
K ×C

based on m and q. The latent vector y is element-wise
multiplied with g to obtain ỹ, which is then quantized to ȳ
using a unified scalar quantizer. The entropy model estimates
the distribution of ȳ for entropy coding and decoding, using
the contextual information extracted from ỹ. The entropy
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encoder encodes ȳ into a bitstream,which is transmitted along
with m and q. The entropy decoder decodes the bitstream
into ȳ. The ROI IGM generation module at the decoder
side generates g′

∈ R
H
K ×

W
K ×C based on m and q. The

reconstructed latent vector ŷ is obtained by element-wise
multiplying ȳ with g′. The deep decoder upsamples ŷ by a
factor ofK to obtain the reconstructed image x̂. The encoding
and decoding processes can be expressed by equations (1) and
(2), respectively. 

y = fe(x)
m = fm(x, q)
g = fg(m, q)
ỹ = y ◦ g
ȳ = Round(ỹ),

(1)


g′

= fg′ (m, q)
ŷ = ȳ ◦ g′

x̂ = fd(ŷ),
(2)

where fe, fd, fm, fg and fg′ denote the encoder, decoder, ROI
mask generation module, ROI GM generation, and ROI IGM
generation module, respectively.

According to the selected quality factor, the above process
compresses the image at a certain bit rate. When the target
bit rate or compression scenario of the same image changes,
there is no need to regenerate the latent vector. Instead, we can
simply adjust the quality factor or modify the region of
interest (ROI), regenerate the corresponding GM and IGM,
and then apply them to the scaled latent vector to achieve
adaptive DIC.

B. ROI GM AND IGM GENERATION MODULES
The ROI GM and IGM generation modules are based on
the attention mechanism [46]. They have the same process,
as shown in Figure 2. The quality factor is first transformed
into a vector uwith the same number of channels as the latent
vector by two fully connected layers:

u = (H2(Relu(H1q+ b1)) + b2), (3)

where H1, H2, b1, and b2 are the parameters of two fully
connected layers. The vector u is expanded into a vector ū
with the same dimensions as the latent vector y by setting
ūl,i,j = ul , where l, i, and j are the indices corresponding to
the channel, row, and column of y, respectively.

The ROI mask m is downsampled to a vector with the
same weight and height as ū by adaptive max-pooling.
The downsampled vector is concatenated with ū and passed
through a CNN to extract the feature attention map û:

û = Conv(Relu(Conv(Concat(maxpool(m), ū)))), (4)

where Conv(·), maxpool(·), and Concat(·, ·) denote convolu-
tion, adaptive max-pooling, and concatenation of two vectors
along the channel dimension, respectively. The ROI IGM or
GM is computed by applying an element-wise exponential

function to the sum of ū and the product of ū and û:

g = exp(ū + ū ◦ û), (5)

where the exponential function ensures that the IGM or GM
values are positive and have a larger scaling range.

C. SEMANTICS-BASED ROI MASK GENERATION MODULE
The proposed method uses a ROI mask to identify the
regions of interest which need higher-quality reconstruction.
The ROI mask is then fed into the ROI GM and IGM
generation modules to guide the generation of the GM and
IGM, respectively. These modules aim to achieve a finer
quantization of the latent vector elements that correspond to
the ROI. In this paper, ROI coding is adopted to improve
the classification accuracy of the reconstructed images in the
downstream classifier. Therefore, the ROI consists of regions
that are related to the classification target, and a semantics-
based ROI mask generation module is designed to produce
the ROImask. The ROImask adapts dynamically to the target
bit rate. When the rate is low, elements of the latent vector
that correspond to pixels with higher relevance to the target
category have higher quantization accuracy, which results
in better reconstruction quality of the classification-related
regions. As the rate increases, the ROI expands accordingly
to improve the reconstruction quality of more pixels that are
relevant to the classification. The network structure of the
semantics-based ROI mask generation module is shown in
Figure 2, and the detailed process is described as follows:
First, the class activation mapping (CAM) [47], [48] is

used to generate the CAM map of the original image. The
CAM map is a two-dimensional vector of the same size as
the image, with each element corresponding to a pixel and
describing its importance to the classification result. The
elements of the CAM map are then normalized to [0,1], and
the resulting map is defined as a semantic importance map,
denoted by a vector s.

Next, based on s and the quality factor q, a semantic
importance energy map is generated. To ensure that the
energy map is not a zero vector when q = 0, q is normalized

to q̄ =
exp(q)
exp(1) before computing the energy map. The energy

map is calculated as s̄ = (q̄s)2.
Finally, based on s̄, equation (6) is used to calculate the

ROI maskm. The semantic importance map is first processed
by two convolutional layers for feature extraction and then
binarized using a sign function to obtainm.

m = (sign(Conv(Relu(Conv(s̄)))) + 1)/2. (6)

Since the sign function is not differentiable, it is replaced by
the sigmoid function during training.

D. LOSS FUNCTION DESIGN
The quality of the reconstructed images in DIC depends on
the choice of the training objective function. The proposed
method uses a combination of five loss terms to optimize
the image reconstruction process: an image distortion term
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FIGURE 1. Framework of the proposed quantization-based adaptive DIC for hybrid contexts. The
notations Q, EC, and ED represent quantization, entropy coding, and entropy decoding, respectively.

LIM, an ROI distortion term LROI, an SFM loss term LSFM,
a GAN term LSFM, and a rate term. The image distortion
term measures the MSE between the original image and the
reconstructed image, as defined by:

LIM =
1

3HW

H∑
i=1

W∑
j=1

3∑
k=1

∥ xi,j,k − x̂i,j,k ∥
2 , (7)

where xi,j,k and x̂i,j,k denote the pixel values of the original
and reconstructed images, respectively. The ROI distortion
term focuses on the MSE between the pixels that belong to
the ROI in both images, which is expressed by:

LROI =
1

3HW

H∑
i=1

W∑
j=1

3∑
k=1

∥ mi,j(xi,j,k − x̂i,j,k ) ∥
2 , (8)

wheremi,j is the element of the ROI mask vectorm. The SFM
loss term evaluates the similarity between the feature vectors
extracted from the original image x and the reconstructed
image x̂ using a pre-trained feature extractor. The SFM loss
is calculated by the mean absolute error (MAE) between the
feature vectors, as given by:

LSFM =
1

HFWFCF

HF∑
i=1

WF∑
j=1

CF∑
k=1

∥ F(x)i,j,k − F(x̂)i,j,k ∥ , (9)

where HF × WF × CF represents dimensions of the feature
vectors, and F(·) denotes the feature extracting function.

To enhance the perceptual quality and reduce the distortion
of the reconstructed images, the GAN term is based on the
unsaturated conditional GAN proposed by [49]. Moreover,
the scaled latent vector ŷ and the ROI mask m are used
as conditional inputs to the generator and discriminator to

improve the reconstruction of the ROI. The generator and
discriminator loss terms are defined as follows:

LGAN = −log(D(G(ŷ), ŷ,m)), (10)

LD = −log(1 − D(G(ŷ), ŷ,m)) − log(D(x, x̂,m)), (11)

where D and G denote the discriminator and the generator,
respectively.

The rate term R is the number of bits to encode y, which
is constrained by the entropy bounds. However, the true
distribution py of y, is unknown, so we cannot compute the
exact entropy. Therefore, we use an entropy model ρy to
estimate py for entropy coding. Thus, the rate term is the cross
entropy of py and ρy as follow:

R = Ey∼py [− log ρy(y)]. (12)

E. FIVE-STAGE TRAINING
We propose a five-stage training algorithm to ensure the
GAN-based codec, ROI GM and IGM generation, and ROI
mask generation model function properly. The main steps of
the training algorithm are summarized in Algorithm 1.

Algorithm 1 Algorithm for Five-stage Training

Input: Training dataset; number of training steps for each
stage sti; batch size b

Output: Trained GAN-based codec, ROI GM and IGM
generation modules, and ROI mask generation module
//First stage training

1: for step =1 to st1 do
2: Sample a batch of images X (b)

3: Encode images, compute rates of quantized latent
vectors, and obtain reconstructed images

4: Calculate LS1 via (13)
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FIGURE 2. The network structure of the implementation based on the DIC model in [53]. The notations 3 × 3 Conv, N, ↓ 2 and
3 × 3 Conv, N, ↑ 2 refer to the convolutional and deconvolutional layers with a kernel size of 3 × 3 and a stride of 2, respectively. The
default stride of convolutional layers is 1.

5: Update the parameters of the encoder, decoder, and
entropy model by applying their stochastic gradient
descent

6: end for
//Second stage training

7: Add ROI IGM and GM generation modules
8: for step = st1 + 1 to st2 do
9: Sample a batch of images X (b) and quality factors q(b)

10: Obtain the CAMmap of each image and binarize them
with random thresholds to get ROI masks m(b)

11: Encode the images depending on q(b) and m(b),
estimate the rate of ȳ(b), and get reconstructed images

12: Calculate LS2 via (14)
13: Update parameters of the encoder, decoder, entropy

model, ROI IGM, and GM generation modules by
descending their stochastic gradient

14: end for
//Third stage training

15: for step = st2 + 1 to st3 do
16: Sample a batch of images X (b) and quality factors q(b)

17: Obtain the CAMmap of each image and binarize them
with random thresholds to get ROI masks m(b)

18: Encode the images depending on q(b) and m(b),
estimate the rate of ȳ(b), and get reconstructed images.

19: Calculate LS3 via (15)
20: Update parameters of the encoder, decoder, entropy

model, ROI IGM, and GM generation modules by
descending their stochastic gradient

21: end for
//Fourth stage training

22: Add discriminator
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23: for step = st3 + 1 to st4 do
24: Sample a batch of images X (b) and quality factors q(b)

25: Obtain the CAMmap of each image and binarize them
with random threshholds to get ROI masks m(b)

26: Encode the images depending on q(b) and m(b), get
reconstructed images, and estimate the rate of ȳ(b)

27: Calculate LS4 via (16)
28: Update parameters of the decoder by descending its

stochastic gradient
29: Calculate LD via (11)
30: Update parameters of the discriminator by descending

its stochastic gradient
31: end for

//Fifth stage training
32: Add ROI mask generation module
33: for step = st4 + 1 to st5 do
34: Sample a batch of images X (b) and quality factors q(b)

35: Obtain ROI masks m(b) using ROI mask generation
module

36: Encode the images depending on q(b) and m(b), get
reconstructed images, estimate the rate of ȳ(b)

37: Calculate LS5 via (17)
38: Update parameters of the ROImask generationmodule

by descending its stochastic gradient
39: end for

In the first stage, we train a fixed-rate DIC model with a
rate higher than the target rate range. This DICmodel consists
of the encoder, decoder, and entropy model. The objective
function of this stage is as follows:

LS1 = R1 + λ1LIM, (13)

where R1 is the estimated entropy of the quantized latent
vector. The Lagrangian coefficient λ1 determines the bit rate
of the compressed image, which is set according to [50].
To overcome the quantization indifference problem during
training, we use uniform noise instead of the round operation.

In the second stage, we add the ROI GM and IGM
generation modules to the pre-trained DIC model from the
first stage. The latent vector is scaled by the GM and IGM
before scalar quantization and decoding, respectively. The
objective function of this stage is

LS2 = R2 + λ2(LIM + λROILROI), (14)

where λROI is the weight to balance the ROI distortion and
R2 is the estimated entropy of the quantized latent vector
after being scaled by GM. During training, we obtain the
ROI mask m by random binarization of the CAM map of
the original image. To achieve a continuous rate adaptation,
we randomly sample q ∈ [0, 1] as the quality factor and
map it to the Lagrangian coefficient by λ2 = α(eβq) during
training. The hyper-parameters α and β are set according to
the target rate range, where α and β are determined by the
lowest and highest target rates, respectively.

In the third stage, we fine-tune the adaptive DIC model
from the second stage by adding the SFM loss LSFM.

This stage helps the codec and ROI GM and IGM generation
modules to better extract semantically relevant information
from the original images. The objective function of this
stage is

LS3 = LS2 + λSFMLSFM, (15)

where λSFM is the weight of the SFM loss.
In the fourth stage, we freeze the parameters of the encoder,

ROI GM and IGM generation modules, and entropy model,
and fine-tune only the decoder’s parameters by adding the
GAN loss term. This stage aims tomake the distribution of the
reconstructed image closer to that of the original image, thus
improving the perceptual quality of the reconstructed image
at different rates. This stage requires alternating iterations
to train the decoder and discriminator. The loss functions of
the decoder and discriminator are equations (16) and (11),
respectively.

LS4 = LS3 + λGANLGAN, (16)

where λGAN is the weight of GAN term.
In the fifth stage, we add the ROI mask generation

module to produce the ROI mask. During this stage, only the
parameters of this module are updated. The objective function
of this stage is

LS5 = R2 + λCELCE, (17)

where LCE is the cross-entropy between the true and
predicted classification labels of the reconstructed image
and λCE is the weight of the cross-entropy term. The pre-
trained VGG16 model [51] is used for both the calculation
of the cross-entropy loss and the ROI generation module.
Furthermore, we use Grad-CAM++ [52] to obtain the
CAM map.

IV. EXPERIMENTS AND RESULTS ANALYSIS
A. IMPLEMENTATION ON EXISTING
COMPRESSION MODELS
The proposed design (ROI GM and IGM generation mod-
ules, ROI mask generation module, and five-stage training
method) can be applied to upgrade existing fixed-rate DIC
models into adaptive DIC for hybrid contexts. We adopt
models in [12] and [53] as our backbone networks and apply
our proposed design to them. The resulting new models are
trained using the method introduced in Section III-E and are
called HQVRC-MBT and HQVRC-CHENG, respectively.

Figure 2 shows the network structure of HQVRC-CHENG.
The conditional Gaussian model is used to estimate the
distribution of the latent vector.Mean and variance of the con-
ditional Gaussianmodel are estimated by the side information
extracted from the latent vector and the decoded symbols.
HQVRC-MBT has the same framework as HQVRC-CHENG
but two differences: 1) the encoder and decoder are without
residual blocks; 2) the parameters of the entropy model are
only estimated by the side information extracted from the
latent vector.
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The COCO dataset [54] with data augmentation by
randomly cropping 256 × 256 images and the Adam
optimization algorithm [55] are adopted during models’
training. The hyper-parameter setting is shown in Table 3
and this setting approximately results in the bpp range of
[0.08,0.35] on the Kodak dataset.

TABLE 3. Default hyper-parameters setting.

To evaluate the performance of our proposed models,
we use the ImageNet [56] and Kodak [57] datasets for
metrics related to classification, distortion, and perception.
The evaluationmetrics include Top-1 and Top-5 classification
accuracy of the VGG16 classifier, PSNR, SSIM [58], FSIM
[59], LPIPS [60], and NIQE [61]. The classification accuracy
and PSNR correspond to the classification and distortion
objectives, respectively. SSIM, FSIM, and LPIPS measure
the similarity of the reconstructed image to the original
image on different feature domains, and NIQE is a measure
of perceptual degree [18], [42]. For model performance
evaluation, 500 test images are randomly selected from
100 categories of the ImageNet dataset, with 5 images
per category. We adopt the pre-trained VGG16 network
parameters as published on the TensorFlow official website
to compute the SFM loss, obtain CAMmap, and evaluate the
classification performance.

B. IMPACT OF LOSS WEIGHT SETTINGS
The weights on loss terms have a global and implicit
impact on the RDCP tradeoff. Previous works [18], [42]
have investigated how the DCP metrics vary with changing
λ1, λSFM , and λGAN . The distortion, classification, and
perception objectives are mainly determined by the weights
of λ1, λSFM , and λGAN . It has been proved that perception-
distortion is a strict trade-off, while classification-perception
and classification-distortion are not strict trade-offs. More-
over, setting the values of λSFM and λGAN can balance
the RDCP trade-off. We set λSFM and λGAN based on
the experiment results in [18] and [42]. Controlling the
reconstruction quality of ROI is another way to balance the
classification and distortion objectives, which is affected by
the λROI and λCE. In this section, we discuss the impact of
different weight settings of λROI and λCE.

TABLE 4. Classification accuracy and PSNR as functions of bpp with
varying λROI.

1) IMPACT OF λROI
To analyze the impact of λROI on the tradeoff performance
between image reconstruction and classification and guide
the DIC model training, we train the adaptive DIC models
with different λROI using LS2 as the optimization objective
function. Specifically, we set λROI to 0, 0.5, 1, and 1.6,
respectively, while keeping other hyperparameters at their
default values to obtain four DIC models with different
ROI coding quality. After training convergence, we evaluate
the performance of the reconstructed images in terms of
classification accuracy and PSNRmetrics using the ImageNet
test set.

Table 4 shows that increasing λROI improves the classifica-
tion accuracy. However, this improvement diminishes as the
value of λROI increases, resulting in a lower PSNR. When
λROI = 0, all image pixels have the same reconstruction
quality. However, increasing the value of λROI leads to finer
quantization of the latent vector elements corresponding to
ROI and better reconstruction quality of semantic salient
regions, resulting in higher classification accuracy. Thus,
λROI can control the tradeoff between image reconstruction
and classification. When we compare λROI = 0 and
λROI = 1, we observe that the average degradation of
PSNR is less than 0.1 dB within the rate range, while the
average improvement in classification accuracy is about 5%.
Thus, setting a proper λROI can provide the proposed DIC
model with a good classification and reconstruction tradeoff
performance, and we set λROI to 1 in the subsequent
experiments.

2) IMPACT OF λCE
When λROI is set, adjusting λCE will affect the size of the ROI
at a certain bit rate, which in turn affects the trade-off between
classification and distortion tradeoff. To analyze the impacts
of λCE, we train the ROI mask generation module with
different λCE. Specifically, we set λCE to 0.2, 0.5, 0.7, and 1,
respectively, to obtain four different ROI mask generation
models. We evaluate the classification accuracy and PSNR
of the reconstructed images obtained by different ROI mask
generation models using the ImageNet dataset.

Table 5 shows that the reconstructed images achieve the
best classification accuracy when λCE is set to 0.7, with
an improvement of up to 5% compared to λCE = 0.2.
At the middle part of the rate range, the PSNR performance
of λCE settings of 0.2 and 1 is approximately 0.1 dB
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TABLE 5. Classification accuracy and PSNR as functions of bpp with
varying λCE.

higher than the other two settings, while at other rates,
these four λCE settings have comparable PSNR performance.
Setting λCE too small or too large leads to an ROI that
is too small or too large, which can result in relatively
insignificant improvements in the reconstruction quality of
semantic salient regions, leading to lower classification
accuracy. The proposed ROI coding mechanism achieves
higher classification accuracy and lower PSNR when λCE
is set to 0.7, due to the tradeoff between classification
and reconstruction performance. These results demonstrate
that the proposed quantization-based ROI adaptive DIC
can provide good classification and reconstruction tradeoff
performance with proper λCE settings. Therefore, we set λCE
to 0.7 in the subsequent experiments.

C. ABLATION STUDY
In this paper, we propose two mechanisms to enable adaptive
DIC for hybrid contexts based on quantization and fixed-rate
DIC codecs. The first mechanism is to design the ROI mask
generation module and the ROI GM and IGM generation
modules to produce the GM and IGM for adjusting the
quantization accuracy of the latent vector. The second mech-
anism is to design a five-stage training method that trains
a quantization-based adaptive ROI DIC model for hybrid
contexts. We use the CHENG2020 model as our backbone
network and train three variants of adaptive DIC models
with different optimization functions: LS4, LS3, and LS2.
We denote these models as HQVRC-CHENG(A), HQVRC-
CHENG(B), and HQVRC-CHENG(C), respectively. The
HQVRC-CHENG(A)model optimizes for classification, per-
ception, and distortion objectives; the HQVRC-CHENG(B)
model optimizes for both classification and distortion
objectives; and the HQVRC-CHENG(C) model optimizes
for only distortion objectives. Moreover, we implement
a baseline quantization-based rate-adaptive DIC algorithm
based on [38] using the CHENG2020 model and call it BM-
CHENG. We compare both BM-CHENG and CHENG2020
with our proposed models on classification, perception,
and distortion metrics on the ImageNet dataset. Figure 3
shows the performance comparison of the five models. The
comparison reveals that:

For classification accuracy, our four proposed quantization-
based adaptive DIC algorithms outperform CHENG2020.
This is because we fine-tune the higher-rate backbone model
and employ the quantization-based adaptive mechanism that
preserves high-level semantic information better. All three
variants of HQVRC-CHENG surpass BM-CHENG, which

FIGURE 3. Ablation study results.

only optimizes for image reconstruction. Specifically,
HQVRC-CHENG(C) shows about 3% and 5% improvements
in Top-1 and Top-5 classification accuracy on average within
the rate range, respectively. This improvement stems from
the ROI coding mechanism that leverages the ROI GM and
IGM generation modules to provide better reconstruction
quality in semantic salient regions at different rates. On the
other hand, HQVRC-CHENG(A) and HQVRC-CHENG(B)
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attain comparable classification accuracy and exceed both
HQVRC-CHENG(C) and BM-CHENG. The reason is that
HQVRC-CHENG(A) and HQVRC-CHENG(B) utilize SFM
loss to optimize the classification objective in DIC model
training. Compared to BM-CHENG, they exhibit an average
improvement of about 15% in Top-1 and Top-5 classification
accuracy within the rate range.

For the distortion metric PSNR, BM-CHENG exhibits the
best performance within its rate range, as it only optimizes for
image reconstruction. However, HQVRC-CHENG(C) and
HQVRC-CHENG(B) have comparable PSNR with a slight
degradation. This is because of two factors: first, the trade-
off between local and global reconstruction optimality in
ROI coding; and second, the use of SFM loss to optimize
the classification objective along with the ROI mechanism
in HQVRC-CHENG(B), which slightly affects the PSNR
performance. However, this trade-off results in a significant
improvement in classification accuracy. For instance, the
PSNR degradation of HQVRC-CHENG(B) by about 0.1 dB
leads to an average performance improvement of about 15%
in classification accuracy. Moreover, the PSNR degradation
of HQVRC-CHENG(A) is 0.45 dB, mainly because it uses
a GAN generator as a decoder. The GAN loss optimizes
perception, which is known to be in conflict with distortion
according to [18]. Therefore, the PSNR performance of
HQVRC-CHENG(A) is inferior to that of BM-CHENG.

For the perception metric, we use NIQE in this paper,
where a lower NIQE value indicates better performance.
HQVRC-CHENG(A) has the lowest NIQE value, with an
average relative improvement of about 13%, 21%, and 22%,
over HQVRC-CHENG(B), HQVRC-CHENG(C), and BM-
CHENG, respectively. This is because HQVRC-CHENG(A)
uses a GAN generator as a decoder to obtain a reconstructed
image with a distribution closer to that of a natural image.
We also observe that HQVRC-CHENG(B) has a lower NIQE
value than HQVRC-CHENG(C) and BM-CHENG, as it
preserves the high-level semantic features better due to the
use of SFM loss during DIC model training. Thus, we can
infer that there is some consistency between perception and
classification.

For the performancemetrics LPIPS, FSIM, and SSIM, they
evaluate the similarity between the reconstructed image and
the original image on different feature domains. In terms
of LPIPS (a lower value is better), HQVRC-CHENG(A)
outperforms the other three adaptive DIC models with an
average relative improvement of about 27%, 40%, and 47%,
respectively. This is because the SFM loss has some similarity
with LPIPS and is utilized during HQVRC-CHENG(A)
and HQVRC-CHENG(B) training. Moreover, HQVRC-
CHENG(A) further improves LPIPS after adding GAN loss,
which shows the ability of GAN to generate higher-level
features in images. Regarding FSIM, HQVRC-CHENG(A)
and HQVRC-CHENG(B) have comparable performance,
with an average relative improvement of about 1% and 1.6%
over BM-CHENG and HQVRC-CHENG(C), respectively.
For SSIM,whichmeasures the structural similarity of images,

FIGURE 4. Classification, perception, and distortion performances as
functions of bpp for different image coding schemes using the ImageNet
dataset.

HQVRC-CHENG(A) performs poorly due to the trade-off
between perception and distortion, with an average relative
performance worse than BM-CHENG by about 3%.

D. PERFORMANCE EVALUATION AND COMPARISON
In this section, we compare the performance of the proposed
DIC algorithms with state-of-the-art adaptive DIC algo-
rithms. The comparison algorithms include BM-CHENG,
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TABLE 6. BD-rate to other adaptive DICs of different metrics on the
ImageNet dataset.

QMAP2021 [41], HEVRC [42], and RMPGC [18]. BM-
CHENG is an adaptive DIC for image reconstruction
context, while the rest are adaptive DIC algorithms for
hybrid contexts. QMAP2021 and HEVRC are encoder-based
adaptive DICs, while RMPGC is a latent-based adaptive DIC.
We use the hyper-parameter setting as shown in Table 3.
All these algorithms are evaluated on the ImageNet and
Kodak datasets, and results are shown in Figures 4 and 5,
respectively.

1) RDCP TRADE-OFF PERFORMANCES
We conduct a comparative analysis of HQVRC-CHENG
with QMAP2021, HEVRC, and RMPGC. Results show
that HQVRC-CHENG has similar performance on PSNR
and SSIM compared with QMAP2021, but has about
16.7% and 14.5% average improvements in Top-1 and
Top-5 classification accuracy, respectively, and about 18.8%
average relative improvement in terms of NIQE. We note that
both HQVRC-CHENG and QMAP2021 can assign higher
rates to semantic salient regions. However, because HQVRC-
CHENG further incorporates SFM loss and GAN loss during
training, it can attain higher classification accuracy and
perceptual quality. HEVRC and RMPGC also use SFM
loss and GAN loss to optimize their DIC models, but
HQVRC-CHENG still outperforms them on classification
and distortion metrics thanks to a better entropy model. As a
performance benchmark, the Top-1 and Top-5 classification
accuracy for the original images from the ImageNet test set
are 72% and 90%, respectively.

To better demonstrate the superior performance of
HQVRC-CHENG, we summarize the BD-rate [62] with
respect to other adaptive DICs in terms of different metrics in
Table 6. BD-rate indicates the rate increase of the proposed
algorithm compared to the baseline algorithm for the same
performance metric. A negative BD-rate indicates a better
coding performance. Results show that HQVRC-CHENG is
only inferior to HEVRC on NIQE. This is because HEVRC
has a more complex decoder, which enhances the generative
ability of GANs.

2) GENERALIZATION TO DIFFERENT DNN BACKBONES
Figure 4 shows that HQVRC-CHENG and HQVRC-MBT
can implement adaptive DIC based on a single DNN

FIGURE 5. Perception, and distortion performances as functions of bpp
for different image coding schemes using the Kodak dataset.

TABLE 7. Encoding time of quantization-based and encoder-based
adaptive DIC.

model and achieve better performances on classification and
perception than their backbone models CHENG2020 and
MBT2018, respectively. Moreover, their performances on
classification and perception are also better than those of
BM-CHENG and BM-MBT, which are quantization-based
adaptive DIC for image reconstruction context. Due to the
superior backbone network and entropy model, HQVRC-
CHENG surpasses HQVRC-MBT in all performance met-
rics. These results indicate that the proposed method is
a general mechanism that can be successfully applied to
different fixed-rate DIC models, such that the original
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FIGURE 6. Visual comparisons of different algorithms on the Kodak dataset.
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FIGURE 6. (Continued.) Visual comparisons of different algorithms on the Kodak dataset.

non-adaptive DICs can be upgraded into adaptive DICs for
hybrid contexts.

3) GENERALIZATION TO DIFFERENT DATASETS
In performance comparison with other algorithms, the pro-
posed models are trained using the COCO dataset and tested
over the ImageNet dataset. Moreover, to better illustrate the
visual effects, we test our models on the Kodak dataset as
shown in Figure 5. It is shown that the proposed models
yield consistent performance when immigrating to different
datasets. This indicates the model’s capability to generalize
to different datasets.

4) RUN TIME PERFORMANCE
Unlike the encoder-based adaptive DIC, the quantization-
based adaptive DIC can generate the latent vector only once
for a given image and achieve context or rate adaptation by
adjusting the quantization of the latent vector. We evaluate
the time efficiency of our method by compressing 24 images
from the Kodak dataset with a single rate and 10 different
rates using different adaptive DIC methods. The encoding
processes are executed on the same computational platform
using one NVIDIA A40 GPU. The entropy-encoding time is
excluded from the time measurement.

Table 7 compares the time consumption of HQVRC-
CHENG, BM-CHENG, HEVRC, and QMAP2021. For
encoder-based adaptive DICs HEVRC and QMAP2021, the
time consumption to encode 10 rates is about 10 times

the time consumption to encode a single rate, while it is
only 5 times for HQVRC-CHENG and BM-CHENG. This
result demonstrates that quantization-based adaptive DIC
can save computational resources and reduce processing
delays. Moreover, HQVRC-CHENG consumes more time
than BM-CHENG due to the extra task of generating the ROI
mask.

E. COMPARISON OF VISUAL EFFECTS
The above experimental results show that the implemented
adaptive DIC algorithms for hybrid contexts have superior
performance in terms of classification, distortion, and per-
ception metrics. In this section, we select two typical images
from the Kodak dataset, as shown in Figure 6, with clear
classification targets of parrot and lighthouse, respectively.
We compare the visual results of reconstructed images
at different rates using HQVRC-CHENG, QMAP2021,
and BM-CHENG to showcase the algorithm’s superior
performance.

When we compare the reconstruction quality of semantic
salient regions in images coded at the same rate, HQVRC-
CHENG and QMAP2021 outperform BM-CHENG, espe-
cially at lower rates. While BM-CHENG optimizes the
overall image reconstruction quality, HQVRC-CHENG and
QMAP2021 prioritize the reconstruction quality of semantic
salient regions. By giving better reconstruction quality to
these regions, they can improve the classification accuracy
and provide better support for related tasks that require
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confirmation of classification results by human eyes. Mean-
while, when we compare the reconstruction quality of
semantic non-salient regions in reconstructed images using
different coding algorithms, QMAP2021 has the worst visual
effect at low rates, with large areas appearing blurred.
This is because QMAP2021 lowers the coding quality of
semantic non-salient regions due to its emphasis on coding
quality based on semantic importance. In contrast, although
HQVRC-CHENG prioritizes semantic salient regions, it uses
a GAN-based generator as the decoder, which can mitigate
the degradation of reconstruction quality in semantic non-
salient regions. Finally, when we compare the overall
perceptual quality of reconstructed images using different
coding algorithms, both non-GAN coding algorithms show
varying degrees of blurring at different rates, while HQVRC-
CHENG always produces clear reconstructed images. This
demonstrates the excellent ability of GAN in improving
image perceptual quality.

V. CONCLUSION
In this paper, we propose a quantization-based adaptive
DIC framework, which can be used to upgrade existing
fixed-rate DIC models into rate-adaptive DIC for hybrid
contexts. In this framework, the encoder generates the latent
vector only once during the adaptive coding, and the
rate and context adaptation is achieved by adjusting the
quantization accuracy of the latent vector. The proposed
framework can control the RDCP performance tradeoff
via two mechanisms. First, a weighted sum of the overall
image MSE loss, ROI MSE loss, SFM loss, and GAN
loss is used to optimize the distortion, classification, and
perception objectives simultaneously. Second, finer quanti-
zation is applied to semantic salient regions to prioritize the
reconstruction quality of these regions. Experiments have
shown that the proposed HQVRC-CHENG algorithm can
improve both the classification and perception performance.
Compared with the benchmark algorithm BM-CHENG, the
average improvement in classification accuracy and NIQE
are about 15% and 22%, respectively. Due to the tradeoff
between perception and distortion, the average reduction of
PSNR over BM-CHENG is about 1.5%. The overall results
demonstrate that the proposed DIC scheme can effectively
upgrade a fixed-rate DIC to be more adaptive, i.e., to achieve
a desirable RDCP trade-off performance at different rates.

The proposed quantization-based adaption framework also
has two limitations. First, because the latent vector is
generated prior to rate-adaptive coding, the information loss
introduced in the quantization phase may have undesirable
impacts on complex high-level tasks such as image retrieval,
object detection, and semantic segmentation. Moreover, the
proposed ROI mask generation module is suitable for the
single-label classification task but not multi-labels ones.
Therefore, the latent representation learning and ROI mask
generation process can be further improved for high-level
tasks. For example, a promising direction for future work is to

utilize ROI loss in both the image domain and feature domain
for overall performance improvement.
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