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ABSTRACT Due to the complex correlation within data collection, it is a challenging task to detect leakage in
the water supply network. The Graph Convolutional Network (GCN) has recently gained significant attention
in correlation research. However, most existing GCN-based models assumed that the topology of whole
network should be derived from expert knowledge, which is always time-consuming and difficult to acquire.
To tackle this problem, a data-driven improved graph convolutional network (IGCN) is proposed based on
a self-learning fully connected association graph. Compared with traditional GCN, the proposed model can
adaptively learn necessary data relationship information without accurate fixed undirected association graph.
On this basis, a leakage-detection IGCN (LD-IGCN) is carried out for leakage detection. Finally, two case
studies of water supply networks are utilized to demonstrate the efficiency of the proposed leakage detection
method in this paper.

INDEX TERMS Leakage detection, deep learning, graph convolutional network, adaptive, correlation
mining.

I. INTRODUCTION of data-driven leakage detection methods [7], [8], [9]. For

Due to pipe aging and external stress changes, water leakage
problem often occurs in water supply network, which
results in additional energy and sources waste during water
treatment and supply, and may cause other severe issues,
such as bacterial pollution and poison contamination [1], [2].
Therefore, leakage detection for water supply network is of
high significance and raises much attention [3], [4], [5].

The acoustic methods have been considered as means
of detecting local leakages in water supply network [6],
which are difficult for global water supply network due
to the increasing complexity of the network. Furthermore,
in the past decades, abundant data has been collected
from water supply network, which promotes the growth
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example, Zhang et al. [10] introduced a new method to
identify the leakage zones of water distribution systems
where the multiclass support vector machine was used as the
leakage zoon identification model to detect possible leakages
within observation data. Moreover, a real-time burst detection
algorithm was proposed based on the patterns of water
demand, in which supervised learning was introduced to
detect the burst in the local areas of water supply distribution
system [11]. Although the above algorithms can achieve good
results in leakage detection, the manually designed feature
extractors in those methods are hard to learn complex hidden
representation [12].

Numerous deep learning (DL) algorithms have been
developed and achieved great success with the advancements
in computer technology. Due to the abilities of powerful
nonlinear mapping and automatically discriminative feature
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learning, the DL-based leakage detection methods have
attracted much attention recently [13], [14], [15]. The most
representative solution is based on AE [16] and CNN [17].
AE excels in capturing the most representative features
among data through data reconstruction, while CNN can use
graph convolution to learn local structural features. However,
the former does not consider explicit variable relationship
feature extraction, and the latter cannot learn the relationship
information between non-connected variables.

It should be noted that the value of each node can be easily
affected by the other nodes in water supply networks. The
relationship among nodes can be depicted by the topology of
the network. When a leakage occurs at one location, the value
of other nodes will be changed correspondingly according to
the data relationship. Sometimes, the data relationship will
even be changed. Unfortunately, many existing DL methods
usually concern with the measurement value information but
fail in explicit relationship mining.

In recent years, as a feasible approach to learn network
topology, the graph convolutional network (GCN) model
is constructed based on a fixed and undirected association
graph which can represent the relationship among variables.
To update the value of each node, the graph convolutional
operation is exploited to aggregate the features of the node
and its neighbor nodes according to the association graph.
The hidden layer of GCN can then be derived where the
measurement value and correlation in the observation layer
of all nodes are mapped into the hidden layer. Due to the
ability of correlation learning, GCN and its variants have
been applied in the leakage detection of industrial process
[18], [19], [20]. For example, Li et al. proposed an effective
intelligent fault diagnosis algorithm based on a multireceptive
field graph convolutional network [21]. Chen et al. proposed
a novel fault diagnosis approach that combines available
measurements and prior knowledge by the GCN model
[22]. Hamed et al. designed a GCN based solution for fault
detection and isolation in industrial networks [23]. Moreover,
Hu et al. also proposed a GCN-based scheme for complex
urban distribution network fault localization [24].

Although the GCN model can learn complex data rela-
tionship through the graph convolutional operation, it still
remains several problems. Firstly, it is assumed that the
association graph should be fixed and undirected, which
means the data relationship mining ability of the GCN model
highly depends on the involved association graph. However,
due to the structure of physical systems, the correlation
among nodes cannot always be mutual and will be changed
according to system status. Secondly, it is often difficult to
acquire accurate association graph of a water supply network
from its prior knowledge since knowledge accumulation and
precise mechanism imitation are usually time-consuming and
costly. The above problems highly limit the application of
current GCN-based model in the leakage detection of water
supply network.

To break the above technical bottleneck, a data-driven
improved GCN model (IGCN) is presented in this paper.
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Compared with traditional GCN, the IGCN model is con-
structed based on a self-learning fully connected association
graph. By this way, the structure of IGCN model is more
flexible and can adaptively map necessary information of
measurement value and data relationship into the hidden
feature representation. On this basis, the leakage detection
algorithm LD-IGCN is designed to take variable correla-
tion into water supply network leakage detection. Finally,
two water supply network experiments are conducted to
demonstrate the effectiveness and superiority of the proposed
algorithm. Experimental analysis reveals that the LD-IGCN
outperforms traditional autoencoder (AE) [17], convolutional
neural network (CNN) [18] and multi-layer perceptron
graphical convolutional network (MLP-GCN) [24] model in
the leakage detection of water supply network.
This paper presents the following main contributions.

1) Instead of using fixed undirected association graphs
in traditional GCN, this paper introduces a new
self-learning fully connected association graph in the
proposed IGCN which makes it possible to adaptively
explore the relationships between variables according
to real situation.

2) A new fault detection model, LD-IGCN, is proposed.
On the basis of the learnable association graph and
back-propagation in the IGCN model, the LD-IGCN
model takes the label information (normal or leakage)
into the updating process of the proposed association
graph, which can improve the leakage detection
performance.

3) Two experiments of water supply networks are intro-
duced to validate the effectiveness and stability of
the proposed method. Experimental results show the
superiority of the LD-IGCN model in the accuracy of
water leakage detection.

The remainder of this paper is organized as follows.
Traditional GCN model will be briefly reviewed in Section II,
followed by the proposed IGCN model and corresponding
leakage detection algorithm in Section III. In Section IV,
the advantages of the proposed method are demonstrated,
followed by a conclusion in Section V.

Il. REVISIT OF GCN MODEL

As akind of graph neural network [25], [26], [27], traditional
GCN model can learn complex data relationship due to
corresponding association graph and graph convolutional
operation. Therefore, the association graph and graph con-
volutional operation in traditional GCN model will be briefly
reviewed in this section.

A. THE ASSOCIATION GRAPH IN TRADITIONAL GCN
MODEL

The association graph is the core component of traditional
GCN model and can represent the correlation among nodes.
In most of current applications, the association graph is
assumed to be fixed and undirected, which considers that
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FIGURE 1. Structures of association graphs:(a) traditional fixed and
undirected association graph; (b) proposed self-learning fully connected
association graph.

the relationship between variables is always mutual and will
never change.

The fixed and undirected association graph can be treated
as G = (W, F, B) where W and F represent the collection
of all nodes and edges in graph G, respectively. B € R"*" is
an adjacency matrix that describes the following relationships
between each pair of nodes in one graph:

by - by
B=| 1 - (1)
bn,l"'bn,n

where n is the number of nodes. Define the edge between
node i and node j as <w,~, w/-), and each element b;; in matrix B
can be denoted as:

1, if edge (w;, w;) exists
ijzi ( l ]) )

0, if edge <w,-, wj) does not exist

For example, the adjacency matrix B of an association
graph, shown in Fig.1(a), can be directly expressed as:

01000
10111

B=|01000 3)
01001
01010

In the above association graph, the relationship between
nodes X/ and X2 is assumed as mutual and will never change.
However, in real situation, the correlation between two nodes
will change according to system operational status [28].

Moreover, it is still a challenge to establish an accurate
association graph due to the lack of expert knowledge and
increasing complexity of network situation. For more detail
about the association graph in traditional GCN model, please
refer to [29].

B. THE GRAPH CONVOLUTIONAL OPERATION IN
TRADITIONAL GCN MODEL

The graph convolutional operation is another important
component of traditional GCN model, which gives GCN
models the capability of inter-variable correlation informa-
tion learning.
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The symmetric normalized graph Laplacian matrix is
defined as follows:
_1 _1 _1 _1
Lnormatize = K 2Loriginal K 2=Iy—K BK? 4
where K € R"™" is the diagonal degree matrix of the graph
and K;; = Zj bjj. Iy is an identity matrix. Lorigina = K — B
is the original Laplacian matrix.

The eigenvalue decomposition of Lpormalize can be
expressed as:
Al
Leign = C C=CAC™! (5)

An

where A = diag (A1, A2, ..., Ay) is a diagonal matrix made
up of the eigenvalues of Lejg,. C is an orthonormal matrix
consisting of eigenvectors of Lejg,, and C -1 =T,

Then the feature updating function of one node can be
defined as:

h= (0% f)y =C (CToCTf) ©6)

where o is the node feature. & represents the new node feature
formed by the graph convolution. f is the eigenfunction of
A. 6 is a learnable coefficient. *g is denoted as the graph
convolutional operation.

To simplify Equation (6), define the graph convolutional
filter as f = CTf, and the updating function can be rewritten
as:

h=(0xc )y =C(CTo(Ch) = ChuCTo (D)

C. DISCUSSION

It should be noted that the performance of traditional
GCN models highly depends on the association graph,
which is determined by known expert experience and
process mechanisms. However, the accumulation of the
above two sources is always time-consuming and subjective.
In addition, the traditional GCN methods always use
fixed undirected association graphs. However, in practical
application, the relationships between variables are much
more complex. Therefore, the above issues greatly constrain
the performance of traditional GCN models in water leakage
detection.

Ill. PROPOSED METHODOLOGY
The main innovation of proposed methodology contains the
following points:

1) During the training process of the IGCN model,
a learnable association graph is used to capture variable
relationships. Compared with traditional fixed association
graph, the correlation between nodes in the proposed
association graph will not be limited to non-binary values.

2) The LD-IGCN is proposed based on IGCN. The data
correlation of different labels is introduced in the construction
of association graph by the backpropagation, which further
improve the leakage detection performance of the LD-IGCN
model.
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FIGURE 2. The training and testing flowchart of the LD-IGCN model.

The flowchart of the proposed methodology can be
illustrated in Fig.2, which will be explained in the following
subsections.

A. IMPROVED GCN MODEL (IGCN)

In this paper, to overcome the limitations in traditional GCN
model caused by the fixed undirected association graph,
a data-driven improved GCN model (IGCN) is proposed
which is constructed on a self-learning fully connected
association graph, as shown in Fig.1(b).

The proposed association graph in IGCN model is different
from fixed and undirected association graphs in traditional
GCN models. The advantages of the new association graph
can be described as follows: Instead of one undirected edge,
the IGCN contains two directed edges in opposite directions
between each pair of nodes, which indicates that the model
structure can be more flexible. For example, the edges
between node X 1 and node X2 can be defined as two directed
edges (wi, w2) and (w2, wi) which represent the potential
causal relationship from node X 1 to node X2 and node X2 to
node X 1, respectively.

The definition of adjacency matrix for the new association
graph can be represented by:

b1y - by

LB = 8)

by - byy

where the value of /b;; in Equation (8) is totally different
from Equation (1). Compared with traditional graphs, the
data relationship in the IGCN model is determined by data
itself rather than expert knowledge. If parameter /b; > or Ib> |
is greater than zero, the edge (wi, wz) or (wo, wy) exists.
Otherwise, the edge does not exist.

Based on the new association graph, the graph convolu-
tional operation is also changed in the IGCN model. When the
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FIGURE 3. Structure of a standard two-layer IGCN model.

graph convolutional operation aggregates the node features,
the parameters of the edges will be used to update the node
features as follows:

1
(ZjeN(i) lbji) +1

xi,r =1

D bk 0| > 1
JEN ()

hgr-&-l) —

®

where hgr) represents the i th node features of layer r and
hgrﬂ) is the new node features in layer r 4+ 1. N(i) is the
neighbor node set of node i. x; is the raw input data.

On this basis, the structure of a standard two-layer IGCN is
given in Fig.3. The IGCN model serves as a feature extractor
to learn the hidden feature, which can be defined as:

Z=h? (ReLU (h<1> (X LB<“)) ,LB(Z)) (10)

where Z represents the hidden feature representation.
It contains both measurement value information X and
data relationship information LB. ReLU(-) is the activation
function where ReLU(x) = max(0, x).

B. LD-IGCN MODEL

1) THE STRUCTURE OF LD-IGCN

To enhance the efficiency of leak detection, we present
the LD-IGCN algorithm in this section, which combines
measurement values and data relationships to predict the state
of the water supply system.

The main structure of LD-IGCN model is shown in Fig.4,
which contains two important parts: the feature extraction
network and the classification network. The input parameters
of the proposed model are the water pressure data and the
output of the model is the prediction label (normal or leakage)
of network status.

The feature extraction network is composed of a stack
of IGCN layers. When a sample is inputted into the
LD-IGCN model, the feature extraction network will map
the measurement value information and data relationship
information into the hidden feature representation adaptively.
The mapping process can be defined as:

X, n=1
zm — Relu (h(n—l) (Z("—l), L B("—l))) ,n>1 an
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FIGURE 4. Structure of LD-IGCN.

where n is the number of layers in the feature extraction
network. Z) represents the output feature of layer i and
Z®*+D is the output feature from the last layer of IGCN
model.

The classification network is composed of a stack of
fully connected layers which are typical two-class classi-
fication networks and widely used in detection situations.
The extracted hidden features will be introduced into the
classification network to obtain the following 2-dimensional
vector H*1D indicating the score on the two types of labels
(normal or leakage):

B _ [ Z0+D =1

FCO=D (H=D) > 1

where m represents the number of fully connected layers
in the classification network. FC”) represents the feature
update function of fully connected layer i, and it is defined
as FC(X) = WX + b with input data X, weight parameter
W, and bias parameter b. H”) represents the output feature
of the fully connected layer i in the classification network.
It should be noted that H 1 will then be inputted into a
softmax function to obtain the label of system status.

12)

2) THE LD-IGCN MODEL TRAINING:
S1: Construct a self-learning fully connected association
graph according to the number of input variables.

S2: Construct the LD-IGCN model based on the associa-
tion graph which is constructed in S1.

S3: Input the original pressure data into the corresponding
nodes of the LD-IGCN model to obtain the prediction label.

S4: Calculate the following loss value by cross-entropy
function [30] based on the predicted labels and the real labels:

1
L= sz:Li
1
= 5>~ [ log () + (1 =30 -log (1= p)] (13)

where y; is the real label of the ith sample. p; is the predicted
label of the ith sample.

S5: Check if the current training epoch has reached
the maximum preset epoch. If the maximum epoch is
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reached, stop training; otherwise, update the parameters of
the LD-IGCN model and continue to the next epoch.

Finally, according to equation (13), it can be seen that the
loss value L is related to the system label information and
it will participate in the backpropagation process of model
to update the model parameters layer by layer. As shown in
Fig.2, adjacency matrix LB is one of the target parameters
for the backpropagation process of the LD-IGCN model.
Therefore, by relying on the learnability of the associated
graph in IGCN and the backpropagation mechanism of the
loss value, the LD-IGCN model successfully establishes the
correlation between variable relationship features and system
labels, thereby improving the performance of the leakage
detection model. The process of updating matrix LB is as
follows:

dL
LBy = LByjg — o0 x ——

dLB (14)

where « is the learning rate.

IV. CASE STUDY

In this section, the proposed method is programmed by
Pytorch 1.3 machine learning framework. The programming
environment is Windows 10 with Python 3.7.

Three conventional models, namely, the AE model [17],
the CNN model [18], and the MLP-GCN model [24],
are utilized for comparative analysis. The selected AE
model contains two hidden layers and one leakage detection
classifier, where each hidden layer will be pre-trained
by stacked autoencoder (SAE). The CNN-based leakage
detection model consists of two CNN blocks and a classifier.
The selected MLP-GCN model is a traditional GCN-based
model, which is established with two GCN layers and a
classifier.

Moreover, to evaluate the performance of different models,
accuracy(Accuracy) is selected as the indicator, which are
defined as follow:

LL + NN
LL + LN + NN + NL

where LL and LN represent the number of leakage samples
that are predicted as leakage and normal, respectively. NL

Accuracy = (15)

VOLUME 11, 2023
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FIGURE 5. Structure of EPANET water supply network.

and NN represent the number of normal samples that are
predicted as leakage and normal, respectively.

A. CASEA

The experimental data of this case is generated by the Envi-
ronmental Protection Agency’s Water Distribution Network
Analysis Model (EPANET) benchmark simulation platform
[31], which is an industrial analyzing software commonly
utilized for the simulation of urban water supply systems.
According to an actual water supply network in Hangzhou
city, the structure of the hydraulic model is designed as
Fig.5. The model comprises 30 user nodes, 48 water supply
pipelines, 3 reservoirs, 3 pumps, and 2 tanks. The basic
demand of the user nodes is assigned from 13.5 L/s to
99.1 L/s, while the diameter of pipelines between nodes
ranges from 250 mm to 500 mm.

The node leakage in EPANET is simulated through the
utilization of the hydraulic simulation tool library water
network tool for resilience (WNTR) [32], [33]. The leakage
model, which is provided by WNTR, is defined as follows:

o |2
eleak = DyBp” | —
0

eleak = DaB+/2gh

where ejeqx 1S the leak demand (m3 / s). B represents the area
of the hole (mQ). o represents the leakage degree coefficient
(unitless). p is the gauge pressure (Pa). &, g and p represent
the gauge head (m), acceleration of gravity (m/ s2) and
density of the fluid (kg/m?), respectively. Dy is the discharge
coefficient (unitless).

It should be noted that the EPANET hydraulic model
is driven by water pressure, where the leakage will be
reflected in the pressure values of the nodes as well as
the relationship with their adjacent nodes. We design three
different leaks including the large, middle and small leaks,
which are realized by setting the adjustable coefficient « to
0.75, 0.45 and 0.15, respectively. Fig.6 shows the changes
in the pressure curve of the node n4 under normal and three
leakage levels.

In addition, two leakage modes are designed including
a single-node leakage (node n4) and multiple-node leakage
(nodes n5, n13 and n21) with large, middle and small leakage
degrees, which are shown in Table 1.

when o = 0.5 (16)
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FIGURE 6. The pressure curves of nodes under normal and different
leakage conditions.

TABLE 1. Different situations of leakage sources.

Leakage type  Leakage nodes  coefficient «v / leakage degree
1 n4 0.75/ Large
Pagp 1 n5, nl3, 21 0.75/ Large
3 n4 0.45/ Middle
4 n5, nl3, n21 0.45/ Middle
5 n4 0.15/ Small
6 n5, nl13, n21 0.15/ Small

We independently gathered training and testing pressure
data for each leakage type to substantiate the effectiveness
and merits of our proposed model. In each leakage type,
1500 samples are collected for training of which the
first 1000 are normal samples and the rests are leakage
samples. Meanwhile, another 700 test samples are collected
under the same condition, where the first 500 samples
are normal and the remaining 200 samples are leakage
samples.

An appropriate LD-IGCN structure is paramount for
successful leakage detection. The over-smoothing problem
caused by deep graph convolutions leads to indistinguishable
node features. Consequently, we propose an LD-IGCN model
for the current experiment, containing two IGCN layers, one
fully connected (FC) layer, and a softmax layer. Because of
the advantages in training speed, gradient vanishing problem
and model generalization, the ReLU function is selected as
the activation function which will be used in the hidden layers
of LD-IGCN model.

The number of neurons in both IGCN layers and the
softmax layer of the LD-IGCN model are determined based
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FIGURE 7. Accuracy of training and testing process in case A.

on the variable dimension of the input data (set as 30) and the
number of classification categories (set as 2), respectively.
By adjusting the number of neurons in the FC hidden
layer and observing corresponding loss values, we find
that the model can reach minimum loss results in all six
sub-experiments when the number of neurons in the hidden
layer is set to 25.

Finally, due to the capability of adaptive learning rate
adjustment, the Adam algorithm is chosen as the optimizer
for the LD-ICGN model, which can provide a better and
more efficient parameter optimization path. The initial
learning rate and training epochs are set to 0.01 and 2000,
respectively. To avoid overfitting, it is necessary to choose
an appropriate training epoch. Fig.7 and Fig.8 illustrate the
training and testing process in six sub-experiments. The
model is considered to be overfitting when the loss curve
of the testing dataset starts to rise and the loss curve of
the training set still goes down. According to Fig.8, the
optimal training epochs for the six leakage types are 700,
500, 500, 800, 1500, and 1000, respectively. Therefore, the
hyperparameters of the LD-IGCN model in this case can be
represented in Table 2.

Table 3 and Fig.9 show the results of water leakage
detection in case A. The large degree water leakage can be
easily detected by all methods. However, when water leakage
degree decreases, the LD-IGCN model outperforms the other
methods in middle and small degree leakage. Compared
with AE model, the proposed approach can explicitly mine
the correlation between variables and map it to the hidden
representation. Therefore, the model can comprehensively
identify the changes of both variable values and their
correlation to evaluate the network state, which benefits the
water leakage detection performance. Compared to CNN,
LD-IGCN is more suitable for non-Euclidean data such as
water supply network data. Hence, the proposed method can
exhibit superior performance on water leakage detection.
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TABLE 2. Hyperparameters of LD-IGCN model in case A.

Description

Value

Neuron number in first IGCN layer

30

Neuron number in second IGCN layer 30

Neuron number in FC hidden layer 25
Neuron number in softmax layer 2
Activation function Relu
Epochs of leakage type 1 700
Epochs of leakage type 2 500
Epochs of leakage type 3 500
Epochs of leakage type 4 800
Epochs of leakage type 5 1500
Epochs of leakage type 6 1000
Optimizer Adam
Learning rate 0.01

Moreover, the MLP-GCN model is introduced for compar-
ison which is established according to the fixed association
graph in Fig.5. The experimental results of MLP-GCN model
show inferior detection performance since the correlation
among different variables is fixed, which is unsuitable for
complex water supply network. In addition, water leakage
will severely affect the correlation among nodes such as
water pressure. However, the correlation in MLP-GCN is
predetermined and cannot be modified according to real data
collection. Even worse, the detection results will deteriorate
as the number of leakage sources increases. Comparatively,
the proposed method can adaptively learn the correlation
among variables and thereby achieve better leakage detection
performance.

To compare the computational efficiency of the proposed
LD-IGCN model with the other models, The average time
consumption of all models on the testing dataset is shown in
Table 4. Due to the additional graph convolutional operations
of GCN-based model, the computational time costs of the
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TABLE 3. Detection results of case A.

Leakage type 1 2 3 4 5 6
Training 11000 100.0 9.1 99.4 986 98.9
Accuracy (%)
AE
Testing 99.1 99.1 969 97.6 942 953
Accuracy (%)
Training | 1600 1000 9.3 99.5 992 99.3
Accuracy (%)
CNN
Testing 99.1 99.1 96.7 97.8 935 942
Accuracy (%)
Training 1100 100.0 99.4 99.6 989 99.2
Accuracy (%)
MLP-GCN
Testing 989 99.1 96.2 969 945 954
Accuracy (%)
Training | 1000 100.0 99.6 99.8 994 99.7
Accuracy (%)
LD-IGCN
Testing 99.1 99.1 97.3 98.1 96.1 96.7
Accuracy (%)
I AE
I CNN
100 [_]MLP-GCN
[ LD-IGCN
98 -
9
>
o
© 96
3
Q
Q
<
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9
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FIGURE 9. Leakage detection accuracy under different leakage types in
case A.

MLP-GCN and LD-IGCN models are slightly higher than the
other two models, which still satisfies the real-time demand
of online leakage detection.

B. CASEB

To further validate the stability and reliability of the proposed
method, the water pressure data, collected from the water sup-
ply network of a residential area in Taizhou city, is employed
which includes 42 water pressure monitoring nodes. In the
data collection of case B, a large leakage and a small
leakage are found which are caused by pipe rupture and pipe
corrosion, respectively. In leakage type, the training dataset
consists of 1000 normal samples and 500 corresponding
leakage samples while the testing dataset includes 500 normal
samples and 200 corresponding leakage samples.
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TABLE 4. Time cost used for different models in Case A.

Time(s) AE CNN MLP-GCN  LD-IGCN
Leakage type 1~ 0.1527  0.1882 0.2158 0.2048
Leakage type 2 0.1543  0.1872 0.2133 0.2023
Leakage type 3~ 0.1530  0.1810 0.2165 0.2046
Leakage type4  0.1512  0.1860 0.2173 0.2042
Leakage type 5 0.1552  0.1858 0.2156 0.2036
Leakage type 6  0.1566  0.1876 0.2177 0.2052

TABLE 5. Different leakage types in case B.
Leakage type  Description
Large Pipe rupture
Small Pipe corrosion
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FIGURE 10. Accuracy of training and testing process in case B.
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FIGURE 11. Loss of training and testing process in case B.

Similar to case A, the number of neurons in both IGCN
layers is equal to the number of nodes and set to 42. The
neuron number in the softmax layer is determined by the
number of categories 2. Moreover, the optimum neuron
number in the FC layer is 35.

The Adam algorithm is also chosen for model parameter
optimization. The beginning learning rate and training epochs
are still set as 0.01 and 2000, respectively. The training and
testing process can be shown in Fig.10 and Fig.11 where the
optimal training epochs for leakage type 1 and leakage type 2
are determined as 500 and 1200, respectively. Therefore, the
hyperparameters of the proposed method in case B can be
represented in Table 5.

The detection results of all models are shown in Table 7
and Fig.12. The influence of large leakages caused by pipe
rupture on the water pressure values at the detection points is
evident. Therefore, all models achieve excellent results in the
large leakage detection experiment. Compared to the AE and
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TABLE 6. Hyperparameters of LD-IGCN model in case B.

Description Value
Neuron number in first IGCN layer 42
Neuron number in second IGCN layer 42
Neuron number in FC hidden layer 35
Neuron number in softmax layer 2
Activation function Relu
Epochs of leakage type 1 500
Epochs of leakage type 2 1200
Optimizer Adam
Learning rate 0.01

TABLE 7. Detection results of case B.

Leakage type Large  Small

AE Training Accuracy (%)| 98.5 97.6

Testing Accuracy (%) | 98.1 95.4

Training Accuracy (%) | 98.9 98.2
CNN

Testing Accuracy (%) | 97.8 94.8

Training Accuracy (%)| 99.1 98.6
MLP-GCN

Testing Accuracy (%) | 97.6 94.3

Training Accuracy (%)| 99.1 98.7
LD-IGCN

Testing Accuracy (%) | 98.1 96.0

98

©
(o)
1

Detection Accuracy (%)
©
s
1

©
N
1
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Leakage Type

FIGURE 12. Leakage detection accuracy under different leakage types in
case B.

TABLE 8. Time cost used for different models in Case B.

Time(s)  AE CNN
Large  0.1757  0.2396
Small  0.1765 0.2348

MLP-GCN  LD-IGCN
0.3291 0.3148
0.3247 0.3172

CNN models, the proposed method is capable of discerning
the differences in variable relationships between normal and
leakage data, thus leading to superior performance. The
learned relationships between variables in MLP-GCN reflect
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the system physical structure. However, the introduced graph
prior only considers the physical structure and neglects the
ruptures in the pipeline. Consequently, the performance of the
MLP-GCN model is weaker than the proposed method in this
experiment.

The impact of small leakage caused by corrosion is less
pronounced compared to large leakage. Consequently, the
detection accuracy of all methods decreases. It is worth
highlighting that the LD-IGCN model still outperforms
the other three methods. Table 8 shows the average time
consumption of all models on the actual water pressure
monitoring testing data. Compared with the other methods,
the proposed method does not cost much extra time while
improving the leakage detection performance.

V. CONCLUSION

This paper proposes a leakage detection algorithm for
water supply network based on IGCN model. Compared
with traditional GCN methods, both measurement value
information and data relationship information are well
considered in the proposed algorithm. Moreover, due to
its unique self-learning fully connected association graph,
the proposed method outperforms several state-of-the-art
methods in leakage detection rate. It is noticed that the water
demand of each node in the water supply network changes
over time, which is not considered in this paper. Therefore,
the data autocorrelation will be discussed in our feature
work.
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