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ABSTRACT For autonomous unmanned vehicles (AUVs), navigation control is an essential concern in
academia. Conventionally, existing research works dealt with this issue by resorting to the ““Simultaneous
Localization and Mapping” (SLAM) technology. Although many SLAM-based approaches had been
proposed in recent years, they could not mostly perceive semantic characteristics from dynamic visual
scenarios. To deal with this challenge, this paper proposes a navigation control approach for AUVs via a deep
learning-enhanced visual SLAM framework. Firstly, the commonly used coordinate system in the motion
of AUVs is analyzed, and a mathematical description of the circular arc motion of AUVs is formulated.
Then, an up-convex curve model is adopted to realize high-accuracy detection of the bilateral lane lines.
On the foundation, a yaw angle guidance-based imitation learning framework is utilized to realize navigation
control. This well facilitates the analyzing the causal relationship between scenarios and decisions. Some
experiments are conducted by simulating real-world urban road scenes, to testify the efficiency of the
navigation control for AUVs. The results show that navigation accuracy can be improved by about 5%.

INDEX TERMS Autonomous unmanned vehicles, navigation control, deep learning, visual SLAM.

I. INTRODUCTION

Traffic accidents, road congestion, and environmental pollu-
tion caused by vehicle exhaust have become urgent social
problems [1]. In this context, intelligent vehicle technol-
ogy with autonomous driving as the core provides an
effective solution to the above problems and has become
the most important application area for artificial intelli-
gence technology to be implemented. The driverless vehicle
is a combination of image processing, artificial intelli-
gence, automatic control, and many other technologies
with one to achieve autonomous navigation. The current
mainstream autonomous driving solutions consist of global
planning, decision-making, local planning, and control mod-
ules [2]. The modular autonomous driving solution based
on high-precision maps consists of a perception module that
transmits environmental information to a decision module,
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which outputs behavioral strategies, and a path planning mod-
ule that plans the autonomous vehicle trajectory according to
the strategies [3]. And finally, a control module that outputs
control values for the steering wheel, throttle, and brake
by fitting the current position of the vehicle to the target
trajectory position [4].

However, in large-scale complex road conditions, the engi-
neering cost of this solution increases dramatically. And it
cannot take into account extreme situations [31]. Artificial
intelligence technologies are expected to support the achieve-
ment of these goals [32]. One of the long-term goals in the
field of artificial intelligence is that intelligence can learn
effective strategies by interacting with their environment and
optimize them as they gain practical experience [33]. The
data-driven autonomous learning paradigm based on rein-
forcement learning provides the mathematical framework
to achieve this goal, from the field of robotics to recom-
mendation systems [34]. From quantitative trading systems
for financial markets to natural language processing [35].
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Reinforcement learning has been successful in many appli-
cation areas [36]. However, these approaches lack scalability
and are limited to dealing with low-dimensional problems.
In recent years, the rise of deep learning, with its power-
ful function approximation and the representational learning
capabilities of neural networks, has made it possible to use
reinforcement learning to deal with complex problems of high
dimensionality [37].

Deep learning has solved the dimensional catastrophe
problem of machine learning and has achieved great success
in areas such as image recognition and natural language
processing. It has also greatly contributed to the develop-
ment of reinforcement learning [38]. Deep reinforcement
learning is a method that combines reinforcement learning
with deep learning. Deep learning extends reinforcement
learning to previously intractable decision problems, i.e.,
high-dimensional (continuous) state and action spaces. Deep
reinforcement learning combines the powerful represen-
tational capabilities of deep learning with the powerful
inference capabilities of reinforcement learning to determine
the behavior of an intelligent body. It provides an alterna-
tive solution for the implementation of autonomous driving
technology. Currently, the application of deep reinforcement
learning methods to autonomous driving technology is still
in its infancy and faces many problems. Imitation learning is
another autonomous learning method. By introducing expert
experience to make up for the deficiency of slow learning
speed and poor stability of deep reinforcement learning.

However, there are still problems that need to be solved,
such as there is no unified answer for how to design the state
space to describe the environment completely and accurately,
and how to design the reward function to help the vehicle
learn a better policy. In this paper, we mainly use deep
reinforcement learning as an autonomous learning method to
implement autonomous driving decisions and control. When
facing complex urban scenes, another autonomous learning
method, imitation learning, is introduced for the shortage of
slow convergence of deep reinforcement learning. The main
research of this paper is about SLAM technology and path
planning algorithm for unmanned vehicles, choosing adaptive
Monte Carlo localization as a means of localization, study-
ing the classical EKF-SLAM technology based on extended
Kalman filter and RBPF-SLAM technology based on parti-
cle filter, synthesizing the advantages and disadvantages of
both algorithms, choosing the particle filter-based algorithm
for further research, and combining the improved particle
filter-based The Gmapping algorithm based on improved
particle filtering and Cartographer algorithm based on graph
optimization are tested for indoor environment mapping, and
a preliminary framework of mapping algorithm is established
for autonomous navigation of unmanned vehicles.

Il. RELATED WORK

The initial solution to the SLAM problem was designed based
on the Kalman filter algorithm. The Kalman filter algorithm
research idea initially solves the SLAM problem in specific
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cases, but due to the limitations of the algorithm itself, the
algorithm can only be applied to systems with linear Gaussian
properties. In the literature [5], a Gmapping algorithm based
on the Fast SLAM scheme was proposed. Gmapping is a
particle filtering-based 2D SLAM algorithm using LiDAR
sensors, which is now commonly used for the localization and
construction of 2D maps of indoor environments. After years
of development, the Gmapping algorithm is simple, easy to
implement, and low-cost. Basiri et al. [6] used an indoor
robotics platform based on a Raspberry Pi board for indoor
construction using the Gmapping algorithm, and the results
demonstrated the robustness of navigation. Zhao et al. [7]
proposed a gradient correction refinement algorithm, a new
method for localization based on improved particle filtering,
which extends the traditional particle filtering algorithm and
is more general.

In the literature [8], a fast SLAM system based on 3D
attitude is proposed, where the vehicle trajectory can be better
estimated by carrying a 360° LIDAR. Zhu and Yang [9] pro-
posed Foot SLAM is an algorithm based on the principle of
simultaneous localization and composition (SLAM), which
relies on human mileage (i.e., the measurement of pedes-
trian’s footsteps) to construct probabilistic maps of human
motion for such environments. The literature [10] used two
RTK-GPS receivers mounted on a vehicle to achieve position
and direction feedback of the robot, designed a backstepping
sliding mode control (SMC) navigation controller, and veri-
fied the capability and robustness of high-degree-of-freedom
incomplete system control. However, satellite positioning
navigation is susceptible to environmental constraints such
as floors, trees, and tunnels, especially in indoor scenarios
making the reception of satellite signals subject to inter-
ference, resulting in reduced accuracy and even positioning
failure. Zhou et al. [11] used a multi-sensor fusion algorithm
to further improve localization and navigation accuracy by
making full use of the advantages of various sensors in the
hardware architecture to compensate for individual sensor
deficiencies.

The literature [12] proposed an inter-frame matching
scheme for point cloud information collected by LiDAR,
which combines correction and optimization with nonlin-
ear optimization based on an improved bit-pose algorithm
for laser point cloud data to accomplish localization of
mobile robots in unknown environments. The literature [13]
improved the ant colony algorithm to solve this aspect. The
fast random expansion tree method algorithm (RRT) is a tree-
like graph-based algorithm, which is structured as a randomly
bifurcated tree structure from inside to outside, with the tree
extension direction determined by random adoption in the
re-space. Tong et al. [14] proposed a 3D vision robot path
planning method based on the data model, which focuses
on the accuracy of vector testing of the robot’s distance
to obstacles in the case of more complex obstacles, and
allows the mobile robot to complete a high-precision obstacle
avoidance function. Zhu and Yang [15] proposed a machine
vision-based navigation method for wheeled robots mainly
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using a fuzzy sliding mode control model to complete the
path tracking control of mobile robots. In the literature [16],
a simple and inexpensive visual navigation system is studied,
which is based on monocular visual navigation techniques
to localize and complete navigation tasks for a series of
road signs. In recent years, with the widespread use of deep
learning in the field of image detection, research scholars
have started to use deep learning methods to learn navigation
information directly from raw perceptual data.

lil. METHODOLOGY

A. ROS-BASED AUTONOMOUS NAVIGATION FRAMEWORK
ROS (Robot Operating System) is one of the most popular
and advanced frameworks, which is widely used in the field
of autonomous navigation because of its ease of operation,
rich functionality, and power. ROS itself is a distributed com-
munication framework, which can help program processes
to communicate with each other more easily. The core idea
of ROS is to make different software functions into nodes
and communicate between them through messages. Figure 1
shows the scene of SLAM processing multiple traffic seman-
tic information.

The system consists of the following main components:

o Sensor data acquisition: The system utilizes LIDAR
measurements and motion data from the unmanned
vehicle’s built-in odometer as a data source. The odome-
ter provides data on the movement speed and azimuth
changes of the driverless vehicle to control the move-
ment of the driverless vehicle; the data collected by the
LiDAR provides information about the environment of
the driverless vehicle [17]. By combining data from both
sensors, the driverless vehicle is guided through route
navigation.

o Coordinate conversion: Before the unmanned vehicle
can be positioned, the position coordinates of the sensor
need to be changed. Since the sensor coordinates used
are relative, the sensor measurements must be converted
to position coordinates in the global coordinate system.

o SLAM module: Unmanned vehicles map their environ-
ment, locate their position in a completely unknown
environment, and navigate using the environment map
and its location at the same time, which is the problem
of instant localization and map generation (SLAM) for
driverless vehicles, which will be studied in this module.

« Path planning module: Path planning is one of the key
technologies for unmanned driving. This part focuses on
path planning for maps with known global information
as well as completing path planning based on local
information.

In addition, the sensor data needs to be collected, and the
data from the LIDAR combined with the wheel odometer of
the cart chassis is used as the input quantity of the whole
navigation system. The LIDAR scans the surrounding envi-
ronment to obtain the obstacle information of the surrounding
environment, at this moment the radar scanning point is in the
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radar coordinate system; the wheel odometer is measured by
the encoder sensor to get the rotational speed of the wheel
combined with the kinematic model to get the movement
speed (linear and angular velocity) change, and the odometer
data (coordinates and heading of the chassis) are obtained
by the track projection method, and the odometer coordinate
system is established at the position of the chassis. The fusion
of RBPF-SLAM and EKF-SLAM adopted in this paper
combines the advantages of the two, avoids the defect that
small-weight particles may be lost in the simulation process,
and optimizes the uncertainty in particle filtering. Compared
to the current state-of-the-art cartographer algorithm which
needs to obtain the sensor scanning data of each frame, the
algorithm proposed in this paper guarantees the accuracy
while requiring a lower amount of data.

Since the sensor coordinate system is a relative coordinate
system at this moment, it is necessary to convert the sensor
data to the global coordinate system and use TF coordinate
transformation to ensure the uniformity and consistency of
the data. The odometer data are used to obtain the position
estimates of the car, and these position estimates are used as
the initial values to match with the radar data to update the
position estimator values, and frame by frame the radar data
are motion filtered and continuously superimposed to form a
2D raster map. this process completes the map building and
positioning, at this time the new coordinate system is obtained
as the global coordinate system, and then the map server can
save and read the map information [18]. In the established
global and local cost maps, after specifying the coordinates
and orientation of the target points, the global path planner
combines the sensor data after the coordinate system conver-
sion to plan the offline global optimal path. The local planner
settles the speed combination of the optimal trajectory in
the specific motion based on the local cost map information,
and in case of emergency failure or target unreachability, the
motion state recovery mechanism is activated to help the cart
start navigation again.

Figure 2 shows the framework diagram of ROS-based
autonomous navigation. As the last part of the autonomous
navigation system, the velocity combination calculated by
the local planner is passed to the cart chassis controller in
the form of linear and angular velocity control quantities
to enable the cart to achieve tracking motion for the given
path. In this paper, we mainly focus on two aspects of map
building and positioning and path planning and designing an
autonomous navigation framework based on ROS in combi-
nation with the existing hardware base. The SLAM problem
is essentially a theoretical probabilistic model based on a
probabilistic model. The SLAM problem has two elements of
importance: first, the use of sensors to capture environmental
information and process the information while constructing
a SLAM map that matches the environmental features. Sec-
ondly, the position of the unmanned vehicle is estimated
based on the environmental feature information. The SLAM
problem is whether the robot can navigate in an environment
without prior information and build a map of its surroundings
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FIGURE 1. The scene of SLAM processing multiple traffic semantic information.

Push Server I Web Server
| Client
] Message Message Manage
| Authori Generator | — I || Publish
H al 1ent
> o
l IDIETNAES Data Access Task Manage %
| g
| Message Push é I
I Task Monitor
Message
r -_ Data
Push Server
Task
I Distribute
Message Task Monitor Dataupload > Taskupdate > Datarequest
decode
Task Control I

FIGURE 2. ROS computational structure diagram.

while locating the robot’s position in this map.SLAM has
different implementations in different domains, including
indoor, outdoor, aerial, and underwater robotic systems at the
theoretical and conceptual levels.

B. MOTION MODEL OF MOBILE UNMANNED VEHICLES

Motion modeling is an essential part of the field of SLAM
for unmanned vehicles and in the field of unmanned vehicle
navigation. Modeling the unmanned vehicle according to its
structure, motion and other factors is the main role of the
motion model. An unmanned vehicle in a rigid traveling state
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is generally described by six variables, including its 3D linear
coordinates and six terms such as roll angle, yaw angle, and
Euler angle. In this paper, the research environment assumes
that the unmanned vehicle moves in a two-dimensional plane,
and the motion state of the unmanned vehicle moving in a
two-dimensional plane can be represented by a vector, which
is shown as:

=

ey

Xy =

D <
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Localization is the process of estimating the joint state
vector of an unmanned vehicle. The location of the envi-
ronment in which the unmanned vehicle is located can be
represented as a coordinate point (x, y) in an absolute coor-
dinate system. However, in unmanned vehicle simultaneous
localization and map creation studies, the unmanned vehicle
cannot be abstracted as a physical mass point because the
geometry of the unmanned vehicle is no longer negligible
compared to the distance between the environmental features
observed by the sensors. In other words, if the unmanned
vehicle is abstracted as a physical mass, the solution to
the SLAM problem will deviate from the actual value and
lose any practical value and meaning. the direction of 6 is
defined as negative counterclockwise and positive clockwise
in the absolute coordinate system X-axis [19]. In the solution
of a problem such as SLAM, the kinematic model can be
expressed as:

P X | X1, ur) )

In the equation, x; and x;_; represent the position of the
unmanned vehicle at time t and the position of the unmanned
vehicle at time t - 1, respectively, and u, is the control quan-
tity. The meaning of the equation is: in the actual physical
experiment, u, is the feedback data from the odometer, and
the position attitude of the unmanned vehicle at the time t -
1. x;— is converted into a posteriori probability distribution
under the action of the control quantity u;, which is the
posterior distribution probability of the position attitude of
the unmanned vehicle at time t.

There are two general representations of motion model-
ing in the plane. The kinematic models can be divided into
velocity-based kinematic models and odometer-based kine-
matic models according to the different motion control tu.
These two models have different application scenarios, and
the two can compensate for each other’s shortcomings. Most
commercial unmanned vehicles are driven by independent
translational and rotational velocities, such as differential and
synchronous drives. The odometer model, on the other hand,
refers to the ability of the unmanned vehicle to give informa-
tion about the distance the unmanned vehicle is moving and
its rotation in motion through its range sensors. Overall, the
motion model tends to have high accuracy with the addition
of odometry, and the commands of the unmanned vehicle may
be incorrect at a certain time, for example, there will be cases
where the car slides sideways, and mismatches between the
speed commands and motor control commands [20].

After the unmanned vehicle executes the control com-
mand, the odometer gets the appropriate data back, so there
is the disadvantage of lag in path planning. On the contrary,
the speed model, which is mainly calculated by speed, can
be well applied in the real-time motion calculation of the
unmanned vehicle. The vehicle model can be simplified to
a two-degree-of-freedom model: degrees of freedom for the
vehicle to move along the longitudinal direction and degrees
of freedom for the front wheels to rotate along an axis perpen-
dicular to the vehicle’s plane of motion. Thus, the two front
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wheels and the two rear wheels can each be equated to a single
wheel to obtain a bicycle model consisting of only two rigidly
connected wheels moving in the plane. Since the assumption
of no sideslip is proposed, the velocity of the vehicle in the
orthogonal direction of the front and rear wheels should be
0. For the rear wheels of the vehicle, the following constraint
equation is obtained by this assumption:

S
n="%+tc 3)
X

where 7 is the rear wheel position, Sy is the equation of
motion, and c is a constant.

The following relationship exists between the velocity of
the front wheel and the velocity of the rear wheel:

=ve @ @

where v¢ denotes the front wheel velocity and v, denotes the
rear wheel velocity. Unlike a general mobile robot, the vehicle
has three degrees of freedom (x, y, ¢) in the plane of motion,
i.e., transverse motion, longitudinal motion, and transverse
pendulum motion, but the vehicle has only two controllable
degrees of freedom, i.e., the longitudinal velocity vin m - s-1
and the front wheel rotation angle § in rad, so the vehicle is a
non-integrity constrained system. Since it cannot move in the
orthogonal direction along the vehicle axis direction, it cannot
achieve arbitrary velocity components in the x-direction as
well as the y-direction with a fixed attitude, and therefore
cannot travel in any direction. The bicycle model is the most
widely used in the vehicle non-integrity constraint. The vehi-
cle dynamics model has many complex variables affecting
factors and complexity can be divided into vehicle driving
dynamics, vehicle driving dynamics, and vehicle maneuver-
ing dynamics according to the research content and different
assumptions. Since the tire direction is not the same as the
vehicle’s forward direction, it will cause the tire to generate a
small slip, and the slip angle is defined as follows:

af =8 — Oy @)

where 0, is the directional angle of the front wheel velocity
in rad, and § is the front wheel turning angle in rad. Thus the
lateral forces on the front and rear wheels are as follows:

Fyr = 2C(—=0yf) (6)
Fyr = 2Caf(_9vf) (7)

where Cyr is the front wheel lateral deflection stiffness and
Cyr is the rear wheel lateral deflection stiffness, both in N
- rad —1, as both the front and rear wheels in the model
are simplified from two wheels. The ordinary Kalman filter
(KF) is used to obtain a dynamic estimate of the target in
the linear Gaussian case using the minimum mean square
error, and the method is suitable for systems where both
the state and measurement models are linear and the error
model conforms to a Gaussian distribution. For systems with
a nonlinear relationship between the state equation or the
measurement and the state, the nonlinear relationship is often
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solved by transforming it into a linear problem using a local
linear approximation.

Among the solutions to SLAM problems, Kalman filter
(EKF)-based estimation methods have been widely used as
the most fundamental solution of SLAM problems. EKF
is more applied in the field of sensor data fusion, espe-
cially fusion localization. EKF generally uses two nonlinear
functions to describe the state transfer and measurement pro-
cesses.

_ _ Ag, _ Ao,
f¢(p’x)_dp(x dp<x>)+d”(x dp<x>) ®)

Aoy Ao,
T S

where fy (p, x), f, (p, y) are the two nonlinear functions used
to describe the transient transfer and measurement process,
dp (y) , dp (x) are the state quantity and observation quantity
of the vehicle at the moment of p, respectively. Extended
Kalman filtering uses the linear Kalman filtering method
applied to the nonlinear model with local linearization pro-
cessing, so extended Kalman filtering is the linear Kalman
filtering method to cope with the nonlinear system model
processing. The extended Kalman filter, like the Kalman
filter, divides the filtering process into two processes: state
volume prediction and observation update.

The difference is that the extended Kalman filter replaces
the system parameters of the KF with a linear matrix.
Although Kalman filtering provides a solution for filtering
nonlinear systems, it also has the following shortcomings:
Extended Kalman filtering assumes that the noise and state
distributions obey Gaussian distributions, an assumption that
is poorly approximated in practical applications, unless the
nonlinear system is continuously close to linearity, the results
of extended Kalman filtering will be close to the true value.
In the process of local linearization of the nonlinear system
using Taylor’s formula after expansion only the first-order
term is retained, which will introduce errors [21]. The
extended Kalman filter may prevent the filtering results from
converging when the error in the given initial state and initial
covariance is large. The ratio of the proposed distribution to
the posterior probability density function (target distribution)
indicates how close the target distribution is to the proposed
distribution. As more samples are sampled in the sample
space, the proposed distribution will gradually approach the
target distribution, and this ratio also affects the likelihood
that the next sampled particle will be collected. The weights
are derived to the vehicle state sequence and sensor data
observation sequence from the initial moment t1 for analysis,
and iteratively find the weight changes of particles at different
moments:

m
_ K
- <N
21 R
In the process of particle computation, the distribution of

weights may be polarized, with a small number of particles
receiving larger weights and the rest having weights so small

v

(10)
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that they can be approximately ignored. The variance of the
particle weights increases with time, and the number of effec-
tive particles in the state space is small. The problem of
degradation of particle weights in sequential importance sam-
pling methods is generally solved by increasing the number of
sample particles, with the consequent increase in the compu-
tational effort of the algorithm, making it less real-time. The
resampling method replaces the particles with smaller impor-
tance weights with particles with larger importance weights
to suppress the degradation of weights, which can maintain
the real-time performance of the algorithm without increasing
the number of particles. The algorithm principle of particle
filtering can be represented in Figure 3. First, the particle set
is initialized according to the prior distribution to generate the
sampled particles. Importance weights are generated for each
particle, and the second generation of sampled particles is
generated by sampling the importance of the initial particles
according to the importance weights, and whether to resample
them according to the number of valid particles, and the state
estimates are output after iterative computation.

The joint posterior probability distribution problem is
solved by first obtaining the vehicle position informa-
tion based on the vehicle observation and control input
information to achieve the vehicle’s positioning, and then
constructing a global map based on the vehicle’s own posi-
tioning and sensor observation information. In the process
of map construction, the map constructed at each moment
of the vehicle position is only related to the vehicle posi-
tion and observation information independent of time, so the
maps built at each moment of the vehicle are conditionally
independent. The global map posterior probability estimates
can be obtained by calculating the product of the posterior
probability estimates at each moment, corresponding to the
particle filter where each sample particle set represents the
map information at this location:

R 1
Eur = Z(Econtest X Xx; + gfree x th X dl-z)
i=0
K
+ D (4E, x x;) (11)

i=0

Particles with low-importance weights are usually replaced
by sample particles with high weights. Since the number
of particles is discrete and finite, the resampling process is
essential to enable the particle distribution to approximate
a continuous distribution. To improve the proposed distri-
bution, after the odometer motion model gives a prediction,
a scan is matched using the LIDAR with this prediction as the
initial value to find the current bit position that best fits the
map. This process is followed by finding the narrow region
represented by the observation model. Next, k points are ran-
domly sampled in the vicinity of the observation model and
the target distribution is simulated using a Gaussian model:

F(p) = nx / k2T () £ (x) dx (12)
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FIGURE 3. Schematic diagram of particle filtering.
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FIGURE 4. Recognition effect of SLAM-based vehicle navigation scenarios.

where the normalization factor 7y has:

nk=Fy- /A - M (x)dx (13)

In this way, the best approximation to the Gaussian dis-
tribution can be obtained, the next moment particles can
be sampled from the Gaussian distribution, and the particle
weights at each moment can be established with correspond-
ing iterative relations. When the vehicle is exploring forward
in an unknown environment, there is still a high diversity and
accuracy of particles after improving the proposed distribu-
tion if no closed loop is formed. As mentioned before, too
frequent resampling can lead to the loss of particle diversity,
and resampling changes the particle distribution in the state
space by increasing the weights of particles near the target
distribution. The effective number of particles can be calcu-
lated by following the steps above as

N = Be=" cos(2nf.t) (14)

The sub-maps are only matched to the most recent laser
scan data. So as time progresses errors will be accumulated,
at which point a larger space is handled by creating more
and smaller sub-maps [22]. Adjustments are made to follow
sparse poses, optimizing the information from all scans and
sub-maps, and the relative poses of the scanned information
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are stored in memory for back-end loopback optimization.
In addition to these relative poses, once the sub-map is no
longer changing, a closed-loop loopback is performed using
the laser scan data and the sub-map, and once the two are
detected to be a good match, the resulting relative poses are
added to the optimization [23]. Figure 4 shows the recogni-
tion effect of SLAM-based vehicle navigation scenarios.

IV. EXPERIMENTAL VERIFICATION AND CONCLUSION

A. EXPERIMENTAL RESULTS AND ANALYSIS

To test the control effect of the model-based following
method, this paper uses the Carla simulation platform to
set up the following scenario. The front vehicle guides the
rear vehicle at a gentle speed (30-40km/h) and a drastic
speed change (10-60km/h), respectively. The initial distance
between the front and rear vehicles is 10 m, and the fixed
following distance is also 10 m. Carla transmits frames per
second (fps) at 15. The model is set up assuming that the
vehicle accelerates and decelerates at a constant speed. How-
ever, the Carla simulator uses the throttle and brake to control
the acceleration and deceleration of the vehicle, which are
both variable acceleration motions [24]. The front vehicle
is guided by a gentle speed change (0-40km/h) and a sharp
speed change 40-90km/h). The relative distance changes
between the vehicles during the following process of different
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FIGURE 5. Relative distance variation between vehicles during the
following process of different methods of controlling the rear vehicle.

methods of controlling the rear vehicle are recorded, as shown
in Figure 4. From the relative distance change graph, it can be
seen that the regulation process of the minimum safe distance
method is relatively smooth, the methods of the three stages
and the intelligent driving model are more sensitive to the
speed change of the front vehicle, and the method of the fixed
target distance does not change much.

From the speed curve, it can be seen that all methods
fluctuate and change around the speed curve of the vehicle in
front, the minimum safe distance method fluctuates the least,
while the fixed target distance method fluctuates the most.
In general, when the speed of the front vehicle changes more,
the collision time of the vehicle becomes smaller, which
means there is a greater risk of collision; the interval time
through the same place becomes longer, which means the
driving efficiency becomes lower; the jitter of the vehicle
is determined by the frequency of the vehicle speed change
when the vehicle speed is faster but the change is not frequent,
the vehicle jitter is smaller, which means the comfort level
is high. The intelligent driving model approach has the best
safety with crash time metrics of 33.45 &+ 12.96 and 4.43 +
3.80 at the cost of the lowest travel efficiency 80~90km/h
and 0~ 10km/h respectively.

To evaluate the effect of parameter settings on the control
effect of the conventional follow-the-ride control method. Set
different PID control parameters for fixed target distance and
parameters of the Intelligent Driving Model IDM method.
The change curves of the relative distance between the front
and rear vehicles and the speed of the rear vehicle were mea-
sured again for both methods, in a scenario where the speed
of the front vehicle changes gently (30-40km/h), as shown
in Figure 5. The dynamic window method has good obsta-
cle avoidance capability by planning the local path based
on the obstacle information detected during the navigation
of the unmanned vehicle [25]. However, the method ignores
the limitation of the global path, so it has the fatal problem of
easily falling into the local optimum. The test results show
that the parameter settings have a great influence on the
traditional follow-the-route control method.
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From the above experimental results, it can be seen that the
traditional follow-the-leader control method requires preset
model parameters. The same model parameters in different
scenarios lead to the degradation of control performance, i.e.,
the control method has poor adaptive capability. Under the
same scenario, the control effect varies greatly with different
sets of model parameters, and finding a suitable set of model
parameters requires a lot of experience in tuning parameters,
i.e., the accuracy of the control method is low [26]. For any set
of designs, the more expert experience is added to the train-
ing ground, the faster the cumulative bonus value converges
per round. Different random seeds, i.e., different variations
in the speed of the preceding vehicle, have little effect on
the cumulative reward value. It indicates that the following
strategy is available to the intelligences in different following
scenarios and the stability of the training strategy is good. The
hyperparameter settings of the algorithm part are consistent
with the experiments based on the image state space.

B. SIMULATION COMPARISON OF PATH CURVATURE
CHARACTERISTICS

To analyze the path nature and the influence of the path
tracking method on vehicle control accuracy, a three-degree-
of-freedom vehicle dynamics model is first built using a
Simulink simulation environment [27]. However, the vehicle
dynamics model does not take into account the hysteresis
problem of the vehicle steering actuator. To make the sim-
ulation results closer to the actual situation, a limiting link is
added before the vehicle front wheel angle calculation step
to limit the front wheel speed of the vehicle. Firstly, the
simulation is compared for the effect of whether the path
curvature is continuous on the control accuracy, and the test
scenario uses the limit size parking space of the vertical
parking space in the garage specification of the Ministry
of Housing and Construction. For the effect of continuous
curvature path and discontinuous curvature path on vehicle
control accuracy, a curvature discontinuous path is directly
planned in this vertical parking space using the improved
RRT algorithm, and a curvature continuous path is generated
using the optimization method.

The same path-tracking method is then used for each of the
two paths to compare the accuracy of the final path-tracking
[28]. Firstly, taking the rear-wheel feedback method as an
example, the paths were tracked using the rear-wheel feed-
back method at a speed of 1.5m/s and 3m/s, respectively, and
the paths of the curvature discontinuous paths were tracked
as shown in Figure 6. It can be seen from the results that
under the same control algorithm parameters, the error of
the curvature discontinuous path is always larger than the
error of the curvature continuous path regardless of the speed
conditions, and the error of the curvature discontinuous path
increases rapidly with the increase of speed, while the error
of the curvature continuous path is not significantly affected
by the speed in the experimental conditions. And in the
case of 3m/s in Figure 6, the vehicle collided with the left
parking space, and finally could not be accurately parked in
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FIGURE 6. Curves of the relative distance between vehicles before and
after the smoothing scene and the speed of the rear vehicle.
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FIGURE 7. Curvature discontinuous path tracking results.

the correct position of the parking space. By comparing the
results of the two experiments, it can be seen that curvature
continuity is extremely helpful to improve vehicle control
accuracy.

The traditional optimization-based method for path plan-
ning of parking lot parking, but does not consider the
curvature continuity problem, and it does not stop or decel-
erate at the curvature abrupt change position, the simulation
experiment shows that the path planned by the method in
this paper can achieve higher control accuracy [29]. The
detailed results of the error of the path tracking method
using rear-wheel feedback for different paths are shown in
Figure 7. By comparing the above pictures, it can be seen that
the control accuracy of both lateral error and heading error
curvature continuous path is significantly improved. As can
be seen from the resulting graph of the curvature discontin-
uous path, the effect of curvature discontinuity leads to the
sudden change of the expected front wheel turning angle,
and the vehicle steering system cannot immediately reach the
expected control amount, which results in a large difference
between the curve of the actual front wheel turning angle
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and the curve of the expected front wheel turning angle, thus
leading to the error. In contrast, the results of the curvature
continuous path shown in Figure 7 have a high degree of
overlap between the expected front wheel turning angle and
the actual front wheel turning angle and the control output
fluctuates slightly at the equilibrium position, so the control
accuracy is high.

However, there is still a certain difference between the
two curves at the moment of forward and reverse switching,
however, the vehicle speed is very low at this time, so it does
not introduce a large error, but still causes control deviation
[30]. The overall results show that a path with continuous
curvature can significantly improve the accuracy of vehicle
path tracking. It can be seen from Figure 8 that the system
can also complete the path planning well on irregular road
surfaces and realize the lane line tracking driving. Collating
and analyzing the data, we can get that the maximum error
value is 53-pixel values, which appears near the curves. The
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width of the lane line is about 25 m, so the maximum error
rate is 20.38%. Calculating all the data, the average error in
the 30s is 3.9 m, so the average error rate is 5.35%. The test
results show that the unmanned vehicle can accurately extract
the navigation lines and accurately identify the curve types
after increasing the filtering. Although the error is larger at
the junction of straight and curved paths of lane lines, it is
smoother when going straight or turning, and the average
error rate is stable at about 5%.

V. CONCLUSION

The automotive industry is undergoing profound and dra-
matic changes as the electrification, intelligence, networking
and sharing of cars become widespread around the world.
Driverless is also a trend that is also changing and devel-
oping in this environment. In this paper, we investigate the
application of SLAM algorithms for mapping and navigation.
The integration of the more common low-cost sensor Kinect
depth camera and 2D laser radar at the data level improves the
accuracy of Gmapping mapping. In this paper, a probabilistic
kinematic model of an unmanned cart is developed, and the
odometry model and velocity motion model are compared
and analyzed. The working principles of depth camera and
single-line LiDAR are analyzed, and then the observation
model of 2D LiDAR is established.

Two RGB-D camera principles were studied for depth
camera calibration experiments, and the correspondence
between environmental spatial coordinate points and image
pixel points was established. A two-dimensional raster map
model was established, and the process of predicting and
updating the two-dimensional occupied raster state was
derived and analyzed. Based on the constructed probabilistic
kinematic model and sensor observation model, a Bayesian
filtering scheme based on Bayesian theory, a Gaussian fil-
tering scheme based on extended Kalman filtering, and a
nonparametric filtering scheme based on particle filtering
principle are analyzed in conjunction with the unmanned
vehicle. For the problem that the traditional model-based
lane line detection algorithm has a poor detection effect in
the complex and changing road environment, the up-convex
curve model lane line detection algorithm is proposed. The
algorithm is suitable for lane line detection under a variety of
road conditions, with better detection capability and robust-
ness, and improves the shortcomings of linear and parabolic
model lane line detection.
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