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ABSTRACT In the past few decades, breast cancer has rapidly increased the death rate among women
worldwide. An early diagnosis of such fatal disease is important for the best treatment and death rate
reduction. Automatic diagnosis of breast cancer from histopathological images using artificial intelligence
(AI) based methods is a top-priority research area in the biomedical field. However, automatic detection
is challenging due to high resolution of histopathology images and the tremendous amount of parameters
required by deep AI models. Due to high computational complexity and bulky memory usage, deep models
suffer from inefficient inference that limits their application in resource-constrained platforms. To address
this problem, a fast cancer detection strategy has been proposed to overcome the computational cost issue
of deep automatic systems. Instead of directly using input images the wavelet transform (WT) is applied to
decompose the images into different frequency bands and then only low frequency bands are subjected to our
proposed lightweight deep convolutional neural network (CNN). The lightweight deep model is designed
using invertible residual block module. The incorporation of invertible residual block module in the deep
CNN model and the use of WT considerably reduces the computational cost of the proposed model, without
a noticeable accuracy downgrade Further, the effect of various machine vision classifiers i.e. support vector
machine (SVM), softmax, and K nearest neighbor classifier (KNN) on model performance is analyzed.
Experiments are performed using three publicly available benchmark histopathology image datasets. The
proposed model has shown multi-class classification accuracy of 96.25%, and 99.8% and 72.2%, on the
international conference on image analysis and recognition (ICIAR 2018), BreakHis and Bracs datasets,
respectively. The reported inference time per image of the proposed model is 0.67s, and 0.21s for ICIAR
2018 and BreakHis and Bracs images, respectively.

INDEX TERMS Breast histopathology, wavelet transform, convolution neural networks, support vector
machine, inverted residual block, softmax.

I. INTRODUCTION
Nowadays, breast cancer is among the most frequently recog-
nized cancers for women according to the American Cancer
Society. As per recent global cancer statistics, approximately
43,780 breast cancer deaths occurred in 2022 in the United
States [1]. Timely diagnosis and prognosis of this deadly
disease reduce the mortality rates and increase survivability.
In the diagnostic process, the malignant growth of a tumor in
breast tissues is observed throughmultiple examinations such
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as physical skin tests, mammography, and breast biopsy [2].
The biopsy examination is performed through visual inspec-
tion under the microscope which enables the pathologists to
categorize the breast microscopy images into different tumor
types. Through biopsy examination, two types of lesions
e.g., benign and carcinomas are confirmed by pathologists.
The benign lesions are non-cancerous abnormalities in the
epithelial cells that usually do not cause breast cancer.
The carcinomas or cancerous cells grow irregularly and are
further categorized into two types of tissue classes, i.e.,
insitu and invasive carcinomas [3]. The manual microscopic
histopathological analysis is quite challenging task due to
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its complex nature and irregular appearance of benign and
carcinomas cells. Manual investigation of this kind of disease
using biopsy samples always produces some contradictions
by physicians. Few more limitations are also associated
with manual analysis e.g., limited expertise in this field is
available in hospitals, and significant effort from pathologists
is required. Therefore, breast cancer type classification using
the biopsy test technique could be unreliable [4].

Automatic image analysis systems can help to address the
aforementioned issues [5]. The integration of digital image
processing with deep learning is used in different applications
of computer vision such as industrial automation, decision
support systems for autonomous vehicles, the internet of
things, remote sensing, and medical image analysis [6], [7],
[8], [9], [10]. Currently, artificial intelligent technologies
implementing machine learning (ML) as well as deep
learning (DL) techniques using histopathology images are
assisting radiologists to diagnose breast carcinoma, thereby
improving cancer patients’ status [11], [12], [13], [62], [63],
[64]. These automatic methods enable the pathologists to
categorize the histopathology images into different categories
and also provide a second opinion to the doctors. Automatic
diagnostic systems provide valuable information to physi-
cians for disease detection [14], [15], [16]. In this regard,
DL algorithms, Digital image processing, machine learning
and deep learning have shown good results in various applied
domains of medical image analysis [67], [68], [72].
especially convolution neural networks (CNNs) have

become an optimized solution in histopathology image anal-
ysis [17], [18], [19]. In the past couple of years, several deep
intelligent methods based on convolution neural networks
have been developed to classify breast histopathology images
into particular cancer classes [20], [21], [22].

In [23], authors suggested a CNN based model for
automated classification of breast histopathology images to
normal, benign, malignant, and invasive carcinoma classes
and have achieved an accuracy of 87% on the ICIAR
2018 dataset. Zewdie et al. [24] designed a deep CNN and
gradient boosted tree based model to perform multi-class
breast cancer classification. Likewise, Araujo et al. [25]
proposed a CNN and SVM based technique to extract the
information at different scales. They claimed accuracy of
77.8% for four classes and 83.3% for other binary classes i.e.,
carcinoma or non-carcinoma classification. In [26], a concept
of transfer learning was applied to deep CNN methods
(GoogleNet, VGGNet, and ResNet) to improve the detection
and categorization of breast cancer. In [27], Hameed et al.
did the image classification of breast histopathology with the
help of an ensemble of pre-trained models i.e., VGG16 and
VGG19. This approach claimed an accuracy of 97.73% for
the carcinoma class and 95.29% on the whole by taking the
average of predicted probabilities. In [28], Yan et al. designed
a hybrid convolutional and recurrent DLmethod and achieved
an accuracy of 91.3% for the multi classification task.
Recently, several CNN-based algorithms for the classification
of breast cancer histopathology images have been designed

for the ICIAR 2018 breast cancer histology (BACH) grand
challenge dataset [29]. These proposed techniques have
performed significantly by showing promising results.

Use of pre-processing techniques has shown good results
in the performance of convolutional neural network models
[69], [70], [71]. The preprocessing and enhancement of input
histopathology images are first performed and then split into
small patches, and each part is classified independently by
machine vision classifiers. In [30], Vang et al. performed
the patch-wise cancer type classification using the Google
Inception-V3 model [31]. Then image-wise predictions are
obtained with an ensemble fusion framework using majority
voting and logistic regression patch-wise predictions. On the
other hand, Rakhlin et al. [32] proposed a different method
and they obtained sparse descriptors of smaller dimensions
(1408 or 2048) from histopathology images. For the final
classification results, they used gradient boosted trees.
In another similar method, Awan et al. [33] extracted twelve
8192-dimensional feature vectors from a single input image
utilizing the ResNet model. These feature vectors represent
twelve non-overlapping patches of 512×512 pixels.

Usually, automatic cancer tumor classification is per-
formed using histopathology images. However, automated
detection of cancer tumors directly from histopathology
images is complicated owing to its variability in appearance,
the texture of the mitotic cells, and high-resolution of dig-
itized pathology images [32]. Deep algorithms particularly,
deep CNN models suggested in the previous literature for
the detection and classification of breast cancer tumors
involve high computation complexity and are difficult to
train on high-resolution medical images. The computational
complexity and accuracy of these models are restricted to the
spatial resolution of input images. This high computational
complexity of automatic deep cancer detection models makes
them undesirable for real time applications. Moreover, direct
processing of such high-resolution images requires a lot of
GPU memory which makes it uneconomical [34]. Therefore,
it is considered that automatic cancer detection is also a
nontrivial solution. In the design of previously proposed
deep models, the computational complexity of deep CNNs
and their dependency on input image size is not taken into
consideration. In a few approaches, the authors address this
issue by dividing the high-resolution image into small parts
(patches) and evaluating each patch independently [23]. But,
it is assumed that when images are divided into small regions
some mitotic cells are truncated between two nearby patches.
So classification performance of the model trained on such
patches is remarkably reduced. In addition, most of the publi-
cally available image datasets contain image-wise class labels
despite pixel-wise annotations. So, there is no assurance of
enough information for the correct tumor for the sampled
small size patches with few pixels. In addition, existing CNN
models always involve huge amounts of parameters and intol-
erant memory footprint. This high computational demand for
deep models leads to inefficient inference and limits their
usage in automatic detection from high resolution images.
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It is interesting to see how deep CNN models can efficiently
detect cancer tumors from high-resolution histopathology
images.

The wavelets [35], [36] have been an effective mathemati-
cal tool to extract both the frequency and spatial information
from different kinds of data and are thus widely used in
computer vision applications. Along with the success of
deep models, the researchers have introduced many fruitful
methods to apply wavelet transform with deep CNN models
[37], [38], [39] for various tasks. Williams and Li [38]
designed a deep CNNmodel through wavelet pooling instead
of using the max and average pooling. They claim that
by using the discrete transform in the CNN model the
global details of images remain preserved during the down
sampling operation. Chen et al. [40] designed a wavelet
like auto-encoder which accelerates the deep models. They
accelerate the computation by compressing the size of
the original image to low resolution. Fujieda et al. [41]
designed a strategy that leverages the spectral details in
texture classification using a wavelet transform based CNN
model. Wan et al. [42] decomposed the histopathology
images intowavelet subbandswith dual-tree complexwavelet
transform (DT-CWT). In this approach, statistical features
are obtained from each subband and mitotic cell detection is
performed with the SVM classifier. Similarly, Niwas et al.
[43] sought a complex Daubechies wavelet transform for
extraction of cell nuclei features from fine needle aspiration
cytology images. Then they applied a multivariate KNN
classifier to diagnose breast cancer on those extracted cell
nuclei. In another technique [44], the authors performed
the segmentation of cell nuclei with k-means clustering and
subsequently, discrete wavelet transform (Coiflets) was used
for the image segmentation. Cancer detection is performed
based on entropy features extracted from the segmented
sub bands by taking wavelet transforms as sampling
operations.

The depth, width, and height of the input image are
important for CNN expressive power to increase accuracy
with the overhead of parameters. It is common practice to
reduce the size (depth and width) of an over parameterized
model by trading the accuracy. However, the effective
design of a CNN model for real-time applications with
minimum computational cost and good accuracy is quite
challenging and still stands as an open question. Unlike
previous approaches, this proposed strategy not only focuses
on network computational cost issues but also the recognition
accuracy. Our work systematically and empirically focuses
on CNN model architecture (width, depth) and input image
resolution. When a pathological image with high resolution
is input to a deep CNN model, the goal is to accurately
recognize the image into multi categories with minimum
inference time. In this work, state-of-the-art techniques are
explored to minimize the network parametric load without
compromising its output accuracy. The novelty of this work
lies in performing effective image down sampling using
wavelet transform and lightweight CNN model design.

Various image-down sampling techniques are applied to
minimize input image size and to achieve robustness against
random noises. An inverted residual block is introduced
that considerably reduces the convolution time of deep
CNN models and accelerates the inference computation
without degrading its performance. The implementation
of inverted residual blocks in deep CNN models greatly
reduces the size of parameters in the designed model and
provides an efficient mechanism to control computations
and decrease the test time. The experimental results reveal
that the computational burden of deep CNNs is reduced by
using the decomposed input histopathological images with
inverted residual blocks. The proposed lightweight CNN
based system has proven to be effective to perform multi-
class cancer type classification from large size histopathology
images with essential training skills. Overall test time of the
designed deep CNN model is decreased for the detection
and categorization of cancer tumors. The low computational
cost of the proposed approach made it optimal for envisage
into real implementations. It could help pathologists to
identify the cancer type with perfect consensus. In this regard,
our designed method brought a new perspective to breast
histopathology image analysis and it could facilitate other
fields of computational pathology e.g., the categorization
of colorectal polyps through whole-slide images. The main
contributions are stated as:

• The image decomposition with wavelet transform is
performed to achieve robustness against random noise
and to reduce the computational complexity of cancer
detection models.

• An intelligent lightweight deep CNN model using an
IRB module is designed for multi-class cancer catego-
rization from high-resolutionmicroscopy histopatholog-
ical images.

• Performance evaluation and comparison using different
state-of-the-art deep CNNmodels andML classification
methods on two benchmark datasets.

The remaining parts of the paper are arranged as follows: The
technical detail of methodology and datasets information is
given in Section II. Experimental setup, and results discussion
is provided in Section III. In the end, Section IV concludes the
paper.

II. METHODOLOGY
The general workflow of the proposed scheme is given
in Figure 1. At the training stage, data augmentation is
performed and high-resolution pathological images are down
sampled with wavelet transform to improve quantitative
analysis and to reduce the computational cost of the
deep CNN model. After down sampling, the low size
images are input to the lightweight CNN to extract the
deep features. The multi-class classification is performed
later on with different machine learning classifiers. The
proposed method is discussed in detail in the following
sections.
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FIGURE 1. Work flow of the multi-class cancer classification with lightweight deep CNN model.

A. WAVELET TRANSFORM
The wavelets [35], [36] are mathematical tools for powerful
time-frequency analysis which are broadly applied in deep
learning problem solving to extract details from various
data types. Our method is trying to apply wavelet transform
for image decomposition of high-resolution histopathology
images to reduce the commutation burden of deep CNN
models. As mentioned before, the histopathology images are
of high-resolution and a small portion of the image may
contain the region of interest. Dividing the high-resolution
image into small patches or cropping images might lose some
important information about tumor type. Moreover, warping
or scaling can change the shape of the region of interest due to
the changes in the aspect ratio of the image. These operations
can affect the classification accuracy of deep detection mod-
els. To address the issue, high-resolution images are down
sampled with discrete wavelet transform before subjecting
to a deep CNN model. In order to minimize computational
cost and achieve higher accuracy of our proposed model,
input images are down sampled with wavelet transform
before subjecting them to a deep model. The discrete wavelet
transform (DWT) divides the images into multiple sets of
subframes into different frequency intervals and provides
powerful insight into characteristics [45]. The DWT performs

pyramidal image decomposition and helps to examine the
local discriminative features in histopathological images [43].
In 2-D Haar wavelet decomposition, each input image (I ) is
convolved with a set of filters i.e. one low pass filter (WLL)
and three other high pass filters (WLH, WHL, WHH) and down
sampled by stride of 2. The resulting metrics are the low fre-
quency band (LL) and three more bands of higher frequency
(HL, LH, and HH). The LL band can be down sampled into
LL2, LH2, HL2 HH2 bands, and so on to achieve the desired
size of the image [45]. Hence, the input image of a high-
resolution (700 × 460×3) selected from BreakHis dataset is
decomposed into two level wavelets, the image will generate
four matrices ( LH1, HH1, HL1, LL1) of size 350 ×230
×3 and four matrices (LH2, HH2, HL2, LL2) of the size
of 175 ×115 ×3. The 2-level Haar wavelet decomposition
makes a hierarchical structure, given in Figure 2. Three level
Haar wavelet decomposed images are given in Figure 3; (a)
original 700× 460 pixel image taken from BreakHis dataset,
(b) 1st level decomposed image, (c) 2nd level decomposed
image, and (d) 3rd level decomposed image.
Using the Haar wavelet as the mother wavelet, the 2-D

Haar scaling function is defined as:

ϕ(m, n) = ϕ(m)ϕ(n) (1)
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FIGURE 2. The process of pyramidal image decomposition using 2-D Haar wavelet, where LH1, HH1 & HL1 are images obtained at 1st level
and LL2, HL2, LH2 & HH2 are the images obtained at 2nd level decomposition.

Corresponding three, 2-D Haar wavelets (horizontal, vertical,
and diagonal) are described as:

φH (m, n) = φ(m)ϕ(n) (2)

φV (m, n) = ϕ(m)φ(n) (3)

φD(x, y) = φ(x)φ(y) (4)

where

ϕ(x) :=

{
1 for 0 ≤ x < 1
0 otherwise

(5)

φ(x) :=


1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1
0 elsewhere

(6)

Equation 5 and Equation 6 are 1-D scaling functions and
corresponding wavelets, respectively

The DWT for an image I of dimensions (m, n) is given as:

Wϕ(h0, x, y) =
1

√
MN

M−1∑
m=0

N−1∑
n=0

I (m, n)ϕh0 , x, y(m, n) (7)

W q
φ (h, x, y) =

1
√
MN

M−1∑
m=0

N−1∑
n=0

I (m, n)φqh,x,y(m, n) (8)

where q = {H ,V ,D} and Wϕ(h0, x, y) in Equation 7
represents the approximation coefficient of the image I at
scale h0, whereas the termW q

φ (h, x, y) in Equation 8 denotes
the detail coefficients for scales h ≥ h0. In Equation 7, h0
indicates the randomly selected starting scale of size 1× 1, h
indicates the intermediate scale of the size 2h × 2h that varies
from 0 ≤ h ≤ H . The H represents the highest scale of size
m× n.

Details of the original image can be restored with inverse
DWT as:

I (m, n) =
1

√
MN

∑
x

∑
y

Wϕ(h0, x, y)ϕh0 ,x,y(m, n) +
1

√
MN∑

q=H ,V ,D

∞∑
h=h0

∑
x

∑
y

W q
φ (h,m, n)φq

h,x,y
(m, n) (9)
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FIGURE 3. (a) Original 700 × 460 pixel image taken from BreakHis dataset, (b) 1st level decomposed image, (c) 2nd level decomposed image,
(d) 3rd level decomposed image.

B. LIGHTWEIGHT DEEP CNN MODEL
In this section, various modifications are discussed that are
carried out in the design of lightweight deep CNN models.
For the design of our lightweight model, few state-of-the-art
CNN networks like VGG16 [46], ResNet50 [47], Inceptionv3
[31], and DensNet201 [48] are selected as backbone of our
model. Early networks such as VGG16 [46], ResNet50 [47],
Inceptionv3 [31], and DensNet201 [48] are consists mainly of
three types of alternative layers i.e. convolution, activation,
max-pooling, and FC layers [49]. In these networks, the
main computation cost comes from fully connected (FC)
layers due to the large number of parameters involved by
them. However, in literature, several strategies have been
proposed to make the network more light and efficient. The
transfer learning phenomenon is commonly used to transfer
knowledge to a new domain from a pre-trained network.
Network parametric load can be reduced by replacing the
FC layers with other types of layers which offer less number
of parameters. Further controlling the number of layers and

optimizing the hyperparameters in conventional networks can
effectively reduce the computational cost without decreasing
the accuracy. The architecture of the proposed model with
DenseNet201 backbone is presented in Figure 4.

In this designed method, the computation cost issue is
controlled by using depthwise separable convolution (DSC)
convolution layer which involves fewer parameters. The
DSC is a drop-in replacement of standard convolution in
which convolution operation is performed with depthwise
convolution (lightweight filtering) and 1 × 1 pointwise
convolution. Depthwise convolution extracted the feature
maps using a single convolutional filter and subsequently,
1× 1 pointwise convolution is used to combine the extracted
features. However, in traditional convolution (TC) feature
extraction and fusion are performed at the same time, from
parameter perspectives with TC the obtained efficiency is
low, and the computational cost is high. The DSC initially
introduced the concept of 1 × 1 pointwise convolution,
later MobileNetV2 [50] proposed the inverted residual
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FIGURE 4. Proposed framework (with DenseNet201 backbone) for multi-classes cancer classification of histopathology images.

block which improves the DSC operation and makes the
network fast with better performance. In our, each selected
backbone network (VGG16 [46], ResNet50 [47], Inceptionv3
[31], and DensNet201) last few modules are replaced with
invertible residual block modules involving lesser number of
parameters. For the baseline ResNet50 model, the last six
convolution layers are replaced with an invertible residual
blockmodule. For the baseline InceptionV3model, the incep-
tion module at the end is replaced with an invertible residual
block module. The original DenseNet201 model consists of
four dense blocks and a transition layers. The adjacent dense
blocks are joined by transition layer (having 1×1 convolution
followed by 2 × 2 average pooling). Every dense block
contains bottleneck layers of 6, 12, 48, 32, respectively. BN-
ReLU-1 × 1Conv-BN-ReLU-3 × 3 Conv is used in each
bottleneck layer, where Conv represents convolution and BN
denotes the batch normalization operation. For the baseline
DenseNet201 model, 10 Bottleneck layers in the last dense
block are replaced with an invertible residual block module.
The architecture of the proposed model (with DenseNet201
backbone) is given in Table1.

In the invertible residual block module, convolution is
performed using 1× 1 pointwise convolution and depth wise
convolution. Because such convolution (depth wise) cannot
change the output channels, the amount of channels of output
featured map (Kout ) remains the same as of channels of the
input featured map (Kin). Therefore, a pointwise convolution
of the size of 1× 1 is added before and afterward depth wise
convolution in the invertible residual block module. The first
pointwise convolutional layer expanded the output featured

maps by a factor k . The channels in feature maps output
are increased k × Kin. The second point wise convolution
layer reduces the output channels as the input channels and
concentrates the feature information. In the meantime, the
module also includes a shortcut connection. The proposed
model extracts features in bigger dimensional space thus
improving the model performance. In the invertible residual
block module, the value of the expansion ratio k is set as
2. Finally, the convolution layer (Conv), batch normalization
layer (BN), ReLU activation function (ReLU), global average
pooling (GAP), and Softmax are added to the network.
Figure 4 shows an overview of the proposed deep CNN
model. The incorporation of suggested modifications in the
proposed model reduces the network parametric load and
ultimately decreases the computational cost.

C. COMPUTATIONAL COMPLEXITY AND TEST TIME
OPTIMIZATION
In CNN architecture, the time computations involved by any
standard convolution layer are computed in terms of size of
input feature map Kin from the previous layer, kernel size
f × f , and the number of channels of output feature maps
Kout as [61]:

Ostd
(
min · nin · Kin · f 2 · Kout

)
(10)

where, min, nin and Kout are spatial dimensions of the input
image. Equation 10 shows that the time complexity of CNN
architecture mostly depends on input image size, kernel size,
and the number of kernels used in the output layer. In our
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TABLE 1. The architecture of the proposed model (with densenet201 backbone using expansion factor=2).

designed architecture, the invertible residual block module
and down sampling effect of wavelet transform majorly
contribute to computational complexity reduction.

1) COMPUTATIONS MINIMIZATION WITH INVERTIBLE
RESIDUAL BLOCK MODULE
The implementation of the invertible residual block [50]
module in the CNN model effectively minimizes the
computational burden of deep models. The invertible resid-
ual block module uses the DSC layer that divides the
standard convolution into i) depthwise convolution and
ii) 1 × 1 pointwise convolution. Overall, the computational
price of DSC is calculated in terms of deep convolution and
1 × 1 convolution as:

Odcs
(
min · nin · Kin · f 2 + min · nin · Kin · Kout

)
(11)

The cost ratio of DSC to standard convolution can be
calculated by dividing Equation 11 by Equation 10 as:

cr =
Odcs

(
min · nin · Kin · f 2 + min · nin · Kin · Kout

)
Ostd

(
min · nin · Kin · f 2 · Kout

) (12)

cr = 1/Kout + 1/f 2 (13)

The computation cost ratio evaluated in Equation 13 repre-
sents that multiplication operation is split into multiplication
and addition operations due to that the computational cost is
significantly reduced.

For instance, if the original input image from ICIAR
2018 dataset is subjected to deep CNN model with invertible

residual block model, at the first layer, in depth wise convolu-
tion layer, 3 3×3×1 filters move 2048×1536 times (i.e., 3×

3×3×2048×1536 = 84,934,656 multiplications). Similarly,
in the case of point-to-point convolution, 64 1 × 1×3 filters
move 2048 × 1536 times (i.e., 64 × 1×1 × 3×2048 ×

1536=603,979,776 multiplications). The cumulative sum of
multiplications involves depthwise convolution and a point
wise convolution is 688,914,432 multiplications.

However, in the case of standard convolution, 64 3 ×

3×3 filters move 2048 × 1536 times (i.e., 64 × 3×3 ×

3×2048 × 1536=5,435,817,984 multiplications). The value
of cr computed using Equation 13 is 12.6% which shows
that time costs at the first convolution layer are reduced by
87.32%. The comparison of the calculations performed with
an invertible residual block module and standard convolution
shows that down sampled invertible residual block majorly
contributes to decreasing the computational cost.

2) COMPUTATIONS MINIMIZATION BOTH WITH INVERTIBLE
RESIDUAL BLOCK MODULE AND WAVELET TRANSFORM
When the resolution of the input image is down sampled
from 2048 × 1536×3 to 512 × 384×3 using 2-D Haar
wavelet transform and inputted to our designed deep CNN
model having invertible residual block module the overall
time complexity is further reduced to 95% and is computed
(using Equation 11) as:

Odcs
(2048× 1536× 3 × 32 + 1 × 1 × 2048 × 1536 × 3 × 64)
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to Odcs(512 × 384 × 3 × 32 + 1 × 1 × 512 × 384 × 3 × 64)
i.e.∼ 93.72%

D. DATASETS
1) ICIAR 2018 DATASET [61]
This data is available with ICIAR 2018 breast cancer
histology (BACH) grand challenge.1 This dataset contains
400 images including 300 train and 100 test microscopy
images of 2048 × 1536×3 pixel resolution. Images of this
dataset are obtained with a LeicaDM 335 LED microscope
having 0.42 × 0.42 µm/pixel resolution. The two expert
pathologists labeled these images into four cancer categories:
normal, benign, insitu, and invasive carcinoma. The class
labels of training data are publically available, while class
labels of test data are not publically available. The image
resolution of microscopy images belonging to this dataset
is very high so we consider that the ICIAR 2018 dataset
is more appropriate to validate the computation cost of the
proposed model. In our experiments, the input images of
2048 × 1536×3 pixels are down-sampled to 512 × 384×3
using 2-level Haar wavelet transform. These decomposed
images are then input to the deep CNN network.

2) BREAKHIS DATASET [3]
To further assess the model performance for the multi-class
classification, we used another benchmark histopathological
image dataset i.e. BreakHis2 dataset. This dataset includes
7909 images of 700 × 460×3 pixels belonging to two
main classes: benign and malignant. Further benign class
is divided into four subclasses adenosis (A), phyllodes
tumor (PT), fibroadenoma (F), and tubular adenoma (TA)
classes. Similarly, malignant tumors are categorized into
four subclasses: ductal carcinoma (DC), mucinous carcinoma
(MC), lobular carcinoma (LC), and papillary carcinoma
(PC) classes. The images are scanned with a microscope of
intensified factors, i.e., image ×40, ×100, ×200, and ×400.
The detailed distribution of this dataset is given in Table 3.
The images (700 × 460×3 pixels) of the BreakHis dataset
are down-sampled to 175 × 115×3pixels with 2-level Haar
wavelet transform before input to deep CNN model.

3) BREAST CARCINOMA SUBTYPING (BRACS) DATASET [65]
Experiments are also performed on a recent benchmark
Bracs3 dataset of whole slide hematoxylin and eosin-
stained histopathological images for automated detec-
tion/classification of breast tumors. This dataset is available
with The Bracs dataset is composed of 547WSIs belonging to
189 different patients. The slides are scanned with an Aperio
AT2 scanner at 0.25 µm/pixel having magnification factor of
40×. The detailed distribution of this dataset according to the
lesion type is given in Table 2. The Table 2 reports the number

1https://iciar2018-challenge.grand-challenge.org
2https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-

database-breakhis/
3https://www.bracs.icar.cnr.it/

of WSIs (with and without RoIs) and RoIs and subtypes,
respectively. Among the 547 WSIs, 265 belong to benign,
89 belong to Atypical, and 193 belong to malignant tumor
class. To perform the experiments, Among the 547 slides,
395 were considered in train set, 67 in validation set and
85 considered in test set.

TABLE 2. The detailed distribution of bracs dataset according to the
lesion type.

III. EXPERIMENTAL SETTINGS AND RESULTS ANALYSIS
In this part, the setting of the experiments and output results
are discussed. The experiments are performed both on ICIAR
2018 and BreakHis datasets. The ICIAR 2018 dataset has
300 training images and 100 test images. In the case of the
ICIAR 2018 dataset, training images are split into train and
validation parts. 70% of the data is considered for training
and 30% is used for validation. To avoid network overfitting
and increase model performance, the size of training data
is increased by generating the augmented diversities of
original images. The training dataset is augmented using rota-
tion, scaling, and elastic deformation; these augmentations
achieved morphology invariance and increased the size of
training data by 7 times i.e., 3 rotations + 2 scalings + 2
elastic deformations. In the case of the BreakHis dataset,
the experiments are conducted on the images obtained at
×40 magnification factors. From the BreakHis dataset, about
30% of data (598 images) is selected in the testing set, while
the remaining 70% (1397 images) is selected in the training
set as per the work in [12], [33], and [34]. Like the ICIAR
2018 dataset, the size of BreakHis training data is increased
to seven times using rotation, elastic deformation, and scaling
techniques. The input images are decomposed using the Haar
wavelet transform and then utilized in the training of the
proposed model.

Image augmentations and wavelet decomposition is per-
formed using MATLAB R2014a program while the proposed
deep CNNmodel is implemented on TensorFlow [35] library
on 2.4 GHz Intel(R) Xeon(R) E5-2630 CPU with one
NVIDIA Tesla M40 GPU with a memory of 12GB. Training
is started with a pre-trained backbone model (ImageNet-1K
dataset [49]) where the weights of final layers are updated
using the histopathology dataset to drive predictions. The
weights of earlier layers are kept intact thus, the model gained
the benefit of transferred features (curves and edges details)
learned from the ImageNet dataset. In multi-class recognition
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TABLE 3. Image distribution of breakhis dataset for main and sub-categories.

TABLE 4. Hyper-parameter settings used for ICIAR 2018 and breakhis
(40X) datasets.

models, the classification is mainly performed with a softmax
classifier. In the learning phase, trainable parameters are
updated by minimizing the categorical cross entropy loss
functionwhich indicates the proximity between predicted and
desired output. The categorical cross entropy loss function is
computed as:

J =
1
N

N∑
n=1

− log

(
eyl∑T
t=1 e

yt

)
(14)

where N , yi and j denote the training images, input to the
softmax, and the number of categories, respectively. where
t = 1, 2, 3 . . . . . . T , T represents total number of classes.
The quantitative performance of the model is computed

based on the following metrics.

Sensitivity =
TP

TP+ FN
(15)

Pr ecision =
TP

TP+ FP
(16)

Specificty =
TN

TN + FP
(17)

F score = 2 ×
precision× sensitivity
precision+ sensitivity

(18)

where,TP,FP&FN are the total number of true positives,
false positives, and false negatives, respectively.

The experiments are performed by setting different values
of hyper-parameters. These hyper-parameter settings help in
training the model properly. The experiments are revised
by adjusting hyper-parameters values to obtain the best
performance. After different rounds of experiments using the
training dataset, the optimal values of hyper-parameters are
chosen. The hyper parameters values and training time is

given in Table 4. In the first experiment, the model is trained
for 90 epochs using a learning rate of 0.0001. Similarly, in the
second experiment model is trained for 130 epochs using
learning rate of 0.0003, and the best performance is obtained
when the model is trained for 150 epochs using learning
rate of 0.0002 and batch size of 8 with root mean square
propagation (rmsprop) optimizer. The same experimental
settings are followed for model training on BreakHis data.

In order to check the effect of data augmentation on
model performance, few experiments are performed with
images that are augmented with rotation, scaling, and elastic
deformation techniques. Results obtained by incorporating
different data augmentation techniques are reported in
Table 5. Firstly, the model is trained on the original set of
images. Secondly, the model is trained on the augmented
images that are rotated using preset values of 45◦, 90◦, 135◦,
220◦, and 180◦. In the third experiment, the model is trained
on images deformed with the elastic deformation method
proposed in [51]. The training images are deformed by setting
the elasticity coefficient (σ ) to 10 and the scaling factor
(α) to 90. In the fourth experiment, images are scaled with
the nearest-neighbor interpolation method. Reference [52]
considering a zooming factor of 0.85 and 0.95. In the fifth
experiment, performance is obtained by involving rotation,
deformation, scaling, and wavelet decomposition.

To examine the effectiveness of Haar wavelet image
decomposition on model performance, experiments are
performed using different levels of Haar wavelet decom-
posed images selected from the ICIAR 2018 dataset. The
experimental outcomes are reported in Table 6. Firstly, the
model is trained based on original images of high resolution.
In the second, third, and fourth experiments, the model
is trained on 1st, 2nd, and 3rd level decomposed images,
respectively. The results provided in Table 6 show that
the best performance in terms of computational cost and
accuracy is obtained when the proposed model is trained
with 2nd level decomposed images of size of 512 × 384×3
pixels. It is because of the high signal-to-noise power of the
decomposed image (512 × 384×3) of 2nd level compared to
1st level decomposed image (1024 × 768×3). Similarly, the
classification efficiency reduces to 95% when the model is
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TABLE 5. Analysis with different data augmentations (ROTATIONS, SCALING, ELASTIC DEFORMATION) using ICIAR 2018 dataset.

TABLE 6. Average accuracy and test time performance on ICIAR 2018 and breakhis dataset using 1st, 2nd, and 3rd level decomposed images.

trained on 3rd level decomposed image of size 256× 192×3.
It is due to the recurring combination of max-pooling and
striding in deep CNN which lost a lot of information from
the output feature. On the contrary, the model trained with
original size images represents little high accuracy (1.88%)
compared with the model trained on 2nd level decomposed
images, it’s because of the image decomposition step, which
lost little information from input images. However, the test
time per image of the model trained with the original size
image is very high (83.2%), compared to the model trained
on decomposed images. Thus, 2nd level decomposed images
are used in our experiments, to perform multi-level cancer
type classification. The 2-level wavelet decomposition of
high-resolution histopathology images vastly reduced the
computational burden of our designed CNN model and made
possible fast cancer classification with GPU computing.

To check the effectiveness of the Haar wavelet transform
over other decomposition techniques, the experiments are
also performed using the other wavelets. Images are downs
ampled with two types of wavelets: Daubechies and Coiflets.
The proposed model is trained separately on each type of
down sampled image. Binary class and multi-class classifi-
cation results obtained using Haar, Daubechies, and Coiflets
decomposed images are reported in Table 7. In comparison
to other decomposition techniques, the model trained on

2-level Haar wavelet decomposed images shows the best
performance.

Besides, the recognition performance and recognition
speed of cancer detection systems are important. In a real-
time scenario, it is the foremost priority to make the detection
speed fast. Our model took 0.68s and 0.21s on ICIAR
2018 and BreakHis datasets for a single image. Low test time
in the case of our method is due to the use of an invertible
residual block module, the appropriate setting of expansion
ratio k in the invertible residual block module, and down
sampled image which reduces the memory requirement and
inference time.

Since the classification performance is influenced by the
architecture of the backbone network. Therefore, experiments
are performed with different backbone networks by setting
the different values of expansion ratio k in the invertible
residual block module of our proposed model. The accuracy
and test time per image both on ICIAR 2018 and BreakHis
dataset (40X magnification images) are given in Table 8 and
Table 9. As evident from the results (reported in Table 8
and Table 9), our model with different baselines obtains
improvement to different degrees. Meanwhile, it is important
to note that there is little impact of change in factor k
on accuracy. However, test time increases as the value k
increases from k = 1 to k = 2 to k = 3. It is
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TABLE 7. The multi-class and binary-class classification using ICIAR 2018 images decomposed with different wavelets for the validation data.

TABLE 8. Accuracy and test time per image comparison of our modified network using different backbones and with change of factor k value on ICIAR
2018 dataset.

TABLE 9. Accuracy and test time per image comparison of our modified model using different baslines and with change of factor k value on breakhis
dataset (40X).

because the parameters rise sharply by increasing the k value.
In our experiments, the Inception.v3 network is used as the
backbone network and set the k = 2. This setting helps in
obtaining significant accuracy with optimal test time.

Moreover, we performed the performance comparison of
the designed model (Backbone: DenseNet201 using IRB
with =2) with state-of-the-art models (without using the
IRB module). The comparative analysis given in Table 10

demonstrates that our modified model has fewer parameters
and has shown better accuracy compared to the correspond-
ing original state-of-the-art DenseNet201, InceptionV3,
ResNet50, and VGG16 networks. The performance of the
proposed model is also evaluated using three state-of-the-art
machine vision classifiers: support vector machine (SVM),
K nearest neighbor classifier (KNN), and softmax classifier.
From the results (reported in Table 11), it is found that the
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TABLE 10. Accuracy and test time comparison of proposed model with original state-of-the-art models using ICIAR 2018 dataset.

TABLE 11. Multi-class classification performance using different machine vision classifiers on 2nd level haar wavelet decomposed ICIAR 2018 AND
breakhis (40X) datasets.

FIGURE 5. The confusion matrix of the proposed model (a) multi-class and (b) binary class classification using the validation part of the
ICIAR 2018 dataset.

softmax algorithm is the most accurate among the three tested
algorithms.

The confusion matrix of the proposed model for binary
class (Figure 5a) and multi-class (Figure 5b) classification
using the validation part of the ICIAR 2018 dataset is given
in Figure 5. In comparison to binary class performance,
the model reflects relatively low accuracy for multi-class

classification. It is due to the numerous morphological
features that are similar in intra-class images: normal &
benign class and in insitu & invasive class. Few images are
misclassified from the category insitu class to invasive class.
Examples of a few misclassified images from the validation
set are given in Figure 6. In Figure 6(a), most of the lumen
structure is repeated in normal and benign classes. During
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FIGURE 6. Examples of misclassified images from the validation part of the ICIAR 2018 dataset.

FIGURE 7. Accuracy graph using (a) ICIAR 2018 and (b) BreakHis (40X) contaminated with different levels of noise.

TABLE 12. Accuracy comparison with state-of-the-art methods reported
in [29] on 2ND level decomposed ICIAR 2018 hidden test dataset.

the testing phase, our model misclassified the normal class
image as benign class. Where in Figure 6(b), nuclei of some

of the luminal structures tend to enlarge, leading the proposed
model to classify the image insitu class as invasive class.
Figure 6(c) shows an image from the invasive category with
blebs, the model misclassified it as insitu class owing to the
presence of blebs.

A. DETECTION ROBUSTNESS OF THE PROPOSED MODEL
AGAINST RANDOM MULTIPLICATIVE AND ADDITIVE
NOISES
The histopathological images acquired from different labo-
ratories using different devices are often contaminated with
noises. These noise perturbations mislead deep CNNs to the
wrong detection. To test the robustness of the model against
the noises, different levels of Gaussian noises I = I +

m.randn(c1, c2.3) are added to Haar wavelet decomposed
test images. Where I denotes the contaminated image of the
original image I of sizec1 × c2 × 3. The randn() indicates
the Gaussian noise function. Experiments are performed by
using the noise levels values n = 0.5, and m = 1, 3, 5, 7, 9.
The contaminated data was given as input to the model and
the output is monitored. On both datasets: ICIAR 2018 and
BreakHis, minor decreases in accuracy occurred for different
levels of noise. The accuracies obtained on test images
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TABLE 13. Accuracy (in %) comparison with state-of-the-art methods using 2ND level decomposed breakhis (40X, 100X, 200X, and 400X magnification
factors) test dataset.

indicate that the proposed method is robust to the different
levels of noise perturbations that decomposed with wavelet
transform. This robustness test is an indication of the strong
generalization ability of the designed strategy to perform
accurate cancer classification by accepting a wide range of
images with inevitable noise perturbations. Figure 7, shows
the accuracy graph for ICIAR (Figure 7a) and BreakHis
(Figure 7b) datasets contaminated with different levels of
random noises.

B. ACCURACY COMPARISON WITH THE
STATE-OF-THE-ART METHODS USING THE
ICIAR 2018 HIDDEN TEST DATA
The test set of the ICIAR 2018 dataset consists of 100 images.
The class labels of the ICIAR 2018 test dataset are not pub-
licly available. Therefore, we evaluated the test results and
submitted them online to the BACH challenge for evaluation.
Our model achieved a higher recognition accuracy of 92%.
The accuracy comparison with the legacy resultsLegacy-
Results - Grand Challenge (grand-challenge.org) is given
in Table 12. Table 12 shows that our model considerably
outperforms the other state-of-the-art methods reported
in [29].

The output results are also compared with the few most
recent approaches where the CNN based approaches have
been used on the BreakHis dataset. Spanhol et al. [54]
performed the binary class classification of benign and
malignant using the AlexNet model and achieved about
80.8% to 89.6% accuracy on the BreakHis dataset. In [55],
Alom et al. reported the accuracies on the BreakHis dataset
at different magnification factors. They obtained 97.09 ±

1.06 and 97.95 ± 1.07 accuracies at multi-class and binary-
class classification at 40% magnification. In [56] Zhongyi
Han et al. have designed a model called class-structured
based deep convolutional neural network model (CSDCNN)
and obtained accuracy from 93.5% to 97.1%. Al Nahid
and Kong [57] proposed a strategy based on CNN and
handcrafted features based and obtained accuracy between
94.40% and 97.19%. In [58], Gupta et al. designed a

TABLE 14. Comparative analysis of our proposed model with
state-of-the-art method for 3-class classification using WSIs from bracs
dataset [].

modified residual network and obtained accuracy between
98.16% and 99.66%. In [59], Liu et al. used an AlexNet-
BC model to perform multi-class classification on the
BreakHis dataset and achieved 94.67% accuracy. Recently,
Saini and Susan [60] designed a VGGIN-Net by applying
the transfer learning approach and obtained accuracy between
93.68% and 97.10%. In comparison to all the aforementioned
reported results, our model shows promising performance.
On the BreakHis dataset, our model obtained an accuracy
of 99.8% on multiclass classification and 99.9% on binary
class classification on different magnification images with
minimum test time reported. The test time and accuracies
are reported in Table 9 and Table 12, respectively. Table 13
shows the comparative analysis with state-of-the-art methods
on BreakHis dataset.

C. PERFORMANCE ANALYSIS USING BRACS DATASET [65]
In order to check the validity of our proposed method
on gigapixel whole slide images acquired with scanners,
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new experiments have been conducted using WSI of recent
Bracs dataset [65]. We performed the experiments using our
proposed model for multi-class classification on the Bracs
dataset. For the Bracs dataset, multi-class classification has
been performed for the three classes of WSIs (Atypical,
Benign, and Malignant classes). In experiments, we consid-
ered the 10× magnification WSIs to avoid the computational
limits. Moreover, to avoid the network overfitting the
normalized WSIs at 5× and 2.5× magnification was used.
Our method integrates both global and local information,
is flexible regarding the size of the input images and only
requires weak image-level labels. On the Bracs dataset,
comparative analysis has been performed with recent state-
of-the-art convolution neural network proposed in [66].
On the Bracs dataset, we evaluated the results in terms
of F-measure, precision, recall, and total accuracy, given
in Table 14. The WSIs from Bracs dataset have variable
resolution, the dimensions can easily exceed 100,000 by
100,000 pixels.

IV. CONCLUSION AND FUTURE WORK
Since deep CNN models are often over parameterized
therefore their deployment for real time applications is
challenging particularly for resource-constrained hardware.
In this paper, a new automatic method, a lightweight deep
CNNmodel for multi-class cancer categorization from breast
histopathology images has been proposed. The proposed
method solves the problem of increased computation caused
by high-resolution input images network depth and width of
the model. The Haar wavelet decomposition step and inverted
residual block in the designed lightweight model vastly
overcame major computational bottlenecks and enabled fast
cancer classification from high size images. The method is
validated on three benchmark histopathology datasets, and it
yielded promising accuracy (96.2%, 99.8%, and 72.2%, for
ICIAR2018, BreakHis, andBracs datasets, respectively) with
less test time (i.e., 0.67s, 0.21s and 10.6s for ICIAR 2018,
BreakHis, and Bracs images, respectively) for multi-class
classification. The performance results show the robustness
of the proposed method over the results of existing state-
of-the-art techniques. However, this method shows few
limitations; there is little tradeoff between the computational
cost of our designed deep model and its output accuracy. The
model trained on original size images shows good accuracy
in comparison to models trained on decomposed images,
as during the image decomposition step, some information is
lost from input images. However, the automatic deep cancer
detection models trained with original images express high
computational costs which make them undesirable for real
time applications. In the future, the impact of the depth of
the model on its performance can be analyzed to effectively
design an efficient and lightweight deep model. Future
research work may also involve improving the efficiency
of classifiers by developing the dataset with millions of
breast histopathology images. Moreover, this method could
be applied to other medical imaging modalities e.g., magnetic

resonance imaging, computed tomography, and X-rays. The
future goal also comprises designing a robust end-to-end
cancer grading system to count tumor proliferation scores
directly from whole-slide images.
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