IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 25 September 2023, accepted 17 October 2023, date of publication 23 October 2023, date of current version 26 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3326714

== RESEARCH ARTICLE

Automatic Compilation of CNN on Reconfigurable
Array Processor Based on Scalable Instruction
Group Library

YUANCHENG LI, NA WANG ™, MINGWEI SHENG ~, AND JIAQI SHI

College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
Corresponding author: Yuancheng Li (yuanch_li@126.com)
This work was supported in part by the National Key Research and Development Program of China under Grant 2022ZD0119005, in part

by the Key Project of the National Natural Science Foundation of China under Grant 61834005, and in part by the Natural Science Basic
Research Plan in Shaanxi Province of China under Grant 2020JM-525.

ABSTRACT Although reconfigurable architecture is an inevitable choice for dealing with high-
intensive applications, the opacity of hardware structure programming and the fuzziness or imprecision
of many dependencies in applications make it difficult to develop applications and take full advantage
of reconfigurable architecture. In order to address these challenges, this paper proposes an automatic
compilation framework based on a scalable instruction group library, using convolutional neural network
(CNN) applications as an example. The proposed framework first identifies functions such as data extraction,
data distribution, data summary, and data processing, and divides the reconfigurable processors into
multiple logical types. Next, the calculation modes are extracted by analyzing the CNN calculation process.
Based on these calculation modes, efficient assembly instruction groups are designed, constituting the
scalable instruction group library. Using this library, efficient mapping for CNN applications written in
high-level languages can be easily realized on reconfigurable array processors. The experimental results
demonstrate that the proposed method reduces the difficulty of programming and achieves better speedup
performance compared with OpenMP and LLVM parallel compilation models. Moreover, the scalability of
the instruction group library provides helpful guidance for the reconfigurable implementation of domain-
oriented applications.

INDEX TERMS Reconfigurable architecture, reconfigurable computing, compilation techniques, CNN.

I. INTRODUCTION

With the flourishing development of CNN, more and more
application fields have benefited from its advancement.
However, the typical high-density characteristics of CNN,
including intensive computation and memory access, impose
higher requirements on processor efficiency, flexibility, and
resource utilization [1], [2], [3]. Because of the high
flexibility of general-purpose processors and the high energy
efficiency of specialized hardware, as shown in Figure 1,
reconfigurable architecture has become an inevitable choice
for addressing high-intensity applications [4], [5], [6], [7].
However, due to the complexity of programming the

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir

hardware structure, the fuzziness or imprecision of many
application dependencies, and the resulting conservative
parallel task partitioning strategy, it is challenging to
develop applications and fully harness the advantages of
reconfigurable architecture. Reconfigurable processor com-
pilation technology [8], [9], [10] can generate configuration
information by automatically mining parallelism, reducing
storage delays, and employing other optimization techniques.
This enables all hardware resources on the array processors to
work efficiently together, offering the potential to overcome
the usability limitations of reconfigurable architecture [11].
However, due to the significant differences in hardware struc-
ture between reconfigurable array processors and general-
purpose processors, the traditional compilation methods
cannot be directly applied to reconfigurable array processors,

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

116752

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-9185-9974
https://orcid.org/0009-0003-8604-2358
https://orcid.org/0009-0009-6082-6756
https://orcid.org/0009-0003-1186-4015
https://orcid.org/0000-0003-2601-9327

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

IEEE Access

.
configuration memory on chip
[T

PE| [PE| [PE| [PE
e a | @ G |

‘ Main Processor K:j# Global instruction
memory

i 7

—

(a) System structure diagram of reconfigurable
array processor

aastax duyo ;30

Input and
output data
storage

Reconfigurable ‘
array processor ‘

(b) Reconfigurable array architecture

Data register on chip

i
TE00

|
| “Data register] [Temporary register || Result register | ‘

‘Localregister‘ PE30 | | PE31| | PE32

5 L g

< Hi g
¥ 8 PEI0| | PEIl| [PEI2| | PEI3 E

ALU 5 2
E . &

1 3 TE20 | | PE21| | PE22 | | PE23 3

g

s

]

£

‘ Result register ‘

(d) PE structure (c) PEG structure

FIGURE 1. Typical architecture of a reconfigurable array processor.

making the compilation process for reconfigurable array
processors extremely challenging [12], [13].

Many existing methods based on compilation have
achieved good performance in reconfigurable structures,
primarily focusing on two aspects: compilation optimization
through software and hardware co-design and various high-
level synthesis tools (HLS). In contrast to traditional CGRA
static allocation schemes, where different paths are allocated
to non-overlapping spatial and temporal dimensions, [14]
proposed a 4D-CGRA solution that incorporates two spatial
dimensions, time, and branching based on collaborative
compilation architecture. This approach allows mutually
exclusive branch paths to overlap and be mapped to the same
target processing unit, effectively reducing resource waste.
To achieve faster execution and shorter compilation times,
[15] abandoned the time-consuming and costly hardware
measurements of manual optimization libraries or traditional
heuristic methods. Instead, they proposed a solution that
can quickly adapt to previously unseen design spaces
for code optimization by designing an adaptive sampling
algorithm with faster search speeds and higher performance.
By implementing partial reconfiguration of a packet-switched
fat-tree, [16] introduced a divide-and-conquer approach to
reduce compilation times. Since the partially reconfigured
leaves are independent of each other and can be compiled
separately in parallel, only the corresponding leaves need to
be incrementally compiled for generating the final bitstream.

While the quality of results produced by high-level
synthesis (HLS) tools has tended to lag behind those of
manual register-transfer level (RTL) flows, the adoption
of HLS from languages such as C++4 has significantly
improved programmer productivity [17]. To address the
limited parallelism resulting from excessive reliance on
manual experience for application partitioning and mapping
in existing reconfigurable processor compilation systems,
the Polysa compilation framework was introduced in [18].

VOLUME 11, 2023

It achieved the end-to-end fully automatic translation of
high-level languages to FPGA for the first time. This
framework allows for the generation of the best design
scheme while considering multiple constraints by amalga-
mating previous manual design approaches and conducting
performance analysis. To reduce the effort and expertise
required for customizing CNN design models, [19] proposed
an RTL-level CNN compiler. RTL modules are developed to
correspond to different operations in each CNN layer. As a
result, the compiler can automatically generate customized
FPGA hardware with consistent performance for various
inference tasks and CNNs. Reference [20] introduced the
overlay processor OPU for accelerating CNN networks.
OPU’s software-like programmability allows well-designed
OPU instructions to offer ample flexibility and performance
while simplifying microarchitecture and compiler develop-
ment complexity. Reference [21] presented a compilation
framework named AutoSA for generating systolic arrays
on FPGA. This end-to-end compiler alleviates programmers
from the complex manual trial-and-error iterative process,
which typically arises from the high knowledge requirements
of both low-level hardware structure details and high-level
application features. To rapidly and efficiently implement
CNN inference accelerators on FPGAs, [22] proposed a
compilation flow that can integrate a pre-trained model
into OpenCL kernels using the TVM compiler. Although
its performance lags behind hand-optimized methods, this
approach is valuable for rapid FPGA prototyping design

without requiring extensive hardware design expertise.
Although the existing methods based on compilation
support have achieved good results in reducing programming
difficulty and improving execution performance, they are
facing more and more complicated CNN applications caused
by higher classification accuracy and the application of CNN
in more fields. Consequently, it is becoming more difficult
to develop CNN applications and map FPGA hardware
with high execution performance. In this paper, we propose
an automatic compilation framework for CNN based on
a scalable instruction group library. Firstly, we divide the
reconfigurable processors into logical multiple types based
on different functions such as data extraction, data distribu-
tion, data summary, and data processing. Next, we extract the
calculation modes by analyzing the CNN calculation process.
Then, by consulting the logical multiple types and the
calculation modes, we design an efficient assembly instruc-
tion group, which constitutes the scalable instruction group
library. Finally, for CNN applications written in high-level
languages, the efficient mapping on reconfigurable array pro-
cessors can be easily achieved based on the scalable instruc-
tion group library. The experimental results demonstrate that
the proposed method can reduce the difficulty of program-
ming and achieve better speedup performance compared to
OpenMP and LLVM parallel compilation models. Specifi-
cally, the three main contributions of our work are as follows:
o A scalable instruction group library is constructed,
in which each efficient assembly instruction group

116753

IEEE Access

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

is designed according to the logical multiple types
of configurable processors and the calculation modes
extracted from CNN. This library deeply reflects the
mapping relationship between calculation modes and
configurable processors.

« Based on the scalable instruction group library, we pro-
pose an automatic compilation framework that can be
used to map CNN applications written in high-level
languages onto reconfigurable processors. No manual
intervention is required in the whole compilation and
mapping process, and CNN programming does not
require programmers to understand the underlying
hardware structure.

o The scalable instruction group library can be easily
expanded, iterated, and optimized according to the
library construction method. For specific field applica-
tions, it can be easily applied to configurable processors
simply by extending the instruction group library, which
is why we call it a scalable instruction group library.
Therefore, our work can provide helpful guidance for
the reconfigurable implementation of domain-oriented
applications.

The subsequent chapters are organized as follows:
Section II introduces the overview of the compilation
framework, Section III presents the calculation modes
extracted from CNN, Section IV describes the construction
method of the scalable instruction group library in detail,
Section V proposes the automatic compilation method for
CNN, Section VI provides the experiment and results
analysis, and finally, Section VII concludes this work.

Il. OVERVIEW OF THE COMPILATION FRAMEWORK

A. BASIC IDEA

CNN applications for reconfigurable processors can be
realized by either writing assembly programs, which require
knowledge of low-level hardware structure details for pro-
grammers, or writing high-level programs based on domain-
specific languages (DSL). However, adapting high-level pro-
grams to more complex application scenarios is increasingly
difficult, leading to a struggle in balancing efficiency and
ease of programming for programmers [23]. Nevertheless,
for specific repeated operations such as multiplication,
addition, and comparison, the compiled representation under
the reconfigurable structure remains the same. Therefore,
if we can establish a mapping relationship between high-
level application programs and compiled representations,
similar to LLVM [24] Intermediate Representation (IR),
and then map the IR to reconfigurable processors, we can
maintain good performance while keeping programming
easy. Based on the above discussion, we deeply analyze
and extract the calculation mode of the CNN algorithm to
abstract it. Next, through manual optimization, we explore the
optimal mapping relationship on the reconfigurable structure
and build the instruction group according to the logical
reconfigurable processors. Finally, using the instruction
groups that constitute the instruction group library, it becomes

116754

easy to map CNN applications written in high-level languages
to reconfigurable processors.

B. DIVIDING OF LOGICAL CONFIGURABLE PROCESSORS
Reconfigurable processors can achieve efficient calculations,
nearly matching the performance of Application-Specific
Integrated Circuits (ASICs), by adapting their hardware func-
tions based on the hardware configuration during operation.
Figure 2 displays an array of processing element groups
(PEGs) within the reconfigurable array processor employed
in our paper, with each PEG containing 16 configurable
processing elements (PEs). Each PE can execute data
processing functions or control functions depending on the
specific configuration. Within the reconfigurable structure,
the ALU in each PE can flexibly perform various common
operations, including addition, subtraction, logical AND, OR,
NOT, and more.

| Host Interface |

!

| Controllers |

Data extraction,
Data distribution,
Data aggregation

FIGURE 2. Schematic diagram of logical partitioning for reconfigurable
processors.

To better realize and optimize the mapping of CNN
calculation modes onto reconfigurable processors, it is
necessary to logically divide or partition reconfigurable
processors based on their functions. These functions pri-
marily encompass data extraction, data distribution, data
summarization, and data processing. Furthermore, specific
processors handle data extraction, distribution, and aggre-
gation tasks. In this paper, to facilitate the implementation
and demonstrate the effectiveness of the proposed automatic
compilation method, we present the logical partitioning
scheme for the 16 PEs, as depicted in Figure 2. Each PEOO
in every PEG is logically partitioned or configured as the
execution control functional unit responsible for completing
data extraction, distribution, and aggregation. The remaining
PEs in each PEG are logically partitioned or configured as
data processing functional units responsible for completing
data processing tasks.

VOLUME 11, 2023

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

IEEE Access

C. COMPILATION FRAMEWORK
The overall compilation framework structure and its process
flow is depicted in Figure 3.

Vs)\ 7

‘ CNN Algorithm ‘ " CNN Applications)

5 / Scalable Instruction |
I Group Library l
LLVM Compiler

Convert to intermediate
representation

LLVM Compiler
Automatic Partition

Instruction
group n
g Instruction
Manually Partition
. ? 2
into Multithreads
Instruction l
group 1)
Calculation Modes = LLVM Compiler
Extraction

Basic operation: I

Calculation Modes
Extraction

logical operation,read
operation,etc
Parallel operation:
Spawn operation,
synchronization
Opration, etc l

Manual Optimization Assembly Program

Configurable logical PEs Configurable Processors

FIGURE 3. Overall compilation flow of the proposed compilation
framework.

The input CNN algorithm, written in a high-level language,
is first converted into LLVM IR code through the LLVM
compiler. Then, the IR codes are partitioned into multiple
threads (meaning multiple program segments that can be
executed in parallel) using manual mode, which is considered
the best optimization method based on the configurable
processor. For simplicity, we assume that reconfigurable
resources are sufficient. At the IR level, the calculation
modes are extracted, which include basic operations and
parallel operations. Finally, based on the configurable logical
processors, these operations are classified and combined
into different instruction groups described in the assembly
program.

It should be emphasized that there are some design
principles for instruction groups: 1)The extracted calculation
modes are typical operations of the CNN algorithm, which
occur repeatedly in the CNN process, such as addition
operations and comparison operations. 2)When constructing
the assembly instruction group, it is necessary to ensure that
no calculation errors are caused by the previous operations
during program execution. This can be achieved, for example,
by clearing the registers involved in the operation in advance.
3)The assembly instruction group and the calculation mode
have a one-to-one mapping, meaning that a calculation mode
corresponds to a specific assembly instruction group, and the
same assembly instruction group corresponds to a specific
calculation mode. For a specific CNN application, it is first
converted into LLVM IR by the LLVM compiler, and then
it is partitioned into multiple threads on the reconfigurable

VOLUME 11, 2023

processor at the IR level based on the paralleling partitioning
method [25]. Next, the calculation modes are extracted and
compiled into an assembly program suitable for configurable
processors, according to the scalable instruction groups
provided by the LLVM compiler.

Ill. CALCULATION MODES EXTRACTED FROM CNN

CNN is a typical high-intensive application with distinctive
features such as one-way direction of data dependencies and
a high proportion of data reuse. Therefore, the main issues to
be considered when extracting the calculation mode are data
storage space and processor execution order. Based on the
execution process of CNN on a reconfigurable processor and
combined with the feature information of CNN extracted by
the LLVM compiler, the extraction process of the calculation
mode is shown in Figure 4.

multithreading CNN

Scan and get the number of program segments c, current
thread ID ¢

N
Load thread i and extract its calculation mode according to
Itk the operator and operand of each line of instructions

i<c ?
N

Output the calculation modes

FIGURE 4. The extraction process of calculation mode.

It can be observed that the calculation modes are mainly
extracted from the operators, operands, and the parallel
execution information of the multithreads. Therefore, the
extracted calculation modes mainly include basic operations
and parallel operations, which are discussed below.

A. EXTRACT BASIC OPERATIONS

Basic operations are designed based on operator types,
encompassing four fundamental arithmetic operations, log-
ical operations, combination operations, addressing oper-
ations, and read or write operations. The four arithmetic
operations encompass addition, subtraction, multiplication,
and division operations, with their typical mode outlined
in (1). When utilizing operations of this kind, it is imperative
to ensure correctness and timeliness.

a = b op_signc. @))

Logical operations mainly occur during the conversion
between layers and statement jump, and the general mode of
such operations is shown in (2). The operator logjc_sign is
used to control the operation mode, and the operation result
determines whether statement d1 or d2 is executed based on
the operands a and b.

¢ =alogic_signb?d; : d 2)

116755

IEEE Access

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

For combination operations such as convolution and
pooling, as shown in (2), it is necessary to decompose
the operations to obtain specific operands, operators, and
repetition times in order to ensure the correctness of the
calculation results.

11
c=>" Dayxb 3)
i=0 j=0

The addressing operation is often used for reading data.
For example, in the convolution operation, a large amount
of data needs to be read, and the value of each element
in the convolution kernel must be obtained to extract the
value of the pixel in the image. The characteristic of the
addressing operation is that the operands are addresses,
and correct addressing operations can prevent data errors,
calculation errors, etc., caused by overstepping the address
boundary. Due to the fact that load and store instructions are
mainly related to address operations, these instructions will
be classified as address operations.

B. EXTRACT PARALLEL OPERATIONS

Parallel operation refers to the synchronous execution of
multithreads, as shown in Figure 5. For example, thread 1, 2,
3, and 4 are synchronously executed to shorten the program
execution time. There are two main operation types in parallel
execution: spawning operation (Sp_Op) and synchronization
operation (Syn_Op). The spawning operation is used to start
the parallel execution of a thread, and the synchronization
operation is used to keep a thread waiting for exchanging data
or guaranteeing the logical execution sequence.

gl | 1| |glSpOp

) e 1 Sp_Op So O

= 5 E‘ 2 p} P Sp_Op

= =

% Z|Syn_0p —— 4

n

23 TPl Tsynop —

L yn_Op
4
v C—

FIGURE 5. Schematic diagram of parallel operation execution.

IV. CONSTRUCTION OF SCALABLE INSTRUCTION GROUP
LIBRARY

The reconfigurable processor instruction set adopted in this
paper is a simplified version based on MIPS instructions,
as shown in Table 1. All other complex instructions can be
completed by combining these instructions with registers. For
example, the register clearing operation can be accomplished
by the instruction ADDI R1, RO, # 0. During the process of
implementing complex instructions, it is crucial to ensure the
correct execution order of instructions to guarantee accurate
operations. When designing an assembly instruction group,
the first consideration is the functions that the assembly

116756

TABLE 1. Assembly instruction set of reconfigurable processor.

Type Assembly Instruction | Description

ADD RD <~ RS + RT

ADDI RD < RS + imme
Arithmetic SUB RD <~ RS — RT
operation and shift | AND RD < RS AND RT

SRL RD <~ RS > RT

NOP NO operation

LD RD <+ memory[RS]
Data transfer ST memory[RD] <y_ RS

BEQ if RS = RT, then branch
Jump BNE @f RS # RT, then branch

SLT if RS < RT, then RD = 1

J PC = #immediate
Immediate LDI RD ¢— memory[#imme]
operation STI memory[imme] <— RS

SUBI RD < RS — imme

instruction group needs to realize. Specific assembly instruc-
tions, registers, and storage units are designed accordingly
based on these functions. Next, to maintain the consistency of
data, each instruction group is designed with only one input
and one output, following the characteristics of the reconfig-
urable structure. Finally, the execution order of the instruction
group must align with the execution order of the original
calculation function to ensure the correct functioning of
the processor. When designing the corresponding assembly
instruction group according to the specific calculation mode,
strict adherence to the execution order of the calculation
mode and the division of processor positions is essential.
The assembly instruction group design for basic operations
mainly focuses on specific operations. On the other hand,
the assembly instruction design for parallel operations is
primarily based on the dependencies between processors and
the partition information of multithreads.

A. INSTRUCTION GROUP DESIGN OF BASIC OPERATION
The basic operation instruction group is primarily composed
of compound operations, address operations, and access
operations. By analyzing the operation rules, the number of
participating operations is determined, appropriate registers
and memory cells are selected, the number of instructions
and the order of instruction execution are determined. Finally,
the basic operation assembly instruction group can be
constructed. This paper mainly focuses on describing how to
construct instruction groups.

For a more intuitive explanation, we will use addition
and multiplication operations as examples to provide specific
instruction groups separately. For instance, based on (1), the
addition operation requires 3 operands, which means three
storage units are needed to store the operands and their
addresses for the design of the corresponding instruction
group. The instruction groups for the addition operation are
shown in Table 2.

The instruction sequence can be divided into three parts:
fetch operation, add operation, and write operation result.
First, the address corresponding to the first operand is
obtained through the fetch operation, as seen in the first

VOLUME 11, 2023

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

IEEE Access

TABLE 2. The instruction groups of addition operation operaton.

TABLE 3. The instruction groups of multiplication operation.

Serial number Instruction sequence Address Data
1 ADDI R1,R0,#1 1 25

2 LD R2,R1 2 26

3 ADDI R1,R1,#1 3 27

4 LD R3,R1 25 12

5 ADDI R4,R3,R2 26 13

6 ADDI R1,R1,#1 27 -

7 ST R4,R1 - -

and second instruction sequences in Table 2. The instruction
ADDI retrieves the address for operand 1, and the instruction
LD fetches the data from the storage area based on the address
obtained in register R/, writing the data into register R2.
Similarly, the address of the second operand can be obtained
through the 3rd and 4th instruction sequences. Next, for the
addition operation, as shown in the Sth instruction sequence,
R2 and R3 are added, and the result is written into R4.
Finally, the write operation is executed in the 6th instruction
sequence. The instruction ADDI obtains the address of
operand 3 in the 3rd sequence, and the instruction S7 in the
7th instruction sequence writes the operation result from R4
into the storage unit corresponding to the address in R1.

The subtraction operation is similar to the addition
operation. During the calculation process, the operands need
to be operated using the instruction SUB. For example, the
instruction ‘“sub R4, R3, R2” indicates that the result of
subtracting R2 from R3 is stored in R4. By using a similar
method as described above, we can construct the subtraction
instruction groups.

Since there is no multiplication instruction in the recon-
figurable assembly instruction used in this paper, a set of
multiplication instruction groups suitable for the reconfig-
urable processor is designed based on the operation rules
of multiplication, as shown in Table 3. From Table 3,
it can be observed that the multiplication operation is
similar to the addition operation. Similarly, for the division
operation, two points need to be considered when designing
the instruction groups: 1)The divisor cannot be zero. After
reading operand 2, it is necessary to determine whether
the value of operand 2 is zero. If it is zero, the execution
will either directly jump to the last instruction or continue
to execute. 2)After obtaining the operands, the division
operation is processed using the arithmetic right shift operator
to obtain the division instruction groups.

Logical operations are similar to four arithmetic operations
and require reading operands through read operations during
the calculation process. However, they differ from the
four arithmetic operations in two main points: 1)Operation
instructions are different, with logical operation instructions
including AND, OR, and NOT. 2)Logical operations are
accompanied by the loop structure. After the operation is
completed, the corresponding jump label needs to be added.

During the addressing operation, the data in the designated
address can be transferred to the register by the LD
instruction. However, it should be emphasized that since the

VOLUME 11, 2023

Serial number Instruction sequence Address Data
1 ADDI R1,R0,#1 1 25
2 LD R2,R1 2 26
3 ADDI R1,R1,#1 3 27
4 LD R3,R1 25 12
5 ADDI R5,R0,#1 26 13
6 MUL:ADDIRS5,R5.#1 |27 -
7 LFT R2,R2,R5 - -
8 RFT R3,R3,R0 - -
9 BNE R3,R0,#MUL - -
10 ADDI R1,R1,#1 - -
11 ST R4,R1 - -

address is dynamically generated, the address data for the
addressing operation needs to be calculated in advance when
designing the addressing operation instruction groups. For
memory access operations, they can be designed using the
ST instruction, which includes two registers. The data to be
stored is placed in register 1, and the address where the data
needs to be stored is placed in register 2. Since the storage
address cannot be directly loaded manually, we can write the
data into the specified area by determining the area where
the data may exist according to the linear search method.
The design of the storage zone is similar to the design of the
multiplication and addition operation instruction groups.

Additionally, for combination operations which refers
to several basic operations, it has been decomposed into
multiple single operations through LLVM compiler. Taking
a* B + C * D as an example, the combination optimiza-
tion problem can be solved by decomposing it into the
form% 1=a*B,%2=C*D,%3=%1+% 2.

B. INSTRUCTION GROUP DESIGN FOR PARALLEL
OPERATION

The parallel operation is a type of operation that results from
parallel execution, as shown in Figure 5, which includes
thread spawning operations and thread synchronization
operations. Thread spawning means that the activation status
for thread running has been met, and the thread can be
spawned to execute. The spawning instruction groups are
described in Table 4. The processor judges whether the
activation status is satisfied by reading the data value of
the specified location (such as address 1). If it is satisfied,
the next thread will be executed; otherwise, it continues
to wait. Thread synchronization operation is the process
of exchanging data or ensuring the logical execution order
among the parallel multithreads. The instruction groups of
synchronization operation are shown in Table 5.

TABLE 4. The instruction groups of spawning operation.

Serial number Instruction sequence Address Data
ADDI R1,R0,#1
ADDI R2,R0,#999 - -
Active: LD R1,R1 - -
BNE R1,R2 #Active - -

ADDI R1,R0#1 . .

—
Nel
N=
=]

(O RSNV SRR

116757

IEEE Access

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

TABLE 5. The instruction groups of synchronization operation.

Serial number Instruction sequence Address Data
ADDI R2,R0,#128 128 999

ADDI R3,R0,#999 - -
Para:LD R2,R2 - -
BNE R3,R2,#Para - -
ADDI R1,R0,#512 - -
ADDI R2,R0,#999 - -
ST R2,R1 - -

NN R W

By setting a specific Process Element (PE) (e.g., PE0O)
used to record the data information exported by each thread,
the specific PE will send the mark of calculation completion
to all the PEs (e.g., send the synchronization signal 999 to the
No. 1 storage unit of PEO1). When all the instructions have
been completed, each PE will immediately read this mark.
Based on this mark, the thread synchronization instruction is
then executed.

Based on the above methods of instruction group con-
struction, all instruction groups for CNN can be constructed,
forming the instruction group library. Moreover, for other
specific applications, the instruction group library can be
easily expanded, iterated, and optimized following the
construction method provided in this paper. Additionally,
in specific fields of applications, the instruction group
library can be easily applied to configurable processors by
extending it.

V. AUTOMATIC COMPILATION
Based on the processor division results presented in Sec-
tion II, the execution tasks are divided into four parts, which
include data extraction, data distribution, data processing, and
data transmission. For data extraction, PEOO writes the data
into the storage area. In data distribution, PEOO distributes
the extracted data to each PE. Data processing is mainly
achieved through the mapping scheme of calculation mode
and assembly instruction groups. Data transmission, on the
other hand, is realized using ST and LD instruction groups.
Taking convolution and pooling as examples, the implemen-
tation process is illustrated in Figure 6. The left subfigure
represents the conversion of convolution into multiplication
and addition operations, while the right subfigure represents
the conversion of pooling into comparison operations.
Taking multiplication operation and addition operation as
examples, we define the multiplication and addition operation
zones, result output zones, data zones, and result zones.
The multiplication and addition operations zone refers to
the data addresses involved in multiplication and addition
operations. The result output zone refers to the addresses
where the calculation results need to be exported. The
data zone refers to the area where the data involved in
the operation is stored. The result zone refers to the area
where the operation result is stored after multiplication and
addition operations are completed. The comparison operation
is similar to multiplication and addition operations, except
that only the specific operation differs. The difference lies

116758

1
multiplier : Compare
Multip] . zone
Multiplicand [Fand add. N
zone X _ 1, Output
3 product result
X Sum of __|,Output X+1 Output
products result
n
X+l Output
n N->1, 1
Step=11 1
2n->n n
Step=1 1 0
2n Loop o Loop times
Loop n— Loop times (initial value)
(initial value) i ', Iteration
i Ly Iteration variable
variable end
end
Data zone Data zone
Result zone Result zone

FIGURE 6. Schematic diagram of multiplication and addition operations,
and compare operations: multiplication and addition operations(left),
compare operations(right).

in simply changing the calculation method for operations:
multiplication and addition operations involve calculating the
product of two sets of numbers and then summing them up,
while comparison operations require finding the maximum
value among n numbers. The mapping rules of the automatic
compilation method are constructed based on the association
rules between the calculation modes and the assembly
instruction groups of the CNN algorithm. The calculation
modes are extracted according to the operators and operands
in the CNN algorithm. The calculation mode contains all
operations in the operation process of the CNN algorithm.
The assembly instruction groups in the mapping rule are
generated one-to-one according to the calculation modes, and
the extracted calculation modes are consistent with the type
and number of operations in the CNN algorithm. Therefore,
the mapping rules are complete and comprehensive. In the
next section, Section VI, we will perform simulation and
FPGA verification to prove the correctness and effectiveness
of our proposed method.

VI. EXPERIMENT AND RESULTS ANALYSIS

A. EXPERIMENTAL ENVIRONMENT

The compiler adopts LLVM 9.0, and the simulation platform
adopts modulesim10.1. C and Intel (R) Xeon (R) CPU
e5-2678 V3 @ 2.50ghz which has 96 isomorphic multicores.
Additionally, the reconfigurable array processor adopts BEE4
which includes Four virtex-6 series xc6vlx550t FPGA
development boards from Xilinx Company. The simulation
parameters and data sets are provided in Table 6.

B. SIMULATION AND FPGA VERIFICATION
To verify the correctness of the assembly instruction groups,
functional simulation is carried out using modulesim10.1c.
During the simulation process, the basic operations and
parallel operations are simulated separately.

VOLUME 11, 2023

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

IEEE Access

TABLE 6. The instruction groups of spawning operation.

Parameter description
Number of PE 1024
Number of register RO -R15
load/store RISC
Instruction storage capacity 512%32 (bit)
Data storage capacity 512*16 (bit)
Clock cycle 20ns
activation function ReLU

Data set MINIST[26]

To verify the accuracy of the automatic compilation
method, the assembly instructions generated by the automatic
compilation method are tested on the FPGA platform.
First, the assembly instructions generated by the automatic
compilation method are obtained, converted into machine-
recognizable binary instruction groups by the assembler, and
placed in the processor file corresponding to the instructions
shown in Figure 7. Then, the generated files are imported
into the reconfigurable array processor, and the calculation
results are obtained. Finally, the results are compared with
the simulation results to verify their correctness.

001101000000000000000000000000
000010000100000000000000000001

#LoopS01 :NOP
MULO:ADDI R1,RO, #1

LD R1,R1 010000000100010000000000000000
ADDI R1,R1, #0 000010000100010000000000000000
LD R1, R1 010000000100010000000000000000
ADDI RZ, RO, #16 000010001000000000000000010000
LD R2,R2 010000001000100000000000000000
ADDI RZ,RZ, #0 000010001000100000000000000000
LD R2,R2 010000001000100000000000000000

100000001000000000000000001111
000010001100000000000000000000
000010010000000000000000000000
000001010001000001000000000000
101000001000100000000000000001
100001001000000000000000001100
000010001100000000000000000000
000010001100110000000000100000

BEQ R2, RO, #NUL_E0O
ADDI R3, RO, #0

ADDI R4, RO, #0
MULOO:ADD R4,R4,R1
SUBI RZ,RZ, #1

BNE RZ, RO, #HULOO
MUL_E0O0:ADDI R3, RO, #0
ADDI R3,R3, #32

ST R4,R3 010001010000110000000000000000
MUL1:ADDI R1,RO, #2 000010000100000000000000000010
LD R1,R1 010000000100010000000000000000
ADDI R1,R1, #0 000010000100010000000000000000
LD R1, R1 010000000100010000000000000000
ADDI RZ, RO, #17 000010001000000000000000010001
LD RZ,R2 010000001000100000000000000000

FIGURE 7. Assembly instructions and corresponding machine instructions
generated by our automatic compilation method: Assembly
instructions(left), Machine instructions(right).

C. PERFORMANCE ANALYSIS

To further prove the effectiveness of the automatic com-
pilation method proposed in this paper, we introduce two
typical parallel compilation models, OpenMP and LLVM, for
performance comparison. LLVM stands as an advanced com-
pilation system with several obvious advantages, including
extensibility, extensive language support, a robust toolset and
ecosystem, and wide applicability. Meanwhile, OpenMP rep-
resents a set of programming APIs facilitating multi-threaded
concurrent programming through cross-platform shared-
memory mechanisms, and adopts a portable and extensible
model, offering developers a straightforward and flexible
development platform for parallel applications. Given their

VOLUME 11, 2023

broad representativeness and excellent application perfor-
mance, as well as their similarity to the scenarios applicable
to reconfigurable processors, we compared our speedup
performance with OpenMP and LLVM parallel compilation
models. Using the trained Lnet-5 network as the input
network, we conduct performance comparisons based on
OpenMP, LLVM, and the proposed method in this paper
for different scales of test data, such as 1, 5, 10, 20, 30,
50, 100, and 200, respectively. The comparison of execution
performance is shown in Figure 8. Additionally, in the
experiment, the number of reconfigurable processors used is
16, and the number of multicore utilized for OpenMP and
LLVM is also 16, based on the server with Intel (R) Xeon (R)
CPU e5-2678 V3 @ 2.50GHz.

1 5 10 20 30 50 100 200
data scale

mOpenMP ®LLVM mOur Method

FIGURE 8. The comparison of the execution performance based on
OpenMP, LLVM and the proposed method.

From Figure 8, it can be observed that our method outper-
forms the OpenMP and LLVM parallel compilation models
in terms of execution time, achieving speedup improvements
of 3.63% and 2.84%, respectively. These results clearly
demonstrate that the proposed automatic compilation method
performs even better than the typical parallel compilation
models. Moreover, as the scale of input test data gradually
increases, our method consistently maintains a performance
advantage over the other two methods, indicating its strong
generalization ability.

To analyze the deep-seated reasons, it is mainly because of
the following factors: 1) CNN applications have complex data
and control dependencies, making it challenging to extract
all parallel information solely from high-level semantics.
Unfortunately, both the OpenMP and LLVM compilation
models heavily rely on high-level semantics for parallel par-
titioning. Moreover, to handle these complex dependencies,
both compilation models often adopt conservative parallel
strategies, leading to limited exploitation of parallelism. 2) In
contrast to OpenMP and LLVM, our compilation method
focuses not only on high-level semantic information but also
on parallel information closer to the lower level (hardware
structure). By manually constructing assembly instruction
groups based on high-level parallel information, including
parallel partition and mapping knowledge, our method can
effectively reflect the advantages of software and hardware
co-design and uncover the parallelism of the application.

116759

IEEE Access

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

Consequently, our method can better leverage the advantages
of configurable hardware.

To further evaluate the effectiveness of the proposed
method, we conducted experiments on an FPGA-based
experimental platform. The reconfigurable array processor
utilized BEE4, which incorporates four Virtex-6 series
XC6VLXS550T FPGA development boards from Xilinx
Company. We conducted a performance comparison of
the CNN application using our compilation method and a
manual optimization method (where the assembly program is
directly written by hand). The results are shown in Figure 9.
Compared with the CNN assembly application that is
meticulously developed by hand and considered to have near-
optimal performance, the algorithm execution time of the
automatic compilation method is longer. But at the same time,
from the trend shown in Figure 9, it can be seen that as the
scale of test data expands, the performance of our proposed
automatic compilation method is very stable. On average,
the proposed automatic compilation method achieves 62.56%
of the optimal performance. On the one hand, for the
automatic compilation method proposed in this paper, while
greatly reducing the programming difficulty, it still has
comparability with the optimal manual method and has
excellent generalization ability which strongly demonstrates
that our method is feasible and effective. Additionally, it also
highlights that there is still room for further improvement and
optimization of this method.

Normalized Performance

1 5 10 20 30 50 100 200
data scale
Manual Our_Method ==-=-- Trend

FIGURE 9. Comparison of execution performance based on automatic
compilation method and manual optimization method.

In a deeper analysis, it can be observed that although
the assembly instruction groups constructed by hand can
effectively reflect the parallel partition and mapping knowl-
edge of both high-level semantic information and low-level
hardware structure, they often adopt a more conservative
compilation strategy. This may include inserting redundant
waiting cycles during simultaneous operations to strictly
ensure absolute correctness of timing. As a result, the manual
optimization method may not fully exploit the available par-
allelism, leading to suboptimal performance. However, with
the continuous optimization and improvement of relevant

116760

compilation strategies in the future, these adverse effects can
be gradually reduced or even eliminated, potentially leading
to better performance.

VIl. CONCLUSION

More and more application fields are reaping the benefits of
artificial intelligence technologies like CNN. However, these
typical high-density applications present greater challenges
for processors in terms of their processing capabilities and
flexibility. While reconfigurable architecture is a necessary
choice for addressing high-intensity applications, it still
encounters difficulties due to the complexity of hardware
structure programming and the vagueness or imprecision
of many dependencies in applications. Consequently, devel-
oping applications and fully capitalizing on the advantages
of reconfigurable architecture can be quite challenging.
In response to these challenges, we propose an automatic
compilation of CNN on a reconfigurable array processor,
based on a scalable instruction group library. This library
consists of meticulously designed instruction groups, which
encompass parallel partition and mapping knowledge of
both high-level semantic information and low-level hard-
ware structure. This compilation approach facilitates the
straightforward mapping of CNN applications written in
high-level languages onto reconfigurable array processors
without manual intervention.

The Experimental results show that the proposed method
can reduce the difficulty of programming and achieve better
speedup performance compared with OpenMP and LLVM
parallel compilation models, and these also fully show that
our method has good generalization ability. Meanwhile,
in our method, the delay between PEs and other issues
arising from the questions such as the limited power,
outage probability, latency, unauthorized access etc., are
mainly limited by the interconnection and transmission
structure of the array processor itself, and are not directly
related to the automatic compilation method. Therefore,
the proposed method has good adaptability. Additionally,
along with the optimization and improvement of relevant
compilation strategies in the future, the scalability of the
instruction group library also can provide a helpful guidance
for the reconfigurable implementation of domain oriented
applications with better performance.

REFERENCES

[1] Y. Niu, R. Kannan, A. Srivastava, and V. Prasanna, “Reuse kernels
or activations? A flexible dataflow for low-latency spectral CNN
acceleration,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, Feb. 2020, pp. 266-276.

Y. Zhang, N. Zhang, T. Zhao, M. Vilim, M. Shahbaz, and K. Olukotun,
“SARA: Scaling a reconfigurable dataflow accelerator,” in Proc.
ACM/IEEE 48th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021,
pp. 1041-1054.

C. Tan, C. Xie, T. Geng, A. Marquez, A. Tumeo, K. Barker, and A. Li,
“ARENA: Asynchronous reconfigurable accelerator ring to enable data-
centric parallel computing,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 12, pp. 2880-2892, Dec. 2021.

[2

—

3

—

VOLUME 11, 2023

Y. Li et al.: Automatic Compilation of CNN on Reconfigurable Array Processor

IEEE Access

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Brand, F. Hannig, O. Keszocze, and J. Teich, ‘“Precision- and
accuracy-reconfigurable processor architectures—An overview,” IEEE
Trans. Circuits Syst. 1I, Exp. Briefs, vol. 69, no. 6, pp.2661-2666,
Jun. 2022.

L.Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei, “A survey
of coarse-grained reconfigurable architecture and design: Taxonomy,
challenges, and applications,” ACM Comput. Surveys, vol. 52, no. 6,
pp. 1-39, Nov. 2020.

Y. Lu, L. Liu, J. Zhu, S. Yin, and S. Wei, ““Architecture, challenges and
applications of dynamic reconfigurable computing,” J. Semiconductors,
vol. 41, no. 2, 2020, Art. no. 021401.

G. Brignone, M. U. Jamal, M. T. Lazarescu, and L. Lavagno,
“Array-specific dataflow caches for high-level synthesis of
memory-intensive algorithms on FPGAs,” [EEE Access, vol. 10,
pp. 118858-118877, 2022.

A. Ohwada, T. Kojima, and H. Amano, “An efficient compilation of
coarse-grained reconfigurable architectures utilizing pre-optimized sub-
graph mappings,” in Proc. 30th Euromicro Int. Conf. Parallel, Distrib.
Network-Based Process. (PDP), Mar. 2022, pp. 1-9.

Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith,
A. Merczynski-Hait, and A. DeHon, “PLD: Fast FPGA compilation to
make reconfigurable acceleration compatible with modern incremental
refinement software development,” in Proc. 27th ACM Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., Feb. 2022, pp. 933-945.
M. Weinhardt, M. Messelka, and P. Kidsgen, “CHiPReP—A compiler
for the HiPReP high-performance reconfigurable processor,” Electronics,
vol. 10, no. 21, p. 2590, Oct. 2021.

Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A multi-paradigm programming infrastructure for
software-defined reconfigurable computing,” in Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays, Feb. 2019, pp. 242-251.

R. Zhao, S. Liu, H.-C. Ng, E. Wang, J. J. Davis, X. Niu, X. Wang,
H. Shi, G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Hardware
compilation of deep neural networks: An overview,” in Proc. IEEE 29th
Int. Conf. Application-Specific Syst., Architectures Processors (ASAP),
Jul. 2018, pp. 1-8.

N. Paulino, J. C. Ferreira, and J. M. P. Cardoso, “Improving per-
formance and energy consumption in embedded systems via binary
acceleration: A survey,” ACM Comput. Surveys, vol. 53, no. 1, pp. 1-36,
Jan. 2021.

M. Karunaratne, D. Wijerathne, T. Mitra, and L.-S. Peh, “4D-CGRA:
Introducing branch dimension to spatio-temporal application mapping
on CGRAS,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), Nov. 2019, pp. 1-8.

B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Esmaeilzadeh,
“Chameleon: Adaptive code optimization for expedited deep neural
network compilation,” in Proc. Int. Conf. Learn. Represent., Apr. 2020,
pp. 1-17.

D. Park, Y. Xiao, N. Magnezi, and A. DeHon, “Case for fast FPGA
compilation using partial reconfiguration,” in Proc. 28th Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2018, pp. 2350-2353.

S. Lahti, P. Sjovall, J. Vanne, and T. D. Hdmildinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898-911,
May 2019.

J. Cong and J. Wang, “PolySA: Polyhedral-based systolic array auto-
compilation,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), Nov. 2018, pp. 1-8.

Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Automatic compilation of
diverse CNNs onto high-performance FPGA accelerators,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 2, pp. 424-437,
Feb. 2020.

Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “OPU: An FPGA-based
overlay processor for convolutional neural networks,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp. 35-47, Jan. 2020.

J. Wang, L. Guo, and J. Cong, “AutoSA: A polyhedral compiler for high-
performance systolic arrays on FPGA,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, Feb. 2021, pp. 93-104.

S.-H. Chung and T. S. Abdelrahman, “A compilation flow for the genera-
tion of CNN inference accelerators on FPGAs,” 2022, arXiv:2203.04015.

VOLUME 11, 2023

(23]

[24]

(25]

[26]

E. Mutlu, R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and
G. Kestor, “COMET: A domain-specific compilation of high-performance
computational chemistry,” in Proc. Int. Workshop Lang. Compil. Parallel
Comput., Feb. 2022, pp. 87-103.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim. (CGO), Mar. 2004, pp. 75-86.

X. Lin, S. Yin, F. Tu, L. Liu, X. Li, and S. Wei, “LCP: A layer clusters
paralleling mapping method for accelerating inception and residual
networks on FPGA,” in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf.
(DAC), Jun. 2018, pp. 1-6.

L. Yann, C. Cortes, and C. J. C. Burges. The MNIST Database Of Hand-
written Digits. [Online]. Available: http://yann.lecun.com/exdb/mnist/

YUANCHENG LI is currently pursuing the Ph.D.
degree with the Xi’an University of Science and
Technology, Xi’an, China. His current research
interests include reconfigurable compilation and
artificial intelligence.

NA WANG is currently pursuing the master’s
degree with the Xi’an University of Science and
Technology, Xi’an, China. Her current research
interest includes reconfigurable computing.

MINGWEI SHENG is currently pursuing the
master’s degree with the Xi’an University of
Science and Technology, Xi’an, China. His cur-
rent research interest includes reconfigurable
computing.

JIAQI SHI is currently pursuing the degree with
the Xi’an University of Science and Technol-
ogy, Xi’an, China. His current research interest
includes reconfigurable computing.

116761

