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ABSTRACT Smart Energy (SE) has emerged as a critical technology in tackling global challenges like
climate change while addressing the rising energy demands driven by today’s data-intensive industrial
revolution. SE integrates information and communication technologies into energy systems, optimizing them
to meet these challenges effectively. At the core of SE operations are smart meters, playing a fundamental
role in ensuring efficient functionality. These devices collect data, which is then leveraged to derive Business
Intelligence (BI) for operations across the entire spectrum, from the sensing infrastructure to the cloud,
primarily utilizing the Internet of Things (IoT) technology framework. With the increasing complexity
of operations and the growing demand for optimization and enhanced functionality, the SE technology
stack is evolving to integrate across all layers and domains. This integration has led to the stratification of
computational load across IoT layers, intensifying the dependence on smart meter data for BI. Consequently,
smart meters themselves have evolved to become more functional and complex. This paper’s novelty lies in
its comprehensive exploration of the integration of BI with smart meter data. It delves into various aspects,
including the different layers of intelligent operations within SE systems, the current state of the art, and
diverse implementations of smart meters and their applications across operational locations, ranging from
consumers to fog computing. The paper concludes by identifying research gaps and future directions, offering
insights into the evolving requirements for the next generation of SE systems and the necessary adaptations
in smart metering infrastructure to support these roles. This work contributes to a better understanding of
the evolving landscape of data and computation in the context of SE, facilitating more efficient and effective
energy management solutions.

INDEX TERMS Smart grids, smart meters, AMI, cloud, business intelligence, artificial intelligence, smart
energy.

NOMENCLATURE
AI Artificial Intelligence.
AMI Advanced Metering Infrastructure.
BI Business Intelligence.
CNN Convolutional Neural Network.
DR Demand Response.
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DSM Demand Side Management.
EV Electric Vehicle.
FFNN Feed Forward Neural Networks.
GBRT Gradient Boosting Regression Trees.
HEMS Home Energy Management System.
IoT Internet of Things.
LSTM Long Short Term Memory.
LTLF Long Term Load Forecasting.
LV Low Voltage.
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MILP Mixed Integer Linear Programming.
NTL Non-Technical Load.
PCA Principal Component Analysis.
S2S-RNN Sequence-to-Sequence Recurrent Neural

Network.
SBCTL Similarity Based Chained Transfer Learning.
SE Smart Energy.
STLF Short Term Load Forecasting.
SVM Support Vector Machine.
V2G Vehicle to Grid.
VSTLF Very Short Term Load Forecasting.

I. INTRODUCTION
Modern technological world is computation-driven power
house that has, in turn, driven the energy demands up
by manifolds [1]. Not only the energy demand is on the
rise it is so at an ever increasing rate. Increased demand
has put severe constraints on natural resources risking
depletion sooner than later along with heightened risks
to environment [2]. This calls for better management of
resources and integrating renewable energy, environmentally
friendlier fuels and fuel technology to the energy mix. The
energy mix is continuously being diversified with wind,
solar, nuclear and other renewable sources which has greatly
increased the complexity and functional dimensions of the
energy grid. Along with the diversified mix more and
more novel components are continually being added to the
energy grid like grid storage, electrical vehicles, prosumers,
distributed generation, energy management systems and
inverter based loads producing non-sinusoidal currents and
voltages in the grid which has made traditional grid functions
as state estimation, load management, demand forecasting,
fault prediction, location and isolation, frequency control and
asset management more challenging along with adding more
functionalities in terms of managing the energy mix, sensing
of different energy resources, logistics and distribution etc.
To make this feat manageable energy systems have integrated
information and communication technologies and evolved
into smart energy systems [3], [4]. In this context the term
‘‘smart energy’’ has evolved to signal the shift from single
sector to multiple integrated sector managed as complex
system of systems to scale up to grand challenges facing the
energy sector both in terms of operations and environment.

Smart energy fundamentally, like typical smart system,
consists of sensing [5], computation and communication
functions for control and optimization. Smart meter is the
core component of smart energy providing many contri-
butions in the field. Traditionally they measured simple
consumption parameters like voltage, current and power
and reported to some central location. Due to increased
complexity and functionality of SE, the requirements for the
components vary greatly for different metrics such as latency,
robustness, throughput, data granularity and data integration.
These metrics varies for different functions of smart meters

FIGURE 1. Illustration of the data collection of the energy meters at
distinct levels of the power grid. Electricity data from the three domains
i.e., consumption, distribution, and generation are collected by smart
devices, the smart energy meters. The gathered data is sent to computing
resources, where AI algorithms are used to make various business
intelligent decisions. These choices ultimately contribute to addressing
the environmental challenges and efficient deployment of natural
resources.

like energy efficiency conservation, load balancing and grid
management, demand response, predictive maintenance etc.
For example frequency imbalance estimation requires faster
response times then demand forecasting which requires more
data. Similarly fault detection requires real time detection
with lowest latency as compared to simple metering which
has no stringent latency requirements. Such varied profiles
have led to spreading of the sensing function across multiple
layers in the network along with greater integration of
function into the meter itself. Thus, smart meters now collect
data at consumption, distribution, and generation as shown in
Figure 1 and process them for intelligent decision-making.
At the user node or consumption side, data is readily

available, for example, information received from smart
vehicles, smart infrastructures, and appliances [6]. The rate
of information reception and dissemination through the
communication network to the database is dependent on the
volume of data being logged into systems along with distinct
features such as the number of appliances, time of day, and
weather conditions out of many to effectively represent the
SE system. This data could directly be processed by consumer
end smart meters for diverse functions such as demand side
management, home energy management systems, dynamic
tariff management and net metering etc. At the distribution
level, smart meter data is consolidated from home area
networks to the local area network and finally to the
distribution centers. This data is further augmented by various
measurements, such as Synchrophasors, for applications like
fault isolation, fault classification, asset management and
predictive maintenance of transformers and grid stations
on a larger scale. Large amounts of data, generated and
collected at the distribution level, contain details on pertinent
events and activities during a specific period which helps in
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implementing advanced control strategies and optimization
of the grid at a large scale. For example, power metering
of the transformer for preventive maintenance [7]. Finally,
the generation level of the data from the distribution and
consumption layers is used for controlling real-time power
output, energy consumption forecasting, optimizing energy
mix, and voltage frequency monitoring for the distribution
and generation components. The data typically measured at
this layer is industrial, like process variables for thermal
power plants and vibration of generators etc. Typically,
voltage, current and frequency are monitored in greater detail
at this level.

All the information from various levels together generates
large volume of metering data which leads to big data
management challenges. To cope with voluminous, veracious
and versatile data Big Data technologies can be deployed at
different computing levels. Each deployment option has its
own set of benefits and drawbacks. Cloud-based big data
technologies are typically hosted on a remote server and
accessed through the internet. These solutions are typically
easy to set up and can be accessed from anywhere. Fog and
edge-based big data technologies work the same but are closer
to the source of data providing quick processing and low
latency respectively and are simpler In implementation and
scope. Different AI approaches may be used to evaluate the
data and get valuable insights from it once it reaches the
desired computational level [8]. Additionally, the data can be
visualized using dashboards, which allow for easymonitoring
and analysis of the process.

The current state of the art in smart metering infrastructure
has thus been varied in implementations and level of
integrations. Lately smart meters have increasingly relied
on (Internet of things technology) IoT technology for
enhanced functionality and coverage. This has enabled
data collection at various levels in the power distribution
while oftentimes bringing computation closer to the data
source to reduce latency and increase the effectiveness
of power measurements. In view of this development,
a review that encompasses different topologies of smart
meter measurements and computations is necessitated but
not adequately covered in the literature. This article aims to
address this review gap. Thus, in this survey research article,
we have presented a brief description of data collection at
various levels of power systems followed by the role of big
data in smart meters along with the different technologies
involved and their advantages. To address the challenges of
data processing and analytics different computational levels
and their significance in the smart metering domain are
explored. Afterward, a comprehensive review of applications
and AI techniques are presented to make smart and intelli-
gent decision-making for advanced energy-efficient systems
which are more environmentally friendly. Finally, a review
of different implementations of smart meter with respect to
the measurements and functionalities is presented. Figure 2
depicts the schematic diagram illustrating the flow of this
research article. The introduction section covers the impetus

FIGURE 2. Sequential depiction of the research paper’s methodology,
analyses, and results, offering a comprehensive overview of the study’s
procedural flow.

and development of smart meters’ implementations for
complex smart energy systems which leads to differentiated
implementations at various levels. These implementations
are then segregated under the location in the power system
where the smart meter operates, the computational stacks
employed to carry out the different roles, and finally, different
application domains employing the smart meter data. These
aspects are covered in subsequent sections as detailed above.

II. DATA COLLECTION AND ANALYTICS FOR BI USING
SMART METERS
Smart systems collect, transform, store, and process data
for autonomous intelligent decisions [9]. Big Data and
analytical technologies have now been universally deployed
to manage and process the data for such intelligence. Using
sophisticated data analytics, like predictive analytics, adds
tremendous value to otherwise mundane data [10]. Smart
meters now increasingly collect veracious and variable data
at the measurement points and sometimes process data on
location while at other times relaying the data to edge,
fog, or cloud for different data analysis tasks. In this
section, we review different sensing, collection, storage,
and transformation techniques for smart meter data. The
complexity of each technique largely depends upon the nature
of the end goal.

Sensing is one of the core components of smart systems,
and modern IoT-based implementations have spread sensing
functions across different layers [17]. The dataset size for
smart meter sensing varies based on the specific use case.
For example, demand forecasting, which may require a large
amount of data, typically involves collecting and analyzing
data spanning several years. The list of different smart meter
datasets is shown in Table 1 indicating the different datasets
and the type of data contained in each. These extensive
datasets help in accurately predicting future energy demands.
On the other hand, transmission parameter estimation, being
a local problem with fewer data requirements, often deals
with relatively smaller datasets covering a shorter time frame.
Sensor values are transformed using fusion and advanced
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TABLE 1. An overview of different smart meter datasets and a brief
description of the data they contain.

analytics processing into derived values acting as virtual
sensors for downstream systems. A preventive maintenance
system is one example of such a scenario [18].

Collecting a wide range of data, including temperature,
pressure, humidity, power consumption, and various envi-
ronmental parameters, the specific data collected by the
sensors depends on the application’s requirements. These
measurements are crucial for gaining insights into energy
consumption patterns and ensuring the proper functioning
and condition of equipment. Smart meters, in particular,
go beyond these physical parameters. They also capture
electrical data, including voltage, current, power flow,
frequency, and phase of the electricity [19]. Table 2 lists
the different parameters being calculated by the smart meters
along with the location of smart meters and their description
in the application. Using advanced techniques, smart meters
can even predict the remaining useful life of equipment,
effectively functioning as virtual sensors. In industries such
as process manufacturing, it’s common to employ multiple
sensors to monitor a single variable. These systems utilize
sensor fusion techniques, among other methods, to ensure

precise measurements of process variables. Similarly, smart
electricity and energy networks apply similar techniques to
derive a single sensed value from various measurements, such
as cable impedance [20].

Smart meters, the sensing component of smart energy,
measure voltage, current, power flow, frequency and phase
of the electricity and report the data to the central location
either in one hop or, now the usual case, in multiple hops
to the cloud. These direct measurements are continually
processed and transformed as they traverse through the
energy network [33]. As described in Section I, each layer
in the energy network aggregates the values from the layer
beneath and adds its own set of data, which we consider
smart metering data in the context of the current review.
At each layer, the design of the smart meter also varies in
terms of communication and computation capability, the type
of software employed for processing and storing the data,
and finally, the type of sensing circuit used, both in terms of
technology and range of measurements.

Sensing, data fusion, and augmentation require commu-
nication systems for data transfer [34]. Smart meters come
equipped with a range of data communication protocols
tailored to their specific roles within the smart energy
ecosystem. The choice of protocol depends on factors such
as the network type, the meter’s functionality, and its position
in the hierarchy of the smart energy system [35]. In the
realm of consumer nodes, where the focus is on home area
networks, the protocols commonly in use include familiar
names likeWi-Fi, 802.15.4, 802.11-based networks, and BLE
(Bluetooth Low Energy) [36]. These networks are designed
with efficiency in mind and may transmit data at different
frequencies, such as real-time or daily intervals, depending
on the application.

In the context of smart meters, the storage frequency
refers to how often data is collected and stored regarding
energy consumption and related parameters. Smart meters are
programmed to record data at regular intervals ranging from
hourly to 15-minute increments. This measurement period,
or granularity, is an important feature of smart meter data
management because it affects the level of detail accessible
for analysis. Furthermore, smart meters frequently save past
data for a set length of time, typically one to three years,
allowing for trend analysis and long-term planning. In a
recent study by [37] conducted in 2022, they undertook a
comprehensive evaluation of various computational methods
for forecasting next-day load using a dataset comprising
half-hourly readings from 5,567 households. On the other
hand, in 2018, [38] introduced an innovative approach
involving unsupervised data clustering and frequent pattern
mining analysis across three distinct datasets. Subsequently,
they applied Bayesian network techniques for energy con-
sumption forecasting, achieving an impressive accuracy rate
of 81.89 percent. Worth noting is that the datasets utilized
in these studies included high-frequency smart meter data,
characterized by data resolutions of 6 seconds and 1 minute,
respectively.
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TABLE 2. Review of smart meter data and applications at power
generation, distribution, and consumption levels.

These networks are designed with efficiency in mind,
employing constrained energy protocols to keep overhead to
a minimum and maintain a straightforward inter-networking

structure. Moving up the hierarchy to the distribution layer,
we encounter edge nodes that play pivotal roles in data
management. Here, the emphasis is on local or wide-
area networking, and the preferred protocols often include
low-power WAN options such as 6LoPWAN and LoRa-
WAN [39]. These technologies are complemented by the
deployment of single-board computers boasting multi-core,
high-end systems on chips, ensuring the necessary processing
power for data handling. Before the data from edge nodes
reaches its final destination in the cloud, it may traverse a fog
network, where several edge nodes collaborate. Eventually,
all these streams of data converge in the cloud. The
primary networking protocols utilized in this context are
predominantly cellular, harnessing the capabilities of 4G and
5G networks. Details of these computing infrastructures will
be presented in section III.

Smart meters use computing, storage, and transformation
techniques to build intelligence from the data from sensors
and the network [40]. These constitute the physical hardware
running the smart meter program. As the complexity of
metering algorithms has evolved, so have the physical
platform capabilities. The smart meter algorithms at the
consumer nodes have a range of hardware capabilities,
from simple microcontrollers to single-board computers,
depending upon the complexity. For example, simple meter-
ing and reporting systems employ a simple microcontroller
equipped with a single communication interface, whereas
complex home energy management systems use powerful
single-board computers for communicating with individual
appliances and local area networks or even with the cloud
and use powerful multi-core processors, greater storage
and memory for running complex analysis, inference and
decision engines. For example, home energy management
systems, which implement non-intrusive load monitoring,
run a complex billing engine, and implement net metering,
require a hardware platform with capable hardware and
communication interfaces [41].

As the complexity at the consumption end increases,
so do the hardware platform requirements. For example,
a building energy management system uses edge computing
hardware that might include multiple interacting platforms
such as computer servers, modems, and sensing and actuation
interfaces, implementing complex, scalable control and data
acquisition (SCADA) systems [42]. The same edge com-
puting infrastructure is implemented at distribution and fog
levels with greater computing power to handle sub-grids and
complex industrial loadsmetering [43]. Such a computational
platform runs and derives metering variables used in complex
control and optimization algorithms. For example, waveform
analysis at the distribution level can reveal the power quality
metrics used to control the complex interacting grid switches
to minimize the losses.

Leveraging the synergy among the components described
above, various algorithms, including demand-side manage-
ment, electric load forecasting, anomaly detection, and
innovative applications, have been enabled through the
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analysis of substantial data from smart meters. It is essential
to consider the peculiarities of smart meter output to
realize its maximum value because of the difficulty in
processing and evaluating the enormous amount of smart
meter data and maintaining a real-time balance between
energy supply and demand and instantaneity. Power providers
must set up specialized data centers to store the data from
these high-dimensional smart meters. Data is exponentially
increasing due to technological advances and population
increase. Fast data processing is crucial for short-term
demand forecasting, power system fault identification, and
other decisions. Therefore, it is necessary to assess informa-
tion from large-scale electricity manufacturing and utilization
relatively quickly. This characteristic is known as velocity.
ICTs have quickly advanced and are frequently used in
smart grids. Modern smart meters are commonly utilized
in smart grids and, in general, come with clever processing
software and the ability to collect data almost instantly,
hence enhancing data transmission capabilities. Due to
the combination of user data, business data, and data on
power generation with the voltage, current, and frequency
of measurement nodes, the data is incredibly complex and
has huge data dimensions. The diversity of data is further
expanded by meteorological information and geographic
location data, enhancing the data’s contribution to grid
efficiency and developing new commercial energy models.
In addition, smart meters’ technical capabilities have recently
improved, allowing them to deliver finer-grained data to a
greater extent and thereby boosting variety and volume.

III. COMPUTATIONAL STACKS FOR SMART METER
ANALYTICS
The data collection at various levels and locations of the
smart energy system by the smart meter needs intelligent
decision-making for processing and monitoring the data from
smart meters has its advantages, but because of the huge
data load, it would take a lot of computing power to run the
training models on it. As pointed out earlier, the metering
infrastructure is now spread across the energy and IoT stack to
reap the benefits of allowing greater computational resources
to integrate and calculate advanced metering parameters for
the smart energy system. To avoid cost and complexity
increases, smart meters at the consumption end are kept as
simple as possible, while for management of more complex
consumption entities, such as offices, buildings or factories,
smart meters with more hardware and software resources
are employed. As the data consolidation, augmentation, and
processing get more complicated, the metering functionality
is distributed further up the computational stack into the
edge, fog and, finally, the cloud. The previous section
reviewed different metering functions distributed across the
smart energy layers but only provided brief hints about the
corresponding complexity of the computational stack. This
section reviews different computational models used by the
metering functionality, which are crucial for implementation.
The concept is depicted inFigure 3. The smart meter function

FIGURE 3. Depiction of the various technological stacks. Data from
consumer nodes is collected and then transferred to the edge layer. Three
layers are shown that are present according to the data available sources.
The use of each layer solely depends on the application. Edge being the
closest take the least time but cannot carry a large amount of calculation
due to resource constraints. On the same pattern fog and cloud work.

is spread across different computational layers, edge, fog, and
cloud dealingwith differentmetering functionality depending
upon the application. In the following sub-sections, we review
different computing stack and their application domain for
smart meter functionality.
Cloud Computing: Cloud computing allows flexible com-

putational resources on demand, often without constraints on
limits from an application standpoint of view [44]. Cloud
computing is becoming more prevalent for smart metering
functionality, offering features suitable for smart metering
software applications in integrating information, evaluation,
and programs like flexible assets and support functions [45].
Cloud computing can be public, private, and hybrid based
on various factors such as privacy, security, complexity and
cost [46]. Public clouds are a good option for the general
processing and visualization of metering data; for example,
simple home energy monitors and energy auditing interfaces
for buildings [47]. Such solutions require very low cost
but need connectivity and design resources that might be
prohibitive for private implementations. Thus public clouds
are mostly employed to implement consumption-related
metering facilities. On the other hand, when data security,
privacy and functional uniqueness are important factors,
such as for large companies, private clouds are deployed
in the smart energy network. Generation facilities and
distribution networks often employ private cloud deploy-
ments for performing metering functions like power quality
measurements, transmission line parameter estimations,
alarming, efficiency, asset management parameter estimation
and monitoring. Most often, however, hybrid implementation
is employed, where private and secure functionalities are
performed on private clouds, whereas the public cloud is
used for data consolidation, augmentation and visualization.
Another important function of the public cloud is to train the
neural networks used by smart meters at various levels to
implement intelligence. Training a neural network for smart
metering parameter estimation and calculation is expensive
and requires large computational resources that are most
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often used only once. The public cloud is an ideal candidate
in this scenario because that allows renting the computing,
communication and storage facility at a much lower CAPEX
cost. Competition is fierce, so the public clouds often provide
software tools to program the data ingestion, neural network
programming and training, which also leads to reduced
OPEX.

Cloud computing benefits smart meters by lowering
maintenance costs, providing easily scalable resources to
meet demand, and adopting a pay-as-you-go pricing model
to invest in infrastructure, making smart meters an important
component and pervasive of smart energy system [48] and
allowing power system’s efficient, intelligent, and optimal
operation. Researchers are primarily focusing on integrating
the energy infrastructure, cloud technology, and intermediate
communication provider domains to maximize their benefits
while upholding the same degree of security, confidentiality,
and safeguard standards as the conventional system for
managing energy.

However, while cloud computing provides numerous
advantages, there are also significant challenges that need
to be addressed, as highlighted by various studies [49].
One major concern is cybersecurity. Data stored on cloud
servers is vulnerable to hacking and misuse, which can
have severe consequences. In the context of smart grids,
maintaining the privacy and dependability of users’ data
in cloud services becomes paramount. As the number of
users grows, the challenge of ensuring data security becomes
even more complex. Additionally, data security often relies
heavily on the cloud service provider, which may hinder the
application of tighter security protocols desired by operators
[50], [51], [52].

Another challenge is the increased infrastructure cost
associated with cloud integration. While cloud resources
offer scalability, they come at a cost, which can add to
the overall expenses of implementing and maintaining smart
metering systems [53]. This financial aspect requires careful
consideration and cost-benefit analysis. Furthermore, high-
speed internet access, while essential for efficient data
transmission, can introduce technological problems under
heavy load. Issues related to network congestion and band-
width limitations need to be addressed to ensure seamless
data flow between smart meters and cloud servers [54].

Data segregation is another concern where many cus-
tomers’ virtual computers are co-located on the same hard
drive. This setup can potentially lead to data access and
security issues if not managed properly [55], [56]. Addition-
ally, delayed recovery procedures in cloud environments can
prove to be a major setback, impacting the availability and
reliability of data in critical situations.
Edge Computing: In the edge computing paradigm, the

data is processed locally without being transmitted over the
internet. Smart meters are replacing conventional electricity
meters to improve the precision, transparency, and effective-
ness of measurements and usage patterns. The majority of
smart meters, however, merely digitally capture and transmit

TABLE 3. Review of smart meter data and applications at the edge, fog,
and cloud levels.

power data to service providers. Numerous applications,
including demand side management and energy savings
through customer load detection and irregularity detection,
could make use of the data supplied by smart meters.
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High sampling rate requirements, a lack of transmission
bandwidth, and resource limits in analyzing amassive volume
of data demand high computational resources given by cloud
and fog resources. However, edge computing tries to provide
those resources at the device level. Integrating data analytics
into smart meters significantly reduces the accuracy, latency,
and bandwidth requirements for smart grid applications [71].

Edge computation uses high powered computational plat-
form capable of forming a small network of nodes distributed
locally for appliance monitoring and control. Such meters
find extensive usage in load power quality metering, energy
quality metering for energy auditing, peak demand metering
for energy saving, net metering for pro-consumption and
energy storage metering etc. Edge computers also form
computational nodes for fog computing.
Fog computing:Asmentioned in the previous section, edge

devices are becoming increasingly powerful and capable of
executing advanced features. However, advanced metering
functionalities require still greater computational resources,
communication networks and data to execute advanced
metering functionalities. Cloud computing, on the other hand,
has security, privacy, delay and cost issues. Fog computation
is fast emerging as an alternative to strike a balance between
the cloud and the edge. While edge computers might be
too constrained for traditional cloud-centric functionalities,
these devices still possess computation and communication
resources that might be under-used for edge metering
functionalities. The fog computingmodel uses edge resources
and executes some of the functionalities attributed to cloud
computing, reducing costs and communication benefits while
providing benefits such as security, privacy, reduced latency
and costs.

The fog computing model uses edge nodes for performing
more extensive tasks than are possible using simple edge
computation. Several edge nodes are grouped together and
controlled via a single master server. The server aptly
called a fog server, manages data storage, distribution,
distributed processing and visualization. By coordinating a
set of nodes for external sources, greater control and metering
functionality could be achieved. This model also is resilient
to attacks and latency.

This model has been used for federated learning to
incorporate non-intrusive load monitoring-based metering of
appliance load, power quality metering for neighborhood
area electrical networks, theft metering, synchronous phase
metering for fault detection and load metering for behavior
analysis etc.

The above-mentioned computation paradigms are used for
the processing of the generated data from the smart meters.
In this regard, Table 3 shows the literature review related to
the smart meter data and applications at edge, fog, and cloud
levels. The specific use of a particular paradigm depends upon
the application. The quality of energy services is increased
thanks to the disposal of a sizable amount of smart meter data
and computing resources at various levels, which allows for
the optimization of energy efficiency and maintenance of the

stability and dependability of a smart grid using advanced
metering algorithms available at different levels of energy
grid and computational stacks. For instance, a variety of
smart meter applications, such as electric load monitoring
and anomaly detection of electric power, have been developed
using the resources discussed above to create effective smart
grids.

IV. AI FOR SMART METER ANALYTICS
While the computational load is spread across themodern IoT
stack the key enabler for the application of such huge data
is artificial intelligence(AI). AI is the driving force behind
the modern Data revolution and is extensively involved in
smart grid and smart metering functionality. Modern AI
uses technologies like neural networks and machine learning
enabling autonomous intelligence and allowing machines
to comprehend and act on data independent of human
intelligence. AI is one of the most promising technologies of
the modern information revolution besides communications
and computing. AI is being used as the main technology
in many modern technological fields, and smart energy,
consequently metering, is one of them. The primary source of
the staggering amount of high-dimensional, multi-type data
about smart grids is smart meters implemented at different
levels. With so many benefits offered by AI, this data offers
an incredible chance for smart energy to scale up to global
challenges. AI allows rapid and precise decision-making in
diverse scenarios and allows smart meters to derive and sense
parameters beyond the ones sensed directly.

AI for smart energy and smart metering lists various
case studies and techniques. Modern AI implementations are
usually categorized as supervised and unsupervised learning.
Supervised learning uses labeled data to train the inference
engine and includes deep learning, neural network, clas-
sification, and regression techniques. Convolutional neural
networks (CNN), recurrent neural networks, autoencoders
and deep belief networks are some of the popular deep
learning methods. Popular neural networks include extreme
learning machines, back-propagation neural networks, multi-
layer perceptron and probabilistic neural networks. Classi-
fication techniques include, among others, support vector
machines, nearest neighborhood method, decision trees and
logistic regression. Finally, regression techniques include
linear, Gaussian and support vector regression and multivari-
ate adaptive regression splines etc. Unsupervised learning
automatically detects patterns in the underlying data but
cannot learn a label for the patterns. Unsupervised learning
can use neural networks, such as relevance vector machines,
variational autoencoders, clustering techniques, such as
K-means, hierarchical clustering etc., and dimensionality
reduction techniques, such as principal component analysis,
linear generalized discriminant analysis and non-negative
matrix factorization. Besides supervised and unsupervised
learning techniques, the current AI system uses reinforcement
learning such as deep-Q networks, generative adversarial
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TABLE 4. AI techniques for smart meters.

networks and deep enforcement learning etc., and ensemble
methods such as bagging, boosting and stacking, as well.

These methods have been used in power quality metering
to detect in-stability and faults, phase metering for detecting
irregularities in power flow, waveform monitoring for fault
classification, asset monitoring, preventive maintenance,
synchronous phase metering for fault location, load metering
for power flow assessments, load prediction, storage cal-
culations, power factor metering for frequency dis-balance
detection, consumption metering for detecting consumer.
patterns, nontechnical losses, and line parameters [80].
A brief overview is presented for AI use cases in the following
passage.

An auto-encoder (convolutional sparse) is described in [81]
for the detection of faults and classification in transmission
lines. The transformation of high dimensional data into low
dimensional known as dimensional reduction plays a crucial
role in smart meter data which often contains redundant

features. Smart meters are poised to independently manage
energy consumption, interact with households and suppliers,
and enhance the quality of the power supply using AI
algorithms soon [82]. A thorough analysis of potential AI
methods that can be applied to smart metering in numerous
applications is also provided [83]. Machine learning on smart
meter data is a classification of nonresidential power flow
metering [84]. Non-technical load (NTL) detection using
a smart meter is reported in [85] which implements SVM
on multiple meters’ data for triangulation. While collecting
smart meter data, missing values are commonplace, leading
to errors in downstream functions. An algorithm to impute
the missing values using autoencoders for smart metering is
reported in [86]. A high-resolution metering data reconstruc-
tion framework using CNN is proposed in [87]. Anomaly
detection method for smart metering data use clustering and
support vector machine is reported in [88]. With increasing
capabilities of AI and availability of behavior detection
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datasets and algorithms, privacy is a growing concern in
energy metering application. The electricity consumption
data could be used to detect the activities [89] possibly for
malicious intent. A privacy boundary detector is designed in
[90] using AI techniques. Moreover, Table 4 lists down some
of the most important AI techniques utilized in smart meters
showcasing results from advanced AI implementations with
the normalized accuracy provided in the brackets.

Authors in [91] reported a game theoretic AI approach to
determine amount and content of the data that can be shared
with the grid. Authors in [92] used adversarial machine
learning to avoid occupancy detection AI for preserving
privacy. On the other hand, consumption data can be used by
authorized entities for beneficial usage of activity detection.
Authors in [93] usedAI-based algorithms on smart meter data
to detect frailty in the elderly population. An overview of
health applications using smart sensor data, including smart
meters, using AI frameworks is provided in [94]. In case of
cyber-attacks, smart meters can become effected and remain
effected even after the attack. An AI-based method using
extreme learning machines is proposed in [95] to detect the
effected meters by comparing the power measurements with
predicted power measurements. The tampering detection
algorithm for smart meters using decision trees is reported
in [96]. Federated learning is novel AI technique that uses
distributed learning paradigm minimizing the data that needs
to be shared with the network allowing greater privacy.
A federated learning based instruction detection for smart
meters is reported in [97]. Fault detection using deep belief
networks using smart metering data is reported in [98].
Smart meters can generate large volumes of data that can
be difficult to analyze. Singular value decomposition is
employed to extract patterns from sparse measurements of
power meters in [99], which can be used in intelligent
decision making. Smart meter intelligence opportunities for
greener homes is an important avenue with great prospects.
Such possibilities in terms of smart homes is discussed in
[100]. Short term load forecasting can be used for load
management for peak consumption scheduling in buildings.
Gradient boosting regression trees (GBRT), support vector
regression (SVR), feed forward neural networks (FFNN)
and long short term memory networks (LSTM) are used
for future energy consumption metering in [101]. In co-
generation model power metering predictions, using AI tools,
are used to optimize the energy mix in [28]. Authors in
[102] have used knowledge discovery protocols based AI
to incrementally perform pattern metering of consumption
data from smart meters. Kernel SVM based consumption
cluster metering using smart meter data is reported in
[103]. A reinforcement learning based pricing engine for
smart meters is developed in [104]. A comprehensive
review of application of advanced AI techniques like rein-
forcement learning, deep learning and deep reinforcement
learning in smart grid, including smart metering, is given
in [105].

V. APPLICATIONS OF SMART METERS
In previous sections we have reviewed data measurements,
computations and processing by various smart meter tech-
nologies. This section reviews the different application
domains enabled by the combination of sensing and pro-
cessing empowered by smart meters. Smart meters are
employed in several smart domain applications because of
their high level of measurement accuracy and capacity to
multitask. They are capable of measuring both electrical and
non-electrical variables for example temperature, pressure,
water and gas consumption, etc., in addition to energy [106].
They have the potential to help with energy conservation and
efficiency efforts. The primary benefit of smart meters is that
theymay helpwith energy efficiency conservation. Following
are the applications of smart meters.

A. ELECTRIC LOAD FORECASTING
For power systems to operate economically, safely, and
reliably, electric load forecasting is crucial [107]. Tradition-
ally, system-level information (e.g., total power consumption,
weather conditions, or economic indicators) has been uti-
lized to anticipate load, while lower-level (e.g., substation,
transformer, or household levels) power consumption char-
acteristics have not been reported. Utilizing high voltage
data for load forecasting is a common practice among
both researchers and industrialists, as found in studies such
as [108], [109], and [110]. On the contrary, the use of
information from smart meters was previously limited due
to a lack of available household data, as reported in [111]
and [112]. Smart meters, due to their location at the point
of consumption, can be grouped together in various ways
using different criteria or shared characteristics examples
of which include the geographical location of the meters,
the type of connection they have, or their association with
a specific service category [113]. This allows for a more
in-depth analysis of power consumption patterns and helps
utilities and system operators make more informed decisions
about generation, transmission, and distribution.

Incorporating lower-level data, such as smart meter
data, into electric load forecasting models can provide a
more detailed and accurate picture of power consumption
patterns. This allows for a more in-depth analysis of power
consumption and can help utilities and system operatorsmake
more informed decisions about generation, transmission, and
distribution. This type of data can be used to improve the
accuracy of very-short-term load forecasting (VSTLF), short-
term load forecasting (STLF), medium-term load forecasting
(MTLF) and long-term load forecasting (LTLF), as described
in [111], [114], [115], [116], and [117], which correspond
to hourly, single-day, monthly and annually predicting load
respectively and support the evolution of an electric power
system’s power-generating planning. Figure 5 is a pictorial
depiction of how data is utilized for forecasting in the above
described scenario.The addition of AMI data gives load
forecasting for the aforementioned categories at many levels,
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FIGURE 4. Electric load forecasting. Raw data is collected by smart
meters from smart cities and grids. The digital data is then preprocessed
through different techniques two of which are mentioned. The processed
data is then sent to the compute resources where different AI techniques
are utilized for data preprocessing and processing to estimate the load.

including system, feeder, and even customer level, a new
perspective.

The utilization of various techniques, including univariate
methods, as described in [114], is necessary to effectively
forecast electric load using the data provided by Advanced
Metering Infrastructure (AMI) and to improve the accuracy
and reliability of load forecasting models. Utilizing distinct
neural networks (NNs) to load data that had been wavelet
decomposed, [118] combined the data to create a final fore-
cast consisting of the prediction of loads 1 hour in the future
in 5-minute stages in a moving window fashion. Regression
models, exponential averaging, weighted repetition, and
other sophisticated methods like stochastic time series and
adaptive prediction have all been used for forecasting
electric load. Neural networks and genetic analysis have also
been extensively used for the forecasting of electric load.
A technique for estimating electric load that incorporated
selection and manipulation of weather parameters with
fuzzy polynomial regression, which enhances short-term load
forecasting’s precision and efficiency, is proposed in [119].
Past data from readings from smart meters was used in [120]
to train a neural network to forecast the present electric
load. Energy providers and operators of the distribution
system can utilize the forecasting model to create the best
power distribution plans. A hybrid prediction method for
forecasting electric load utilizing wavelet transform and a
neural adaptive model is suggested in [121]. Smart meters
have gathered a significant amount of reliable data that
serves as the basis for projecting energy load. However,
it is quite challenging to directly forecast electric load using
high-dimensional smart meter data. Additionally, customer
grouping is the foundation of load profiling, but clustering
such high dimensional data has its challenges as described in
[122], necessitating the compression of big data from smart
meters to reduce dimensionality.

While machine learning techniques, as discussed in studies
such as [123], [124], [125], and [126], have achieved high
accuracy in load forecasting, it’s worth noting that there’s
a growing need to optimize these models, especially when

dealing with a large number of smart meters. In this context,
researchers have also explored innovative approaches like
federated learning and shared machine learning frameworks,
as introduced in [127], to tackle these challenges.

Long Short-Term Memory (LSTM), a type of Recurrent
Neural Network (RNN) as mentioned earlier, has gained
significant traction in the field of electric load forecasting.
Its ability to capture long-term dependencies and intricate
patterns in time series data has made it a popular choice.
Researchers have explored LSTM-based models to predict
electrical load demand, and several notable studies stand out:
In reference [128], the authors introduce a short-term load
forecasting method utilizing LSTM-based RNNs with histor-
ical load data as inputs. This approach has shown promise in
accurately predicting load demand for shorter time horizons.
In another study discussed in reference [129], researchers
delve into an LSTM-based sequence-to-sequence (S2S)
architecture for load forecasting. They compare the results
with a standard LSTM-based approach and find that the S2S
architecture outperforms when forecasting high-resolution
load data. Reference [130] presents a unique approach
by combining Feedforward Neural Networks (FFNN) with
LSTM-based RNNs for load forecasting. This hybrid method
aims to leverage the strengths of both techniques to improve
accuracy. In a different vein, reference [131] introduces a
load forecasting technique centered around LSTM-RNNs.
The authors compare its accuracy with Support Vector
Regression (SVR)-based load forecasting and find that the
LSTM-RNN approach excels in forecasting electrical loads
using only historical load data as input. Machine Learning
(ML) methods extend beyond load forecasting. In reference
[132], authors present a robust framework that explores
various LSTM-based deep neural networks. Their research
demonstrates that deep neural networks can effectively
forecast electrical loads in different commercial buildings,
regardless of their geographical location. To anticipate load,
the Sequence-to-Sequence Recurrent Neural Network (S2S-
RNN) with an attention mechanism is presented. Similar to
the approach used in [24], which also uses S2S-RNN to
scale the process of forecasting load for several smart meters,
the Similarity-Based Chained Transfer Learning (SBCTL) is
proposed in [26].

B. DEMAND SIDE MANAGEMENT (DSM)
DSM optimizes power consumption and encourages cus-
tomers to utilize reduced electricity around prime time and
more electricity during the off-prime time. Targeting its
three distinct types-energy efficiency, DR, and strategic load
growth-is the main goal of this application. The work is
accomplished using a variety of techniques, as indicated in
Figure 6.

Utilizing techniques and strategies, DSMaims atmanaging
and reducing electricity consumption [133]. This is achieved
by actively engaging and empowering consumers to make
changes in their energy usage patterns through the use
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FIGURE 5. The categories and DSM-related procedures. There are three
different DSM types’ energy efficiency, DR, and strategic load growth.
Moreover, various technologies related to DSM are also demonstrated.

of incentives, pricing mechanisms, and other techniques.
Different pricing schemes and incentives are the main topics
of the most recent DSM research [134] including Time of use
(TOU) price, spot price, and crucial peak price, day-ahead
price. Depending on when you use electricity, TOU pricing
will charge you a different amount. The cost of electricity
rises as the load grows. DSM encourages customers to use
power during times when the grid is not at peak demand,
hence lowering peak loads. The best pricing scheme for
electricity systems is thought to be spot pricing. Based on
supply and demand, utilities adjust energy prices in real-time
to encourage customers to utilize electricity during times of
reduced demand. Peak load reduction can be combined with
peak load shifting. If used fairly, it keeps the grid stable
while saving users money on their electricity bills [135].
Critical peak pricing represents short-term market costs and
is based on TOU tariffs plus a spike rate [136]. All supply
and demand bids are examined to determine the day-ahead
price [137]. For financial markets, supply is then chosen
from the maximum supply bid, and demand is chosen from
the minimum demand bid. It is applied for the charging
and discharging synchronization. A decentralized system is
suggested by [138] to efficiently manage electric vehicle
charging and disposal (EV). Customers adjust their charging
and discharging schedules in response to changing prices over
time, which helps them save money on their electricity bills
and maintains the distribution network’s working limits.

Mixed integer linear programming (MILP) is utilized in
[139] to address the issue of household DR. Renewable
energy sources with electric storage systems are also
discussed in terms of the benefits provided to the demand
side management. The development of HEMS to establish
the optimum load schedule is discussed in [140]. Under
DAP, DR is used to optimize load-shaping and lower
customer power bills. In terms of incentive programs, users
receive rewards when they follow the rules set forth by
electricity companies. Different types of incentives have been
suggested, such as the use of discount vouchers [141]. Smart
meter monitoring has been widely used to assess customer
DR in connection to this type of DSM strategy [142]. DSM
can support users in taking an effort to improve their usage
patterns by encouraging and assisting them. It helps the EPS
be more dependable and stable. Demand Side Management

is based on the notion that power providers can predict how
much electricity users will require at a specific moment by
utilizing vast amounts of data from smart meters.

Load scheduling is a key concept for DSM and plays a
vital role in its implementation to manage load according
to demand at different times. Many optimization techniques
are developed for its implementation. The proposed HEMS
(Home Energy Management System) based on DR (Demand
Response) in [143] aims to reduce household electricity
bills while enhancing user comfort in the domestic sector.
Applications of inclination block rate (IBR) systems and
ToU for pricing are ensured through the proper scheduling
of households. Domestic appliances’ scheduling is optimized
using interval number optimization by categorizing different
appliances, as proposed in [144]. A method for household
power scheduling to synchronize appliances and decentral-
ized energy supplies is presented in [145]. To reduce daily
energy usage, [146] employs Automated Demand Response
and utilizes mixed integer non-linear programming to solve
the price reduction problem. The possibility of energy
trading, where surplus energy can be sold by the utilizer to
others, is discussed in [147]. The exchange of energy and
load scheduling was discussed. DSM through peak clipping
is discussed in [148]. The authors suggest a smart meter
and describe the method for implementation in which, after
exceeding the designated use of peak hour needs, the smart
meter generates a warning before eventually cutting off or
turning off the power supply for one minute. Artificial neural
networks were used as implementation algorithms.

C. ELECTRICITY THEFT DETECTION
Smart meters have improved the frequency of data collection
on domestic energy use, enabling effective detection of
energy theft through modern data analysis. To find criminal
activity, data manipulation, and tampering, smart meter data
on electricity use can be collected and examined.

As described by [149], there are four major categories of
smart grid energy theft detection classification-based, neural
network-based, ensemble learning-based, and statistical tech-
niques based. Different types of classifiers have been used
such as support vector machines [150], [151], [152], which
use a collection of mathematical operations to implicitly map
clients with specific features into large-scale spaces. Class
imbalance and inconsistent information in smart meter data
are addressed using a classification technique based on deep
neural networks [153]. To categorize the clients into truthful
or dishonest classifications, a mix of CNN and a particle
swarm optimization-gated recurrent unit model is given in
[154]. Long short-term memory NN is utilized along with the
concept drift process to develop contextual anomaly detection
technique as proposed in [155].
Regarding ensemble machine learning models, a concept

related to meta-algorithms is utilized to detect energy
theft as done in [156]. For real-time fraud monitoring in
smart grids, an algorithm that uses three different LSTM
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FIGURE 6. Electricity from the grid is provided to the charging station
through a smart meter. Keeping the track of the utilized energy by EVs
also helps provide electricity to the grids when there is a high demand for
batteries of EVs when fully charged.

techniques namely, ST-Links, AlexNet, and peephole is
designed in [157]. An algorithm aimed to detect theft on the
transformer level using the combination of the autoencoder,
gate recurrent units, and feed-forward NN is proposed in
[158].Higher-order statistics of electric usage patterns are
utilized by [159] to identify theft. Multiple pricing schemes
for hidden electric theft attacks were used to propose a novel
algorithm [160]. Along with the aforementioned techniques,
statistical inferences are used to analyse electric theft such as
Bayesian models, Markov Models, Bollinger bands, Pearson
correlation coefficient, Kullback-Leibler divergence, and
Likelihood ratio as described in [161].

Anomaly detection is essential for preventing financial
losses and securing consumers’ data on electricity use [162].
Smart meters frequently feature built-in advanced sensors
that, in the event of a power outage, may transmit problem
info to the issue management platform. To pinpoint the
reasons and places of defects, spatial data, meteorological
data, and place of failure data can all be employed.
If many grid failures are occurring simultaneously, it can
be determined through communication between the Energy
meter and controllers.

D. ELECTRIC VEHICLES AND SMART METERS
Due to numerous programs aimed at electrifying trans-
portation, the adoption of electric vehicles (EVs) has risen
quickly. Additionally, EVs and distributed solar photovoltaic
(PV) systems are becoming more popular among customers.
Pollutants from gasoline-powered vehicles can be reduced
and greenhouse gas emissions can be mitigated through the
widespread adoption of EVs and a cleaner electric grid. Less
fossil fuel-generated electricity will be needed if EVs can
charge using renewable solar energy.

Many studies concentrate on this application and how
smart meter data may help electric vehicles. A probabilistic
approach for fusing data from electric vehicles and smart
meters to analyse the implications on the distribution system
is proposed in [163]. Different EV charging patterns show
that, as discussed in [164] and [165], they proved to be
harmful to dispersed systems. Therefore, important insights
about the impact on the distribution network were discovered
together with the smart meter data. Using data from smart
meters to examine how adding distributed solar panels to
homes affects how much electricity EV owners use from the
power grid is described in [166].

Moreover, as discussed in [167], the infrastructure devel-
opment of electric vehicle charging systems with smart
meters having features such as digital payment systems
and connection to the internet is proposed. Other than the
infrastructure, an algorithmic perspective is provided in
[168]. Electric vehicles can also integrate with smart grids
with the implementation of one of the applications through
the smart meters as mentioned in [169]. Emphasis is laid
upon the benefits involved with the integration of smart
grids and EV charging points. Smart meter utilization for
optimizing the speed of the charging EV according to the
overall electricity consumption of the appliance in the house
[170]. The concept of integration of EV with the smart grid is
depicted in Figure 7, where not only the device is consuming
electricity from the grid but at the time of high demand and
with sufficient battery charged it can provide electricity to the
grid using the smart meters, the concept named as Vehicle to
Grid (V2G) [171].

E. LOW-VOLTAGE (LV) NETWORKS
Carrying electricity from distribution transformers to final
clients is what this network of electric power distribution is
all about. It supplies the primary voltages to the end electric
appliances used in home settings while operating at low
voltage. Depending on the country, two popular AC-rated
voltages are 100-127 V and 220-240 V, with frequencies
of 50 Hz and 60 Hz, respectively. This network has several
topologies and configurations depending on the necessary
dependability, the number of phases, and the operating
voltages. Smart meters can be helpful in this area since their
data can be analyzed to create LV Network models that are
helpful for phase balancing and network planning along with
many others.

Numerous studies have been conducted on utilizing smart
meter data for finding different topologies of low-voltage
networks, as proposed in [172] and [173]. A solution for real-
time LV-Network monitoring by integrating measurements
from secondary substations and smart meters data for a
more realistic view of the LV network is proposed by
[163]. An algorithm for identifying the topology of LV
networks when the customers are not equipped with smart
meters, referred to as nodes, is proposed by [174] and
[175] and further verified by evaluating its performance on
several customers with or without smart meters. Wavelet
reduction-based clustering is suggested by [176] to accurately
categorize clients. A model that builds the LV system while
removing load distortion, or the variation in voltage from the
feeder to the smart meter at the connecting point, is proposed
by [177]. The information from smart meters is used by [178],
[179], and [180] to establish secondary distributed factors.

Optimization techniques for estimating connection in
phase and network architecture using time series of power
measurements are discussed in [181]. For the secondary
circuit architecture and parameterization of radial distribution
systems, [182] proposes a useful and computationally
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FIGURE 7. Internet protocols reported in smart meters.

effective technique. This investigation also confirms if the
topologies of the two secondary circuits are the same.

VI. SMART METER IMPLEMENTATIONS
The paper provides a comprehensive overview of different
techniques used in smart meter analytics, various topologies
for data processing and analytics, and the wide range of
applications enabled by smart meters in the energy sector.
It emphasizes the potential of AI and machine learning
algorithms in harnessing the rich data from smart meters
to optimize energy management, improve efficiency, and
enhance grid operations. This section reviews different imple-
mentations of the smart meter reported in the literature and
compares them across the different characteristics reviewed
in different sections.

The smart meter has been applied and reported on in
a variety of methods, some of which were covered in the
section above. Highlighting the uses and situations that
smart meters can benefit from in the previous section,
we shift our focus to the deployment of smart meters in
different locations, exploring the innovative ways they are
utilized based on factors such as usage locations, internet
protocol usage, deployment locations, and measurements
taken. By examining these aspects, we aim to highlight
the diverse and creative applications of smart meters across
various scenarios.

Although there are numerous measurement techniques
employed in industry to guarantee the robustness of a smart
meter, these approaches are typically not discussed in the
literature, therefore in this case, we are focusing on those that
are. The following discussion is based on the literatures [53],
[183], [184], [185], [186], [187], [188], [189], [190], [191],
[192], [193], [194], [195], [196], [197], [198], [199], [200],
[201], [202], [203], [204], [205], [206], [207], [208], [209],
[210], [211], [212], [213], [214], [215], [216], and [217] that
we have completed for this purpose and in relation to the other
categories.

A. INTERNET PROTOCOL LANDSCAPE
The plot in Figure 7 illustrates the protocols utilized by
smart meters as reported in the paper. The analysis reveals
that the majority of smart meters are equipped with a single
protocol. However, modern smart meters have multifaceted
functionalities that necessitate communication at various

FIGURE 8. Locations reported in the literature where the smart meters
are deployed.

levels, including device level, local area, and wide area
communication. At the device level, smart meters employ
internal communication to facilitate their primary function
of accurately measuring and monitoring energy usage. This
enables the meter to gather data and perform calculations
for billing and other purposes. Local area communication
pertains to interactions within a specific location, such
as a home or building. In this context, smart meters
establish connectionswith in-home displays and home energy
management systems. This enables consumers to access
real-time information about their energy usage, set energy-
saving preferences, and receive alerts and notifications
regarding their consumption. On the other hand, wide-
area communication is crucial for establishing connections
with utility or energy provider systems. Through this
form of communication, smart meters can transmit energy
consumption data, receive instructions for load management,
and contribute to overall grid management and control.
It is important to note that each level of communication
requires specific protocols to enable seamless and efficient
data exchange. While the figure highlights that most reported
smart meters utilize a single protocol, it is evident that
modern smart meters possess the capability to support
multiple communication protocols. By employing different
protocols at each level of communication, smart meters can
effectively collect, transmit, and receive data, facilitating
better energy management, improved customer engagement,
and enhanced grid operation. The integration of multiple
protocols empowers smart meters to connect with diverse
systems and devices, enabling a wide range of functionalities
and interactions within the energy ecosystem

B. SMART METER ROLLOUT LOCATIONS
Different locations of smart meters have been reported in
multiple papers, as depicted in Figure 8. The analysis
reveals that the majority of reported smart meters are
installed in residential homes. However, smart meters can be
deployed in various locations within the energy infrastruc-
ture, including the edge, industry, distribution, fog, or cloud
environments. Distribution-level smart meters are reported
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FIGURE 9. Measurement quantities reported for smart meters.

that are positioned throughout the electricity distribution
network, typically at substations. These meters aid in grid
monitoring, fault detection, and system optimization. Fog and
cloud-based smart meters offer scalability, data aggregation
capabilities, and advanced analytics for large-scale energy
management applications. Each location of smart meters
brings unique benefits and serves specific purposes within
the energy ecosystem. The choice of deployment depends
on the specific use case, objectives, and requirements of
the energy management system. By strategically situating
smart meters in various locations, stakeholders can gather
comprehensive data, optimize energy usage, enhance grid
performance, and enable effective energymanagement across
different domains.

C. DATA METRICS CAPTURED BY SMART METERS
Most of the measurements recorded by smart meters that
are commonly discussed in the literature primarily focus
on simple domestic meters, which typically provide basic
measurements such as active power, reactive power, and
apparent power as shown in Figure 9. However, as smart
grid technology advances, modern smart meters are designed
to encompass more sophisticated sensing techniques across
various network strata. These advanced sensing techniques
in modern smart meters enable the collection of a wide range
of measurements that provide a deeper understanding of the
electrical system. Some of the notable techniques include
Phase and Magnitude, Synchro-Phasor, Relative Phase
Angle, Voltage Harmonics, and Crest Factor [106]. These
are just a few examples of the advanced sensing techniques
that modern smart meters are capable of. While discussions
and implementations of these advanced techniques may be
relatively sparse in comparison to themore common domestic
meter techniques, they are gaining increasing attention as
researchers and practitioners recognize their potential for
enhancing grid operations, improving power quality, and
enabling more advanced analytics and control strategies.

D. SMART METER APPLICATIONS ACROSS VARIOUS
LAYERS
Figure 10 shows the multidisciplinary nature of the function
that smart meters play. On a physical level, it concerns

FIGURE 10. Smart meters reported at different application layers in the
literature.

FIGURE 11. The graph rates different research papers on the reported
measurements and functionalities of the smart meters according to the
depth and width covered in them.

the hardware elements that serve as their foundation for
communication and data transfer. The metering device itself,
sensors, communication connections, and physical wiring are
only a few of the components. The precise measurements
of energy use are made by this layer. Smart meters and
other devices inside a network may communicate with one
another more easily thanks to the network layer. It manages
the transmission and routing of data packets among devices.
This layer makes sure that data is sent between linked devices
like smart meters securely and reliably. The interface between
smart meters and higher-level systems is controlled by the
application layer. including various APIs and protocols that
allow for the processing of data, analytics, and interaction
with energy management systems. The review of the
literature indicated in the figure that there are different roles
of smart meters being reported. Most frequently reported is
a complete smart meter package that details each layer and
how it functions within the application.

The realm of smart meter implementation studies reveals a
captivating tapestry of diverse measurements and function-
alities showcased in research papers. Each study unravels
a unique thread, with some papers focusing on conducting
an extensive array of measurements, graphically depicting
the sensing score, while others delve deep into specific
functionalities or explore intricate scenarios. This rich
variation not only illustrates the vastness of research in the
field of smart meters but also showcases the ingenuity of
researchers in investigating this technology.
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Within this Figure 11, the functionality score serves as
a compass, guiding readers through the intricacies of each
publication. A functionality score of 5 signifies a remarkable
smart meter, encompassing a multitude of measurements,
protocol stacks, and locations, and revealing its operational
prowess across various layers. As the functionality score
ascends, so does the magnificence of the smart meter under
scrutiny, painting a picture of cutting-edge advancements and
extraordinary capabilities.

These varying facets of smart meter research weave
a captivating narrative, inviting readers on a journey of
exploration and innovation. With every study, the boundaries
of knowledge are pushed further, illuminating the limitless
possibilities and inspiring the quest for smarter, more
advanced metering technologies.

VII. CONCLUSION
The future of smart meter analytics holds immense promise
with the convergence of cutting-edge technologies. Smart
meters provide utilities the ability to more accurately
assess and anticipate consumer behavior, which may help
utilities make better decisions and operate more efficiently.
Generative AI, integrated into computational stacks, will
revolutionize data analysis through predictive modeling and
anomaly detection, extracting actionable insights from the
massive volumes of data generated by smart meters. This will
allow utilities to optimize energy distribution and enhance
grid resilience. Additionally, pricing model optimization and
resource planning improvements may be made using the data
gathered by smart meters. Simultaneously, advanced data
collection methods will ensure the seamless flow of infor-
mation from these devices, enabling real-time monitoring
and grid management. New network protocols will underpin
this ecosystem, ensuring secure and efficient data transfer.
Innovative distribution techniques will further streamline the
deployment of smart meters, making them more scalable
and reliable than ever before. The many applications that
are now in use are examined, forming the cornerstone of
business intelligence in the energy sector. Together, these
advancements promise a future where the smart grid is
not just an energy distribution system but a dynamic and
responsive energy ecosystem.
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