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ABSTRACT As a measure of the freshness of data, Age of Information (AoI) has become an essential
performance metric in status update applications with stringent timeliness constraints. This study employs
adaptive strategies to minimize the novel, information freshness-based performance metric age violation
probability (AVP), the probability of the instantaneous age exceeding a predefined constraint, in short
packet communications (SPC). AVP can be considered one of the key performance indicators (KPIs) in
5G Ultra-Reliable Low Latency Communications (URLLC), and it is expected to gain more importance
in 6G technologies, especially in extreme URLLC (xURLLC). Two distinct approaches are considered:
the first focuses on adaptively selecting the blocklengths with either imperfect or missing channel state
information exploiting finite blocklength theory approximations. The second involves dynamically choosing
the modulation and coding scheme (MCS) to minimize the AVP under stringent timeliness constraints and
non-asymptotic information theory bounds. In the context of adaptive blocklength selection, state-aggregated
value iteration, Q-learning algorithms, and finite blocklength theory approximations are leveraged to
adjust blocklengths to achieve low age violation probabilities adaptively. The simulation results highlight
the effectiveness of these algorithms in minimizing age violation probabilities compared to the fixed
blocklengths under varying channel conditions. Additionally, constructing a deep reinforcement learning
(DRL) framework, we propose a deep Q-network policy for the dynamic selection of the modulation
and coding scheme among the available MCSs defined for URLLC systems. Through comprehensive
simulations, we demonstrate the superiority of the proposed adaptive methods over traditional benchmark
methods.

INDEX TERMS Age of information, reinforcement learning, dynamic programming, finite blocklength,
adaptive modulation and coding.

I. INTRODUCTION
Reliable and fast communication has become an urgent
need for many applications with the rapid development of
technology over the years. Ranging from factory automation
and smart grids to remote surgery and autonomous driving,
a vast number of applications rely on reliably and efficiently
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transmitting short status update packets from a source to
a monitor. With these applications came the demand for
timely delivery of information. In consequence, a measure
of the timeliness of data called Age of Information (AoI)
has emerged and become an important research topic. AoI
is defined as the time elapsed since the last successfully
delivered packet was generated [1]. It is a critical metric in
status update systems where information is needed before it
becomes stale or irrelevant, such as industrial automation,
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augmented reality, and traffic safety applications. While it
is also regarded as an important metric in fifth-generation
(5G) systems, AoI is expected to gain more prominence
and be considered as a key performance indicator (KPI) in
sixth-generation (6G) communications, especially in next-
generation/extreme Ultra-Reliable Low Latency Communi-
cation (xURLLC) and massive Machine Type Communica-
tion (mMTC) systems. As the name implies, 5G URLLC
focuses on stringent latency and reliability requirements;
1 ms or lower latency is targeted in addition to successful
packet delivery rates up to 1 − 10−5 or even 1 − 10−9 in
some cases [2]. With xURLLC, additional qualifications are
introduced such as throughput, spectral efficiency, energy
efficiency, and security, as well as AoI [3]. The significance
of AoI is also apparent in semantic communications, where
the meaning of the transmitted message is more important
than the accurate transmission of bits [4]. AoI is considered
one of the fundamental measures of the relevance of the
information in semantic communications, as it determines
whether the information is still fresh and valuable or out-of-
date and irrelevant [5].

In age-aware xURLLC and mMTC systems, and status
update applications such as augmented reality, smart sensors,
and industrial automation, information packets generally
consist of a small number of bits. Such communication
systems are referred to as short packet communications.
Unlike conventional communication networks with long
packets, in short packet communications, the distortions
caused by the thermal noise and the propagating channel are
not averaged out. Thus, Shannon capacity cannot be used
as a performance metric in short packet communications
as it is based on infinite blocklength. Instead of classic
information theory results, finite blocklength (FBL) theory
approximations need to be utilized [6].
The main challenge in age-aware short packet communi-

cation systems is the selection of the appropriate blocklength
for coding. If a large blocklength is used, implying that a
larger number of redundancy bits is used, the probability of
error is small. However, the transmission duration increases
as a result of transmitting a larger number of bits; hence,
age also increases. On the other hand, using a small
blocklength results in a shorter transmission time but a higher
error probability. Thus, a challenging trade-off exists when
selecting the blocklength, and one of our purposes in this
study is to overcome this trade-off and minimize the AoI by
selecting the blocklength dynamically.

Another approach to the AoI minimization problem for
short packet communications is adaptive modulation and
coding (AMC). In communication systems, the modulation
and coding scheme (MCS) determines the number of bits
to be transmitted in one symbol and the coding rate. The
selection of the MCS directly affects the age, similar to the
blocklength. MCSs with high code rates and modulation
order result in short transmission time, but higher error
probability. Contrarily, MCSs with lower modulation order
and coding rate guarantee a lower error probability, yet longer

transmission time. Hence, the same trade-off exists in MCS
selection for age optimization.

The majority of the studies on AoI are focused on the
average age [7], [8], [9], [10], [11], [12] and peak age [7],
[13], [14]. Average age is defined as the time-average AoI.
Although useful, it is not a sufficientmetric for fully assessing
the timeliness of the information since it cannot account for
extreme AoI events observed with low probabilities [15].
Peak age is another important AoImetric, indicating the value
of age just before an update is correctly received. While
peak age is a critical metric for ensuring the freshness of the
received data, the timeliness of the whole process also needs
to be assured. Also, numerous real-time applications have
stringent timeliness constraints, and violation probabilities
are prominent rather than averages in such systems.

In this study, we investigate the age violation probability
(AVP); the probability that the instantaneous age exceeds
a given threshold in short packet communications. We first
utilize finite blocklength theory approximations to dynam-
ically select the optimal blocklength that optimizes AVP
with either imperfect or missing channel state information.
Secondly, we focus on choosing the MCS adaptively to
minimize the AVP under stringent timeliness constraints and
non-asymptotic information theory bounds.
RelatedWork:There are a fewworks in the literature show-

ing the existence of an optimal blocklength that minimizes
the age-related metrics [7], [8], [9], [13]. In [7], [8], and
[9], the optimal blocklength minimizing the average age is
investigated taking into account retransmission techniques
like automatic repeat request (ARQ) and/or hybrid ARQ
(HARQ). On the other hand, in [13], the optimal blocklengths
optimizing delay and peak age violation probabilities are
studied using FBL information-theoretic bounds. Notably,
the study in [13] showed that there may exist two distinct
optimal blocklengths that result in same average age but
different age violation probabilities. This highlights the
critical importance of prioritizing age violation probabilities
in addition to the average age while optimizing blocklengths.

Aside from showing the existence of an optimal block-
length, methods for finding the optimal blocklength have
also been a topic of discussion [10], [11], [12], [14], [16].
In [10], [11], [14], and [16], blocklength selection in point-
to-point wireless networks are considered for optimizing
end-to-end delay [16] or age metrics [10], [11], [14]. The
study in [12], solves the non-convex blocklength optimization
for average age in a two-hop wireless relaying network.
References [10] and [16] formulate the average delay [16]
and average AoI minimization problems as Markov decision
process (MDP) and proposes dynamic blocklength selection
methods based on reinforcement learning (RL). Meanwhile,
[11] maps the average AoI minimization problem under
a power consumption constraint to a constrained Markov
decision process (CMDP) and solves the problem by linear
programming methods. Although motivated by them, our
blocklength selection problem differs from the aforemen-
tioned ones as it focuses on the age violation probability and
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proposes a dynamic blocklength selection methods based on
RL and dynamic programming (DP). This allows our method
to adapt to the varying channel conditions and imperfect
channel state information, setting it apart from previous work.

Some works in the literature also use RL techniques for
AMC to optimize traditional performance metrics such as
throughput [17], [18] and spectral efficiency [19]. However,
none of them consider dynamic MCS selection in AoI-
aware systems. Both [17] and [19], use Q-Learning to
map channel quality indicators to MCS options. Reference
[19] aims to maximize spectral efficiency and maintain a
low block error rate (BLER) while [17] optimizes the link
throughput in orthogonal frequency-division multiplexing
(OFDM) wireless systems. Reference [18] also maximizes
the link-level throughput with MCS selection and power
allocation by Deep Deterministic Policy Gradient (DDPG)
agents in a distributed manner. MCS selection in age-aware
systems has been considered only in [20], where an AoI-
driven scheduler without any learning-based approach or any
finite blocklength analysis is proposed to minimize the long-
term average AoI.

A baseline technique for AMC is outer loop link adaptation
(OLLA) [21]. It is an addition to inner loop link adaptation
(ILLA), a fixed lookup table method that maps the channel
quality indicator (CQI) to the highest MCS that satisfies
the block error rate requirement. OLLA improves ILLA
by adjusting the signal-to-noise ratio (SNR) according to
the positive or negative acknowledgment (ACK/NACK)
following a transmission; thus, the effects of delayed CQI or
quantization errors are avoided.

To the best of our knowledge, our study is the first to
propose an RL-based dynamicMCS selectionmethod tomin-
imize AVP in short packet transmissions and provide superior
performance compared to baseline methods. Similarly, while
there are some studies on optimal fixed blocklength in age-
aware systems, we present a novel method of dynamically
selecting the optimal blocklength according to channel
conditions based on RL, and we consider not average age
but the AVP. Also note that the RL algorithms proposed in
this paper do not assume the knowledge of the underlying
system characteristics such as channel distribution, packet
arrival statistics, and finite blocklength error probabilities.
Objectives and Contributions: Our main objective is

to minimize the age violation probability by an adaptive
selection of the blocklength or modulation and coding
scheme, and the main contributions of this study are as
follows:
• We leverage finite blocklength theory approximations
and formulate the AVP minimization problem as a
discrete-time Markov decision process. We present a
dynamic programming method that uses the known
system characteristics to select the optimal blocklength
for the current channel and AoI states.

• In the absence of apriori knowledge of the system
characteristics and with either imperfect or missing
channel estimation, we exploit an RL approach for

FIGURE 1. System model for the blocklength and MCS selection problems.

obtaining an online policy that chooses the optimal
blocklength adaptively.

• We propose a deep Q-network (DQN) algorithm that
dynamically chooses the appropriate MCS among the
available MCSs defined in 5G URLLC standards [22].
The adaptive selection of both the codelength and the
modulation order is investigated under different scenar-
ios where the channel state information is available or
unavailable.

• Extensive simulation results show that the proposed
algorithms achieve significantly lower AVP than the
fixed blocklength schemes and benchmark link adapta-
tion policies.

The structure of the paper is as follows: In Section II,
we present the system model adopted in the blocklength
and MCS selection problems. In Section III, we investigate
DP and RL-based adaptive blocklength selection methods.
In Section IV, we study AVP minimization with dynamic
MCS selection and propose a deep RL-based solution. In Sec-
tion V, we compare our RL-based policies’ performances
with the baseline methods. Section VI concludes the paper
and discusses future work.

II. SYSTEM MODEL
We consider a discrete-time point-to-point communication
link with stochastic arrivals of time-critical information
packets. The source generates short status update packets
according to a Bernoulli distribution, and λ ∈ (0, 1) denotes
the probability of a new packet arrival in one channel use
(CU). The information packets are stored in a single-server
queue with capacity 2, meaning that aside from the packet
in service, there can be at most 1 packet in the queue. The
queue follows a Last Come First Serve (LCFS) policy with
preemption in the queue (LCFS-Q) as defined in [23]: If a
new packet arrives when the queue is empty, it is sent to the
server immediately. However, if the queue is not empty, the
packet already waiting in the queue is replaced with the newly
arrived packet. The LCFS-Q queueing policy has previously
been shown to be more efficient than the First Come First
Serve (FCFS) policy [24].

A. SHORT PACKET TRANSMISSION MODEL
The information packet generated by the source consists of k
bits. The encoder maps the information packet to a codeword
with blocklength n, and code rate k/n. After encoding and
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modulation, the packet is transmitted through the wireless
channel. The packet is demodulated and decoded on the
receiving side, and a positive or negative acknowledgment
is given. Figure 1 illustrates the main components of the
system model studied in this paper. We assume a memoryless
block-fading channel where the fading coefficient is constant
for a block of symbols. Each transmitted packet is subject
to independent and identically distributed (IID) fading
coefficients and additive white Gaussian noise. The input-
output relation of the channel is as follows:

y = x · h+ w, (1)

where x and y denote the transmitted and received symbols,
respectively. h is the corresponding fading coefficient and
w denotes the additive noise. The fading coefficient h is
assumed to be constant during the transmission of a block
with length n. Let P denote the transmit power. Assuming
additive white Gaussian noise (AWGN) with a standard
normal distribution N (0, 1), instantaneous SNR can be
expressed as

γ = P|h|2. (2)

This paper focuses on transmitting short packets within
stringent timeliness constraints. With significantly reduced
coding gain, short packet communications are error-prone
due to AWGN and fading. The successful reception of
a transmission block or a decoding error are assumed to
be acknowledged by an error-free single-bit ACK/NACK
feedback.

We first study adaptive blocklength selection schemes
minimizing (16) and utilize non-asymptotic information
theory results in order to derive the BLER for a chosen
blocklength n, denoted by ϵn. In the well-known study of
Polyanskiy et al. [25], the maximal coding rate, i.e., the rate
at which an encoder/decoder pair with coded blocklength n
and BLER lower than ϵn exists, is expressed as follows:

R∗(n, ϵn) = C(γ )−

√
V (γ )
n

Q−1(ϵn)+O
( log n

n

)
, (3)

where C(γ ) and V (γ ), defined as a function of the SNR γ ,
denote the capacity and channel dispersion, respectively.

C(γ ) = log2(1+ γ ) (4)

V (γ ) =
γ (γ + 2)
2(γ + 1)2

log22(e) (5)

Lastly, O(log n/n) is the remainder term, and Q(·) is the tail
distribution function of the standard normal distribution:

Q(x) =
1
√
2π

∫
∞

x
e−t

2/2dt. (6)

Rewriting (3) in the following form allows us to formulate
the block error rate ϵn given the number of information bits
k , coded blocklength n, and SNR γ :

ϵn ≈ Q

C(γ )− k
n√

V (γ )
n

 . (7)

Then, as a more realistic and practical approach, we con-
sider an MCS selection problem to choose the optimal
blocklength and modulation order to minimize AVP in
short packet communications. We leverage finite blocklength
approximations to obtain BLER, denoted by ϵn,M , for given
blocklength n and modulation order M . In [25], an infinite
constellation is assumed; thus, the expression for themaximal
coding rate in (3) does not apply to practical modulation
schemes with finite constellations such as M-ary quadrature
amplitude modulation (M-QAM). In such cases, we can not
use the capacity definition in (4). Instead, we can exploit the
following mutual information bound in [26].
I (γ,M ) = log2M

−
1
Mπ

M∑
i=1

[ ∫
e−||y−

√
γ xi||2

× log2

(
M∑
k=1

e−||y−
√

γ xi||2−||y−
√

γ xk ||2
)
dy
]

(8)

Here, an M-QAM constellation with equiprobable symbols
is assumed. γ is the SNR at the receiver, xi ∈ XM is the
M-QAM constellation point from the symbol set XM , and
y is the received signal. In [27], the authors provide the
approximation for I (γ,M ), denoted by I ′(γ,M ), based on
multi-exponential decay curve fitting (M-EDCF):

I ′(γ,M ) ≈ log2M ×
(
1−

kM∑
j=1

ε
(M )
j e−ϑ

(M )
j γ

)
. (9)

The coefficients ε
(M )
j and ϑ

(M )
j are provided in [27] and

the approximation is shown to be in correspondence with the
experimental results. To compute the maximum coding rate
in an equiprobable M-QAM constellation, the capacity C(γ )
in (3) is replaced with I ′(γ,M ) [26], with V (γ ) and Q(.)
defined the same as in (5) and (6), respectively. Let us denote
the block error rate in this case with ϵn,M , then we can express
the maximum coding rate as follows:

R∗(n,M , ϵn,M ) = I ′(γ,M )

−

√
V (γ )
n

Q−1(ϵn,M )+O
( log n

n

)
. (10)

We can calculate the BLER by rewriting (10) in the following
form:

ϵn,M ≈ Q

 I ′(γ,M )− k
n√

V (γ )
n

 . (11)

Thus, we use (7) in blocklength selection problem and (11)
in MCS selection problem for calculating the block error
rate. In addition, we can utilize MCS tables defined in
the 5G standards [22], one of the tables lists MCSs with
modulation up to 256QAM, and the other two tables define
MCSs with 64QAM at most. In this work, we investigate
the MCS indexes introduced for low spectral efficiency cases
and URLLC applications at [22, Table 5.1.3.1-3]. Table 1
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TABLE 1. Summary of MCS indexes [22, Table 5.1.3.1-3].

outlines some of the MCS indexes with the corresponding
modulation ordersM , code rates R, and spectral efficiencies.
The blocklength used in each MCS, and in (11) for BLER
calculation, can be found as in (12).

n(M )
=

k
R · log2M

(12)

The adaptive MCS selection for AVP optimization can also
be considered as adaptive blocklength n andmodulation order
M selection problem, where the set of available blocklengths
is determined using (12).

We consider different scenarios to solve the adaptive block
length and MCS selection problems. In the first one, the
quantized channel state information (CSIT) is known and
included in the state of the system. Channel quality indicator,
CQI , stands as a measure of the channel condition depending
on the SNR, described as in [19]:

CQI =


0 if γ ≤ γmin;

(Ncqi − 1) if γ ≥ γmax;⌊
(γ − γmin)(Ncqi − 1)

γmax − γmin

⌋
otherwise,

(13)

where γmin and γmax are the minimum and maximum SNR
values, respectively, and Ncqi is the total number of CQI
states. ⌊.⌋ corresponds to the floor function that takes a real
number as input and gives the greatest integer less than or
equal to this real number as output. Meanwhile, the second
scenario is more practical and studied in this paper, assuming
CSIT is unavailable, and CQI is excluded from the state.

B. AGE VIOLATION PROBABILITY (AVP)
Let 1r (t) denote the AoI at the receiver at time t ∈
{0, 1, 2, . . .}, defined as the time elapsed since the generation
of the most recent packet that was successfully delivered:

1r (t) = t − u(t), (14)

where u(t) is the packet’s time stamp, similarly,1q(t) denotes
the AoI at the source queue at time t and represents the time
elapsed since the arrival of the last packet in the queue. 1r (t)
keeps increasing in the absence of a successful transmission;
that is, a transmission error occurs, or there is no status
update packet in the system. If a transmission error occurs,
the previously transmitted packet is discarded, and the packet
waiting in the queue gets transmitted. If a packet is correctly
decoded, 1r (t) is set to 1q(t). Figure 2 shows the evolution
of 1r (t) over time.

TABLE 2. Notation summary.

FIGURE 2. The evolution of 1r (t) in the presence of random packet
arrivals with LCFS-Q, and transmission errors.

We aim to minimize the age violation probability, defined
as the probability that 1r (t) exceeds a predetermined
threshold 1max. Following the notations in [13] and [28],
we can express the AVP as

Pav(1max) = Pr{1r (t) > 1max}. (15)

We consider a frame-based model where the transmitter
chooses a finite blocklength nl (and modulation orderMl for
MCS selection) at frames denoted by l = {0, 1, 2, . . . ,L}.
If there is a packet waiting at the source queue at the
beginning of frame l, the transmitter transmits the most recent
packet selecting a finite blocklength nl (or modulation order
Ml for MCS selection). Otherwise, the transmitter stays idle
for one CU, which is assumed to be a frame with length one
CU, i.e., nl = 1. Let tl ∈ Z≥0 and tl+1 ∈ Z≥0 denote the
starting time of l th frame (l + 1)th frames, respectively, where
tl+1 = tl + nl .
Using a simplified version of the reward function used in

[28] and [29], we count the number of CUs in which the
instantaneous age at the receiver exceeds the age threshold,
i.e., when 1r (t) > 1max, during each frame. We compute

VOLUME 11, 2023 122415



A. Ozkaya et al.: RL Based Adaptive Blocklength and MCS for Optimizing AVP

the AVP by taking the ratio of time in which 1r (t) exceeds
the threshold to the time passed during the total number of
frames L [28]:

Pav(1max) = lim
L→∞

1
L

E
[ L−1∑
l=0

tl+1−1∑
t=tl

1(1r (t) > 1max)
]
,

(16)

where 1(·) is the indicator function which is equal to 1 if there
is an age violation, i.e, 1r (t) > 1max; otherwise, it is equal
to 0.

III. ADAPTIVE BLOCKLENGTH SELECTION FOR
MINIMIZING AGE VIOLATION PROBABILITY
We consider the adaptive selection of coding rate to minimize
AVP and address the tradeoff between smaller blocklengths
with higher error probability and larger blocklengths with
longer transmission delays. To effectively employ RL-based
techniques, we formulate our problem as a countable-state
discrete-time discountedMDP. ThisMDP is characterized by
five-tuple ⟨S,A,P,R, 0⟩, where 0 ∈ (0, 1) is the discount
factor determining the importance given to future rewards. S
represents the countable state space and is investigated for
two different sets S1 and S2 corresponding to the scenarios
CSIT is available and not, respectively. The first set includes
CQI at frame l as a state variable and is formed by three
components: (1q(l), 1r (l),CQI (l)) ∈ S1. Meanwhile, the
second set does not include CQI and thus (1q(l), 1r (l)) ∈ S2

is formed by two components. With a slight abuse of notation
1q(l), 1r (l) and CQI (l) denote the age of the packet at
the queue, at the receiver and quantized channel state at the
beginning of frame l, respectively. That is, 1q(l) and 1r (l)
represent the AoI at time tl , indicating that 1q(l) = 1q(tl)
and 1r (l) = 1r (tl).

The action space, A, represents the finite set of block-
lengths we can select, plus stay idle action, that is, nl = 1.
The reward functionR : S ×A→ Z is defined as:

Rl ≜ R(Sl = (1q(l), 1r (l)),Al = nl)

Rl = −

tl+nl−1∑
t=tl

1(1r (t) > 1max),

=


−nl if 1r (l) > 1max;

0 if 1r (l) < 1max − nl;
−nl + (1max −1r (l)) otherwise,

(17)

where 1r (l) is the component of Sl describing the AoI at the
receiver andAl = nl for all nl ∈ A. Besides that, we also need
to consider the states in which the queue is empty, denoted
by 1q(l) = −1. There should be no blocklength selection in
such states since there are no packets to transmit. The system
should stay idle, i.e. nl = 1, until a new packet arrives.
The state transition probabilities Pnl

ss′ = P(Sl+1 = s′|Sl =
s,Al = nl) is determined by the underlying statistics of
error probabilities and random packet arrivals. Therefore,

we first recognize all possible state transitions and calculate
the following corresponding probabilities.

If the queue state is empty, i.e.,1q(l) = −1, the transmitter
stays idle for one CU and waits for a new packet arrival, that
is, nl = 1. The next queue state, i.e. 1q(l + 1), depends on
the packet arrival at one CU with probability λ ∈ (0, 1) while
1r (l + 1) = 1r (l) + 1 as there will not be any new packet
arrival to the receiver. The transition probabilities are given
as follows (omitting the parenthesis from the state variables
(1q, 1r )):

P(−1, 1r + 1|1q, 1r , 1) = (1− λ),

P(0, 1r + 1|1q, 1r , 1) = λ, (18)

where 1q and 1r stand for 1q(l) and 1r (l), respectively.
When the queue is not empty at the beginning of frame l, i.e.,
1q(l) ̸= −1, a packet is waiting to be transmitted. Then, the
transmitter chooses a finite blocklength nl from the available
blocklengths, nl ∈ A. 1q(l + 1) depends on the arrival
time of the most recent packet in the queue during nl CUs
at frame l. 1q(l + 1) = −1 refers to the case of no packet
arrivals throughout the nl CUs. For a Bernoulli arrival rate of
λ ∈ (0, 1), 1q(l + 1) can take the following values with the
corresponding probabilities for all j ∈ {0, . . . , nl − 1}:

1q(l + 1) =

{
−1, with prob. (1− λ)nl ,
j, with prob. λ(1− λ)j.

(19)

The AoI at the queue in the next frame l + 1, 1q(l + 1),
is determined by the arrival time of the most recent packet in
the queue during the nl CUs at previous frame l. The AoI at
the receiver in next frame l+1,1r (l+1), depends on the AoI
in the queue at the beginning of frame l, 1q(l), and whether a
block error occurred or not with probability ϵnl defined in (7).

P(−1, 1q + nl |1q, 1r , nl) = (1− λ)nl (1− ϵnl )

P(−1, 1r + nl |1q, 1r , nl) = (1− λ)nl ϵnl
P(j, 1q + nl |1q, 1r , nl) = λ(1− λ)j(1− ϵnl )

P(j, 1r + nl |1q, 1r , nl) = λ(1− λ)jϵnl (20)

Unlike 1q(l) and 1r (l), the change in the CQI state is
completely independent of other states and the previous CQI
state. We calculate the SNR as γ = P|h|2 where the channel
coefficient h is assumed to be a Rayleigh random variable
for simplicity. Since the probability density function of the
Rayleigh distribution is known, probabilities corresponding
to the defined SNR, hence CQI, intervals can be calculated.
In conclusion, using the packet arrival probabilities and state
transitions expressed in (18) and (20), and CQI probabilities,
we can obtain Pnl

ss′ for all states and all actions.
We remark that the formulated MDP has a countable-state

space considering both 1q(l) ∈ {0, 1, . . .} and 1r (l) ∈
{1, 2, . . .} are unbounded by definition. However, since the
reward given (17) is the same for all 1r (l) > 1max, the
problem can be reduced to a finite-state finite-action MDP
where 1r (l), 1q(l) ∈ [0, 1max + 1]. Following the results at
[30, Section 10.1.2] and [31, Section 5.1.2], under unichain
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policies, Blackwell optimality holds for finite-state finite-
action MDPs and the gain of the discounted MDP described
in this section approaches to the AVP defined in (16) as
discount rate increases, i.e., 0→ 1.

We also adopt state aggregation method [32] when
constructing the state space, i.e., by combining similar states
into groups, we reduce the number of states, hence reducing
the complexity of the problem. Although the time unit is one
CU, 1q(l) and 1r (l) components of the state do not point to
a single value, but a collection of values. Hence, the mapping
fromAoIs at the queue and the receiver to the states1q(l) and
1r (l) is not one-to-one. With a much lower number of states,
the complexities of the proposed algorithms are significantly
reduced, and the convergence rate is accelerated.

Next, we present two novel solution methods for the
blocklength selection problem. The first is based on the value
iteration method [30], [31] exploiting the knowledge of sys-
tem characteristics, while the second utilizes Q-learning [33]
without apriori knowledge of system characteristics.

A. VALUE ITERATION BASED ADAPTIVE BLOCKLENGTH
SELECTION
Value iteration is a dynamic programming method that
requires full knowledge of the environment dynamics, i.e.,
state transition probabilities Pnl

ss′ in (18), (20) and reward
functionR(Sl,Al) in (17). The purpose of value iteration is to
maximize the state-value function denoted with V (Sl), which
is the expected discounted accumulation of the future rewards
starting from the state Sl [30], [31]:

V (Sl) = E

∑
m≥1

0m−1R(Sl+m,Al+m)

 . (21)

It is possible to obtain the optimum state-value func-
tion V ∗(s) recursively, using the knowledge of Pnl

ss′ and
Rnl
s = R(Sl = s,Al = nl):

V ∗(s)← max
nl

Rnl
s + 0

∑
s′∈S1

Pnl
ss′V (s

′). (22)

In the value iteration method, we exploit (22) to obtain the
maximum state-value function. After the iteration converges,
we obtain a deterministic policy denoted by π , where π :

S1
→ A:

π (s) = argmax
nl

∑
s′∈S1

Pnl
ss′ [R

nl
s + 0V (s′)]. (23)

Value iteration-based adaptive blocklength selection
method (VI-ABM) is summarized in Algorithm 1.

B. Q LEARNING BASED ADAPTIVE BLOCKLENGTH
SELECTION
We propose two adaptive blocklength selection methods
based on Q-learning, which assume no prior knowledge
about environmental dynamics. The first Q-learning agent is

Algorithm 1 VI-ABM

1: V ← 0 ∀s ∈ S1, ρ ≪ 1 /* initialization */
2: δ← 1
3: repeat
4: for all s = (1q(l), 1r (l),CQI (l)) ∈ S1 do
5: v← V (s)
6: for all n ∈ A do
7: v(s, nl)←

∑
s′∈S

Pnl
ss′
[
Rnl
s + 0V (s′)

]
8: end for
9: V (s)← max

nl
v(s, nl)

10: δ← max(δ, |v− V (s)|)
11: end for
12: until δ < ρ /* convergence */
13: for all s = (1q(l), 1r (l),CQI (l)) ∈ S1 do
14: π (s) = argmax

nl

∑
s′
Pnl
ss′ [R

nl
s + 0V (s′)]

15: end for
16: return π

assumed to know the quantized channel state information,
so CQI is included in the state Sl = (1q(l), 1r (l),CQI (l)) ∈
S1 of the system. Also, note that although the CQI knowledge
is assumed, the channel state information is noisy and
quantized with Ncqi as in (13). On the other hand, the second
agent knows only the ages of the queue and receiver and
assumes no CSIT. Hence, CQI is excluded from the state
Sl = (1q(l), 1r (l)) ∈ S2. Actions and rewards are the same
for the two scenarios. 1q(l) denotes the age of the packet
in the queue, and 1q(l) = −1 if the queue is empty. 1r (l)
denotes the age of the packet at the receiver.

Q-learning is an online reinforcement learning algorithm to
find the optimal action-value function Q(Sl,Al), also known
as Q-function. Q-function is the discounted accumulation of
the future rewards given state Sl and action Al :

Q(Sl,Al) = E

∑
m≥1

0m−1R(Sl+m,Al+m)|Al

 . (24)

Q-learning is a model-free, off-policy temporal difference
algorithm. The Q-learning agent learns entirely by trial and
error, following a behavior policy that is different from
the learned target policy to generate behavior [33]. The
agent faces a trade-off between exploration and exploitation
[34], i.e., choosing the action with the highest action-value
estimate or a non-greedy action to improve its estimate.
ε-greedy is a simple strategy to balance the exploration-
exploitation trade-off: With probability ε, the agent chooses a
random action, and with probability 1−ε, it chooses a greedy
action.

Firstly, we initialize the Q-functions Q(Sl,Al) to zero for
all states Sl ∈ S and all actions Al ∈ A. We follow an
ε-greedy policy with a decaying exploration rate: at each
iteration, the exploration rate ε is multiplied by a decay rate
ζ . The initial value is ε = εmax, and the minimum value is
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limited to εmin. At each iteration, according to the observed
state Sl , the agent has to select either to use a blocklength nl if
there is a packet waiting for service or to stay idle for one CU,
i.e., nl = 1. After the action is executed, the environment goes
to the next state Sl+1, and returns reward R(Sl,Al) defined
in (17). We update the corresponding Q-table entry Q(Sl,Al)
according to Bellman’s rule:

Q(Sl,Al)← Q(Sl,Al)+ α
(
R(Sl,Al)

+ 0max
Al+1

Q(Sl+1,Al+1)− Q(Sl,Al)
)
, (25)

where α, 0 < α < 1, is the learning rate or step size. With a
higher learning rate, the changes in Q(Sl,Al) are more rapid.
Similar to the exploration rate, we use a decaying learning
rate: starting with α = αmax, the learning rate is multiplied
with the same decay rate ζ in each iteration, and the minimum
value it can take is αmin. Assuming that all state-action pairs
continue to be updated, and the parameters ε and α are set
properly, Q(Sl,Al) converges to the optimal value Q∗(s, a) =
Q(Sl = s,Al = a) for given frame l [33].

Algorithm 2 gives a detailed explanation of our Q-learning-
based adaptive blocklength selection method (QL-ABM).

IV. ADAPTIVE MCS SELECTION FOR MINIMIZING AGE
VIOLATION PROBABILITY
In this section, we focus on adaptively selecting the
modulation and coding schemes tominimize the age violation
probability, and present our solution based on deep Q-
networks.

A. DQN BASED ADAPTIVE MCS SELECTION
The modulation and coding scheme selection is a more
complex problem than blocklength selection. This is because
the number of actions and states is significantly larger, and
it is impractical to use a tabular method like Q-learning
where Q-functions Q(Sl,Al) for all states Sl ∈ S and
actions Al ∈ A are stored in a table. The required
memory and computation resources are too high; thus, Q-
learning fails to be a feasible solution, and we utilize deep
reinforcement learning (DRL) methods instead [34]. It is
a function approximation technique that uses deep neural
networks (DNN). The Q-function Q(Sl,Al) is approximated
byQ(Sl,Al; θ ), where θ is the vector consisting of theweights
of the DNN mimicking the actual Q(Sl,Al). The network is
also called a deep Q-network (DQN). It consists of an input
layer,H hidden layers, and an output layer. The network takes
a state Sl as an input, and as outputs, it gives the Q-functions
for state Sl and all possible actions.

Similar to Section III-B, we consider two DQN-based
scenarios to solve the adaptiveMCS selection problem. In the
first one, the CQI information is known and included in the
state Sl of the system. Meanwhile, the second scenario is
more practical, assuming we know only the ages at the queue
and receiver, and CQI is excluded from the state. Actions
and rewards are the same for the two scenarios. Let S1 and
S2 denote the state spaces for the first and second scenarios

Algorithm 2 QL-ABM

1: Q← 0 ∀s ∈ S1,2 for QL-ABM-1,2 and ∀a ∈ A
2: l = 0 /* initialize frame counter */
3: s = (−1, 100, 0) for QL-ABM-1
/* initialize s with an empty queue,
destination age equal to k (num.
of info. bits), 0 dB SNR */
s = (−1, 100) for QL-ABM-2

4: for l = 1, 2, . . . ,L do
5: Observe the current state s:

s = (1q(l), 1r (l),CQI (l)) for QL-ABM-1
s = (1q(l), 1r (l)) for Q ABM-2

6: if 1q(l) = −1 then
7: a← 1 /* choose stay idle */
8: else
9: a← nl according to ε-greedy:

Explore with probability ε /* choose a
randomly */
Exploit with probability (1 − ε) /* choose a
that maximizes Q(s′, a) */

10: end if
11: if new packet arrives then
12: Update 1q(l)
13: end if
14: Observe the next state s′ and reward r :

s′ = (1q(l+1), 1r (l+1),CQI (l+1)) for QL-ABM-1
s′ = (1q(l + 1), 1r (l + 1)) for QL-ABM-2

& r = −
tl+nl−1∑
t=tl

1(1r (t) > 1max)

15: Update Q-table:
16: Q(s, a)← Q(s, a)+ α(r + 0max

a′
Q(s′, a′)− Q(s, a))

17: s← s′

18: end for

as (1q(l), 1r (l),CQI (l)) ∈ S1 and (1q(l), 1r (l)) ∈ S2,
respectively. Similarly to Section III, 1q(l) denotes the age
of the packet in the queue, and 1q(l) = −1 if the queue is
empty.1r (l) denotes the age of the packet at the receiver. For
the CQI state, instead of quantization as in Section III, here
we obtain the CQI simply by rounding the SNR to the nearest
integer.

Unlike the blocklength selection problem, we do not
use the state aggregation method for 1q(l) and 1r (l). The
evolutions of 1q(l) and 1r (l) in time are the same: The age
of the packet at the queue is affected only by the new packet
arrivals to the system. When a packet arrives at the queue,
1q(l) is reset to zero. Otherwise, it increases with the unit
rate. The age at the receiver 1r (l), on the other hand, grows
until the transmission is completed successfully. Let n(M )

l
denote the blocklength used according to the chosen MCS
index at frame l, and n(M )

l = 1 implies the action of staying
idle for one CU. Then, the changes in 1q(l) and 1r (l) after
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n(M )
l CUs can be expressed as follows:

1q(l + 1) =

{
−1, with prob. (1− λ)n

(M )
l ,

j, with prob. λ(1− λ)j.
(26)

1r (l + 1) =


1q(l)+ n

(M )
l with prob. (1− ϵnl ,Ml )

if 1q(l) ̸= −1,

1r (l)+ n
(M )
l otherwise.

(27)

Again, the CQI state after n(M )
l CUs does not depend on

the previous or the other CQI states but changes randomly
according to Rayleigh distribution. The finite action spaceA
represents the MCSs in [22, Table 5.1.3.1-3], plus stay idle
action. Also, we design a slightly different reward function
R(Sl,Al) than the one in Section III. We count the number of
age violations in each iteration because of the selected action.
However, this is not a sufficient solution: The reward of
applying an action Al is the same whether 1r (l) is above the
threshold or not. Thus, the reward should include information
about how much the threshold is exceeded. Also, as in
blocklength selection problem, the DQN agent should not
choose to stay idle unless the queue is empty. Again, rewards
corresponding to these cases are large negative values. On the
other hand, the reward of choosing to stay idle when the queue
is empty is zero, as it is the optimal action to take in that state.
We follow a slightly different notation from Section III here,
a0 corresponds to the action of staying idle, i.e., n(M )

l = 1.
Then, the reward function is expressed in (28), as shown at
the bottom of the next page.

The DQN agent iteratively learns with experience.
An experience can be represented with a (Sl,Al,
R(Sl,Al), Sl+1) tuple: The state Sl , the action Al taken in
state Sl , the reward R(Sl,Al) obtained by taking action Al
in state Sl , and the resulting next state Sl+1. A replay buffer
with a limited size stores the experiences, and to train the
network, a batch of experiences is sampled randomly from the
buffer. This method improves stability because it eliminates
the correlations between the samples and covers a wider
variety of state-action pairs [34]. The instabilities are also
limited by the usage of two networks in the training process:
the main network and the target network. The main network
is represented with the action-value function with weight
vector θ (Q(Sl,Al; θ )), and the target network is shown as
Q̂(Sl,Al; θ−). While the main network is actively trained,
the target network is updated at every N episodes. The
purpose is to improve stability and increase the probability
of convergence by avoiding rapid changes in Q̂(Sl,Al; θ−).
At each time step in an episode of the algorithm, the

agent chooses an action Al with an ε-greedy approach: with
probability ε, a random action is selected. Otherwise, the
action with the maximum Q value is selected. As in QL-
ABM, we use a decaying exploration rate ε. Execution of
action Al results in reward R(Sl,Al) and state Sl+1. The
experience (Sl,Al,R(Sl,Al), Sl+1) is stored in the replay
buffer. The agent is trained with a minibatch of experiences

TABLE 3. DQN hyperparameters.

sampled randomly from the replay buffer. The difference
between the actual and predicted results, i.e., gradient loss
(L(θ )), is calculated. As the loss function, we use Huber loss
[35]:

Lφ(y, f (x)) =


(y− f (x))2

2
if |y− f (x)| ≤ φ;

δ(|y− f (x)| −
φ

2
) otherwise.

(29)

(29) states that if the loss value is less than φ, Huber loss
is equal to the mean squared error (MSE); however, for loss
values greater than φ, Huber loss equals the mean absolute
error (MAE). AsMSE loss squares the difference, it putsmore
weight on outliers, i.e., observations that differ substantially
from the others. On the other hand, MAE loss weighs all
errors with a linear scale, ignoring the outliers. By combining
MSE and MAE, Huber loss balances the weight given to
outliers.

As the training processes, the loss is expected to converge
to arbitrarily small values. Lastly, at every N episodes, the
weights of the main network are copied to the target network.
The algorithm for our DQN-based adaptive MCS selection
method is given in Algorithm 3, and the related parameters
are listed in Table 3.

B. BASELINE SOLUTIONS
To evaluate their performances, we compare our DQN-based
solutions with two baseline methods: ILLA and OLLA [21].
ILLA is an adaptive MCS selection method based on a
fixed lookup table approach; it chooses an MCS index that
satisfies a target BLER requirement for a given SNR value.
The measured SNR can be unstable because of variations
in the wireless channel, quantization errors, and delays.
In such cases, ILLA becomes an inefficient solution, and the
OLLA technique is used in addition to ILLA for improving
performance. OLLA adjusts the measured SNR γ with an
offset ηolla according to the ACK/NACK feedback about
the transmitted packet. The resulting SNR γolla is used for
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Algorithm 3 DQN-AMC
1: Initialize replay memory
2: Initialize Q with random weights θ

3: Initialize Q̂ with random weights θ−

4: for episodes p = 1, 2, . . . do
5: Initialize state s:

s = (1q(l), 1r (l),CQI (l)) for DQN-AMC-1
s = (1q(l), 1r (l)) for DQN-AMC-2

6: for l = 1, 2, . . . do
7: Observe the current state s:
8: Choose an action a ∈ A:

a← IMCS according to ε-greedy:
Explore with probability ε /* choose a
randomly */
Exploit with probability (1 − ε) /* choose a
that maximizes Q̂(s′, a; θ ) */

9: if new packet arrives then
10: Update 1q(l)
11: end if
12: Observe the next state s′ and reward r :
13: if 1q(l) = −1 & a ̸= a0 then
14: r = −5000
15: else if 1q(l) ̸= −1 & a = a0 then
16: r = −5000
17: else

18: r = −
tl+n

(M )
l −1∑
t=tl

1(1r (t) > 1max)

+ max(0, 1r (l)−1max)
19: end if
20: Store transition (s, a, r, s′) in replay memory
21: Sample minibatch of transitions (sj, aj, rj, s′j) from

replay memory
22: Set yj = rj + 0maxa′ Q̂(sj+1, a′; θ )
23: Calculate Lφ(yj,Q(s, a; θ )) /* the loss */
24: Update Q̂(s, a; θ ) at every N episodes
25: end for
26: end for

selecting the MCS index from the lookup table.

γolla = γ − ηolla (30)

ηolla is updated in each transmission according to the
following rule:

ηolla← ηolla + ηup · 1nack − ηdown · 1ack , (31)

where ηup and ηdown are the step up and step down
parameters, related to each other in terms of the target

BLER denoted as BLERT :

ηdown =
ηup

1
BLERT

− 1
. (32)

OLLA algorithm is also given in detail in Algorithm 4.

Algorithm 4 OLLA
Input: ηup, ηdown

1: ηolla = 0 /* initialize offset to zero*/
2: for each transmission do
3: if ACK then
4: ηolla← ηolla − ηdown
5: else
6: ηolla← ηolla + ηup
7: end if
8: end for
9: γolla = γ − ηolla
10: MCS = MCS(γolla)

V. SIMULATION RESULTS
In this section, we demonstrate the performances of our
adaptive blocklength and MCS selection methods, and
compare them with baseline methods.

A. ADAPTIVE BLOCKLENGTH SELECTION
Before displaying the performance of our value iteration and
Q-learning-based adaptive blocklength selection methods,
we first show the existence of the optimal blocklength in
various scenarios. The number of information bits is k = 100,
and the blocklengths go from 100 to 300 with a step size
of 25. With a fixed number of information bits, different
blocklengths n imply different coding ratesR = k/n. Figure 4
plots the coding rate versus age violation probability for
different transmit powers P. The minimum AVP values for
each P are shown with red circles. It is clear that the best
rate, hence, the best blocklength that minimizes AVP differs
as P increases. Similarly, as seen in Figures 5 and 6, changing
the packet arrival rate λ or the threshold 1max changes the
optimal rate. These figures illustrate the motivation behind
our adaptive blocklength scheme: we aim to find and use a
dynamic blocklength selection scheme that achieves better
performance than the optimal fixed blocklength.

In the simulation results, we refer to the proposed
Q-learning-based policies when the information on the CQI
state is available and unavailable as QL-ABM-1 and QL-
ABM-2, respectively. Then, we demonstrate the performances

R(Sl,Al) =


−5000, 1q(l) = −1 & Al ̸= a0;
−5000, 1q(l) ̸= −1 & Al = a0;

−

tl+n(M )
l−1∑

t=tl

1(1r (t) > 1max)+max(0, 1r (l)−1max) otherwise.

(28)
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FIGURE 3. Block diagram for DQN-AMC.

FIGURE 4. Coding rate versus AVP for different transmit power levels
when λ = 0.01 and 1max = 800 CUs (red circles correspond to the
minimum AVPs).

of VI-ABM and QL-ABM-1&2 compared with fixed block-
length schemes. We fix the number of information bits to k =
100, and the blocklengths in our action space go from 100 to
300 with a step size of 25. In VI-ABM, the number of
iterations run for each scenario is 200, and the discount
factor 0 is 0.95. The number of iterations and the discount
factor 0 in QL-ABM-1&2 are 100000 and 0.95, respectively.
As mentioned before, we use a decaying exploration rate ε

in QL-ABM-1&2, and the related parameters are εmax = 1,
εmin = 0.01 and ζ = (1 − 10−4). We also use a decaying
learning rate with the same decay rate ζ , and the maximum
and minimum values are αmax = 0.5 and αmin = 10−4.
Figure 7 shows the results obtained with different transmit

power levels when the arrival rate and threshold are fixed

FIGURE 5. Coding rate versus AVP for different arrival rates when
P = 0 dB and 1max = 800 CUs (red circles correspond to the minimum
AVPs).

(λ = 0.01 and 1max = 800 CUs). Low transmit
power implies that the probability of experiencing low SNR
levels is high. For low P values, large blocklengths (n ≥
200) result in lower AVP among all the fixed blocklength
schemes. This is because more redundancy bits are needed
for reliable transmission, i.e., low BLER, in low SNR cases.
As P increases, using large blocklength constantly becomes
inefficient, and smaller n values such as 100 and 125 become
advantageous. On the other hand, our adaptive blocklength
methods provide lower AVP for the majority of P levels
since they can dynamically select the optimal blocklength
to use in each different channel realization. Although
QL-ABM-2 w/o CQI shows slightly worse performance
than QL-ABM-1 with CQI, its performance still attains
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FIGURE 6. Coding rate versus AVP for different age thresholds when
P = 0 dB and λ = 0.01 (red circles correspond to the minimum AVPs).

FIGURE 7. Comparison of AVP for VI-ABM, QL-ABM-1 (QL-ABM with CQI
state), QL-ABM-2 (QL-ABM without CQI state) and fixed blocklength
schemes for different transmit power levels (λ = 0.01, 1max = 800 CUs).

or surpasses the performance of best fixed blocklength
schemes. The performance differences between VI-ABM,
QL-ABM-1, and QL-ABM-2 are more apparent for lower
P values. Since high SNR levels are rarely experienced
for low transmit powers, the Q-learning agent cannot learn
about them thoroughly, so it does not know which action is
optimal in the states corresponding to high SNR without CQI
knowledge. Meanwhile, VI-ABM and QL-ABM-1 achieve
significantly lower AVP for all P values than the other
schemes. It is worth noting that VI-ABM requires apriori
knowledge of CSIT and system dynamics, which may not
always be feasible.

In Figure 8, the results of varying packet arrival rate λ are
displayed where P = 0 dB and 1max = 800 CUs. When λ

is small, the packet arrivals are sparse, and the main factor
increasing the age is the idle periods where the system waits
for new packet arrival. Thus, AVP is very high for both the
fixed blocklength schemes and our methods. As λ increases,
these idle periods are shortened; hence AVP decreases
significantly for all schemes. When λ = 0.1, the probability
of updating the queuewith a newly-arrived packet is high, this

FIGURE 8. Comparison of AVP for VI-ABM, QL-ABM-1 (QL-ABM with CQI
state), QL-ABM-2 (QL-ABM without CQI state) and fixed blocklength
schemes for different arrival rates (P = 0 dB, 1max = 800 CUs).

FIGURE 9. Comparison of AVP for VI-ABM, QL-ABM-1 (QL-ABM with CQI
state), QL-ABM-2 (QL-ABM without CQI state) and fixed blocklength
schemes for different age thresholds (P = 0 dB, λ = 0.01).

leads to smaller1q; therefore, smaller1r and AVP. VI-ABM
performs better than the fixed blocklength schemes for the
whole range of λ values, while the performance gap becomes
more visible for larger λ. Although not as good as VI-ABM
and QL-ABM-1, QL-ABM-2 also achieves lower AVP than
the fixed blocklength schemes for all packet arrival rates.

Lastly, in Figure 9, age violation probabilities for different
age thresholds are demonstrated. Transmit power P is kept
constant at 0 dB and arrival rate λ is 0.01. For low 1max
values, AVP is large for all cases, as expected. As 1max is
increased, AVP decreases substantially for all schemes. For
all threshold values, VI-ABMandQL-ABM-1&2 outperform
the fixed blocklength schemes as the threshold increases,
while VI-ABM achieves the lowest age violation probability
for all threshold values.

It is clear that for all scenarios, VI-ABM is superior to both
QL-ABM-1 and QL-ABM-2. Nevertheless, it is essential to
recall that value iteration is a model-based method; hence it
requires complete knowledge of the environment dynamics,
such as state transition probabilities and reward models.
On the other hand, Q-learning agents learn with trial and
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error, as it has no prior knowledge about the environment.
Also, it suffers from the exploration-exploitation trade-
off mentioned in Section 2.6. Thus, it is reasonable that
VI-ABM performs better than Q-learning-based methods,
considering its prior knowledge and higher complexity.
In addition, among two Q-learning-based methods, QL-
ABM-1 outperforms QL-ABM-2 for all test scenarios, which
is understandable, as SNR, hence CQI state, is a crucial
factor in determining the probability of error and affects
the action selection process. Nevertheless, QL-ABM-2 is a
more practical method than QL-ABM-1 as it does not require
knowledge about CSIT.

B. ADAPTIVE MCS SELECTION
We compare the performances of the two DQN-based
solutions with the baseline methods ILLA and OLLA.
Three target BLER values (10−1, 10−3, 10−5) are used
with the ILLA method, and for OLLA we set BLER to
10−1. The number of information bits is set to k = 200.
In the MCS table [22, Table 5.1.3.1-3], the modulation order
M and the coding rate R for each MCS index are provided
and the corresponding blocklength n can be computed as
n = k

R·log2M
. We refer to the proposed policies when the

information on the CQI state is available and unavailable as
DQN-AMC-1 and DQN-AMC-2, respectively.
Figure 10 shows the age violation probability of different

schemes for various transmit power levels P. Age threshold
1max and arrival rate λ are fixed at 5000 CUs and is 0.005,
respectively. When P is low, the probability of having lousy
channel conditions is higher; thus, the frequently seen SNR
values are low, and erroneous transmissions heavily influence
AVP. As ILLA and OLLA schemes use low MCS indexes
to achieve the target BLER, AVP is high because of the
large blocklengths, so the DQN-AMC schemes provide lower
AVP. As P increases, the superior performance of DQN-
AMC becomes more visible. However, for transmit powers
above around 4 dB, ILLA and OLLA schemes become more
advantageous as higherMCS indexes with small blocklengths
are used. Notably, while the ILLA schemes have similar
performances, as BLER of ILLA goes from 10−1 to 10−5

AVP increases since a lower MCS index with a larger
blocklength satisfies the lower BLER requirement at a certain
SNR. Meanwhile, it is evident that using OLLA does not
significantly affect the age violation probability. Comparing
the two DQN-AMC schemes, it can be seen that DQN-AMC-
1 clearly outperforms DQN-AMC-2 for most of the P levels.
Still, considering that DQN-AMC-2 does not know the SNR
and has lower complexity regarding the number of states, it is
a feasible solution.

Figure 11 demonstrates the age violation probability for
different packet arrival rates. At the lowest arrival rate (λ =
0.001), DQN-AMC schemes are insufficient. The reason is
that the DRL agent mainly encounters the states in which the
queue is empty, even with a high exploration rate. Therefore,
it cannot fully learn the optimal actions when the queue is

FIGURE 10. Comparison of AVP for DQN-AMC-1 (DQN-AMC with CQI
state), DQN-AMC-2 (DQN-AMC without CQI state), ILLA and OLLA
methods for different transmit power levels (1max = 5000 CUs,
λ = 0.005).

FIGURE 11. Comparison of AVP for DQN-AMC-1 (DQN-AMC with CQI
state), DQN-AMC-2 (DQN-AMC without CQI state), ILLA and OLLA
methods for different arrival rates (P = 0 dB, 1max = 5000 CUs).

non-empty. Increasing λ to about 0.005 leads to a substantial
reduction of AVP in all schemes, but the difference is much
higher for DQN-AMC schemes. For λ values above 0.005,
changes in AVP become negligible for all schemes. As in the
previous results, ILLA with BLER= 0.1 and OLLA perform
very similarly, and for ILLA with a smaller target BLER,
we observe higher AVP.

In Figure 12, AVP is plotted for different age thresholds
1max while the transmit power P is fixed at 0 dB, and
arrival rate λ is 0.005. As can be seen, DQN-AMC schemes
surpass the performances of ILLA and OLLA schemes. Also,
DQN-AMC-1 achieves lower AVP than DQN-AMC-2 for
almost all threshold values. Consistent with the previous
results, ILLA scheme with BLER = 10−5 has the highest
AVP, and the difference between the ILLA schemes is
visible. Again the OLLA scheme improves the performance
negligibly. As the threshold increases, the probability of age
violation is reduced for all schemes.
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FIGURE 12. Comparison of AVP for DQN-AMC-1 (DQN-AMC with CQI
state), DQN-AMC-2 (DQN-AMC without CQI state), ILLA and OLLA
methods for different thresholds (P = 0 dB, λ = 0.005).

The proposed DQN-AMC methods achieve lower age
violation probabilities for most of the test scenarios. DQN-
AMC-1, which includes CQI information in the state
performs better than DQN-AMC-2 in general. This is
understandable, as SNR, hence CQI, is one of themain factors
determining the probability of error and affecting the action
selection process. Nevertheless, DQN-AMC-2 is an efficient
method considering that it does not require knowledge about
the SNR and has a lower number of states, thus lower
complexity.

VI. CONCLUSION AND FUTURE WORK
This paper addresses short packet communication links with
strict timeliness requirements for xURLLC and mMTC
systems. To capture data timeliness, we optimize age
violation probability for dynamic blocklength selection
and modulation/coding scheme. We propose value iteration
and Q-learning under non-asymptotic information theory
approximations for dynamic blocklength. Simulation results
show that the optimal blocklengths exist for different transmit
powers, arrival rates, and predefined age thresholds. The pro-
posed adaptive blocklength selection methods with/without
CSIT significantly outperformed the fixed blocklengths even
in an unknown arrival rate and block error rate conditions.
For the adaptive modulation/coding scheme, due to a
large state space, we introduce two algorithms based on
DQN, with/without CSIT. Our DQN-based approach exhibits
significantly lower age violation probability compared to
ILLA and OLLA baseline methods. Across dynamic block-
length and modulation/coding problems, the gap between
methods with/without channel state information narrows
as SNR increases. These methods have the potential for
xURLLC andmMTC systemswithmultiple users and various
channel models considering distinct geographical locations
and pathloss of the transmitter and the receiver in the
future.
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