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ABSTRACT Supervisory Control and Data Acquisition (SCADA) systems are widely used for remote
monitoring and control of industrial processes, such as oil and gas production, power generation,
transmission and distribution, and water treatment. Despite the enhanced accessibility, control, and data
availability afforded by recent advances in communication technologies, the utilization of these technologies
exposes critical infrastructures such as power systems to potential cyber threats. A Machine Learning (ML)-
based Intrusion Detection System (IDS) seems promising; however, the development of ML models often
requires custom methodologies for data preprocessing and training. This strategic approach is necessary for
creating high-performance models that can be robustly evaluated and seamlessly integrated into real-time
systems. As a result, we propose an ML-based IDS design framework for a SCADA-based power system
incorporating effective modeling aspects, such as dataset preprocessing to ensure accurate representation,
data augmentation for achieving a balanced dataset, automated feature selection to reduce dimensionality,
and rigorous model training and testing procedures. To substantiate our proposed design framework,
we conducted a series of experiments using a publicly available ORNL (Oak Ridge National Laboratory)
dataset for a SCADA-based power system. The evaluation process encompasses efficient validation
techniques with unseen data. Furthermore, the augmented dataset emerged through the aggregation of
readings from four Phasor Measurement Units (PMUs) collected over a specific time span into a unified
dataset. Among the assessed classifiers, the Random Forest (RF) model, trained on an augmented and
balanced dataset, outperformed others, yielding an F1 score of 94.09% during testing with unseen data.

INDEX TERMS Intrusion detection, machine learning, generative adversarial network, SCADA systems,
cyber-attacks, industrial control systems.

I. INTRODUCTION
Intrusion Detection Systems (IDSs) are critical for modern
information security infrastructure. It plays an important role
in identifying and alerting administrators about unauthorized
access, misuse, or tampering with computer systems and
networks. In the case of Supervisory Control and Data
Acquisition (SCADA) systems, IDSs are even more critical,
given the sensitive nature of the data and systems involved [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

SCADA systems play a vital role to control andmonitor the
processes of industrial control systems, such as controlling
the production lines in manufacturing units, managing power
plants in energy sectors, controlling water distribution, and
filtering in water treatment plants. They are large and
complex systems that collect and transmit large amounts of
real-time data from remote locations to a central control
center. The data includes readings from sensors, valves, and
other devices, as well as commands and control signals sent
to the field devices.

Figure 1 shows the block diagram of a typical SCADA
architecture for power systems. As illustrated in Figure 1,
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FIGURE 1. Architecture of SCADA-based power systems.

sensors, meters, and PMUs (Phaser Measurement Units) are
used at various locations at the substation of the power
transmission system to measure diverse electrical data, such
as voltage, current, frequency, power factor, and phase angles.
Traditionally, field controllers, such as Programmable Logic
Controllers (PLCs), Intelligent Electronic Devices (IEDs),
or Remote Terminal Units (RTUs) are connected with these
measurement units to transmit the data to the SCADA server.
The digital data received from these field devices are then
transmitted to the Master Terminal Unit (MTU) located
at a remote location. Remote monitoring of the processes
within the power system is viable through dedicated secure
Virtual Private Network (VPN) lines or by utilizing Wide
Area Network (WAN) to establish point-to-point networks.
However, control and parameter changes may be carried out
either locally at power substations or remotely, by operators
within designated control rooms. The MTU determines the
set points based on parameter ranges and sends signals back
to the field site components for necessary actions to avoid
malfunctions and optimize the performance of the system.

While many aspects of modern power systems are
automated to enhance reliability and efficiency, human
intervention remains crucial for several purposes such as
operating and controlling breakers or manually disconnecting
a line. The Human-Machine Interface (HMI) serves as
the bridge between human operators and the plant floor

machinery, ensuring the smooth and effective flow of electric
energy. This includes configuring critical parameters of
the power transmission systems to ensure they operate
within safe and optimal limits. Moreover, unexpected events
or emergencies may necessitate rapid actions by human
operators. For instance, in the case of a sudden power surge
or a system fault, operators can use the HMI to isolate
the affected area, reroute power, or initiate safety protocols.
Furthermore, system monitoring involves taking corrective
actions in response to alarms and alerts. Maintenance or
repairs require operators in the control room to coordinate
activities effectively.

Recent advancements, such as the integration of new data
sources like IoT, Industry 4.0, and phasor measurement units,
increase the risk of cyberattacks reaching SCADA systems
in power grids. While the power system SCADA is not
generally connected to the internet, it is crucial to recognize
the potential vulnerabilities within these systems. In addition
to insider attacks, there are various other types of cyberattacks
that pose a significant threat to power grid SCADA systems.
Some of these include malware infections through USB,
Denial-of-Service (DoS) Attacks, Zero-Day Exploits owing
to vulnerable SCADA components, and Data Manipulation
attacks.

Real-time cyber attacks can have devastating conse-
quences, including, but not limited to, service disruption
as observed in 2003 in the Davis-Besses nuclear power
plant [2] and in 2008 at the Hatch nuclear power plant
in Baxley, Georgia [2] when these stations were attacked
by cybercriminals. Recent cyber-attacks in industrial control
systems include a ransomware attack targeted at Colonial
Pipeline Inc. in the US in May 2021 [3] bringing the facility
to a complete halt for a few days. The Ukraine power plant
cyber attack reported in 2015 [4] was probably the first
known successful attack on power grids where attackers were
able to disrupt the electricity supply to the end users. Power
grid attack is one of the most critical issues in industrial
control systems and it is essential to protect them by applying
adequate security measures [5].

Intrusion detection in SCADA systems is challenging
due to the unique requirements and constraints of these
systems. These requirements include (i) real-time response,
(ii) scalability, (iii) interoperability, and (iv) reliability.
SCADA systems require real-time monitoring and response
to events. The Intrusion Detection System (IDS) must be
able to process large amounts of data in real time and
alert administrators quickly in case of an intrusion. SCADA
systems often have a large number of devices and sensors.
Therefore, the IDS must be able to handle this scale and
still provide fast and accurate intrusion detection. In addition,
these systems often involve multiple different protocols,
devices, and systems from various vendors. As a result, the
IDSmust be able to operate seamlessly in such heterogeneous
environments. Further, SCADA systems are often mission-
critical, and therefore, their operations cannot be disrupted.
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Thus, IDS must be reliable, with a low false positive rate, and
must not cause any disruption to the normal operation of the
system.

SCADA systems also include resource constraint devices,
such as Remote Terminal Unit (RTU) and field devices.
Therefore, all related security protocols and algorithms must
be able to run on resource-constrained devices if a host
IDS is considered. IDSs can be performed using two main
approaches: signature-based and anomaly-based. Signature-
based intrusion detection systems rely on predefined patterns
of behavior or signatures to identify intrusions. These
signatures are based on knowledge of past intrusions and the
behavior of known attackers. The advantage of this approach
is its accuracy, but it can be vulnerable to new and unknown
intrusions. On the other hand, anomaly-based intrusion
detection systems usemachine learning algorithms to identify
unusual or abnormal behaviors within the SCADA system.
This approach is more robust against new and unknown
intrusions, but it has a higher false positive rate. To mitigate
this, anomaly-based IDS often employs a two-stage approach,
where the first stage identifies potential intrusions and the
second stage confirms or denies the intrusion using additional
information.

In this research work, our objective is to develop the
ML-based IDS framework, more specifically an Offline
Training Module (OTM) for SCADA-based power systems.
We work towards developing a generalized framework that
allows us to develop a robust ML-based IDS model that can
perform with high accuracy when tested with new or unseen
data. This framework enables us to pre-process the raw
dataset, augment and balance dataset that maybe imbalanced,
select the most useful features, save the best model during
cross-validation and validate the model further with unseen
data. We created synthetic data using Generative Adversarial
Network (GAN) to augment the dataset such that we obtain
more training data as well as balance the dataset. GAN
models have shown to be quite effective in a wide range of
machine learning applications, including tabular data gener-
ation [6]. Data augmentation increases the generalizability of
a data model and thereby minimizes overfitting. We used a
publicly available power system SCADA dataset, collected
by a group of researchers at Mississippi State University
and Oak Ridge National Laboratory (ORNL) [7], hereafter
referred to as the ORNL dataset.

A. MAJOR CONTRIBUTIONS
The main contributions of this work are the following.

• We propose a robust ML-based IDS design framework
for SCADA-based power systems with two main
components: the Offline Training Module (OTM) and
the Online Detection Module (ODM). These modules
are further validated using several testing approaches
by aggregating 15 small datasets from four locations
into one to create a high-performance model within a
distributed environment.

• We incorporate effective modeling aspects such as data
augmentation and feature selection methodology to
develop a balanced dataset for improved performance
during model training.

• We conducted a series of experiments encompassing
effective validation techniques to evaluate and compare
three tree-based classical machine learning (ML) algo-
rithms. Instead of performing only on cross-validation,
we tested our best model using unseen data. All models
were evaluated in terms of accuracy, precision, recall,
F1-Score, False Positive Rate (FPR), and False Negative
Rate (FNR) for effective performance measurement.

• We compare the results of our proposed approach with
those of published state-of-the-art techniques in terms of
accuracy, features, and size of the dataset.

The rest of the paper is organized as follows. In Section II,
we present the background related to the architecture of
SCADA-based power systems along with a literature survey
and research scope by referring to published IDS techniques.
In Section III, we focus on a proposed framework for IDS for
power systems. Section IV briefly describes the power system
datasets used in this study. The synthetic data generation
and feature selection module is covered in Section V. Model
design and development, including the methodology used to
preprocess, augment, and analyze the datasets, as well as
model training and validation, are discussed in Section VI.
Next, in Section VII, we present our results and discuss them
through various experiments. Finally, we conclude the paper
in Section VIII with final remarks.

II. BACKGROUND AND LITERATURE REVIEW
In recent years, power systems have become increasingly
digitized, with many functions automated and controlled
remotely. This advancement has led to an increased risk
of cyber-attacks on power systems, which could have
devastating consequences, such as power outages or even
physical damage to the power grid [15]. In order to detect
such attacks in power systems, the placement of an efficient
Intrusion Detection System is a crucial factor.

Any anomaly in these data may be due to malfunction
of the equipment and/or faults in the power system or
cyber-attacks modifying the measured values. Cyber-attacks
can also result in modifying legitimate commands of the
users to control the power system and therefore can have
devastating consequences. The collected data are stored in
data historians, and log files are maintained. The Human
Machine Interface (HMI) component is used to display
this information, from where operators and technicians can
monitor and control the systems. To ensure the prompt
detection of intrusions that occur at these units, the intrusion
detection system can be strategically placed, such as on the
plant floor and control center.

There are three primary categories of IDS, namely, host-
based, network-based, and hybrid IDS. Typically, host-based
IDS (HIDS) analyzes activities on individual hosts to detect
intrusions, such as local attacks that may not be visible

118416 VOLUME 11, 2023



M. Zaman et al.: Validation of a ML-Based IDS Design Framework Using ORNL Datasets

TABLE 1. An overview of published intrusion detection approaches in power grid systems.

on the network. However, such IDS is system dependent
and typically monitors the logs of individual power grid
components. On the other hand, network-based IDS (NIDS)
monitors the network traffic of power grid components
to detect cyber-attacks. Such IDs typically used Machine
Learning models to detect the anomaly and the performance
of such IDSs is evaluated using the detection rate and
false alarm rate. Hybrid IDS combines the capabilities
of network-based and host-based detection to improve the
accuracy and reliability of the model. However, hybrid IDS
requires more resources for implementation as the dataset
used to model such IDS relies on power grid device logs and
network traffic.

Several approaches are being adopted by researchers
for the development of intrusion detection systems in
power systems for accurate intrusion detection. One such
approach is signature-based intrusion detection, which uses
a pattern-matching technique to determine the signature of
malicious events by comparing incoming traffic with stored
signatures. However, this technique is only effective for
known attacks and is not suitable for real-time systems [8].
Intrusion detection in power grids can also be performed
using signal processing techniques such as time-series analy-
sis, wavelet transform, and Fourier analysis. These techniques
analyze power grid data in the frequency and time domains
to identify anomalies. Such studies have demonstrated the
effectiveness of signal processing-based IDSs in SCADA-
based power grids. For example, in [17], the authors proposed
a wavelet-based IDS for the detection of intrusions into
the power grid, which demonstrated high accuracy and low
false positive rates. Similarly, in [18], authors developed a
Fourier-based IDS for power grid security that achieved high
detection rates and low false alarm rates.

As discussed previously, traditional IDS techniques rely on
predefined rules and are limited to known attacks; however,
AI-based IDS utilizes machine learning algorithms to detect
anomalies and identify previously unknown threats, making
it more effective. In [19], the authors discuss security
threats, vulnerabilities, and cyber-physical system attacks and

propose a deep learning-based IDS that analyzes malicious
URLs. Reference [20] investigates the vulnerabilities of deep
learning-based IDS in power grids to adversarial attacks,
proposing defense mechanisms to enhance robustness. Addi-
tionally, [21] examines the effectiveness of gradient-boosting
algorithms for anomaly detection in imbalanced data within
power grids. Furthermore, [22] presents a scalable anomaly
detection engine for large-scale smart grids, capable of
distinguishing actual faults from disturbances and intelligent
cyber-attacks.

With an increasing number of cyber-attacks targeting
power systems, the need for intrusion detection models for
SCADA systems is becoming more critical. According to a
report by the Industrial Control Systems Cyber Emergency
Response Team (ICS-CERT), there was a 20% increase in
the number of cyber incidents targeting critical infrastructure
in 2020 [23]. Hence, the proper design and development of
an intrusion detection model is one of the crucial factors to
secure such critical infrastructure.

Researchers have introduced a range of intrusion detection
techniques aimed at bolstering the security of SCADA-based
power grids. Table 1 offers an overview of the existing
literature on intrusion detection systems (IDSs) specifically
designed for power grids. To ensure a fair comparison,
we have compiled summaries of published techniques for
robust IDSs that exclusively utilize ORNL datasets. In a study
by Hink et al. [8], they conducted a comparative analysis
of various machine learning techniques using a power grid
dataset and singled out Adaboost-JRIP as a highly effective
classifier. However, it is worth noting that their study did not
incorporate dataset dimensionality reduction, leading to less-
than-optimal accuracy and slower execution speeds.

Another line of research by Pan et al. focused on hybrid
intrusion detection systems (IDS) that leverage data mining
techniques. They specifically employed common pathmining
to identify attack locations in their work [9], [10]. In a sepa-
rate study [11], the authors adopted the Pearson Correlation
Coefficient (PCC) for feature selection, retaining 75% of
the features, and employed the Expectation Maximization

VOLUME 11, 2023 118417



M. Zaman et al.: Validation of a ML-Based IDS Design Framework Using ORNL Datasets

Clustering Technique (EMCT) for event classification. While
this approach succeeded in enhancing execution speed,
it did not bring about significant improvements in accuracy,
especially for multi-class datasets.

Moustafa et al. took a different approach by using
Independent Component Analysis (ICA) for feature selection
and the BetaMixture HiddenMarkov (BMHM) classification
model, which yielded promising accuracy results in their
research [12]. However, their study concentrated on a subset
of the features, and therefore, the exact number of features
used remains unspecified. Furthermore, this technique was
further refined by combining PCCwith the GaussianMixture
- Kalman Filter Model (GMM-KF) in another study [13],
where the authors achieved a reduction in feature usage to
25%, resulting in improved accuracy and execution speed.
However, it is essential to note that this experiment was
limited to a binary dataset.

Upadhyay et al. [14] proposed Gradient Boosting Feature
Selection (GBFS) technique to extract important features
before applying the classifiers. The researchers performed
cross-validation over 15 ORNL power system datasets with
the top 15 features selected using GBFS. The same research
group [15] has also proposed an integrated SCADA IDS
framework for power systems where they used the Recursive
Feature Elimination technique to select the top 30 features
and majority voting using nine heterogeneous classifiers.
Their proposed methodology when applied to ORNL power
system datasets yields high accuracy for binary classification.
However, the results demonstrated in that study were based
on a single data file out of the fifteen data files rather than
aggregating all 15 files into one dataset for training and
validation.

Current research on SCADA-based power systems has
identified several gaps in the recent literature. One of the
challenges in developing effective intrusion detection models
for SCADA-based power systems is the lack of publicly
available datasets that can be used to train and test these
models. Some researchers have called for the development
of standardized datasets for SCADA intrusion detection
research [24]. This research gap opens the need for generating
a synthetic dataset from the existing dataset for effective use
and better validation of ML models. While there has been
prior research on employing machine learning techniques
for SCADA intrusion detection, there remains a demand for
more extensive investigations that delve into the efficacy of
a generic IDS model that includes feature selections, data
augmentation, and effective ML validation techniques [25].
Intrusion detection models that generate a large number

of false positives can negatively impact the performance of
SCADA-based power systems. However, there is a lack of
studies that address the issue of false alarms. There has been
limited research on optimizing intrusion detection models to
minimize false positives while still detecting real intrusions
[26]. Furthermore, there is a lack of a generalized model
that helps detect cyber-attacks while building a centralized
IDS model for power systems. Additionally, there is a lack

of significant studies that specifically address the validation
of test models using an effective approach to assess the
efficiency of the model.

III. PROPOSED FRAMEWORK
To address the research gaps mentioned in the previous
section, we propose a generalized and robust ML-based IDS
framework for SCADA-based power systems. Adopting this
generic framework can enhance the reliability and flexibility
of the system, as it allows us to develop a better IDS
model and continuously improve it. Using this framework,
we can conduct data aggregation and data pre-processing
including normalization, data balancing and augmentation,
feature selection, algorithm selection as new data becomes
available and holdout validation of the resulting model
using unseen test data. Integrating various ML techniques to
develop, continuously train, improve, and properly validate
the ML-based IDS model using a reasonably large training
dataset with real and synthetic data could lead to a more
effective and robust intrusion detection system.

In this section, we have provided a detailed description of
our vision for machine learning (ML)-based IDS for power
systems. Figure 2 represents the main building blocks of
the ML-based IDS, which consists of two main software
modules, namely, the Offline Training Module (OTM)
and the On-Line Detection Module (ODM). The OTM is
responsible for training, evaluating, selecting, and sharing
the best model to the ODM. On the other hand, the ODM
implements the intrusion detection pipeline in the MTU
and/or RTU and detects the intrusion in real-time. The ODM
detects the intrusion based on the model developed in the
ML server. The ODM is also responsible for providing the
SCADA data to the OTM so that it can continue to update
the model based on new data. The collected data are labeled
and stored in the database. In OTM, a sliding window can
be used to select the most recent dataset for training as the
IDS continues to collect new data. The normalization scale,
selected features, and best model are shared periodically with
the ODM by the OTM to ensure these data including the best
model are up to date. The normalization scale is used while
processing the data in RTU andMTU prior to using the model
for intrusion detection. Data processing in the OTM includes
data cleaning, imputation, normalization, and augmentation,
while the imputation and augmentation components are not
present in the ODM.

Our goal is to develop and validate a novel ML-based IDS
Design framework that can be easily integrated into various
places in power systems. Aggregating data over a longer
period (e.g., 1 data from 1 file vs. 15 files) and from multiple
PMUs can be more effective as the volume and quality of
training data can be enhanced. In addition, we introduced a
GAN-based data augmentation and balancing technique.

In this study, we focus on the design of the Offline Training
Module. We propose a generic ML-based IDS that would be
more robust against unseen data. We also demonstrate how a
lack of data can impact the performance of the model when
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FIGURE 2. Process diagram of the proposed framework for intrusion detection in SCADA-based Power Systems.

tested with unseen data. Also, the need for balanced data for
training in achieving better performance is highlighted in our
research.

IV. DESCRIPTION OF DATASETS
In the past, numerous researchers have utilized the Oak
Ridge National Laboratory (ORNL) dataset which was
produced at Mississippi State University [16], that emulates
a power transmission system testbed, thereby underscoring
its significance. The summary table depicted in section II
focuses on past researchmethods based on the ORNL dataset.
To the best of our knowledge, the power system dataset
available for such research is currently limited to the ORNL
dataset. As a typical SCADA dataset for the power system
is not publicly available, we, like other researchers [8], [9],
[13], [14], [15], validated our framework using this dataset.
However, our framework can easily accommodate other more
realistic datasets for developing high-performance models.

The entire datasets are classified into three different
classes, namely, binary-class, three-class, and multi-class.
In this study, we are only focusing on binary classification,
i.e., normal vs. intrusion. There is a total of fifteen files in
‘‘.csv format’’, i.e., comma-separated values format. Each of
these ‘‘.csv files’’ contains 128 columns referred to as features
and about 5000 records each. Out of these 128 features,
116 features are measurements related to electric signals and
12 features inserted by the PMU (Phasor Measurement Unit)
are control panel logs, alerts from snort, and relays.Moreover,
to obtain the 116 features, four phasor measurement units
were used to measure the electric signals on the power
grid. Each phasor measurement unit measures 29 features
contributing to 116 features. The former 116 features are
referred to as the Signal Reference usually represented by
R followed by a number [R#] and it specifies their location

TABLE 2. Features of ORNL power system dataset.

in the PMU and type of measurements. Table 1 depicts the
feature names and their corresponding description. The last
column in every dataset is the output label (not shown in
Table 1).

V. SYNTHETIC DATA GENERATION AND FEATURE
SELECTION
A. SYNTHETIC DATA GENERATION
GANs are a deep learning-based generative model that
involves two neural networks (NNs), namely, generator and
discriminator [27]. Synthetic data are generated using a
generator neural network that uses random data to start
training the network then passes through a discriminator that
is trained with real and synthetic data to distinguish between
the real data and synthetic data. Both NNs try to optimize
a different and opposing objective function or loss function.
This is essentially an actor-critic model. As the discriminator
changes its behavior, so does the generator, and vice versa.

GANs have the ability to learn a complicated high-quality
model to generate tabular data [28]. The Python libraries,
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namely YData and SDV, provide a platform to generate
and validate the quality of synthetic data. YData synthe-
sizer includes several GAN architectures, namely, CGAN
(Conditional GAN), WGAN (Wasserstein GAN), WGAN-
GP (Wassertein GAN with Gradient Penalty), DRAGAN
(On Convergence and stability of GANS), Cramer GAN
(The Cramer Distance as a Solution to Biased Wasserstein
Gradients), CWGAN-GP (Conditional Wassertein GANwith
Gradient Penalty) [29]. SDV works on a recursive modeling
concept that is more efficient in creating complex datasets
using statistical properties and machine learning modeling.
Furthermore, this tool provides the testing ability to validate
the quality of synthetic datasets.

GAN models have shown to be quite effective in a wide
range of machine learning applications, including tabular
data generation. Some state-of-the-art models of tabular
data generation include CT-GAN, TableGAN, and MedGAN
which are based on GANmodels. These models have resulted
in superior performance in generating artificial data when
trained on a range of datasets [6]. In this study, we used
CT-GAN for generating synthetic data to balance the dataset
with an equal number of normal and attack vectors. CT-GAN
model has proven to be a good synthesizer for tabular datasets
[29]. Here, we have briefly discussed the working of a
Generative Adversarial Network (GAN) model for synthetic
data generation in the context of tabular data. Generating
data with handcrafted distributions is in wide use while
synthesizing data using learned distributions is an area of a
recent study [27]. This method can systematically address
quantity (e.g., data imbalance issues), quality, and privacy
issues by substituting real data with synthetic data.

B. FEATURE SELECTION
Feature selection plays a crucial role in enhancing the
accuracy of estimators and improving model performance,
particularly in high-dimensional datasets. One of the
approaches for feature selection is the Recursive Feature
Elimination (RFE)method, which recursively selects features
by comparing the performance of a larger feature set with
that of a smaller one during the training process [30]. RFE
follows a greedy optimization approach, evaluating various
feature combinations against performance metrics such as
accuracy and false-positive rate. By assessing these metrics,
RFE identifies the features that contribute to the best scores.
The algorithm iteratively eliminates ‘‘weak’’ and irrelevant
features, progressively refining the feature set [31]. Once the
most promising features are identified, they can effectively be
utilized for training and testing the model.

In our study, we employed a Random Forest classifier in
conjunction with RFE. Random Forest is a versatile bagging
ensemble learning algorithm suitable for both classification
and regression tasks. It combines multiple decision trees to
make predictions and provide feature importance measures.
To evaluate the selection of recursive features using Random
Forest, we have performed the following steps:

1) We train a Random Forest model on the complete set
of features of the power system using the training data.

2) In the Random Forest model, we calculate the
importance of each feature, which is also known as
the Weighted Feature Importance (WFI) score. This
importance score is determined by evaluating the
average decrease in impurity (such as Gini impurity
or entropy) that occurs when splitting on a particular
feature across all trees in the forest.

3) We iteratively remove the least important features by
comparing their scores and removing the 10 features
with the lowest scores. The purpose of removing
10 features is to assess the performance of the model
by progressively eliminating a consistent number of
features that provide improved predictability.

4) Once we reach the desired number of features or the
importance threshold has been met, the process is
stopped. Otherwise, the algorithm returns to step 1 and
repeats the process on the reduced feature set.

We implemented Recursive Feature Selection with Ran-
dom Forest using the scikit-learn library of Python. In our
implementation, the code creates a Random Forest classifier
and initializes the RFE object with the Random Forest
model as the estimator. The parameter n_features_to_select
specifies the desired number of features to select. After fitting
the RFE object to the data using the fit_transformmethod, the
get_support method is utilized to retrieve the indices of the
selected features. These indices can be used to subset the
original feature set for further analysis or modeling purposes.

VI. MODEL DESIGN AND DEVELOPMENT
In this section, we have described our proposed framework
which focuses on data processing and model assessment
methodology. To improve the data processing, we have
applied the concept of data augmentation. Further, for
effective assessment, we have evaluated the model using two
validation techniques, namely, cross-validation, and holdout
validation. The development and performance evaluation of
the proposed model is carried out using publicly available
power system datasets. These datasets are generated at
different locations of PMUs. However, in our proposed
methodology, we have offered a generic framework by
combining these datasets into one while training the model
as well as by augmenting the dataset with synthetic data.
Moreover, the assessment of the model is carried out using
holdout validation on the best model found while training the
model to ensure proper validation of the model. We set aside
20% of the augmented dataset for holdout validation.

The proposed methodology for data processing and
analysis for IDS model development is depicted in Figure 3
(steps 1 to 7). At first, we combined the fifteen small datasets
into one and extracted the 128 measurements along with
binary output labels for our experiments as shown in step 1.
It should be noted here that although the model performance
on each individual dataset (training and testing from the same
dataset) can be high, obtaining a highly performant model
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FIGURE 3. Data processing with augmentation and model evaluation
methodology.

while training with the combined dataset and testing from
any of these 15 datasets (not used in training) is not readily
feasible as will be shown in next section. However, training
a model with more data can definitely yield a more generic
model.

Once the combined dataset with the binary label is
generated, we removed the 12 log features out of 128 features
from the combined dataset. This step was performed to
make the model independent of other tools that collect
logs including snort a traditional intrusion detection system.
We also add one more column called datafile to indicate
which file the data came from. However, this column
information is not used in model training.

The balance dataset is one of the crucial factors while
training the model. And, hence, we have applied data
augmentation to balance the dataset as depicted in step 2.
For that, we computed the class distribution, i.e., the normal
to attack vector ratio. In this combined dataset, Dcomb,
we noticed about a 1:2 ratio between normal and attack
vectors. Next, we generated synthetic normal data using

TABLE 3. Size of processed dataset.

CT-GAN to balance the dataset in terms of normal and attack
vectors. While data augmentation by generating synthetic
data helped us generate a balanced dataset, it also improves
the generalizability of the models by having a larger training
dataset.

After data augmentation, we obtained 51445 normal and
51445 attack vectors with 116 measurement features and one
label column. We also insert a new column indicating real
(0) or synthetic (1) data. This new column in the dataset
was only used in one of our experiments where we validated
the efficacy of synthetic data generation using CT-GAN.
We randomly split the augmented dataset, Daug into two
different datasets Dtrn and Dtst for training and testing,
respectively as shown in step 3. The testing data was set
aside for testing only, while the training data was used for
cross-validation. Models were trained using three tree-based
machine learning algorithms, namely, Decision Tree (DT),
Random Forest (RF), and Gradient Boosting (GB) as they are
found to be quite accurate for these types of applications [14],
[15]. The algorithm selection and training steps are shown
in steps 4 and 5, respectively. The best model found during
cross-validation was saved for testing with test data. The size
of the processed dataset after each step is shown in Table 2.
To test the best model with the unseen data, we performed

two sets of validation, namely, cross-validation and holdout
validation as shown in steps 6 and 7. For our experiments,
we also cross-validated models trained with the combined
original dataset (i.e. before augmenting the dataset with
synthetic data for class balancing) and one of the data files
out of the fifteen total files in the ORNL power system
dataset. Once the cross-validation was done, we also tested
the best model found in the cross-validation stage with the
test dataDtst that was set aside for the holdout validation. The
trained models are saved during the cross-validation stage,
i.e., implementing the off-line training module and tested
using test data that was set aside to simulate the on-line testing
module of the proposed design framework.

VII. EXPERIMENTS, RESULTS, AND DISCUSSIONS
The main component of the ML-based IDS is the classifi-
cation models. These models need to be trained with high
volume and high-quality data to obtain good performance
which may not be always readily available. The framework
designed here includes methodologies to augment (and also
balance) real datasets and provide a means for effective
evaluation. This section demonstrates how cross-validation
can be misleading and how we test the model generated
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TABLE 4. Validation of synthetic data generation using Logical
Regression Classifier (using normal events).

TABLE 5. Cross-validation results with single dataset.

during cross-validation with unseen data to gain more
confidence in the ML/DL IDS model. We have developed a
tool in Python to implement these methodologies to realize
the Offline Training Module and Online Detection Module
of the IDS.

We describe the experiments conducted to validate our
methodology of data processing, including data augmentation
with synthetic data and model training and evaluation. Each
experiment is described with the results and discussion.

A. EXPERIMENT 1: VALIDATION OF SYNTHETIC DATA
GENERATION
The purpose of this experiment is to evaluate the quality of the
synthetic data, more specifically to investigate how closely
it matches with real data. For this assessment, we removed
the original label column (i.e. normal vs. intrusion) in the
augmented dataset and used the newly added column to
indicate real vs. synthetic. Since we only used synthetic data
for normal records, we removed all real intrusion data. The
dataset now contains only normal real and synthetic data with
the last column indicating the type. The results are tabulated
in Table 4. We expected to see nearly 50% accuracy, as CT-
GAN data attempts to generate data as similar as possible
to the real data so it will be difficult to distinguish between
real and synthetic data. Table 4 shows about 56.2% average
accuracy while cross-validated using a linear-based classifier
called Logical Regression, thus validating the efficacy of the
CT-GAN model.

B. EXPERIMENT 2: CROSS-VALIDATION OF THE ML
MODELS USING A SINGLE DATASET ( FROM ONE OF THE
FIFTEEN DATA FILES)
This experiment aims to select the best model based on
cross-validation results of the ML models developed using
a training dataset generated from one of the 15 files in the
ORNL power system dataset. In this experiment, we used
only one data file to develop three classification models
using three different algorithms, namely, DT, RF, and GB.
The 10-fold cross-validation results are shown in Table 5.
We obtained RF as the best model during cross-validation.
The best RF model found during cross-validation,Msingle_best
is saved for testing with new data with 20578 records.

TABLE 6. Cross-validation results with combined dataset.

TABLE 7. Cross-validation results with combined and augmented dataset.

C. EXPERIMENT 3: CROSS-VALIDATION OF THE ML
MODELS USING A COMBINED FIFTEEN FILES INTO ONE
DATASET
This experiment aims to select the best model based on
cross-validation results of theMLmodels when trained with a
training dataset generated from combining 15 files in ORNL
power system dataset. In this experiment, we trained and
developed three models with the combined dataset, namely,
DT, RF, and GB. 10-fold cross-validation is used to evaluate
model performance. Table 5 shows the results. The best RF
model found during cross-validation, Mcomb_best is saved for
testing with new data with 20578 records.

D. EXPERIMENT 4: CROSS-VALIDATION OF THE ML
MODELS USING COMBINED AND AUGMENTED TRAINING
DATASET
The purpose of this experiment is to select the best model
based on cross-validation results of the ML models when
trained with a training dataset combining 15 files in ORNL
dataset and augmenting it with synthetic data generated
by CT-GAN. In this experiment, we trained and developed
three models with augmented training datasets. 10-fold cross-
validation was used to evaluate model performance. Table 6
shows the results. The best RF model found during cross-
validation, Maug_best is saved for testing with new data with
20578 records.

E. EXPERIMENT 5: TEST THE BEST MODEL FOUND IN
EXPERIMENT 2 WITH UNSEEN DATA (SINGLE DATASET)
The purpose of this experiment is to investigate how the best
model found in Experiment 2 (i.e., the model trained with a
small dataset) performs when tested using unseen data. In this
experiment, we tested the best model found in Experiment 2,
i.e., Msingle_best with the test dataset that was set aside. The
result is shown in Figures 4 (a) and (b). From Figure 4,
we can see that the performance of theMsingle_best is not very
satisfactory when tested with unseen data. Since the dataset,
it trained with is smaller in size ( 4888 records), the model
can not be generalized. The false positive is extremely high
as shown in Figure 4 (b) (about 80%), making the model
impractical for use although the cross-validation result was
the best among all other models developed in this study.
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FIGURE 4. Model performance comparison with unseen data.

F. EXPERIMENT 6: TEST THE BEST MODEL FOUND IN
EXPERIMENT 3 WITH UNSEEN DATA (COMBINED DATA
SET)
The purpose of this experiment is to investigate how the
best model found in Experiment 3 (i.e., the model trained
with combined data) performs when tested using unseen
data. In this experiment, we tested the best model found in
Experiment 4, i.e., Mcomb_best with the test dataset that was
set aside. The results are shown in Figures 4 (a) and (b). The
model did not performwell especially since it exhibited a very
high false positive rate of about 44%. However, the detection
rate or recall was very high as also indicated by only 0.12%
false negative rate or miss rate.

G. EXPERIMENT 7: TEST THE BEST MODEL FOUND IN
EXPERIMENT 4 WITH UNSEEN DATA (COMBINED AND
AUGMENTED DATASET)
The purpose of this experiment is to investigate how the best
model found in Experiment 4, i.e., the model trained with
the combined and augmented dataset) performs when tested
using unseen data. In this experiment, we tested the best
model found in Experiment 6, i.e., Maug_best with the test
dataset that was set aside. The result is shown in Figures 4 (a)
and (b). Overall this model performed the best if we compare
the F1-Score value as shown in Figure 4 (a). However, this
model did not performwell in terms of recall as also observed
by its higher false negative rate than that of Mcomb_best as
shown in Figure 4 (b).

FIGURE 5. Accuracy with feature selection.

TABLE 8. Results of feature selection (RFE-RF) of combined augmented
dataset.

It is worth mentioning that the Random Forest-based
models even with default hyperparameters perform the best
in all our experiments. Next, we performed automated feature
selection to make the model more computationally efficient
and more privacy-preserving.

H. EXPERIMENT 8: CROSS-VALIDATION OF MODELS
USING COMBINED AND AUGMENTED TRAIN DATASET
AND WITH FEATURE SELECTION
This experiment aims to find out whether a reduced feature
set can provide a better model than when using all features.
During the assessment, we applied Recursive Feature Elimi-
nation with Random Forest (RFE-RF) approach to select the
top N features and created the model using only the selected
features. N was varied from 10 to 110 and cross-validation of
each model was performed with an augmented train dataset.
The results from this experiment are shown in Table 8. From
Table 8, it was observed that the performance of the model
improves as more features are included, however, the rate
of change in accuracy and other performance metrics is not
significant after N=50 as shown in Figure 5. Also, although
the best accuracy of 93.99% is foundwith the top 110 features
included, N=90 provides the lowest false positive rate of
8.98%. It should be noted that although feature selection does
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TABLE 9. Best model performance with feature selection (RFE-RF) on
unseen data (TOP 50 features-39% of total features).

not always result in better performance, this step is crucial and
desirable when a privacy-preserving model is required and/or
training and inference time are of great concern. Building
models with fewer features can also help in reducing the
complexity and enhance the interpretability of the model.
This will also minimize data storage and communication
costs.

I. EXPERIMENT 9: TEST THE BEST MODEL FOUND IN
EXPERIMENT 7 WITH UNSEEN TEST DATA USING 50 MOST
USEFUL FEATURES
This experiment aims to evaluate further the best model
found in Experiment 8 with unseen data. The results of this
experiment for models with the top 50 features are shown
in Table 9. As seen from Table 9, the model with the top
50 features performs quite satisfactorily with unseen data
with an accuracy of 93.97% and F1-Score of 94.09%, slightly
better than the cross-validation results.

Finally, we compared our best models with and without
feature selection with some published models that were
trained with the ORNL power system dataset. Table 10 shows
the comparison results for accuracy. It is worth noting that
the previous models were not trained with the combined
dataset using all 15 data files and were not tested with unseen
data. Although our model performance is not the best when
compared with the cross-validation results of other models,
it is more generalized and therefore works reasonably well
when tested with unseen data.

J. KEY TAKEAWAYS AND FUTURE DIRECTIONS
Although machine learning methodologies and modeling are
widely exercised in the research community, they are not yet
commonly implemented in practice. In intrusion detection
applications, one of the main barriers is the high false positive
rates. One of the challenges in achieving a high-performing
model is the lack of high-volume and high-quality data. Data
imbalance is another issue, as normal incidents typically
outnumber intrusion records. However, in the case of data
collected in a controlled environment, such as in the ORNL
dataset, we observed a roughly 1:2 ratio of normal to intrusion
records. Synthetic data generation techniques using GANs
are gaining popularity for augmenting real data to increase
the training dataset’s volume and balance. We achieved
significantly improved performance when training with an
augmented dataset and testing the model on unseen data.
We demonstrated that cross-validation results, especially
from models trained with small datasets, can often be
misleading and may not generalize well to unseen data.
In our case, the model trained with one of the fifteen ORNL

TABLE 10. Performance comparison of IDS models trained with ORNL
power system data (Combined - Using all 15 files for training or not).

datasets showed the best cross-validation performance but
the worst performance when tested with unseen data. In our
ML/DL model design framework, we fine-tune the model by
incorporating more synthetic records into the original dataset
and validate the model in two different ways to gain greater
confidence in the final model. This approach closely mimics
the real deployment pipeline, involving both offline training
and online inference.

We still believe there is ample scope for improve-
ment in the methodology proposed for the ML/DL model
design framework. For example, we cannot guarantee the
CT-GAN-generated data will meet the constraints that
the electrical measurements should maintain. For example,
the data must be in accordance with circuit theory, for
instance, the algebraic sum of all currents in a busbar should
be zero (Kirchhoff’s current law). However, the quality
of the synthetic data was measured using two techniques,
namely, statistical analysis and Machine Learning modeling.
Further details about these techniques can be found in [32].
Moreover, an improvement in the validation methodology
will include removing synthetic data from the test dataset.
The work presented in this paper lays a solid foundation for
working towards a more improved ML/DL model-based IDS
design framework for the power grid. As part of future work,
we are also looking into collecting data from the testbed that
simulates closely the real power system. Thework is currently
underway with an aim to simulate up to 2000 three-phase
buses with the co-simulation setup supported by RTDS - the
world standard for real-time digital power system simulation.

VIII. CONCLUSION
In this paper, we proposed and evaluated a generic framework
for designing a machine learning-based Intrusion Detection
System (IDS) for SCADA-based power systems. In the
offline training module of our proposed framework, we com-
bined datasets from different sources, specifically 15 data
files. We then augmented and balanced the training dataset
by generating synthetic data using CT-GAN. We evaluated
and compared three classical machine learning algorithms
(Decision Tree, Random Forest, and Gradient Boosting)
using both cross-validation and holdout validation techniques
to identify a high-performing and generic intrusion detection
model for a sample power grid SCADA system. The
results demonstrated that the models created with augmented
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data outperformed while training with the real dataset.
By combining real and synthetic data for training, and
by utilizing only selected useful features, we were able
to create a more generic model. We achieved promising
results by applying feature selection (RFE-RF) and testing the
model with unseen data on the 50 most significant features.
We obtained an accuracy of 93.97% when tested with an
unseen dataset.
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