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ABSTRACT Grid-tied microgrids play a crucial role by connecting renewable energy sources to the main
power grid, contributing to sustainability and resilience in a balanced and effective manner. However, the
dynamic interplay between the intermittent nature of renewable energy sources and the volatility of load
fluctuations presents a multifaceted array of intricate energy management complexities. This study aims to
formulate optimization techniques for energy management systems based on renewable energy resources
and standalone diesel systems. The proposed system consists of a wind turbine, a photovoltaic system,
a standalone diesel generator, and a battery energy storage system, along with flexible and non-flexible
loads tied to the local grid. Battery energy storage acts as a primary backup system, while diesel generators
act as a standalone secondary backup system. The performance of the proposed optimization technique is
validated usingMatlab/Simulink, substantiating its performance and robustness, thus affirming its pragmatic
suitability for real-world implementation. A comparison has been made with other optimization techniques
and found that the proposed technique gives enhanced efficiency, improved resource allocation, load
scheduling, and greater adaptability to varying demand and supply dynamics.Moreover, the proposed system
exhibits a superior ability to achieve optimal energy utilization and realize noteworthy cost savings in
comparison to the alternatives that underwent evaluation.

INDEX TERMS Adaptive genetic algorithm, grid-tied microgrid, bidirectional converter, cost optimization,
renewable energy resources, peak average ratio, load scheduling, resource allocation.

I. INTRODUCTION
Over the course of the last few decades, countries have
intensified efforts towards sustainability, prioritizing environ-
mental, social, and economic well-being. A portion of the
energy supply in various countries is derived from renewable
resources such as solar, wind, or hydroelectric sources. How-
ever, among these countries, only a small number have taken
substantial steps to invest in the development of advanced
smart grid infrastructure [1]. Smart grids incorporate digital
technologies to enhance efficiency, reliability, and flexibility.
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Governments’ focus on sustainable policies, integration
of renewables, promotion of hybrid electric vehicles and
plug-in electric vehicles, and fostering energy efficiency have
collectively contributed to significant progress. By embracing
these strategies, they aim to pave the way towards a greener
and more environmentally conscious energy landscape [2].
This paper examines residential energymanagement systems,
delving into smart home energy technology. It outlines
components, compares approaches, and addresses challenges
like cost, implementation, and privacy [3].

Researchers are currently exploring energy management
systems using soft computing techniques and stochastic
models. Fuzzy Inference Systems are particularly notable
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for their ease of implementation, efficiency, and accessibility
in comparison to conventional models. This work proposes
a rule-based energy management system that completely
relies on the genetic algorithm. Their findings lead to
minimized costs, maximized profits, and reduced system
complexity as outcomes [4], [9]. In another scholarly
exploration [5], the central theme centers on the integration
of intelligent energy management within a microgrid. This
strategy involves the utilization of a forecasting-driven,
multi-objective optimization methodology embedded within
a genetic algorithm framework. It provides an optimal
energy management system, which results in enhanced
global performance, efficiency, and cost of the proposed
system. The authors suggest optimizing generation costs in
a renewable energy-integrated power system using a blend
of two techniques: an artificial neural network and a hybrid
whale optimization algorithm. The main objective is to
reduce generation expensed by accounting for the irregu-
larities and fluctuations of renewable energy sources. After
implementation, it provides the entire required objective in
an optimal way [6]. This research presents a multi-objective
method for assessing battery thermal management while also
accounting for its state of health. The approach combines the
effects of dynamic programming and the genetic algorithm
to minimize the cost, reliability, and efficiency of the
system [7]. This study employed a genetic algorithm for
battery health management, optimizing battery utilization
to extend its lifespan. The genetic algorithm facilitates
battery load scheduling and ensures stability through thermal
management [8].

A multi-island-based genetic algorithm is deployed for
electric vehicles for energy management systems. It is cost
effective due to its long drive range and low fuel consumption.
It also provides a reduction in carbon emissions that could be
caused by the use of conventional vehicles, i.e., ICE-based
engines [9]. The work discussed in this research includes an
energymanagement system for fuel cell-based hybrid electric
vehicles for start-stop conditions. It deploys a hybrid effect of
genetic and neural network algorithms. It regulates the power
between resources during the start-stop duration. Application
of the hybrid algorithm results in parameter optimization of
the neural network, which increases fuel efficiency while
reducing carbon emissions [10]. The research proposes an
optimization approach for intelligent energy management
in microgrids using a genetic algorithm [20], [21], [22].
It creates an adaptive energy management system for
microgrids, capable of varying energy demands over time.
It results in a microgrid that is more adaptive to energy
demands and sustainability goals [11]. This study aims
to enhance the scheduling of hybrid microgrids (MGs).
The deployment of these techniques results in an optimal
management system that addresses the uncertainty and
reduces the energy costs arising from hybrid microgrids [12],
[14], [24]. This study models renewable energy resources
as probability density functions (PDFs) and market prices

as random functions. When these are obtained, their error
results in a standard deviation. It results in normal distribution
and an optimal energy management system [13], [15], [16],
[17], [18].

A novel technique uses forecasted load and PV profiles
to establish dynamic demand and feed-in limits. It uses
rule-based scheduling and PSO optimization to charge and
discharge batteries, which lowers the average peak grid
power across a range of loads and PV patterns, as shown
in MATLAB [29]. Introducing the enhanced velocity differ-
ential evolutionary particle swarm optimization algorithm,
which updates velocity using enhanced velocity and position
using the deceleration factor, for effective energy problem
solving [30].

A model integrates blockchain and microgrids to address
energy underutilization in a gaming competition. The pro-
posed optimized particle swarm algorithm exhibits strong
search capability and high convergence accuracy [31].
With the growing complexity of microgrid energy sources,
a study presents an operator-oriented dispatch scheduling
solution aiming to minimize microgrid costs and carbon
emissions [32]. A method is presented for optimal placement
and sizing of battery energy storage systems (BESS) in
distribution systems, addressing the duck curve phenomenon.
The Whale optimization algorithm (WOA) demonstrates
effective exploration and exploitation, validated against
particle swarm optimization and the firefly algorithm [33].
This work adopts an adaptive differential evolution (ADE)

algorithm to optimize virtual resistances in droop control
of grid-connected converters. The goal is to regulate power
flow effectively [34]. A model focuses on achieving the
lowest daily electricity cost while considering the return
of unused energy to the distribution company. It is vali-
dated using various usage patterns and climate forecasting
methods [35]. Proposing a machine learning-based feature
selection approach, this study enhances short-term elec-
tricity demand forecasting accuracy in distributed energy
systems [37].
The main objective of the proposed work is to provide an

energy management system that is completely based on an
adaptive genetic algorithm for microgrids. The contribution
of this research works are

• Utilize the adaptive genetic algorithm to optimize the
scheduling and allocation of energy from different
sources, including renewables and storage systems

• Optimization of microgrid energy usage, prioritizing
renewables, exporting surplus, and importing from the
grid when needed, leading to cost reduction

• Efficiently manage renewable energy resources by
exporting surplus energy to the grid after meeting load
requirements and seamlessly importing energy from
the grid to compensate for any deficit in renewable
energy

• Minimize overall energy costs for the microgrid through
efficient energy allocation and utilization
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The block diagram for the proposed system can be seen
in Fig 1.

FIGURE 1. The energy management system of a microgrid.

A microgrid is designed based on real-time data for
commercial buildings on all the above-mentioned resources.
Renewable resources on site are a hybrid PV system, a wind
turbine, and a diesel generator as a backup supply system.
The ratings of the resources can be seen in Table 1.

TABLE 1. The parameters of various components in a microgrid.

The structure of the paper is organized as follows:
modeling of renewable energy resources and backup supply
system has been performed in Section II. Mathematical
modeling of proposed system with constraints parameter are
describe in Section III. Working principle of adaptive genetic
algorithm is expressed in Section IV. The simulation results
and findings are presented in Section V. Concluding remarks
has been established in Section VI.

II. MODELING OF RENEWABLE ENERGY RESOURCES
A. WIND FARM
The mathematical equation that represents the power output
of a wind turbine is based on the principles of the aerody-
namics of the rotor and the energy in the wind [25], [26]. The
power output can be calculated using the following equation:

P =
1
2

· ρ · A · CP(R, θ,N ) · V 3 (1)

where P is the power output of the wind turbine (kW), ρ is
the air density (kg/m3) at the site, A is the swept area of the
rotor (m2), CP is the power coefficient, V is the wind speed
(m/s) at the site, R is rotor radius (m), θ is the tip speed ratio
andN is rotor speed (rad/s). These parameters vary depending
on the geographic location of the wind turbine. Parameter
values are shown in Table 2.
The main objectives of the wind turbine modeling are as
follows:

TABLE 2. The wind farm parameters.

• Maximize power output by finding optimal design
parameters (rotor radius, blade twist angle, and number
of blades);

• Efficiently explore large solution spaces for global
optima;

• Handle non-linear and multi-modal fitness landscapes
effectively;

• Robust and adaptable to handle noisy fitness evaluations
and avoid local optima;

• Explore a wide range of design parameter combinations
to identify high-power configurations;

• Incorporate additional constraints (e.g., materials, cost,
and safety;

• Flexible for various problem types and constraints;
• Enable parallelization for faster computation;
• Find the best wind turbine design considering con-
straints and operating conditions.

These equations represent the essential components of a
adaptive genetic algorithm optimization for wind turbine
design parameters. The GA uses selection, crossover, and
mutation to evolve a population of individuals and find the
best combination of R,, and N that maximizes the power
output of the wind turbine. Wind turbine is used with
controller to harness energy from variable wind as shown in
Fig 2 below:

FIGURE 2. The wind farm along with its control mechanism.

B. PHOTOVOLTAIC SYSTEM
The mathematical modeling of a photovoltaic (PV) system
involves the equations that describe the behavior of the PV
panels and the conversion of solar irradiance into electrical
power. In the context of using an adaptive genetic algorithm
for optimization, we focus on the equations that calculate
the PV system’s output power and the fitness function to
be used in the genetic algorithm [27]. The PV system is
designed based on a Canadian solar panel of mono-perc half-
cut 330 W, while the inverter is the ABB UNO Trio Series
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of 50 kTL. The equivalent circuit of a photovoltaic system
has been illustrated in in Fig 3. PV panels can be calculated
as follows:

PPV = VPV · IPV (2)

FIGURE 3. The photovoltaic system and control mechanism.

I-V curve can be found by using the below equation.

IPV = IL − I0 · (e
qVPV
kT − 1) (3)

where IL is the light-generated current (A), I0 is the diode
saturation current (A), q is the elementary charge (C), k is
Boltzmann’s constant, and T denotes the temperature of the
PV panel (K). A Canadian mono-perc half-cut perc PV panel
has been used in the proposed model, whose parameters are
shown in Table 3.

TABLE 3. The photovoltaic system parameters.

The main objectives of the said system are as follows:
• Maximize Energy Output and Efficiency;
• Optimize Performance under Real-World Conditions;
• Balance PV System Parameters;
• Consider Constraints.

C. BATTERY ENERGY STORAGE SYSTEM
The battery energy storage system serves as the primary
energy source for the microgrid. When the stored energy is
able to handle the load adequately, it becomes active. In cases
where the load exceeds the capacity of the storage system,
a secondary backup supply system is activated to meet the
additional demand [17]. The system is shown in Fig. 4 below:
The equation for the battery energy storage system in a

microgrid can be represented as follows:

Emin(t) ≤ Ebat(t) ≤ Emax(t) (4)

Es(t + 1t) = Es(t) + 1t × (Ei − Eo) (5)

SoCmin(t) ≤ SoCbat(t) ≤ SoCmax(t) (6)

FIGURE 4. The battery energy storage system.

where Es represents the energy stored in the battery, 1t is the
time interval, Ei is the energy input to the battery, and Eo is
the energy output from the battery. The system utilized the
battery banks with the microgrid, and its parameters for SoC
are shown below in Table 4.

TABLE 4. The battery energy storage system parameters.

This equation represents the energy balance of the battery
storage system, taking into account the energy stored at the
current time, the energy inputs, and the energy outputs to
calculate the energy stored at the next time step (t + 1t).
It enables the modeling of the battery’s behavior and the
optimization of its operation within the microgrid [14], [28].

D. DIESEL GENERATOR
Diesel generators have been employed as a secondary source.
It’s a standalone system for meeting the load requirements of
the system when renewable energy generation is low and the
grid is not available, as shown in Fig. 5.

FIGURE 5. The diesel generator with a load scheduling controller.

The main objectives of this system are as shown below:

• Ensure a reliable backup power source during grid
outages or insufficient renewable energy generation;

• Provide stable energy supply to critical loads for
uninterrupted operation;
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• Support load balancing during peak demand or fluctuat-
ing renewable generation;

• Minimize fuel consumption and operating costs while
meeting microgrid energy needs;

• Minimize emissions and the environmental impact of
diesel generator operation.

Themathematical equations of the system are shown below
with generator power, fuel consumption, and its cost being
evaluated respectively by:

Pgen(t) =

k∑
t=1

ηgen(t) × Fgen (7)

Fgen(t) = SFCgen(t) × Pgen (8)

Costgen = CFuel × Fgen(t) (9)

where Pgen represents the generator output power (kW),
ηgen is the generator efficiency (%), Fgen is the fuel con-
sumption rate (l/h), SFCgen is the specific fuel consumption
rate (l/kWh), CFuel is the cost of fuel ($/liter), and Costgen
denotes the cost of operation ($).

These equations and objectives help optimize the diesel
generator’s operation as a backup supply for the microgrid,
considering energy reliability, cost efficiency, and environ-
mental considerations [36].

III. MATHEMATICAL MODELING OF ADAPTIVE GENETIC
ALGORITHM
The main objective in the development of an electrical
system harnessing microgrid (MG) sources revolves around
the precise determination of output power. This determination
must effectively meet the load demand in an economically
efficient manner, while minimizing emissions. Consequently,
the selection and configuration of system components
become subject to careful scrutiny and consideration:

• To minimize the operating cost;
• To maximize the renewable utilization;
• To minimize the battery degradation;
• To provide peak shaving and load following of the grid.
The specific choice of the objective function depends on

the microgrid’s characteristics, the energy sources available,
the cost structure, environmental considerations, and the
overall goals of the microgrid operator. The EMS aims to find
the optimal control strategy that aligns with these objectives.

A. OBJECTIVE FUNCTION
1) MINIMIZING THE OPERATING COST
The operating cost of a microgrid, a key economic indicator,
comprises fuel, operation and maintenance, dispatch, and
other expenses. It could be shown by the equation below:

Z (t) = min
k∑
t=1

(α × CO(t) + β × Eg(t)) · 1t (10)

where Z represents the objective function, α and β are
weighted coefficients, CO is the total cost, Eg is gas emission,
and 1t is the time interval of operation.

2) MINIMIZING THE CARBON EMISSION
With the implementation of this strategy, the sustainable
development goal could be achieved. PV, wind, and battery
energy storage systems do not exhibit carbon emissions
or other toxic emissions that pollute the environment. The
degree of pollution will only be due to diesel generators
and grid voltage absorption. It could be modeled using the
following formula:

minPD =

k∑
t=1

(
ωCO2ECO2(t) + ωSO2ESO2(t)

+ ωNOxENOx(t) + ωgridPabsorbing(t)
)

(11)

The equation represents the degree of pollution (PD) calcu-
lation. Here, ω denotes the weighted average of respective
gases (CO2, SO2, NOx, and grid), and E signifies the
equivalent discharge of relevant gases emitted from a diesel
generator and the grid.

B. PARAMETRIC CONSTRAINTS
1) POWER BALANCE
The power balance constraints can be calculated by the
following equation:

PRER =

k∑
t=1

(Pwind(t) + Ppv(t)), (12)

where k = 100.

Pload(t) =

k∑
t=1

(
PRER(t) + PDG(t) + PBESS(t)

+ PImport(t) − PExport(t)
)

(13)

2) OUTPUT POWER
The output power constraints of microgrid can be evaluated
by:

k∑
t=1

Pmin(t) ≤

k∑
t=1

PO(t) ≤

k∑
t=1

Pmax(t) (14)

3) BATTERY SOC
The charging and discharging constraints of battery energy
storage system can be evaluated by:

PBESS(t) =



PRER(t) ≥ Pload(t),PDG(t) = 0,
PImport(t) ≥ 0,PExport(t) ≥ 0,PBESS(t) ≥ 0

PRER(t) ≤ Pload(t),PDG(t) = 0,
PImport(t) ≥ 0,PExport(t) = 0,PBESS(t) ≤ 0

PRER(t) = 0,PDG(t) ≥ 0,
PImport(t) = 0,PExport(t) = 0,PBESS(t) ≥ 0

PRER(t) = 0,PDG(t) = 0,
PImport(t) = 0,PExport(t) = 0,PBESS(t) ≤ 0

(15)
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while

E(t) = min
(
E(t0) +

∫ t

t0
ηcharge · Pcharge dτ, Emax

)
(16)

E(t) = max

(
(t0) −

N∑
t=1

Pdischarge · 1t
ηdischarge

, Emin

)
(17)

where E(t) represents the state of charge at time t ,
E(t0) represents the state of charge at time t0, Pcharge denotes
the charging power, Pdischarge denotes the discharge power,
ηcharge represents the charging efficiency, and ηdischarge
denotes the discharging efficiency of the battery.

4) OPERATING COST
The operating cost of the microgrid can be represented as:

COC(t) =

k∑
i=1

(
Cf (t) + Cm(t) + Cg(t) + Co(t)

)
(18)

where generator fuel cost is

k∑
t=1

Cf (t) =

k∑
t=1

(
Fc + PDG +

1
ηDG(D)

)
(19)

where Cf is the cost of fuel per unit, PDG is the power output
of the generator, ηDG is the efficiency of the generator, and D
are the total duty hours of the generator.

This research employs an adaptive genetic algorithm (GA)
to illustrate how load scheduling can influence a microgrid.
An adaptive genetic algorithm (GA) presents a powerful
approach for optimizing the intricate task of managing
diverse energy sources within a system. In this method,
solutions take the form of chromosomes, encapsulating
control parameters governing wind generation, photovoltaic
systems, diesel generators, and battery energy storage
systems. The initial population comprises a range of potential
strategies, each embodying a unique combination of these
energy sources and their respective control settings. The
fitness function then steps-in to evaluate each solution’s
effectiveness. This assessment considers factors such as
the utilization of wind generation and photovoltaic systems
to harness renewable energy, the judicious activation of
diesel generators to cover demand peaks, and the optimal
deployment of battery energy storage systems to enhance grid
stability, as shown in Fig. 6.

FIGURE 6. The adaptive genetic algorithm-based energy management
system.

Through a process reminiscent of natural selection,
solutions demonstrating superior energy efficiency, load
balancing, and effective utilization of all resources are chosen

for replication. Crossover enters the scene, mixing genetic
material from two parent solutions to produce innovative
combinations. This infusion of diversity mirrors the integra-
tion of wind, photovoltaic, diesel, and battery elements in
novel ways. All parameters are based on a Canadian poly
solar panel of 330 W, while the inverter is the ABB UNO
Trio Series of 50 kTL. Mutation complements the process
by occasionally introducing subtle modifications to these
offspring, thereby encouraging exploration of previously
unconsidered strategies. As generations progress, the GA
steadily advances toward refined solutions. This evolutionary
trajectory aligns with the dynamic process of adapting
to changing energy demands and resource availability.
However, the GA’s efficacy pivots on meticulous design.
The method of representing solutions, the formulation of
the fitness function, and the fine-tuning of crossover and
mutation operators all necessitate thoughtful configuration
tailored to the intricate interactions between wind generation,
photovoltaic systems, diesel generators, and battery energy
storage systems. Ultimately, the iterative refinement orches-
trated by the GA converges towards energy management
strategies that holistically optimize the use of these resources.
By synergizing wind and photovoltaic generation, judiciously
integrating diesel generators, and strategically utilizing
battery energy storage systems, the algorithm strives to
achieve an equilibrium that maximizes energy efficiency
while mitigating the complexities of demand fluctuations
and renewable resource intermittency. The flow chart of
the proposed adaptive genetic algorithm is shown below
in Fig. 7.

Table 5 presents the pseudocode outlining the AGA
implementation, wherein real-time data is gathered from
the microgrid. Parameters are configured to align with
specifications and limitations. The AGA commences its
operations as depicted below.

To control convergence speed, adjust algorithm parameters
like population size, mutation rate, crossover rate, and selec-
tion methods. Use adaptive strategies for dynamic parameter
changes to balance exploration and exploitation. Simplify
implementation for efficiency by addressing resource needs
and optimizing data structures. Evaluate algorithm perfor-
mance against alternatives, considering real-time constraints
in microgrid energy management decisions.

IV. SIMULATION AND RESULTS
When adaptive genetic algorithm is applied to the proposed
system with prescribed the parameters, optimized results
have been obtained after a number of iterations over a
24-hour time slot. The proposed algorithm gives the most
appropriate results with efficient energy use according to the
load profile. Primary resources of generation, i.e., renewable
energy resources, are utilized on a production basis, while
the deficient energy demand is met by secondary resources,
i.e., diesel generators. The results are shown below with their
optimal values. The real-time data has been collected for
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FIGURE 7. The flow chart of the adaptive genetic algorithm.

commercial buildings in a 24-hour time slot starting from
dawn to dusk, as shown below in Fig. 8.
The commercial building is composed of a roof-mounted

photovoltaic system of 1 MW. The tilt angle for the PV
panel is 15Â◦. Peak hours of generation start at 6:00 a.m.
to 6:00 p.m. In this grid-tied configuration, surplus energy
is exported to the grid, and when production is below the
specific value, energy is imported from the grid to meet the
abrupt load demand. The PV generation profile can be seen
in Fig. 9.

The building is connected to the 500 kW wind farm
located at a distant location. Due to variable wind, the
generation is different for a 24-hour time slot. Real-time data
has been plotted, and the optimization technique has been
implemented to find the best use of the generation. A real-
time plot is shown below in Fig. 10.

TABLE 5. The adaptive genetic algorithm pseudocode.

FIGURE 8. The real-time load profile of a commercial building.

FIGURE 9. The real-time PV generation of a commercial building.

FIGURE 10. The real-time wind generation of a commercial building.

An adaptive genetic algorithm is utilized for optimal
resource allocation so that the best-suited energy demand can
be harnessed while the rest of the energy can be stored in a
battery storage system. If energy is greater than the capacity
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of BESS, then the system will allow electric vehicles to plug
in to restrain their batteries.Microgrid resource capacities and
their contribution to the loadmeeting are shown in Fig. 11 and
their optimal usage is shown in Fig. 12.

FIGURE 11. The microgrid resource capacities.

FIGURE 12. The optimal resource allocation using an adaptive genetic
algorithm.

Voltage regulation for microgrids is of great concern.
Due to the availability of different renewable resources in
microgrids, a platform is chosen to harness energy from
resources and gather it in a single form. A bus bar is utilized
to serve the said purpose.The complete power stage shows
the DC and AC bus bar voltages. The controller has to
track 1000 Vdc for DC and 400 Vac for AC bus bars. The
overshoots shown in voltage regulations are due to load
demand spikes and return to reference tracking after a short
duration, as shown in Fig. 13.

FIGURE 13. The voltage regulation of the bus bar.

The building has a standalone diesel generator of 1 MW
and a battery energy storage system of 500 kWh to meet the
load demand in case of grid or power failure. The backup
system will power up the utility when energy generation
from renewable resources is below the threshold and there
is a blackout from the grid side.The backup system is shown
below in Fig. 14.
The proposed system is a grid-tied microgrid. Power is

imported from the grid when renewable production is below

FIGURE 14. The DG and battery backup system.

the load profile.This will cost depending on the energy
slab price of distribution companies. The export mechanism
becomes active when renewable generation is above the
threshold for efficient utilization of energy. Billing depends
on the net difference between the import and export of energy
from the grid. The grid status is shown below in Fig. 15.

FIGURE 15. The energy is imported and exported from the grid.

An adaptive genetic algorithm finds the best fit of energy
management to reduce the cost in cents per kWh, as shown
in Fig. 16. This algorithm prioritizes the consumption of
renewable energy generation to increase savings in cents per
kWh, as shown in Fig. 17. Additionally, when excess energy
is exported, it can be utilized to charge electric vehicles on
the road, thereby reducing the carbon footprint, as depicted
in Fig. 18.

FIGURE 16. The energy cost per kWh.

V. COMPARATIVE STUDIES
Different optimization techniques have been applied to grid-
tied microgrids. It has been observed that the choice of
optimization technique depends on the specific application.
Among the applied techniques, the firefly algorithm yielded
the least favorable energy management result for the
proposed application. Following optimization, the average
cost was found to be 670.778 cents per kWh. On the
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FIGURE 17. The energy savings per kWh.

FIGURE 18. The number of EVs in charging mode during zero export.

other hand, the particle swarm optimization algorithm
achieved significantly better results compared to the firefly
algorithm, with a cost of 88.63513002 cents per kWh.
The proposed algorithm demonstrated superior performance,
making it themost suitable choice for the energymanagement
system of the grid-tied microgrid. The cost achieved by the
proposed algorithm was 52.5352239 cents per kWh. Various
iterative results are presented in Fig. 19.

FIGURE 19. The comparison of costs using different techniques.

A comparative analysis of the proposed technique with
PSO and FFA has been performed to determine the
numerical difference in costs between the algorithms. The
average values of the iterative results are shown below
in Table 6.

TABLE 6. The average cost of energy for different techniques.

It has been observed that the proposed algorithm provides
the best resource allocation. Optimal resource utilization
results in cost reductions for the system during on-peak

and off-peak hours. A bar graph is generated to showcase
the effectiveness of the proposed system, as shown below
in Fig. 20.

FIGURE 20. The comparison of the cost of electricity under load
scheduling.

VI. CONCLUSION
A robust and reliable optimization-based energymanagement
system has been presented in this research work. The design
aims to effectively distribute energy resources, optimizing
consumption, cost, and system stability across diverse
applications via an adaptive genetic algorithm. Moreover, the
adaptive genetic algorithm chooses individuals from a pop-
ulation according to their fitness, applies genetic operators
to generate new individuals, and subsequently assesses their
fitness. Through successive iterations, the algorithm progres-
sively hones the population, gradually converging towards
solutions that more effectively fulfill the optimization objec-
tives. Furthermore, the proposed approach furnishes utility
companies with an energy management instrument for the
optimal exploitation of installed renewable energy sources
and storage systems, effectively catering to the adaptable
demands of residential, commercial, and industrial loads.A
comparative analysis has been conducted among the pro-
posed algorithm, particle swarm optimization, and the firefly
algorithm. The findings indicate that the firefly algorithm
yields a cost of 670.77863 cents per kWh, particle swarm
optimization provides 88.63513002 cents per kWh, and the
proposed technique delivers 52.5352239 cents per kWh. The
overall results and their comparison with in-use techniques
prove that the proposed system has fulfilled the desired
objectives for the efficient operation of the hybrid microgrid
system. Future research directions include multi-objective
optimization, scalability, machine learning integration, cyber-
security, and regulatory compliance for real-time microgrid
applications.
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