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ABSTRACT Complex-order controllers are a generalized version of conventional integer-order controllers
and are known to offer greater flexibility, better robustness, and improved system performance. This paper
discusses the design of complex-order PI/PID controllers to control the speed of an induction motor drive
and an electric vehicle. The speed-tracking performance of the complex-order controllers is compared
with fractional-order controllers and conventional integer-order controllers. Implementing complex-order
controllers is challenging due to commercial complex-order fractance element unavailability. Hence, it is
carried out by approximating the complex-order controller transfer function using an integer-order rational
function with a curve-fitting approach, namely the Sanathanan Koener (SK) iterative method. This method
is quite simple and can fit the required frequency range compared to the conventional Matsuda and
Oustaloup approaches. The approximated controller transfer function can easily be realized by employing
the AN231E04 Field Programmable Analog Array (FPAA). Simulation and experimental results highlight
that the controller behaviour is in good agreement with the theoretical expectations.

INDEX TERMS Complex-order controllers, speed control, field programmable analog array,
fractional-order systems.

LIST OF ABBREVIATIONS
The following abbreviations are used:

ACO Ant Colony Optimization.
CAB Configurable Analog Blocks.
CAM Configurable Analog Modules.
CO[PID] Complex-order PID.
EV Electric Vehicle.
FOPDT First-order Plus Delay Time.
FOPID Fractional-order PID.
FPAA Field Programmable Analog Array.
IAE Integral Absolute Error.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

IM Induction Motor.
ISE Integral Square Error.
ISCO Integral Square Controller Output.
ITAE Integral Time Absolute Error.
ITSE Integral Time Square Error.
NEDC New European Drive Cycle.
PFE Partial Fraction Expansion.
SK Sanathanan-Koener.
TRAS Twin-Rotor Aerodynamic System.
VSI Voltage Source Inverter.

I. INTRODUCTION
PID controllers are widely used in industrial applications
due to their simplicity, robustness, and various tuning
possibilities [1], [2] and are still an active subject of research
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interest. The fractional-order PID (FOPID) controller is an
extension of the traditional integer-order PID controller with
its integral and differential actions having two extra degrees
of freedom λ, μ ∈ [0,1]. This results in better robustness,
improved system performance, and design flexibility [3],
[4]. The fractional-order controller provides attractive solu-
tions in various control applications; it is well-suited
for controlling dynamic systems [5] such as controlling
the speed and position in motor drives [4], [6], satellite
attitude system [7], robotic manipulators [8], twin-rotor
aerodynamic system (TRAS) [9], and electrohydraulic servo
system [10].
To further improve the freedom of tuning FOPID con-

trollers, integral and derivative actions of complex-order
have been studied by Bingi et al. [11], [12]. Furthermore,
Abdulwahhab [13] proposed a complex-order PID controller
for a first-order plus time delay (FOPDT) and demonstrated
its superiority over conventional controllers to achieve the
design specifications more accurately. A power-law FO[PI]
controller with reduced active element was suggested in [14],
and a power-law FO[PD] controller for robust motion control
was proposed in [15]. It was observed that the power law
FO[PI]/FO[PD] controller outperformed both conventional
PI/PD and FOPI/FOPD controllers.

To further expand the reach of traditional controllers, the
main contribution of the paper is the design and study of two
power-law complex-order controllers (CO[PI] and CO[PID])
for speed control of induction motor (IM) drive and electric
vehicle (EV), respectively. The resulting controller transfer
functions are implemented using a Field Programmable Ana-
log Array (FPAA) device. The FPAA gives a cost-effective
solution to designers in realizing complex analog circuits
[16]. The fractional-order operators/ complex-order operators
depend numerically on past values of fractionally derived
functions. Hence, the digital realization of complex-order
operators requires high computational resources and memory
capacity. Moreover realization using FPGA can also lead to
performance degradation due to discretization in synthesizing
digital controllers [17]. This paper is structured as follows.
Section II presents the transfer functions of the complex-
order controller models, followed by an analysis of two
design applications in Section III. The approximation and
realization of the complex-order controllers are presented in
Section IV, and controller behavior and performance assess-
ment through simulation and experiments are outlined in
Section V.

II. COMPLEX-ORDER CONTROLLER
A. COMPLEX -ORDER OPERATORS
The fractional-order differentiator D(s) and fractional-order
integrator I (s) with order γ ∈ [0, 1] are given in the frequency
domain by

D(s) = sγ (1)

I (s) =
1
sγ

(2)

respectively. The complex-order differentiator and complex-
order integrator with order γ + jδ (γ ∈ [0, 1], δ ∈ R) are
given respectively by

D(s) = sγ+jδ (3)

I (s) =
1

sγ+jδ (4)

Writing the complex frequency s in (3)-(4) as s = jω, we get

D(jω) = (jω)γ+jδ
= jγ ωγ jjδωjδ (5)

I (jω) =
1

(jω)γ+jδ =
1

jγ ωγ jjδωjδ (6)

The terms jjδand ωjδin (5) and (6) can be calculated as

jjδ = elnj
jδ

= ejδ(lnj) = ejδ(
jπ
2 )

= e−δ
jπ
2 (7)

ωjδ
= elnω

jδ
= ejδlnω = cos(δ lnω) + j sin(δ lnω) (8)

By substituting (7) and (8) in (5) and (6), we get,

D(jω) = jγ ωγ e−δ
jπ
2 (cos(δ lnω) + j sin(δ lnω)) (9)

I (jω) =
1

jγ ωγ e−δ
jπ
2 (cos(δ lnω) + j sin(δ lnω))

(10)

=
cos(δ lnω) − j sin(δ lnω)

jγ ωγ e−δ
jπ
2

(11)

The core issue with the practical realization of complex-
order differentiator or integrator is the approximation of
complex-order parameters. Oustaloup approximation [18],
Matsuda approximation [19], and the Carlson approach [20]
are the most widely used frequency-domain methods to
determine the approximate integer-order transfer functions
for a given fractional-order system. However, these meth-
ods are cumbersome and do not necessarily provide the
best approximation, given their limitation in the required
frequency range. Also, these methods are not suitable for
approximating fractional-order differentiators or integrators
of complex orders. Following Bingi et al. [12] curve-
fitting-based approach for the approximation of the FOPID
controller of complex orders, here the functions (9) and (10)
are approximated by means of the Sanathanan-Koener (SK)
iterative method [21], [22]. The first step in this technique
is to determine the frequency response data from (9) for
ω ∈ [ωl, ωh].

Next, the integer-order transfer function model D(s) is
obtained from using the SK iterative method. Therefore, the
approximated D(s) is defined as follows:

D(s) =
E(s)
F(s)

≈

∑N
i=0 eis

i

1 +
∑N

i=0 fis
i

≈
Eφ(s)

1 + Fθ (s)
(12)

with the coefficients E = [e0, e1, . . . , eN ]T , F =

[f0, f1, . . . , fN ]T (T for transpose), and the monomial func-
tions φ(s) =

[
1, s, . . . sN

]
, θ (s) =

[
s, s2, . . . sN

]
. Finally,
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the coefficient of E and F are determined considering the
following Levy’s objective function with SK iteration:

argmin
E,F

h∑
p=l

∣∣∣∣∣ E(jωp)
FT−1(jωp)

−
FT (jωp)
FT−1(jωp)

H (jωp)

∣∣∣∣∣
2

(13)

where T is the iteration step. By solving (13), unbiased
fitting is achieved when FT−1(jωp) approaches FT (jωp).
Here, the curve-fitting-based technique uses the built-in
functions of MATLAB software frd and fitfrd for extracting
and processing the frequency response data for an order N .

B. COMPLEX-ORDER PID CONTROLLER
The transfer function of a FOPID is given by

C(s) = Kp +
Ki
sλ

+ Kd sµ (14)

where Kp, Ki and Kd are controller gains and λ, µ (0 ≤

λ, µ ≤ 1) orders of the integrator and differentiator
stages, respectively. A complex FOPID controller [13] is
then obtained by allowing the order of the integrator and
differentiator stages to be complex numbers rather than real
numbers. Its transfer function is

C(s) = Kp +
Ki

sλ+jφ
+ Kd sµ+jθ (15)

where 0 ≤ λ, µ ≤ 1, φ, θ ∈ R.

Similarly, the transfer function of the corresponding
power-law FO[PID] controller is given by

C(s) =

(
Kp +

Ki
s

+ Kd s
)γ

(16)

where 0 ≤ γ ≤ 1. Therefore, the transfer function of
the proposed complex-order [PID] (CO[PID]) controller is
defined as

C(s) =

(
Kp +

Ki
s

+ Kd s
)γ+jδ

(17)

where 0 ≤ γ ≤ 1, δ ∈ R. By substituting Ki = 0 or
Kd = 0, the respective transfer function of complex-order
[PI] (CO[PI]) and complex-order [PD] (CO[PD]) controllers
are obtained.

III. APPLICATION EXAMPLES
A. DESIGN EXAMPLE 1-INDUCTION MOTOR SPEED
CONTROL
The fractional-order voltage source inverter (VSI) fed
induction motor (IM) model is described by [23]:

G(s) =
279.18s1.87 + 2224s0.9 + 33750

s2.97 + 22.21s1.89 + 138.7s0.94 + 438.6
(18)

The CO[PI] controllerC(s) is designed to control the speed of
the IM plant model in (18). The magnitude and phase of (18)
are:

|G(jω)| =

√(
P2 + Q2

)√
(R2 + S2)

(19)

̸ G(jω) = tan−1
(
Q
P

)
− tan−1

(
S
R

)
(20)

respectively, where

P = 279.18ω1.87 cos
(
1.87π
2

)
+ 2224ω0.9 cos

(
0.9π
2

)
+ 33750;

Q = 279.18ω1.87 sin
(
1.87π
2

)
+ 2224ω0.9 sin

(
0.9π
2

)
;

R = ω2.97 cos
(
2.97π
2

)
+ 22.21ω1.89 cos

(
1.89π
2

)
+ 138.7ω0.94 cos

(
0.94π
2

)
+ 438.6;

S = ω2.97 sin
(
2.97π
2

)
+ 22.21ω1.89 sin

(
1.89π
2

)
+ 138.7ω0.94 sin

(
0.94π
2

)
;

Furthermore, we have:

d
dω

( ̸ G(jω)) =
1(

Q
P

)2
+ 1

DQP− QDP
P2

+
1( S

R

)2
+ 1

DSR− SDR
R2

(21)

where

DP = 521.606ω0.87 cos
(
1.87π
2

)
+ 2090.56ω−0.1 cos

(
0.9π
2

)
;

DQ = 521.606ω0.87 sin
(
1.87π
2

)
+ 2090.56ω−0.1 sin

(
0.9π
2

)
;

DR = 2.97ω1.97 cos
(
2.97π
2

)
+ 41.977ω0.89 cos

(
1.89π
2

)
+ 130.38ω−0.06 cos

(
0.94π
2

)
;

DS = 2.97ω1.97 sin
(
2.97π
2

)
+ 41.977ω0.89 sin

(
1.89π
2

)
+ 130.38ω−0.06 sin

(
0.94π
2

)
;

As for the design constraints we wish to have for a robust
complex controller, first, the open loop gain H (s) of the plant
model is equal to 0 dB at the gain crossover frequency (ωcg),
i.e. ∣∣H (jωgc)

∣∣ =
∣∣G(jωgc)∣∣ ∣∣C(jωgc)∣∣ = 1 (22)

Second, the expression for phase margin φmis given by

̸ G(jωgc )̸ C(jωgc) = −π + φm (23)
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Combining (22) and (23), we get

G(jωgc)C(jωgc) = 1̸ (φm − π ) (24)

and

C(jωgc) =
ej(φm−π−̸ G(jωgc)∣∣G(jωgc)∣∣ (25)

where ej(φm−π−̸ G(jωgc) = cos
(
φm − π − ̸ G(jωgc)

)
+

j sin
(
φm − π − ̸ G(jωgc)

)
. Third, the constraint to improve

the controller’s robustness during gain variation is given by:

d
dω

̸ G(jωgc) +
d
dω

̸ C(jωgc) = 0 (26)

Now the transfer function model for the controller (CO[PI])
is given by

C(s) = (Kp +
Ki
s
)(γ+jδ) (27)

By using Taylor’s series expansion and neglecting higher
order terms (28), the function can be approximated by

C1(s) = (Ki)γ+jδ

1 + (γ + jδ)KpKi s

s(γ+jδ)

 (28)

The expressions for magnitude and phase of the CO[PI]
controller C1(jω) are given by

|C1(jω)| =

√
R2 + I2; (29)

̸ C1(jω) = tan−1
(
I
R

)
(30)

where

R =
K γ
i e

δπ
2

ωγ
[A cos(δ lnKi) − B sin(δ lnKi)];

I =
K γ
i e

δπ
2

ωγ
[B cos(δ lnKi) + A sin(δ lnKi)];

A = cos(δ lnω)[cos(
γπ

2
) + γ

Kp
Ki

ω sin(
γπ

2
)

+ δ
Kp
Ki

ω cos(
γπ

2
)] + sin(δ lnω)[− sin(

γπ

2
)

+ γ
Kp
Ki

ω cos(
γπ

2
) + δ

Kp
Ki

ω sin(
γπ

2
)];

B = cos(δ lnω)[− sin(
γπ

2
) + γ

Kp
Ki

ω cos(
γπ

2
)

+ δ
Kp
Ki

ω sin(
γπ

2
)] − sin(δ lnω)[cos(

γπ

2
)

+ γ
Kp
Ki

ω sin(
γπ

2
) + δ

Kp
Ki

ω cos(
γπ

2
)];

The differentiation of ̸ C1(jω) is

d
dω

( ̸ C1(jω)) =
1( I

R

)2
+ 1

DIR− IDR
R2

(31)

where

DI = K γ
i e

δπ
2 [ω−γDB cos(δ lnKi)

− γω−γ−1B cos(δ lnKi) + ω−γDA sin(δ lnKi)

− γω−γ−1A sin(δ lnKi)];

DR = K γ
i e

δπ
2 [ω−γDA cos(δ lnKi)

− γω−γ−1A cos(δ lnKi) − ω−γDB sin(δ lnKi)

+ γω−γ−1B sin(δ lnKi)];

DA = −
δ

ω
sin(δ lnω) cos(

γπ

2
)

+ γ
Kp
Ki

sin(
γπ

2
) cos(δ lnω)

− δγ
Kp
Ki

sin(
γπ

2
) sin(δ lnω)

+ δ
Kp
Ki

cos(
γπ

2
) cos(δ lnω)

− δ2
Kp
Ki

cos(
γπ

2
) sin(δ lnω)

−
δ

ω
sin(

γπ

2
) cos(δ lnω)

+ γ
Kp
Ki

cos(
γπ

2
) sin(δ lnω)

+ δγ
Kp
Ki

cos(
γπ

2
) cos(δ lnω)

+ δ
Kp
Ki

sin(
γπ

2
) sin(δ lnω)

+ δ2
Kp
Ki

sin(
γπ

2
) cos(δ lnω);

DB = −
δ

ω
sin(

γπ

2
) sin(δ lnω)

+ γ
Kp
Ki

cos(
γπ

2
) cos(δ lnω)

− δγ
Kp
Ki

cos(
γπ

2
) sin(δ lnω)

+ δ
Kp
Ki

sin(
γπ

2
) cos(δ lnω)

− δ2
Kp
Ki

sin(
γπ

2
) sin(δ lnω)

−
δ

ω
cos(

γπ

2
) cos(δ lnω)

− γ
Kp
Ki

sin(
γπ

2
) sin(δ lnω)

− δγ
Kp
Ki

cos(
γπ

2
) cos(δ lnω)

− δ
Kp
Ki

cos(
γπ

2
) sin(δ lnω)

− δ2
Kp
Ki

cos(
γπ

2
) cos(δ lnω);

R =
cos

(
φm − π − ̸ G(jωgc)

)
|G(jω)|

(32)

I =
sin

(
φm − π − ̸ G(jωgc)

)
|G(jω)|

(33)

The controller parameters of the CO[PI] controller for the
VSI-fed IM plant are obtained by solving (32), (33), and (26).
Table 1 presents the controller gains of the CO[PI] controller
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TABLE 1. Speed Controllers for the IM plant in (18) at ωcg = 8 rad/s and
φm = 30◦ stability boundaries.

and previously reported controllers (PI, FOPI, FO[PI]).
The approximated integer-order transfer functions of the
controllers are obtained using curve-fitting approximation
(a third-order approximation in the frequency range ω =

[−0.01, 0.01] rad/s is considered). The approximated transfer
function for FO[PI] and CO[PI] controllers are given by:

CFO[PI ](s) =

0.0224s3 + 0.2013s2

+0.09531s+ 0.003124

s3 + 0.5888s2

+0.02295s+ 1.231 × 10−05

(34)

and

CCO[PI ](s) =

0.02262s3 + 0.4843s2

+1.158s+ 0.06749

s3 + 5.896s2

+0.6808s+ 0.004079

(35)

respectively.

B. DESIGN EXAMPLE 2: ELECTRIC VEHICLE (EV) SPEED
CONTROL
The EV system dynamics include both vehicle and motor
dynamics. The linearized model of EV obtained using system
identification by George et al. [24] is described as

GEV (s) =

0.01292s3 + 0.005944s2

+0.0004034s+ 1.836 × 10−05

s5 + 0.2985s4 + 0.1139s3

+0.01532s2 + 0.001381s+ 4.641 × 10−05

(36)

The CO[PID] controller C2(s) is designed using the Ant
Colony Optimization (ACO) algorithm to control the speed
of the EV system. The ACO technique can determine
the optimal solution rapidly when more pheromones are
released [24], [25]. The pseudocode for ACO is given in
Fig. 1.

The upper and lower bounds of controller parameters are
chosen as: Kp = (0, 60), Ki = (0, 60),Kd = (0, 60),
λ = (0, 1), µ = (0, 1), γ = (0, 1), δ = (−1, 1). The
objective function for optimization is selected such that both
the error-index and the control signal are minimized and are
given by:

J = ITSE + ITAE + IAE + ISE + ISCO (37)

J =

ˆ
∞

0
te2(t)dt +

ˆ
∞

0
t |e(t)| dt +

ˆ
∞

0
|e(t)| dt

+

ˆ
∞

0
e2(t)dt +

ˆ
∞

0
u2(t)dt (38)

FIGURE 1. Pseudocode of ACO.

TABLE 2. Speed controllers for EV plant using ACO.

where ITSE denotes the integral time square error, ITAE
the integral time absolute error, IAE the integral absolute
error, ISE the integral square error, ISCO the integral square
controller output, e(t) the error signal, and u(t) is the control
signal. The controller parameters of the CO[PID] controller
and other conventional controllers for EV speed control
obtained using ACO are presented in Table 2. The third-order
approximation in the range ω = [−0.01, 0.01] rad/s is used
for approximating the transfer function of the FO[PID] and
CO[PID] controllers as given below:

CFO[PID](s) =

1.745 × 104s3 + 2.7 × 105s2

+4.638 × 104s+ 1.766 × 104

s3 + 797.1s2

+8603s+ 16.59

(39)

CCO[PID](s) =

9170s3 + 1.36 × 105s2

+2.33 × 104s+ 7816

s3 + 417.8s2

4136s+ 3.878

(40)

IV. SIMULATIONS AND EXPERIMENTAL RESULTS
The CO[PI] and CO[PID] controllers for IM drive and
EV speed control are realized and simulated in MATLAB-
Simulink. The open-loop magnitude and phase responses
of VSI-fed IM drive using PI, FOPI, FO[PI], and CO[PI]
controllers are illustrated in Fig. 2 (a). It is observed that
the CO[PI] controller has a higher stability margin at ωcg =

8 rad/s than other controllers. Fig. 2 (b) shows the closed
loop speed response of VSI-fed IM with the designed
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FIGURE 2. (a) Open-loop gain and phase, (b) closed loop speed response
of IM drive using PI, FOPI, FO[PI] and CO[PI] controllers.

TABLE 3. Time domain performance of PI, FOPI, FO[PI] and CO[PI]
controllers.

controllers. It is observed the CO[PI] has less settling
time (ts), rise time (tr ), and overshoot (%Os) compared to
other controllers in its speed response. The time domain
performance of the proposed CO[PI] controller and other
conventional controllers are given in Table 3.

The experimental evaluation of the proposed controllers
was performed by employing the Anadigm AN231E04
FPAA development board and the Anadigm Designer 2
EDA software. The FPAA device has a 2 × 2 matrix of
fully configurable analog blocks (CABs), which offer design
programmability and versatility. The AN231E04 device has
seven configurable input and output structures. The detailed
architecture of the AN231E04 device and its features are

FIGURE 3. (a) FPAA-based realization, (b) simulated results, and
(c) experimental results:input (green) and output (blue) waveforms of the
approximated CO[PI] controller of order 3, using a sinusoidal signal of
peak amplitude 5 mV and frequency of 100 Hz.

given in [26]. First, one can see that the approximated
integer-order transfer functions of the CO[PI] and CO[PID]
controllers shown in (35) and (40), respectively, have the
following general form:

Happrox(s) =
A3s3 + A2s2 + A1s+ A0
s3 + B2s2 + B1s+ B0

(41)

Eq. (41) can be implemented by applying the partial fraction
expansion (PFE) technique:

HPFE = K0 +
K1.ω01

s+ ω01
+

K2.ω02

s+ ω02
+

K3.ω03

s+ ω03
(42)

It is observed that (42) is a sum of integer-order low-pass
filters and a gain factor, where K0 = A3,Ki =

ri
|pi|

and

VOLUME 11, 2023 118611
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FIGURE 4. (a) Performance of the proposed controllers to track the NEDC
cycle, (b) control signals, and (c) error signals.

ω0i = |pi| , i = 1, 2, 3. The pi and ri denotes the poles
and residues of (41). Table 4 summarizes the scaling factors
(Ki) and time constants (τi =

1
ω0i

) for CO[PI] and CO[PID]
controllers. By substituting Ki and τi in (42) the PFE-based
approximated transfer function of the controller is obtained.
It is then implemented in the Anadigm Designer 2 EDA
software using the SumIntegrator , SumDiff , and GainHold
configurable analog modules (CAMs). The FPAA board has
four AN231E04 chips, and each chip has eight CAMS. As the
implementation uses a 3rd-order approximation (Eq. (41)),
a single AN231E04 chip is utilized. For an order greater
than 3, two or more chips were required. The clock frequency
of the chip was chosen as fclk= 800 kHz. The time-domain
performance of the controller is verified using a sinusoidal
signal of 100 Hz and a peak amplitude of 5 mV. Fig. 3 (a)
shows the FPAA-based realization of the CO[PI] controller
in the Anadigm design. Fig. 3 (b) shows the simulated result
for the 3rd-order approximated CO[PI] controller. Fig. 3 (c)
shows the experimental results (the input (green) and output
(blue) waveform) for the approximated CO[PI] controller.

EV speed control using CO[PID], FO[PID], FOPID, and
IOPID controller is shown in Fig. 4 (a). The New European

FIGURE 5. (a) FPAA-based realization, (b) simulated results, and
(c) experimental results:input (green) and output (blue) waveforms of the
approximated CO[PID] controller of order 3, using a sinusoidal signal of
peak amplitude 5 mV and frequency of 100 Hz.

TABLE 4. Scaling factors and time constants for realizing CO[PI] and
CO[PID] controllers described in [35] and [40], respectively using PFE.

Drive Cycle (NEDC) test is widely used to test EV speed
tracking in India and Europe. Fig. 4 (a) shows that the
CO[PID] controller has superior speed tracking performance
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TABLE 5. Comparison of simulated and experimental results for CO[PI]
and CO[PID] controller using sinusoidal signal of different amplitude.

than other controllers. Fig. 4 (b) and Fig. 4 (c) illustrate the
control signals and tracking error of the proposed controllers.
It is observed that the CO[PI] controller provides minimum
controller effort and tracking error compared to the other
controllers.

Finally, Fig. 5 (a) shows the FPAA-based realization of
the CO[PID] controllers in the Anadigm design. Fig. 5 (b)
shows the simulated results for the 3rd-order approximated
CO[PID] controller. Fig. 5 (c) shows experimental results
(the input (green) and output (blue) waveform) for the
approximated CO[PID] controller. Table 5 shows the sim-
ulated and experimental results of CO[PI] and CO[PID]
controllers for sinusoidal signals of different amplitudes. It is
clearly observed that experimental results closely follow the
simulated response.

V. CONCLUSION
The complex-order PI/PID controllers were designed for
IM drive using frequency domain specifications and for EV
speed control using the ACO algorithm. The complex-order
controller performed better than the fractional-order and
integer-older counterparts. The approximation of complex-
order controller transfer function via a curve fitting approach
facilitated an efficient and compact realization. The approx-
imation order was selected equal to three to attain an
accurate level of approximation. The approximated transfer
function could be easily implemented and experimentally
verified using the FPAA platform, exploiting its numerous
advantages in performing signal processing operations like
integration, differentiation, scaling, and summation. The
design procedure is versatile and could be used in a variety
of applications, including biological and biomedical systems,
for approximating complex-order transfer functions.
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