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ABSTRACT In response to the limitations observed in the Intelligent Water Droplet (IWD) algorithm for
path planning, including its weak problem-solving capability and susceptibility to local optimization, this
paper presents an enhanced Intelligent Water Droplet algorithm. The improved algorithm incorporates the
distance factor between nodes and the target point into the original algorithm’s path probability, enhancing
its problem-solving prowess and expediting algorithmic convergence. Simultaneously, a roulette-based
probability selection method is introduced to circumvent local optimization during the solution process.
Additionally, the algorithm is coupled with the Floyd algorithm to refine the planned path, reducing the
number of inflection points to align with the motion characteristics of the inspection robot. Simulation results
underscore the effectiveness of the enhanced Intelligent Water Droplet algorithm in mitigating the impact
of local optimization in path planning. In comparison to the original IWD algorithm, the optimized path
exhibits a 17.42% reduction in length, a 58.3% decrease in the minimum number of iterations required for
path convergence, and a 36.3% reduction in the number of path inflection points. Furthermore, the total path
length is decreased by 7.7% following path optimization via the Floyd algorithm.

INDEX TERMS Path planning, intelligent water drop algorithm, local optimality, Floyd.

I. INTRODUCTION
Since the advent of mobile robots, researchers have focused
their efforts on enhancing navigation control and optimizing
path planning [1], [2]. Path planning [3] encompasses the
calculation of the route from the initial state to the destination
state, guided by specific criteria within a known or unknown
environment. This process can be divided into global path
planning, based on pre-existing complete information, and
local path planning, which relies on sensor data. For inspec-
tion robots operating in complex environments, the efficacy
of global path planning plays a pivotal role in determining the
efficiency and orderliness of inspection tasks [4].
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The main movement mode of inspection robots mainly
wheeled movement, characterized by its fast speed and high
efficiency. However, wheeled robots are burdened by a dis-
advantage: they exhibit suboptimal turning efficiency. These
robots must decelerate before making turns and then accel-
erate once they negotiate the corner. This not only results
in energy loss but also prolongs the time required for the
robot to complete its tasks. Hence, when devising a path for
an inspection robot, it becomes imperative to minimize the
number of inflection points in order to ensure the seamless
operation of the robot.

Presently, path-planning algorithms can be categorized
into two primary groups: traditional and intelligent algo-
rithms. Standard algorithms encompass the artificial potential
field method [5], fuzzy logic algorithms [6], heuristic search
algorithms [7], and others. Intelligent algorithms, on the
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other hand, primarily include genetic and swarm intelligence
algorithms [8]. While these algorithms excel at charting opti-
mal paths in specific environments, they do present certain
challenges. The artificial potential field method is suscep-
tible to local optima and may struggle to reach the target.
Fuzzy logic algorithms face difficulties in the induction and
online adjustment of fuzzy rules, resulting in poor adapt-
ability. The Heuristic A∗ algorithm [9] involves substantial
computation for each node, leading to extended process-
ing times that diminish its search efficiency with increasing
node count. Genetic algorithms [10] exhibit subpar real-
time performance. In contrast, swarm intelligence algorithms
represent a novel class of bionic algorithms that combine
probabilistic selection with heuristic search, offering superior
self-organization and robustness.

In order to enhance the path planning capabilities of
inspection robots, reduce planning time to enhance time-
liness, and minimize the number of inflection points
for smoother robot operation, this paper introduces sev-
eral enhancements to the traditional intelligent water drop
algorithm. These improvements encompass the incorporation
of distance factors relative to the target node in probability
selection, the refinement of local and global sediment quan-
tity updates, and path smoothing through the integration of
the Floyd algorithm. As evident from the course planning
results, the improved algorithm yields shorter path lengths
and effectively mitigates local optimal solution disruptions
caused by grid barriers, rendering the path planning process
more rational and efficient.

II. INTELLIGENT WATER DROP ALGORITHM
The Intelligent Water Drops Algorithm [17] (IWD) is a group
intelligence algorithm proposed by Hamed Shah Hosseini,
which simulates the principle of water droplets interact-
ing with sediment to form a water flow path when they
move [18], [19].

In nature, the erosion of the riverbed by the flow of water
can form ravines on the surface of the riverbed. Water flow
can be considered a group of unit droplets, and each drop has
a velocity attribute and a sediment attribute. Under gravity,
when the water droplet selects the path, it will choose the
path with relatively little resistance, that is, the way with
less sediment, so that the water droplet will obtain a more
significant speed increment and take away more deposition.
As shown in Figure 1, when two water droplets with the same
properties pass through region (a) and region (b), respectively,
the water droplets in Figure 1(b) will obtain amore significant
velocity increment and carry more sediment.

In the abstract model, water droplets move accord-
ing to discretization and carry two properties: the motion
attribute vel (IWD) and the sediment carrying property
soil(IWD).These two properties change with the movement
of the water droplets. Suppose the current position of the
water droplet is i; During the movement to the next position
j, the water droplets will undergo the following changes.

FIGURE 1. Effect of water droplet movement.

A. THE PROBABILITY OF SELECTION
First of all, water droplets tend to choose paths with less
sediment when choosing a path, so p (i, j) indicates the prob-
ability that the water droplets choose j at the i position as the
next position, which is inversely proportional to the amount
of sediment in the path (i, j) soil (i, j), and the probability of
selection is

p(i, j) =
f (soil(i, j))∑
f (soil(i, k))

(1)

f (soil(i, j)) =
1

ε + g(soil(i, j))
(2)

where ε is the smallest positive actual number, and

g(soil(i, j))

=

{
soil(i, j), min(soil(i, k)) ≥ 0
soil(i, j) − min(soil(i, k)), else

(3)

B. THE INVERSELY INCREMENT
When a water droplet travels from position i to position j,
its velocity properties change, and the velocity increment
1vel (IWD) is inversely proportional to the sediment content
soil (i, j) on the running path,

1vel(IWD) =
av

bv + cv(soil(i, j))2
(4)

where parameters av, bv and cv are the parameters preset by
the algorithm.

C. EQUIVALENCE RELATIONSHIP
The amount of sediment carried away by the water droplet
movement is equal to the amount of sediment reduction
1soil(i, j) in the path (i, j), that is

1soil(IWD) = 1soil(i, j) (5)

The sediment reduction in the path after the operation of
the water droplet is inversely proportional to the time required
for the water droplet to pass through the path (i, j) variable.
time(i, j)

1soil(i, j) =
as

bs + cs(time(i, j))2
(6)
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where parameters as, bs and cs are the parameters preset by
the algorithm, and the time it takes for the water droplet to
move from position i to position j

time(i, j) =
HUD(i, j)
vel(IWD)

(7)

whereHUD (i, j) is the heuristic concerning the road segment
(i, j).

D. FEEDBACK
when the water droplets arrive at the location j from the
position i, the sediment in the section (i, j) will be updated to
provide feedback on the path planning of other water droplets.

soil(i, j) = (1 − ρ) · soil(i, j) − ρ · 1soil(i, j) (8)

where ρ is the coefficient between 0∼1.

E. SELECTION OF THE OPTIMAL PATH
Selection of the optimal path. Through steps (1) to (4), each
drop completes the course planning from the starting point to
the target point; remember that the path of the kth droplet is
Tk , and use the evaluation function q (T ) to select the optimal
way in the droplet group T IB, that is,

T IB = max
all

q(Tk ) (9)

F. GLOBAL SEDIMENT VOLUME UPDATE
Global sediment volume update. Tomake the planned optimal
path have a guiding effect on subsequent path planning and
improve the ability of the next group of water droplets to
search for the optimal way, it is necessary to form a feedback
mechanism, as shown below, to update the global sediment
amount on the optimal path, that is

soil(i, j) = (1 − ρ)soil(i, j) + ρ
2soil(IWD)
NIB(NIB − 1)

(10)

where ρ is the update parameter between 0∼1, NIB is the
number of nodes for the path.

But the search process of the Intelligent Water Drops
(IWD) algorithm relies on probability and heuristic informa-
tion, making it susceptible to getting trapped in local optima,
especially in complex, multi-modal problems.

III. PATROL ROBOT PATH PLANNING ISSUES
Raster maps have the advantages of accessible construction
unique map locations, and are very helpful for route planning.
The robot’s operating area is built into a grid model, and
the robot’s working environment is established as a digi-
tal map mode. All environmental information in the model
can be represented as an index of ordinal numbers. In a
raster map model, the location coordinates (xm, ym) of the
two-dimensional plane in which it is located can be used to
represent the raster, which can be converted to and from the
ordinal notation, and the conversion model is{

xm = mod(Num,N )
ym = Num/N + 1

(11)

the parameter Num is the ordinal number in the raster map
model, the parameter N represents the value of the column
parameter.

After constructing the above model, the data sensor can
detect the operating environment information of the robot,
mark the obstacles, set the location of the non-obstruction
as a feasible area, process the challenges of the grid map by
puffing method, and simplify the robot model to obtain the
point model of its operation. Then, plan the robot’s running
path, and the way path can be represented as

pathi = {S,P1, · · · ,Pn, · · · ,Pm,G} (12)

The parameter S is the starting point of the robot operation;
the ParameterG is the end position of the robot operation, and
the parameter is the intermediate point position passed by the
robot operation, which can be expressed as Pn =

(
xgn, ygn

)
or Pn = Numn. The map coordinates can be obtained from
Equation (10). The model form of the map coordinate trans-
formation model is{

xg = int(x/w) · w+ int(w/2)
yg = int(y/w) · w+ int(w/2)

(13)

where parameters (x, y) are two-dimensional coordinate sys-
tem parameters when the robot is running. The parameter w
is the resolution of the structure of the built raster map model,
from which the running length of the robot is:

PL = ∥P1 − S∥ +

n=m−1∑
n=1

∥Pn+1 − Pn∥ + ∥G− Pm∥ (14)

Based on the above model definition, the path planning of
the inspection robot can be modeled as a constraint optimiza-
tion problem. The optimization goal is to obtain the shortest
line without obstacles, that is, select the path with the most
petite running length PL to ensure that the inspection robot
can reach the target node as quickly as possible.

IV. ALGORITHM IMPROVEMENTS
The path selection of the original algorithm is solely nega-
tively correlated with the sediment content soil (i, j)l along
the path, but in the process of path planning, the distance
between the following location j and the target point is also a
factor that must be considered, so this paper adds the distance
between the following location j and the target point to the
selection of the site,

f (soil(i, j)) =
η(j,G)Q

ε + g(soil(i, j))
(15)

p(i, j) =
f (soil(i, j))∑
f (soil(i, k))

(16)

where Q is the index of the new heuristic, η(j,G) is the
reciprocal of the distance from the position j to the target
point, the larger the distance, the worse the location point;
the smaller the distance, the better the location point, and the
greater the probability of the alternative.
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It is easy to fall into local optimum so that a reasonable
path cannot be planned, or even the target point cannot be
reached, which is a defect of the group intelligence algorithm.
This article introduces the roulette method in path selection to
optimize this defect. The algorithm creates a random number
rand located at 0 ∼ 1, and when the formula (17) is satisfied,
the node j is selected as the following position node. This
prevents the algorithm from falling into a local optimal and
cannot plan the complete path.

Pj = p1 + p2 + · · · + pj−1 + pj (17)

rand /∈
[
0,Pj−1

]
& rand ∈

[
0,Pj

]
(18)

For the heuristic function HUD (i, j) in formula (7) con-
cerning path (i, j), replace it with η (i, j), which allows an
efficient update of the amount of sediment in the better way,

time(i, j) =
1

η(i, j) · vel(IWD)
(19)

For the update of sediment, the use of coefficient (1 − ρ)

does not correspond to the actual situation; in the real case,
the update of the amount of deposit only needs to subtract
the amount washed away from the original amount, so in the
improved algorithm, the sediment update of the local path
planning is changed to

soil(i, j) = soil(i, j) − ρ · 1soil(i, j) (20)

The global sediment volume update should be changed to

soil(i, j) = soil(i, j) − ρ ·
soil(IWD)
(NIB − 1)

(21)

While the planned path may offer the advantage of being
the shortest in terms of length, it may not be directly
applicable to the inspection robot. In the case of wheeled
inspection robots, the path’s level of smoothness directly
impacts the robot’s traversal speed. In practical applications,
these factors constitute critical criteria for evaluating the
algorithm-generated route’s merits and drawbacks.

The Floyd algorithm is a classic algorithm used to find
the shortest paths between all pairs of vertices in a weighted
graph. It refines the paths through a process of iteratively
updating the shortest paths between pairs of vertices. First,
initialize a two-dimensional array known as the path matrix,
which is used to record the shortest paths between nodes.
Initially, the values in the path matrix are determined by the
graph’s adjacency matrix. For each pair of nodes, denoted as
i and j, examine whether there exists an intermediate node
k such that the path from i to j through k is shorter. If such
an intermediate node k exists, update the shortest path from
i to j in the path matrix. This update involves combining the
shortest path from i to k with the shortest path from k to j.
Continue iterating through this process in Step 2 until all the
shortest paths within the path matrix have been determined.
But, Floyd algorithm time complexity makes it less suitable
for very large graphs.

Consequently, following the path planning by the enhanced
IWD algorithm, this paper integrates the Floyd algorithm to

optimize the route and ensure path smoothness. This opti-
mization aims to minimize or eliminate the need for the robot
to decelerate during turning maneuvers, thereby enhancing
the operational efficiency of the inspection robot.

A. PREPROCESS THE PATH
For the path planned by the improved IWD algorithm, find
the vector of each adjacent node. From the starting point,
compare the initial vector α with the following vector β. If the
vector angle is 0, the vector is combined, and the next vector
is named β repeatedly. If the tip is not 0, proceed to the next
step.

B. ADD VECTOR α INITIAL TO THE FOLLOWING VECTOR β

If the new vector does not intersect with the obstacle interval,
proceed to step (1). When the new vector intersects with the
obstacle interval, the original vector becomes the optimized
path segment, and the process repeats with the vector serving
as the initial vector. This cycle continues until the final vector
reaches the target point.

Commencing from the initial node along the optimized
path, intervals are established for placing guide nodes, and
inflection points along the path are designated as guide nodes
as well. As the inspection robot approaches a guide node, the
subsequent guide node assumes an active role, directing the
robot’s trajectory until the guidance node ultimately aligns
with the target node. This guides the robot to the endpoint
of the path, completing the guidance process. Under the
influence of the guidance node, the inspection robot refrains
from prematurely decelerating when making turns, instead
maintaining a consistent speed toward the next guide node.
This approach not only reduces the time the robot spends
navigating corners but also minimizes acceleration and decel-
eration, enabling the robot to sustain its speed and execute
turns smoothly.

The flow of the path planning algorithm is depicted in
Figure 2. The enhanced IWD algorithm initially undertakes
preliminary path planning, charts the path for processing,
optimizes the route using the Floyd algorithm, and ultimately
generates the definitive track.

V. SIMULATION AND RESULTS ANALYSIS
This paper establishes various simulation environments to
validate the practical efficacy of the enhanced IWD algorithm
in the context of path planning. A comparative analysis is
conducted between the algorithm under consideration and the
original IWD algorithm, thereby confirming the viability of
path planning when coupled with the Floyd algorithm.

Table 1 presents the initial parameters for both the original
IWD algorithm and the improved Intelligent Water Drop
algorithm.

A. SIMULATION OF LOCAL OPTIMAL PROBLEMS
For the problem that the IWD algorithm quickly falls into
local optimization and cannot plan a reasonable path, this
paper simulates a unique environment to verify the ability of
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FIGURE 2. Flow chart of the path planning algorithm.

the improved algorithm to get rid of the local optimum, and
the experimental results are shown in Figure 3.
Based on the simulation outcomes depicted in Figure 3,

it is evident that the original IWDalgorithm produces an
ineffective path as a consequence of being influenced by
local optimal solutions. In practice, this susceptibility to
local optima can lead to an inability to generate a viable
route. Conversely, the enhanced IWD algorithm introduces

TABLE 1. Initial parameters of the original, intelligent water drop
algorithm and the improved algorithm.

FIGURE 3. Simulation results of two intelligent water drop algorithms.

a ‘‘roulette’’ element in the probability selection process,
thereby enhancing the randomness inherent in path planning.
This strategic addition mitigates the impact of locally optimal
solutions and results in the creation of a comprehensive and
uninterrupted path.

B. SIMULATION OF THE ACTUAL ENVIRONMENT OF THE
ALGORITHM
For the problem that the IWD algorithm quickly falls into
local optimization and cannot plan a reasonable path, this
paper simulates a unique environment to verify the ability of
the improved algorithm to get rid of the local optimum, and
the experimental results are shown in Figure 4.
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FIGURE 4. Path planning of two algorithms in a conventional
environment.

FIGURE 5. From the Comparison of iterative convergence curves of the
two algorithms.

The comparison in Figure 4 shows that in the same envi-
ronment, the path planned by the improved IWD algorithm
is shorter than the original IWD algorithm. The path length
designed by the improved IWD algorithm is 35.89m, while
the original IWD algorithm has a planned path length of
43.46m due to the interference of the local optimal solution.

The iterative convergence diagram of the two algorithms
is shown in Figure 5. The original IWD algorithm began to
oscillate and converge after 100 iterations. Finally, it joined
at 43.46, the improved IWD algorithm began to converge
after 50 iterations, and the final path length assembled at
35.89. From Figure 5, it can be seen that the enhanced IWD
algorithm has faster path planning speed and more robust
stability.

Considering the complexity of the actual working environ-
ment, to thoroughly compare the path planning capabilities
of the two algorithms, this paper conducts simulation exper-
iments on the two algorithms in three different simulation
environments, and the results are shown in Table 2:

The comparison between Figure 4 and Table 2 shows that
the improved IWD algorithm is improved compared with the

TABLE 2. Statistics of simulation results of the two algorithms under
different environments.

FIGURE 6. Combines the path planned by floyd’s algorithm.

original algorithm in terms of path length and average time of
path planning in different environments. Compared with the
path planning results of the two algorithms in different envi-
ronments, the improved algorithm improves the way length
by 17.42% compared with the original algorithm, and the
algorithm planning time is reduced by about 19.7%.

Figure 4(b) presents the initial path configuration prior to
optimization. Within this path, certain inflection points fail to
adhere to the kinematic principles governing wheeled robots.
By applying the Floyd algorithm to this pattern, the trajectory
is smoothed, as depicted in Figure 6. In comparison to the
pre-optimization path, the optimized route exhibits a 7.7%
reduction in length and a 36.3% decrease in the number of
inflection points. This reduction in inflection points translates
to fewer abrupt turns for the inspection robot, streamlining its
path traversal and enhancing operational convenience.

Figure 7 showcases a simulation depicting the inspection
robot’s movement along the optimized path. In this visualiza-
tion, the dashed line represents the optimized path, while the
solid line traces the inspection robot’s trajectory. As evident
from the illustration, the inspection robot’s travel path is
remarkably smooth, ensuring a seamless travel experience.
When the inspection robot approaches a guidance node,
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FIGURE 7. The running trajectory of the optimized inspection robot.

it proceeds directly towards the subsequent guidance node,
facilitating stable-speed steering. This approach minimizes
the need for acceleration and deceleration during turns, result-
ing in time savings and a substantial enhancement in the
inspection robot’s operational efficiency.

VI. CONCLUSION
One of the most crucial domains within robotics research
revolves around the intricate challenge of robot path planning.
This research paper introduces a path-planning algorithm
tailored for inspection robots, leveraging an enhanced IWD
algorithm. Addressing the inherent deficiency in heuristics
when originally devising the path through the IWD algorithm,
the enhanced IWD algorithm is amalgamated with the Floyd
algorithm to optimize the route. This optimization entails a
reduction in the path’s inflection points, the establishment of
guide nodes, and a simulated assessment of the path. The
empirical findings demonstrate that the optimized path is
notably shorter and adheres more closely to the kinematic
principles governing wheeled robots, thereby significantly
enhancing the operational efficiency of inspection robots.
In the future, further investigationwill compare and scrutinize
the algorithm’s path-planning efficacy under diverse environ-
mental models. Additionally, the algorithm will be deployed
to address more intricate path-planning scenarios, with the
expectation of achieving superior outcomes.
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