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ABSTRACT This paper investigated the finite-time extended dissipativity for generalized neural networks
with discrete and distributed time-varying delays via the improved Lyapunov-Krasovskii functional (LKF).
We constructed an appropriate LKF by employing more neural network information and consisting of
quadratic functions. By combining the proposed LKF, Jensen’s integral inequality, orthogonal polynomials-
based integral inequality, and extended Wirtinger’s integral inequality, new delay-dependent conditions are
achieved in the form of linear matrix inequalities (LMIs), which can be verified viaMATLAB’s LMI toolbox.
In addition, we concentrate on the extended dissipative analysis problem, which is a unified formulation of
L2 − L∞, H∞, passivity, and dissipative performance. This paper is less conservative delay bound than
some recently published literature by stability criteria. In addition, we presented seven numerical examples
to illustrate the effectiveness of the obtained results.

INDEX TERMS Extended dissipative, neural networks, time-varying delays, finite-time bounded,
Lyapunov-Krasovskii functional.

I. INTRODUCTION
In the last two decades, neural networks (NNs) have
been extensively investigated because of their successful
applications in many practical systems, such as pattern
recognition, signal processing, associative memories, and
other engineering and scientific areas [1], [2], [3], [4], [5].
In the process of investigating neural networks, time delays
are unavoidable as a result of the dynamical behaviors of
networks generating instability, oscillation, divergence, the
inherent communication time between neurons, and the finite
switching speed of amplifiers [6], [7], [8]. Therefore, the
stability of neural networks with a time-varying delay has
received considerable attention from many researchers [9],
[10], [11]. The stability criteria developed for DNNs can
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be divided into two categories: delay-independent ones and
delay-dependent ones. Since the delay-dependent conditions,
which include the size information of time-delayed are usu-
ally less conservative than delay-independent ones, especially
for neural networks with small delays, more attentions have
been paid to the delay-dependent stability analysis of time
delay neural network [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11].

Recent studies have examined the dynamical behaviors
of static neural networks (SNNs) [12] or local field neural
networks (LFNNs) [13] separately due to differences in a
neuron or local field state. In addition, these two models are
not equivalent, but they can be combined into a more concise
model by making reasonable assumptions. Thus, Zhang and
Han [14] created the first unified system model, generalized
neural networks (GNNs), which incorporated both LFNNs
and SNNs. Furthermore, in recent years, there has been a
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heightened interest in analyzing the stability and performance
of GNNs with time delay [15], [16], [17].

The neural network stability problem is to find a less con-
servative condition that guarantees the system’s stability. The
Lyapunov-Krasovskii functional (LKF) and many inequality
techniques have been widely used to reduce the conservatism
of stability criteria [4], [5]. For example, Jensen’s integral
inequality was presented to determine the new stability
conditions for the NNs [5]. To obtain the conditions with
the decline of conservatism, Wirtinger’s integral inequality
and reciprocally convex optimization are presented [18].
The free-weighting-based inequality has been shown as a
powerful tool for analyzing the stability problem of NNs
[11]. The orthogonal polynomials-based inequality was first
introduced as an effective tool for analyzing the stability
problem of NNs [19]. In addition, to derive better conditions,
various types of LKF have been adopted, for instance,
multiple integrals-based LKF [20], activation function-based
LKF [21], and so on.
Recently, the performances of a neural network, which

are usually characterized by an input-output relationship,
played an important role in various science and engineering
applications, such asH∞ control problem, passivity, and pas-
sification problems, L2 −L∞ performance, and dissipativity
performance [22]. Up to now, a lot of researchers have paid
increasing attention to the dissipativity analysis since it does
not only linked with the H∞ and passivity performance but
also recommends a good comfortable control structure in
many engineering applications, such as electrical networks,
nonlinear control, power converters, and chemical process
control [23]. Recently, the (Q, S,R)-dissipativity concept has
been proposed in [9] and [22]. However, the L2 − L∞

performance is not contained in the (Q, S,R)-dissipativity.
In order to overcome this problem, Saravanakumar et al. [24]
introduced amore general performance called extended dissi-
pativity which can integrate several well-known performance
indices such as passivity performance, (Q, S,R)-dissipativity
performance, H∞ performance, and L2 − L∞ performance
in a unified framework by setting the corresponding values
of weighting matrices [9], [24], [25], [26]. More recently, the
issue of the extended dissipative analysis has been applied to
some NNs [9], [22], [23], [24].

In the previous decades, the existing literature has typically
been concerned with asymptotic stability, which is defined
over an infinite-time interval. Nonetheless, there is a bound
for system trajectories over a fixed short time interval in
some practical applications, such as rockets and airplanes,
rather than asymptotic stability over an infinite-time interval.
Our main objective lies in the behavior of dynamic systems
over a given finite-time interval. More clearly, the state of
dynamic systems does not exceed a special threshold of its
state space for a given a priori bound of its initial state in a
short time interval, which is called finite-time stability (FTS).
In 1961, Dorato [27] first introduced the concept of FTS to
the control framework. Subsequent work by Amato et al. [28]
extends FTS to finite-time bound (FTB) by taking external

disturbances into account. The FTS and FTB for NNs with
time-varying delays have received a lot of attention [29], [30],
[31], [32], [33].

In this paper, Jensen’s integral inequality, orthogo-
nal polynomials-based integral inequality, and extended
Wirtinger’s integral inequality are used to study finite-time
extended dissipativity for generalized neural networks with
mixed discrete and distributed time-varying delay problems.
In addition, numerical examples are provided to demonstrate
the efficiency of the theorems. Finally, numerical examples
are presented to demonstrate the feasibility and effectiveness
of the theorem. In addition, the major contributions and
highlights of this paper are summarized in the following key
points:

• We investigate finite-time extended dissipativity for
generalized neural network problems with distributed
and discrete time-varying delays.

• An enhanced LKF is constructed by optimizing the
information of the time delay neural network as follows:
firstly, the time-varying delay and its maximum are
all employed, together with the activation function, the
state, and its derivative. Secondly, the LKF includes
more cross terms among the state, the integral of
the state, the integral of the derivative of the state,
terms among the state, the delayed state, the activation
function, and the integral of the activation function.

• We estimate the bound of the time derivative of
LKF using Jensen’s integral inequality, an extended
Wirtinger’s integral inequality, and orthogonal
polynomials-based integral inequality, which results in
less conservatism than the other references, as demon-
strated by numerical examples.

The framework of this paper is structured as follows: In
Section II, the system model, definitions, assumptions, and
lemmas are described. Section III presents the main results,
which include finite-time stability, finite-time boundedness,
and finite-time extended dissipativity. Section IV provides
seven numerical examples to demonstrate the effectiveness
of the obtained criteria. Finally, in Section V, we present the
conclusion of our work.
Notations: This paper contains the following notations, Rn

denotes the n− dimensional Euclidean space, andRm×n is the
set of all m× n real matrices. Sn, S+

n are the set of symmetric
and positive definite n × n real matrices, respectively. PT

and P−1 indicate the matrix P transport and matrix P inverse.
The symmetric matrix P refers to P = PT . The matrix P is
positive definite that the symmetric matrix P > 0. λmin(P)
and λmax(P) are the minimum and maximum eigenvalues for
real symmetric matrix P, respectively. diag{. . .} denotes the
block diagonal matrix. Sym{P} = P + PT . ⋆ represents the
symmetric forms in a symmetric matrix.

II. PRELIMINARIES
Consider the following generalized neural networks with
discrete and distributed time-varying delays:

ż(t) = −A0z(t) + A1f (Wz(t)) + A2g(Wz(t − τ (t)))
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+ A3

∫ t

t−γ (t)
h(Wz(s))ds+ A4ω(t),

y(t) = B0z(t),

z(t) = φ(t), t ∈ [−τ, 0], (1)

where z(t) = [z1(t), z2(t), . . . , zn(t)]T ∈ Rn is the
neuron state vector; A0 = diag{a1, a2, . . . , an} with ai >
0 is a positive diagonal matrix; A1, A2, and A3 are the
connection weight matrices; A4 is the connection distur-
bance; f (Wz(·)) = [f1(W1z(·)), f2(W2z(·)), . . . , fn(W2z(·))]T ,
g(Wz(·)) = [g1(W1z(·)), g2(W2z(·)), . . . , gn(W2z(·))]T and
h(Wz(·)) = [h1(W1z(·)), h2(W2z(·)), . . . , hn(W2z(·))]T are the
neuron activation functions with Wi denoting the ith row of
W ; ω(t) ∈ Rn is the external disturbance vector that belongs
to the class L2[0,∞); y(t) is the output vector of the system;
B0 is known real constant matrices of suitable dimension;φ(t)
is the initial function; The variable τ (t) and γ (t) represent the
discrete and distributed time-varying delays, respectively.
τ (t) is an discrete time-varying differentiable function

satisfying

0 ≤ τ (t) ≤ τ, τ̇ (t) ≤ τd , (2)

γ (t) is an distributed time-varying satisfying

0 ≤ γ (t) ≤ γd . (3)

Assumption 1 ([9]): The activation function fi(Wiz(·))(i =
1, 2, . . . , n) is continuous and bounded satisfying the follow-
ing inequality

F−

i ≤
fi(u) − fi(v)
u− v

≤ F+

i ,

u, v ∈ R, u ̸= v where fi(0) = 0, F−

i and F+

i are known real
scalars.
For the convenience of presentation, we denote

Fm = diag{
F−

1 + F+

1

2
,
F−

2 + F+

2

2
, . . . ,

F−
n + F+

n

2
},

Fp = diag
{
F+

1 ,F
+

2 , . . . ,F
+
n

}
,

Gm = diag

{
G−

1 + G+

1

2
,
G−

2 + G+

2

2
, . . . ,

G−
n + G+

n

2

}
,

Gp = diag
{
G+

1 ,G
+

2 , . . . ,G
+
n
}
,

Hm = diag

{
H−

1 + H+

1

2
,
H−

2 + H+

2

2
, . . . ,

H−
n + H+

n

2

}
,

Hp = diag
{
H+

1 ,H
+

2 , . . . ,H
+
n

}
.

Remark 1: The neuron activation functions may be non-
differentiable, non-monotonic, and unbounded by the time-
varying delay. The variables F−

i , F
+

i , G
−

i , G
+

i , H
−

i , and H
+

i
can all be zero, positive, or negative. Notably, the assumption
used in this study is weaker and more general than the usual
Lipschitz condition, |f (u) − f (v)| ≤ F |u − v|. Therefore,
our stability criteria with Assumption 1 are less conservative
compared to the usual Lipschitz condition.
Assumption 2 ([26]): For any positive constant ωf and

time constant Tf , the external disturbance satisfies

∫ Tf

0
ωT (t)ω(t)dt ≤ ωf .

Assumption 3 ([26]): For any time constant Tf , the state
vector of time-varying z(t) satisfies∫ Tf

0
zT (t)z(t)dt ≤ d,

where d denotes a sufficiently large fixed constant.
Assumption 4 ([26]): For any matrices �1, �2, �3 and

�4 satisfy the following conditions:

1) �1 = �T
1 ≤ 0,

2) �3 = �T
3 > 0,

3) �4 = �T
4 ≥ 0,

4) (∥�1∥ + ∥�2∥)�4 = 0.

Definition 1 ([26]): For any matrices �1, �2, �3 and
�4 satisfying Assumption 4, system (1) is said to be extended
dissipativity performance if the following inequality holds for
any Tf > 0 and for all ω(t) ∈ L2[0,∞):∫ Tf

0
J (t)dt − sup

0≤t≤Tf
yT (t)�4y(t) ≥ 0, (4)

where J (t) = yT (t)�1y(t) + 2yT (t)�2ω(t) + ωT (t)�3ω(t).
Remark 2: The concept of extended dissipativity perfor-

mance proposed in Definition 1 contains some well-known
performances as special cases by adjusting the weighting
matrices �1, �2, �3, �4 and given constant matrices Q ∈

Rn×n, S ∈ Rn×n, and R ∈ Rn×n with Q and R symmetric as
follows:

• If �1 = −I , �2 = 0, �3 = γ 2I and �4 = 0, then
Definition 1 refers to the H∞ performance;

• If �1 = 0, �2 = 0, �3 = γ 2I and �4 = I , then
Definition 1 refers to the L2 − L∞ performance;

• If �1 = 0, �2 = I , �3 = γ I and �4 = 0, then
Definition 1 refers to the passivity performance;

• If �1 = Q, �2 = S, �3 = R − βI and �4 = 0,
then Definition 1 refers to the (Q, S,R)-dissipativity
performance.

Definition 2 (Finite-Time Bounded [10]): The system (1)
is finite-time bounded with reference to (c1, c2,Tf ,V , ωf )
with time constant Tf > 0, a matrix V > 0, and numbers
c2 > c1 > 0, ωf > 0, if the following inequality holds:

sup
−τ≤s≤0

{zT (s)Vz(s), żT (s)V ż(s)} ≤ c1

⇒ zT (t)Vz(t) < c2,∀t ∈ [0,Tf ].

Definition 3 (Finite-Time Stable [10]): For a given time
Tf > 0, numbers c2 > c1 > 0, and a matrix V > 0, the
system (1) with ω(t) = 0 is finite-time stable with respect to
(c1, c2,Tf ,V ), if the following inequality holds:

sup
−τ≤s≤0

{zT (s)Vz(s), żT (s)V ż(s)} ≤ c1

⇒ zT (t)Vz(t) < c2,∀t ∈ [0,Tf ].
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Lemma 1 ([5]): For any matrix R1 ∈ S+

n1, R2 ∈ S+

n2,
α ∈ (0, 1) and any matrix Z ∈ R(n1+n2)×(n1+n2) the following
inequality holds:[ 1

α
R1 0
0 1

1−αR2

]
≥ Z + ZT

− Z
[
αR−1

1 0
0 (1 − α)R−1

2

]
ZT .

Lemma 2 (Jensen’s Integral Inequality [5]): For a given
matrix R > 0 scalar α1 < α2 and vector z : [α1, α2] → Rn

such that the following integrals are well defined, then the
inequality holds:

(α2 − α1)
∫ α2

α1

zT (s)Rz(s)ds

≥

∫ α2

α1

zT (s)dsR
∫ α2

α1

z(s)ds.

Lemma 3 (Orthogonal Polynomials-Based Integral
Inequality [34]:) Let z(s) be a differentiable function z :

[α1, α2] → Rn for any matrices R ∈ S+
n , Mi ∈ R(k×n)(i =

1, 2, 3) and any vector ξ ∈ Rk , the following inequality
holds:

−

∫ α2

α1

żT (s)Rż(s)ds ≤ ξT
[ 3∑
i=1

α2 − α1

2i− 1
MiR−1MT

i

+

3∑
i=1

Sym{MiEi}
]
ξ,

where

E1ξ = z(α2) − z(α1),

E2ξ = z(α2) + z(α1) −
2

α2 − α1

∫ α2

α1

z(s)ds,

E3ξ = z(α2) − z(α1) +
6

α2 − α1

∫ α2

α1

z(s)ds

−
12

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds.

Lemma 4 ([34]): Let z(s) be a differentiable function z :

[α1, α2] → Rn for any matrices R ∈ S+
n , Ni ∈ R(k×n)(i =

1, 2), any vector ξ ∈ Rk and all continuous function z :

[α1, α2] → Rn, then the following holds:

−

∫ α2

α1

zT (s)Rz(s)ds

≤ ξT
[
(α2 − α1)

(
N1R−1NT

1 +
1
3
N2R−1NT

2

)
+ Sym{N1F1 + N2F2}

]
ξ,

where

F1ξ =

∫ α2

α1

z(s)ds,

F2ξ = −

∫ α2

α1

z(s)ds+
2

α2 − α1

∫ α2

α1

∫ α2

s
z(u)duds.

Lemma 5: (Extended Wirtinger’s Integral Inequality
[35]): For any matrix R ∈ S+

n , and any continuously
differentiable function z : [α1, α2] → Rn, the following
inequality holds:∫ α2

α1

∫ α2

s
żT (u)Rż(u)du

≥ 2χT1 Rχ1 + 4χT2 Rχ2 + 6χT6 Rχ3,

where

χ1 = z(α2) −
1

α2 − α1

∫ α2

α1

z(s)ds,

χ2 = z(α2) +
2

α2 − α1

∫ α2

α1

z(s)ds

−
6

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds,

χ3 = z(α2) −
3

α2 − α1

∫ α2

α1

z(s)ds

+
24

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds

−
60

(α2 − α1)3

∫ α2

α1

∫ α2

s

∫ α2

u
z(v)dvduds.

Lemma 6 ([36]): For given real matrices R1 and R2 with
appropriate dimensions, they satisfy 2RT1 R1 + RT2 R2.
Lemma 7 (Schur Complement [36]): Let R1, R2, and

R3 be given constant matrices with appropriate dimensions
which satisfy R1 = RT1 ,R2 = RT2 > 0, then R1+RT3 R

−1
2 R3 <

0 if and only if[
R1 RT3
R3 −R2

]
< 0 or

[
−R2 R3
RT3 R1

]
< 0.

Lemma 8 ([34]): For a quadratic function f (z) = a2z2 +

a1z + a0 where a2, a1, a0 ∈ R. if the following inequalities
hold

(i)f (0) < 0, (ii)f (τ ) < 0, (iii) − τ 2a2 + f (0) < 0

then f (z) < 0, ∀z ∈ [0, τ ].
Remark 3: Improved convex inequalities [54] and [55]

can be reduced to Lemma 1. It is important to note that
Lemma 2 in [57] is a special case of Lemma 1.
Remark 4: Lemma 3 in [53] with N = 2 is Lemma 3

in this work, and it can reduce the complexity of parameter
calculations for obtaining sufficient conditions, making this
work more efficient than other works.
Remark 5: Improved conditions for Lemma 8 have been

proposed in Lemma 4 ([57]) with N=1. Lemma 8 in this
work provides sufficient conditions and makes this work more
efficient than others.

III. MAIN RESULTS
In this section, we will present the sufficient conditions
of the main theorems for generalized neural networks with
mixed time-varying delays. Firstly, the following notations
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for vectors and matrices are introduced to simplify the
illustration:

ei =
[
0n×(i−1)n In×n 0n×(21−i)n

]
(i = 1, 2, · · · , 21),

êj =
[
0n×(j−1)n In×n 0n×(5−j)n

]
(j = 1, 2, · · · , 5),

es = −A0e1 + A1e7 + A2e13 + A3e16 + A4e21,
e0 = 021n×n, fa(s) = f (Wz(s)),

ga(s) = g(Wz(s)), ha(s) = h(Wz(s)), τf =
1
τ
,

D1 = e1 − e2, D2 = e1 + e2 − 2e5,
D3 = e1 − e2 + 6e5 − 12e17,
E1 = e2 − e3, E2 = e2 + e3 − 2e6,
E3 = e2 − e3 + 6e6 − 12e18,

D4 =

 e1 − e2
τ (t)e5

τ (t)(e1 − e5)

 , D5 =

 e1 + e2 − 2e5
τ (t)(−e5 + 2e17)
τ (t)(e5 − 2e17)

 ,
E4 =

 e2 − e3
(τ − τ (t))e6

(τ − τ (t))(e1 − e6)

 ,
E5 =

 e2 + e3 − 2e6
(τ − τ (t))(−e6 + 2e18)
(τ − τ (t))(e6 − 2e18)

 ,
ϕ1(t) =

[
zT (t) zT (t − τ )

∫ t

t−τ
zT (s)ds∫ t

t−τ
f Ta (s)ds

∫ t

t−τ

∫ t

s
zT (u)duds

]T
,

ϕ2(t, s) =

[
zT (t) zT (s) f Ta (s)

∫ t

s
żT (u)du∫ t

s
zT (u)du zT (t − τ )

]T
,

ϕ3(t, s) =

[
zT (t) zT (s) żT (s) f Ta (s)∫ t

s
zT (u)du zT (t − τ )

]T
,

ϕ4(t, s) =

[
żT (s) zT (s)

∫ t

s
żT (u)du

]T
,

ξ1(t) =

[
zT (t) zT (t − τ (t)) zT (t − τ ) żT (t − τ )

]T
,

ξ2(t) =

[∫ t

t−τ (t)

zT (s)
τ (t)

ds
∫ t−τ (t)

t−τ

zT (s)
τ − τ (t)

]T
,

ξ3(t) =

[
f Ta (t) f Ta (t − τ (t)) f Ta (t − τ )

]T
,

ξ4(t) =

[∫ t

t−τ (t)
f Ta (s)ds

∫ t−τ (t)

t−τ
f Ta (s)ds

]T
,

ξ5(t) =

[
gTa (t) g

T
a (t − τ (t)) gTa (t − τ ) hTa (t)

]T
,

ξ6(t) =

[∫ t

t−γ (t)
hTa (s)ds

∫ t

t−τ (t)

∫ t

s

zT (u)
τ 2(t)

duds
]T
,

ξ7(t) =

[∫ t−τ (t)

t−τ

∫ t−τ (t)

s

zT (u)
(τ − τ (t))2

duds
]T
,

ξ8(t) =

[∫ t

t−τ

∫ t

s
zT (u)duds

]T
,

ξ9(t) =

[∫ t

t−τ

∫ t

s

∫ t

u
zT (v)dvduds ωT (t)

]T
,

ξ (t) =

[
ξT1 (t) ξ

T
2 (t) ξ

T
3 (t) ξ

T
4 (t) ξ

T
5 (t)

ξT6 (t) ξ
T
7 (t) ξ

T
8 (t) ξ

T
9 (t)

]T
,

4[τ (t)] = 81[τ (t)] +82 +82[τ (t)] +83 +83[τ (t)] +84[τ (t)]

+85 +8z + ν1 + ν2 + ν3 + ν4 + ν5 − τ 2ϱ

− αeT1 P1e1 − eT21Mae21,

81[τ (t)]= Sym
{
eT1 P1es

}
+ Sym




e1
e3

τ (t)e5 + (τ − τ (t))e6
e10 + e11

e19


T

× P2


es
e4

e1 − e3
e7 − e9

τe1 − τ (t)e5 − (τ − τ (t))e6


 ,

82 =


e1
e1
e7
e0
e0
e3



T

Q1


e1
e1
e7
e0
e0
e3

 +


e1
e1
es
e7
e0
e3



T

Q2


e1
e1
es
e7
e0
e3

 ,

82[τ (t)] = Sym




τ (t)e1
τ (t)e5
e10

τ (t)(e1 − e5)
τ 2(t)e17
τ (t)e18



T

Q1


es
e0
e0
es
e1
e4





− (1 − µ)


e1
e2
e8

e1 − e2
τ (t)e5
e3



T

Q1


e1
e2
e8

e1 − e2
τ (t)e5
e3



−


e1
e3
e4
e9

τ (t)e5 + (τ − τ (t))e6
e3



T

× Q2


e1
e3
e4
e9

τ (t)e5 + (τ − τ (t))e6
e3


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+ Sym




τe1

τ (t)e5 + (τ − τ (t))e6
e1 − e3
e10 + e11

e19
τe3



T

Q2


es
e0
e0
e0
e1
e4




,

83 = τeTs R1es + τ 2eT7 R2e7 + eT1 Pae1 − eT2 Pae2
+ eT2 Pbe2 − eT3 Pbe3
+ Sym{N1D1 + N2D2 + N3D3}

+ Sym{M1E1 +M2E2 +M3E3}

+ Sym{N4D4 + N5D5} + Sym{M4E4 +M5E5}

+ τ

ese1
e0

T

R3

ese1
e0


−

[
e10
e11

]T
(Sym{[X1 X2]})

[
e10
e11

]
,

83[τ (t)] = Sym


τe1 − τ (t)e5 − (τ − τ (t))e6

e19
τ 2

2 e1 − e19

T

R3

e0e0
es


 ,

84[τ (t)] =
τ 2

2
eTs S1es − 2

[
e1 − τf (τ (t)e5 + (τ − τ (t))e6)

]T
× S1

[
e1 − τf (τ (t)e5 + (τ − τ (t)e6))

]
− 4

[
e1 + 2τf (τ (t)e5 + (τ − τ (t))e6) − 6τ 2f e19

]T
× S1

[
e1 + 2τf (τ (t)e5 + (τ − τ (t))e6) − 6τ 2f e19

]
− 6

[
e1 − 3τf (τ (t)e5 + (τ − τ (t))e6) + 24τ 2f e19

−60τ 3f e20
]T
S1

[
e1 − 3τf (τ (t)e5 + (τ − τ (t))e6)

+24τ 2f e19 − 60τ 3f e20
]
,

85 = γdeT15Ye15 − eT16Ye16,

8z = τ 2(t)e17 + (τ − τ (t))2e18 + (τ − τ (t))τ (t)e5
− e19,

ν1 = Sym{[e7 − e8 − (FmW (e1 − e2))]TLf 1
× [(FpW (e1 − e2)) − e7 + e8]

+ [e8 − e9 − (FmW (e2 − e3))]TLf 2
× [(FpW (e2 − e3)) − e8 + e9]

+ [e7 − e9 − (FmW (e1 − e3))]TLf 3
× [(FpW (e1 − e3)) − e7 + e9]},

ν2 = Sym{[e7 − FmWe1]TVf 1[FpWe1 − e7]}

+ [e8 − FmWe2]TVf 2[FpWe2 − e8]

+ [e9 − FmWe3]TVf 3[FpWe3 − e9]},

ν3 = Sym{[e12 − e13 − (GmW (e1 − e2))]TLg1
× [(GpW (e1 − e2)) − e12 + e13]

+ [e13 − e14 − (GmW (e2 − e3))]TLg2
× [(GpW (e2 − e3)) − e13 + e14]

+ [e12 − e14 − (GmW (e1 − e3))]TLg3
× [(GpW (e1 − e3)) − e12 + e14]},

ν4 = Sym{[e12 − GmWe1]TVg1[GpWe1 − e12]

+ [e13 − GmWe2]TVg2[GpWe2 − e13]

+ [e14 − GmWe3]TVg3[GpWe3 − e14]},

ν5 = Sym{[e15 − HmWe1]TVh1[HpWe1 − e15]},

ϱ = Sym{[eT0 eT0 eT5 − eT6 eT0 eT0 ]P2
× [eT0 eT0 eT0 eT0 eT6 − eT5 ]

T
}

+ Sym{[eT0 eT0 eT0 eT0 e12T eT0 ]Q1

× [eTs eT0 eT0 eTs eT1 eT4 ]
T
}

− (1 − τd )[eT0 eT0 eT0 eT0 eT5 eT0 ]Q1

× [eT0 eT0 eT0 eT0 eT5 eT0 ]
T

− [eT0 eT0 eT0 eT0 eT5 − eT6 eT0 ]Q2

× [eT0 eT0 eT0 eT0 eT5 − eT6 eT0 ]
T

+ Sym{L(e12 + e13 − e5)},

51 =

[
τN1 τN2 τN3 τN4 τN5 (

[
e10
e11

]T
X1)

]
,

52 =

[
τM1 τM2 τM3 τM4 τM5 (

[
e10
e11

]T
X2)

]
,

ϒ1 = diag{−τR1 − 3τR1 − 5τR1
− τRa − 3τRa − R2},

ϒ2 = diag{−τR1 − 3τR1 − 5τR1
− τRb − 3τRb − R2},

θp = τf


τ ê1
ê3

ê1 − ê2
ê4
ê5


T

Q2


τ ê1
ê3

ê1 − ê2
ê4
ê5

 ,

Ra = R3 + Sym


0
I
0

Pa
[
I 0 0

] ,
Rb = R3 + Sym


0
I
0

Pb
[
I 0 0

] ,
ϵ0 = λmin(P̂1), ϵ1 = λmax(P̂1), ϵ2 = λmax(P̂2),

ϵ3 = λmax(Q̂1), ϵ4 = λmax(Q̂2), ϵ5 = λmax(R̂1),

ϵ6 = λmax(R̂2), ϵ7 = λmax(R̂3), ϵ8 = λmax(Ŝ1) ,

ϵ9 = λmax(Ŷ ) , ϵ10 = λmax(Ma).

A. FINITE-TIME BOUNDEDNESS
In this subsection, we study finite-time boundedness for the
generalized neural networks with mixed time-varying delays
in the following form:

ż(t) = −A0z(t) + A1f (Wz(t)) + A2g(Wz(t − τ (t)))

+ A3

∫ t

t−γ (t)
h(Wz(s))ds+ A4ω(t),
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z(t) = φ(t), t ∈ [−τ, 0]. (5)

Theorem 1: For given positive scalars τ , τd and γd , the
system (5) is finite-time bounded if there exist matrices P1 ∈

S+
n , P2 ∈ S5n, Qi(i = 1, 2) ∈ S+

6n, Rj(j = 1, 2) ∈ S+
n , R3 ∈

S+

3n S1, Y , Ma ∈ S+
n , any matrices X1, X2 ∈ R2n×n, L ∈

R21n×n such that the following LMIs hold:[
4[τ (t)=τ ]51

∗ϒ1

]
< 0,

[
4[τ (t)=0]52

∗ϒ2

]
< 0,[

4[τ (t)=0] − τ 2ϱ52
∗ϒ2

]
< 0, (6)

P2 + θp > 0, (7)

Ra > 0, Rb > 0, (8)

ϵ0I ≤ P̂1 ≤ ϵ1 I , 0 ≤ P̂2 ≤ ϵ2 I ,

0 ≤ Q̂1 ≤ ϵ3 I , 0 ≤ Q̂2 ≤ ϵ4I ,

0 ≤ R̂1 ≤ ϵ5 I , 0 ≤ R̂2,≤ ϵ6 I ,

0 ≤ R̂3 ≤ ϵ7 I , 0 ≤ Ŝ1 ≤ ϵ8 I ,

0 ≤ Ŷ ≤ ϵ9 I , 0 ≤ Ma ≤ ϵ10I , (9)

eαTf
[
5c1 + ωf ϵ10(1 − e−αTf )

]
< ϵ0c2. (10)

Proof: We construct the Lyapunov–Krasovskii functional
as follows:

V (zt , t) =

5∑
j=1

Vj(zt , t), (11)

where

V1(zt , t) = zT (t)P1z(t) + ϕT1 (t)P2ϕ1(t),

V2(zt , t) =

∫ t

t−τ (t)
ϕT2 (t, s)Q1ϕ2(t, s)ds

+

∫ t

t−τ
ϕT3 (t, s)Q2ϕ3(t, s)ds,

V3(zt , t) =

∫ t

t−τ

∫ t

s
żT (u)R1ż(u)duds

+ τ

∫ t

t−τ

∫ t

s
f Ta (u)R2fa(u)duds

+

∫ t

t−τ

∫ t

s
ϕT4 (t, u)R3ϕ4(t, u)duds,

V4(zt , t) =

∫ t

t−τ

∫ t

s

∫ t

u
żT (v)S1ż(v)dvduds,

V5(zt , t) =

∫ t

t−γd

∫ t

s
hTa (u)Yha(u)duds.

Then, the time derivatives of (10) are calculated as follows:

V̇1(zt , t) = 2zT (t)P1ż(t) + 2ϕT1 (t)P2ϕ̇1(t)

= ξT (t)81[τ (t)]ξ (t), (12)

V̇2(zt , t) = ϕT2 (t, t)Q1ϕ2(t, t)

− (1 − τ̇ (t))ϕT2 (t, t − τ (t))Q1ϕ2(t, t − τ (t))

+ 2
∫ t

t−τ (t)
ϕT2 (t, s)Q1ϕ̇2(t, s)ds

+ ϕT3 (t, t)Q2ϕ3(t, t)

− ϕT3 (t, t − τ )Q2ϕ3(t, t − τ )

+ 2
∫ t

t−τ
ϕT3 (t, s)Q2ϕ̇3(t, s)ds

≤ ξT (t)(82 +82[τ (t)])ξ (t). (13)

Before calculating V̇3(zt , t), we present two zero equations
with the symmetric matrices Pa and Pb ∈ Rn×n inspired by
the work of [5] as follows:

0 = zT (t)Paz(t) − zT (t − τ (t))Paz(t − τ (t))

− 2
∫ t

t−τ (t)
zT (s)Paż(s)ds,

0 = zT (t − τ (t))Pbz(t − τ (t)) − zT (t − τ )Pbz(t − τ )

− 2
∫ t−τ (t)

t−τ
zT (s)Pbż(s)ds.

As a result, the sum of V̇3(zt , t) and two zero items can be
written as

V̇3(zt , t) = τ żT (t)R1ż(t) −

∫ t

t−τ (t)
żT (s)R1ż(s)ds

−

∫ t−τ (t)

t−τ
żT (s)R1ż(s)ds

+ τ 2f Ta (t)R2fa(t) − τ

∫ t

t−τ (t)
f Ta (s)R2fa(s)ds

− τ

∫ t−τ (t)

t−τ
f Ta (s)R2fa(s)ds

+ τ

ż(t)z(t)
0

T

R3

ż(t)z(t)
0


+ 2

 τ z(t) −
∫ t
t−τ z(s)ds∫ t

t−τ

∫ t
s z(u)duds

τ 2

2 z(t) −
∫ t
t−τ

∫ t
s z(u)duds


T

R3

 0
0
ż(t)


−

∫ t

t−τ
ϕT4 (t, s)R3ϕ4(t, s)ds+ zT (t)Paz(t)

− zT (t − τ (t))Paz(t − τ (t))

− 2
∫ t

t−τ (t)
zT (s)Paż(s)ds

+ zT (t − τ (t))Pbz(t − τ (t))

− zT (t − τ )Pbz(t − τ )

− 2
∫ t−τ (t)

t−τ (t−τ )
zT (s)Pbż(s)ds

= τ żT (t)R1ż(t) −

∫ t

t−τ (t)
żT (s)R1ż(s)ds

−

∫ t−τ (t)

t−τ
żT (s)R1ż(s)ds+ τ 2f Ta (t)R2fa(t)

− τ

∫ t

t−τ (t)
f Ta (s)R2fa(s)ds
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− τ

∫ t−τ (t)

t−τ
f Ta (s)R2fa(s)ds

+ τ

ż(t)z(t)
0

T

R3

ż(t)z(t)
0


+ 2

 τ z(t) −
∫ t
t−τ z(s)ds∫ t

t−τ

∫ t
s z(u)duds

τ 2

2 z(t) −
∫ t
t−τ

∫ t
s z(u)duds


T

R3

 0
0
ż(t)


+ zT (t)Paz(t) − zT (t − τ (t))Paz(t − τ (t))

+ zT (t − τ (t))Pbz(t − τ (t))

− zT (t − τ )Pbz(t − τ )

−

∫ t

t−τ (t)
ϕT4 (t, s)Raϕ4(t, s)ds

−

∫ t−τ (t)

t−τ
ϕT4 (t, s)Rbϕ4(t, s)ds.

Using Lemma 3, we have

−

∫ t

t−τ (t)
żT (s)R1ż(s)ds−

∫ t−τ (t)

t−τ
żT (s)R1ż(s)ds

≤ ξT (t)
{
τ (t)

(
N1R

−1
1 NT

1 +
1
3
N2R

−1
1 NT

2

+
1
5
N3R

−1
1 NT

3

)
+ Sym{N1D1 + N2D2 + N3D3}

+ (τ − τ (t))
(
M1R

−1
1 MT

1 +
1
3
M2R

−1
1 MT

2

+
1
5
M3R

−1
1 MT

3

)
+ Sym{M1E1 +M2E2

+M3E3}
}
ξ (t).

By applying Lemma 1 and Lemma 2, we obtain

− τ

∫ t

t−τ (t)
f Ta (s)R2fa(s)ds− τ

∫ t−τ (t)

t−τ
f Ta (s)R2fa(s)ds

≤ −
τ

τ (t)

∫ t

t−τ (t)
f Ta (s)dsR2

∫ t

t−τ (t)
fa(s)ds

−
τ

τ − τ (t)

∫ t−τ (t)

t−τ
f Ta (s)dsR2

∫ t−τ (t)

t−τ
fa(s)ds

= −

[∫ t
t−τ (t) fa(s)ds∫ t−τ (t)
t−τ fa(s)ds

]T [ τ
τ (t)R2 0
0 τ

τ−τ (t)R2

]

×

[∫ t
t−τ (t) fa(s)ds∫ t−τ (t)
t−τ fa(s)ds

]

≤

[∫ t
t−τ (t) fa(s)ds∫ t−τ (t)
t−τ fa(s)ds

]T
×

(
−Sym{[X1 X2]} +

τ (t)
τ
X1R

−1
2 XT1

+
τ − τ (t)
τ

X2R
−1
2 XT2

) [∫ t
t−τ (t) fa(s)ds∫ t−τ (t)
t−τ fa(s)ds

]
.

By utilizing Lemma 4, we get

−

∫ t

t−τ (t)
ϕT4 (t, s)Raϕ4(t, s)ds

−

∫ t−τ (t)

t−τ
ϕT4 (t, s)Rbϕ4(t, s)ds

≤ ξT (t)
{
τ (t)

(
N4R−1

a NT
4 +

1
3
N5R−1

a NT
5

)
+ Sym{N4D4 + N5D5}

+ (τ − τ (t))
(
M4R

−1
b MT

4 +
1
3
M5R

−1
b MT

5

)
+ Sym{M4E4 +M5E5}

}
ξ (t).

Therefore, we obtain

V̇3 ≤ ξT (t){83 +83[τ (t)]}ξ (t). (14)

Further, the calculation of V̇4(zt , t) can be presented as

V̇4(zt , t) =
τ 2

2
żT (t)S1ż(t) −

∫ t

t−τ

∫ t

s
żT (u)S1ż(u)duds.

By applying Lemma 5, we deduce

−

∫ t

t−τ

∫ t

s
żT (u)S1ż(u)duds

≤ −2
[
z(t) −

1
τ

∫ t

t−τ
z(s)ds

]T
S1

[
z(t) −

1
τ

∫ t
t−τ z(s)ds

]
− 4

[
z(t) +

2
τ

∫ t

t−τ
z(s)ds−

6
τ 2

∫ t

t−τ

∫ t

s
z(u)duds

]T
× S1

[
z(t) +

2
τ

∫ t

t−τ
z(s)ds−

6
τ 2

∫ t

t−τ

∫ t

s
z(u)duds

]
− 6

[
z(t) −

3
τ

∫ t

t−τ
z(s)ds+

24
τ 2

∫ t

t−τ

∫ t

s
z(u)duds

−
60
τ 3

∫ t

t−τ

∫ t

s

∫ t

u
z(v)dvduds

]
S1

[
z(t) −

3
τ

∫ t

t−τ
z(s)ds

+
24
τ 2

∫ t

t−τ

∫ t

s
z(u)duds−

60
τ 3

∫ t

t−τ

∫ t

s

∫ t

u
z(v)dvduds

]
.

Then, we obtain

V̇4(zt , t) ≤ ξT (t)84[τ (t)]ξ (t). (15)

Calculation of V̇5(zt , t) is

V̇5(zt , t) = γdhTa (t)Yha(t) −

∫ t

t−γd
hTa (s)Yha(s)ds

≤ γdhTa (t)Yha(t) −

∫ t

t−γ (t)
hTa (s)Yha(s)ds.

By Lemma2, we obtain

−

∫ t

t−γ (t)
hTa (s)Yha(s)ds

≤ −

∫ t

t−γ (t)
hTa (s)dsY

∫ t

t−γ (t)
ha(s)ds.
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Then, we get

V̇5(zt , t) ≤ ξT (t)85ξ (t). (16)

By utilizing Assumption 1, we get

lfi(v1, v2) :

= 2[fa(v1) − fa(v2) − FmW (z(v1) − z(v2))]TLfi
× [FpW (z(v1) − z(v2)) − fa(v1) + fa(v2)] ≥ 0,

vfi(v) :

= 2[fa(v) − FmWz(v)]TVfi[FpWz(v) − fa(v)] ≥ 0,

lgi(v1, v2) :

= 2[ga(v1) − ga(v2) − GmW (z(v1) − z(v2))]TLgi
× [GpW (z(v1) − z(v2)) − ga(v1) + ga(v2)] ≥ 0,

vgi(v) := 2[ga(v) − GmWz(v)]TVgi[GpWz(v) − ga(v)] ≥ 0,

vh(v) := 2[ha(v) − HmWz(v)]TVh[HpWz(v) − ha(v)] ≥ 0,

where

Lfi = diag{l1fi, l2fi, . . . , lnfi},

Vfi = diag{v1fi, v2fi, . . . , vnfi},

Lgi = diag{l1gi, l2gi, . . . , lngi},

Vgi = diag{v1gi, v2gi, . . . , vngi},

Vh = diag{v1h, v2h, . . . , vnh}, i = 1, 2, 3.

Therefore, we have

lf 1(t, t − τ (t)) + lf 2(t − τ (t), t − τ ) + lf 3(t, t − τ )

= ξT (t)ν1ξ (t) ≥ 0, (17)

vf 1(t) + vf 2(t − τ (t)) + vf 3(t − τ )

= ξT (t)ν2ξ (t) ≥ 0, (18)

lg1(t, t − τ (t)) + lg2(t − τ (t), t − τ ) + lg3(t, t − τ )

= ξT (t)ν3ξ (t) ≥ 0, (19)

vg1(t) + vg2(t − τ (t)) + vg3(t − τ )

= ξT (t)ν4ξ (t) ≥ 0, (20)

vh(t) = ξT (t)ν5ξ (t) ≥ 0. (21)

Note that∫ t

t−τ

∫ t

s
z(u)duds =

∫ t

t−τ (t)

∫ t

s
z(u)duds

+ (τ − τ (t))
∫ t

t−τ
z(s)ds

+

∫ t−τ (t)

t−τ

∫ t−τ (t)

s
z(u)duds.

Then, we obtain

0 = 2ξT (t)L
(∫ t

t−τ (t)

∫ t

s
z(u)duds+ (τ − τ (t))

×

∫ t

t−τ
z(s)ds+

∫ t−τ (t)

t−τ

∫ t−τ (t)

s
z(u)duds

−

∫ t

t−τ

∫ t

s
z(u)duds

)

= ξT (t)8zξ (t). (22)

Combining (12)-(22), it can be inferred that

V̇ (zt , t) − αV (zt , t) − αωT (t)Mω(t) ≤ ξT (t)4[τ (t)]ξ (t).
(23)

Obviously the equation (23) is quadratic. By Lemma 8 if

4[τ (t) = τ ] < 0, 4[τ (t) = 0] < 0, 4[τ (t) = 0] − τ 2ϱ < 0.

Therefore, we obtain

4[τ (t)] < 0. (24)

It follows from (23) and (24), we have

V̇ (zt , t) − αV (zt , t) − αωT (t)Mω(t) ≤ ξT (t)4[τ (t)]ξ (t) < 0.

(25)

By multiplying of (25) with e−αt , then (25) becomes

d
dt

(
e−αtV (zt , t)

)
< αe−αtωT (t)Mω(t). (26)

By integrating (26) on [0, t] where t ∈ [0,Tf ] and
Assumption 2, we obtain

V (zt , t) < eαTf
[
V (z0, 0) + α

∫ Tf

0
e−αsωT (s)Mω(s)ds

]
< eαTf

[
V (z0, 0) + ωϵ10(1 − e−αTf )

]
.

Next, we consider V (z0, 0) by Assumption 1, we get

V (z0, 0) ≤ zT (0)P1z(0) + ϕT1 (0)P2ϕ1(0)

+

∫ 0

−τ (0)
ϕT2 (0, s)Q1ϕ2(0, s)ds

+

∫ 0

−τ

ϕT3 (0, s)Q2ϕ3(0, s)ds

+

∫ 0

−τ

∫ 0

s
żT (u)R1ż(u)duds

+ τ

∫ 0

−τ

∫ t

s
f Ta (u)R2fa(u)duds

+

∫ 0

τ

∫ 0

s
ϕT4 (0, u)(s)R3ϕ4(0, u)duds

+

∫ 0

−τ

∫ 0

s

∫ 0

u
żT (v)S1ż(v)dvduds

+

∫ 0

−γd

∫ 0

s
ĤT (u)Y Ĥ (u)duds,

where Ĥ = diag{H+

1 , . . . ,H
+
n }. Furthermore, we let

P̂i = V
−1
2 PiV

−1
2 , Q̂i = V

−1
2 QiV

−1
2 , i = 1, 2,

R̂j = V
−1
2 RjV

−1
2 , j = 1, 2, 3,Ŝ = V

−1
2 SV

−1
2 ,

Ŷ = V
−1
2 ĤTY ĤV

−1
2 . We can derive that

V (z0, 0) ≤ zT (0)V
1
2P1V

1
2 z(0) + ϕT1 (0)V

1
2P2V

1
2 ϕ1(0)

+

∫ 0

−τ (0)
ϕT2 (0, s)V

1
2Q1V

1
2 ϕ2(0, s)ds
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+

∫ 0

−τ

ϕT3 (0, s)V
1
2Q2V

1
2 ϕ3(0, s)ds

+

∫ 0

−τ

∫ 0

s
żT (u)V

1
2R1V

1
2 ż(u)duds

+ τ

∫ 0

−τ

∫ t

s
f Ta (u)V

1
2R2V

1
2 fa(u)duds

+

∫ 0

τ

∫ 0

s
ϕT4 (0, u)(s)V

1
2R3V

1
2 ϕ4(0, u)duds

+

∫ 0

−τ

∫ 0

s

∫ 0

u
żT (v)S1ż(v)dvduds

+

∫ 0

−γd

∫ 0

s
ĤT (u)Y Ĥ (u)duds.

≤

{
λmax(P̂1) + λmax(P̂2) + τλmax(Q̂1)

+ τλmax(Q̂2) +
τ 2

2
λmax(R̂1) +

τ 3

2
λmax(R̂2)

+
τ 2

2
λmax(R̂3) +

τ 3

6
λmax(Ŝ1) +

γ 2
d

2
λmax(Ŷ )

}
× sup
τ2≤s≤0

{zT (s)Vz(s), żT (s)V ż(s)} ≤ 0c1,

where

0 = ϵ1 + ϵ2 + τϵ3 + τϵ4 +
τ 2

2
ϵ5 +

τ 3

2
ϵ6

+
τ 2

2
ϵ7 +

τ 3

6
ϵ8 +

γ 2
d

2
ϵ9. (27)

In addition, it follows from (11) that

V (zt , t) ≥ zT (t)P1z(t)

≥ λmin(P̂1)zT (t)Vz(t) = ϵ0zT (t)Vz(t). (28)

Then, from the inequalities (27)-(28) and the condition (10),
we obtain

zT (t)Vz(t) ≤
eαTf

ϵ0

[
0c1 + ωf ϵ10(1 − e−αTf )

]
< c2.

By definition (3), the system (5) is finite-time bounded. The
proof is complete. □
Remark 6: In Assumption 1, select (v1, v2) as (t, t − τ (t)),

(t − τ (t), and (t, t − τ ). As a result, we incorporated more
information on cross terms between the terms t, t − τ , and
t− τ (t). Thus, our method leads to less conservative stability
criteria.
Remark 7: In this research, the LKFs consist of single,

double, and triple integral terms that make utilize addi-
tional information regarding the delays τ and γd , and a
state variable. We improved LKFs and compared them to
LKFs reported in recent publications [5], [34], [37], [38].
In addition, the LKFs consisting of the triple integral term∫ t
t−τ

∫ t
s

∫ t
u ż

T (v)S1ż(v)dvduds that were not used in [5], [34],
[37], and [38]. Moreover, the stability and performance
analysis has employed more information on activation
functions, as demonstrated by the inclusion of f (z), g(z), and
h(z) in the proof. Constructing improved LKFs and employing

techniques for estimating the time derivatives, which result in
less conservatism.

B. FINITE-TIME STABLE
In this subsection, we investigate finite-time stability for the
GNNs with mixed time-varying delays and asymptotically
stable for the NNs with discrete time-varying delays.
We defined:

ei =
[
0n×(i−1)n In×n 0n×(20−i)n

]
, (i = 1, 2, · · · , 20)

e0 = 020n×n, es = −A0e1 + A1e7 + A2e13 + A3e16,

ψ1(t) =

[
zT (t) zT (t − τ (t)) zT (t − τ ) żT (t − τ )∫ t

t−τ (t)

zT (s)
τ (t)

ds
∫ t−τ (t)

t−τ

zT (s)
τ − τ (t)

]T
,

ψ2(t) =

[
f Ta (t) f Ta (t − τ (t)) f Ta (t − τ )∫ t

t−τ (t)
f Ta (s)ds

∫ t−τ (t)

t−τ
f Ta (s)ds

]T
,

ψ3(t) =

[
gTa (t) g

T
a (t − τ (t)) gTa (t − τ )

hTa (t)
∫ t

t−γ (t)
hTa (s)ds

]T
,

ψ4(t) =

[∫ t

t−τ (t)

∫ t

s

zT (u)
τ 2(t)

duds∫ t−τ (t)

t−τ

∫ t−τ (t)

s

zT (u)
(τ − τ (t))2

duds
]T
,

ψ5(t) =

[∫ t

t−τ

∫ t

s
zT (u)duds

∫ t

t−τ

∫ t

s

∫ t

u
zT (v)dvduds

]T
,

9(t) =

[
ψT
1 (t) ψT

2 (t) ψT
3 (t) ψT

4 (t) ψT
5 (t)

]T
,

2[τ (t)] = 81[τ (t)] +82 +82[τ (t)] +83 +83[τ (t)] +84[τ (t)]

+85 +8z + ν1 + ν2 + ν3 + ν4 + ν5 − τ 2ϱ

− αeT1 P1e1,

6[τ (t)] = 81[τ (t)] +82 +82[τ (t)] +83 +83[τ (t)] +84[τ (t)]

+85 +8z + ν1 + ν2 − τ 2ϱ.

Remark 8: The generalized neural networks (5) without
external disturbance (ω(t) = 0) satisfying (2)-(3) becomes

ż(t) = −A0z(t) + A1f (Wz(t)) + A2g(Wz(t − τ (t)))

+ A3

∫ t

t−γ (t)
h(Wz(s))ds,

z(t) = φ(t), t ∈ [−τ, 0], (29)

Corollary 1: For given positive scalars τ , τd and γd , the
system (29) is finite-time stable if there exist matrices P1 ∈

S+
n , P2 ∈ S5n, Qi(i = 1, 2) ∈ S+

6n, Rj(j = 1, 2) ∈ S+
n , R3 ∈

S+

3n S1, Y ∈ S+
n , any matrices X1, X2 ∈ R2n×n, L ∈ R20n×n

such that the following LMIs hold:[
2[τ (t)=τ ]51

∗ϒ1

]
< 0,

[
2[τ (t)=0]52

∗ϒ2

]
< 0,
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[
2[τ (t)=0] − τ 2ϱ52

∗ϒ2

]
< 0, (30)

P2 + θp > 0, (31)

Ra > 0, Rb > 0, (32)

ϵ0I ≤ P̂1 ≤ ϵ1 I , 0 ≤ P̂2 ≤ ϵ2 I , 0 ≤ Q̂1 ≤ ϵ3 I ,

0 ≤ Q̂2 ≤ ϵ4I , 0 ≤ R̂1 ≤ ϵ5 I , 0 ≤ R̂2,≤ ϵ6 I ,

0 ≤ R̂3 ≤ ϵ7 I , 0 ≤ Ŝ1 ≤ ϵ8 I , 0 ≤ Ŷ ≤ ϵ9 I , (33)

eαTf5c1 < ϵ0c2. (34)

Proof: Similarly to the proof of Theorem 1, therefore, it is
omitted here. □
Remark 9: The generalized neural networks (29) without

distributed delay and W is identity matrix (B2 = 0 and W =

I ) can be written as follows:

ż(t) = −A0z(t) + A1f (z(t)) + A2g(z(t − τ (t)))

z(t) = φ(t), t ∈ [−τ, 0] (35)

satisfying 0 ≤ τ (t) ≤ τ and τ̇ (t) ≤ τd , which mean that the
system (35) becomes a special case of the system (29).
Corollary 2: For given positive scalars τ and τd , the

system (35) is asymptotically stable if there exist matrices
P1 ∈ S+

n , P2 ∈ S5n, Qi(i = 1, 2) ∈ S+

6n, Rj(j = 1, 2) ∈ S+
n ,

R3 ∈ S+

3n S1, Y ∈ S+
n , any matrices X1, X2 ∈ R2n×n,

L ∈ R20n×n such that the following LMIs hold:[
6[τ (t)=τ ]51

∗ϒ1

]
< 0,

[
6[τ (t)=0]52

∗ϒ2

]
< 0,[

6[τ (t)=0] − τ 2ϱ52
∗ϒ2

]
< 0, (36)

P2 + θp > 0, (37)

Ra > 0, Rb > 0. (38)

Proof: The proof of Corollary 2 is similar to the proof of
Theorem 1, hence it is omitted here. □
Remark 10: As demonstrated previously, we can derive

a stability criterion for neural networks with time-varying
delay, even if the delay rate is τ . Our results are more
effective, as illustrated by the numerical example section.

C. FINITE-TIME EXTENDED DISSIPATIVITY ANALYSIS
In this section, we look at the finite-time extended dissipativ-
ity performance of generalized neural networks with discrete
and distributed time-varying delays as follows:

ż(t) = −A0z(t) + A1f (Wz(t)) + A2g(Wz(t − τ (t)))

+ A3

∫ t

t−γ (t)
h(Wz(s))ds+ A4ω(t),

y(t) = B0z(t),

z(t) = φ(t), t ∈ [−τ, 0]. (39)

We define:

4̄[τ (t)] = 81[τ (t)] +82 +82[τ (t)] +83 +83[τ (t)]

+84[τ (t)] +85 +8z + ν1 + ν2 + ν3 + ν4 + ν5

− τ 2ϱ − αeT1 P1e1 − eT1 B
T
0�1B0e1

− Sym{eT1 B
T
0�2e21} − eT21�3e21,

ϵ11 = λmax(BT0 B0), ϵ12 = λmax(�T
2�2),

ϵ13 = λmax(�3).

Theorem 2: For given positive scalars τ , τd and γd , the
system (39) is finite-time extened dissipativity respecting
(c1, c2,Tf ,V , ω) if there exist matrices P1 ∈ S+

n , P2 ∈ S5n,
Qi(i = 1, 2) ∈ S+

6n, Rj(j = 1, 2) ∈ S+
n , R3 ∈ S+

3n
S1, Y , M ∈ S+

n , any matrices X1, X2 ∈ R2n×n, L ∈ R21n×n

such that the following LMIs hold:[
4̄[τ (t)=τ ]51

∗ϒ1

]
< 0,

[
4̄[τ (t)=0]52

∗ϒ2

]
< 0,[

4̄[τ (t)=0] − τ 2ϱ52
∗ϒ2

]
< 0, (40)

P2 + θp > 0, (41)

Ra > 0, Rb > 0, (42)

e−αTf P1 − BT0 ω4B0 > 0, (43)

eαTf
[
ϵ11d + (ϵ12 + ϵ13)ωf

]
< ϵ0c2. (44)

ϵ0I ≤ P̂1 ≤ ϵ1 I , 0 ≤ P̂2 ≤ ϵ2 I ,

0 ≤ Q̂1 ≤ ϵ3 I , 0 ≤ Q̂2 ≤ ϵ4I ,

0 ≤ R̂1 ≤ ϵ5 I , 0 ≤ R̂2,≤ ϵ6 I ,

0 ≤ R̂3 ≤ ϵ7 I , 0 ≤ Ŝ1 ≤ ϵ8 I ,

0 ≤ Ŷ ≤ ϵ9 I , 0 ≤ Ma ≤ ϵ10I , (45)

Proof: By using LKF and the proof of Theorem 1, we have

V̇ (zt , t) − αV (zt , t) − J (t) < ξT (t)4̄τ (t)ξ (t) < 0. (46)

By multiplying of (46) with e−αt and integrating on [0, t],
we obtain

V (zt , t) < eαt
[
V (z0, 0) +

∫ t

0
J (s)ds

]
.

From the condition V (z0, 0) = 0 and 0 < zT (t)P1z(t) <
V (zt , t), we get

0 < e−αtzT (t)P1z(t) < e−αtV (zt , t) <
∫ t

0
J (s)ds. (47)

According to Assumption 4, consider the two case �4 =

0 and �4 > 0.
case IWhen �4 = 0,∫ Tf

0
J (t)dt − sup

0≤t≤Tf
yT (t)�4y(t) =

∫ Tf

0
J (t)dt ≥ 0.

case II When �4 > 0, we have �1 = 0, �2 = 0 and
�3 > 0.
From (47) and for all t ∈ [0,Tf ], we can get∫ Tf

0
J (s)ds ≥

∫ t

0
J (s)ds > e−αtz(t)P1z(t) > 0.

According to condition (43), we obtain∫ Tf

0
J (s)ds ≥ zT (t)BT0�4B0z(t) = yT (t)�4y(t).
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Hence, we get∫ Tf

0
J (s)ds− sup

0≤t≤Tf
yT (t)�4y(t) ≥ 0.

So, the extended dissipativity performance proof is finished.
Next, we prove the finite time boundedness as follows.

V (zt , t) < e−αt
∫ t

0
J (s)ds.

For �1 ≤ 0, we get

V (zt , t) < e−αt
∫ t

0
[2yT (s)�2ω(s) + ωT (s)�3ω(s)]ds.

From V (zt , t) ≥ zT (t)P1z(t) ≥ λmin(P̂)zT (t)Vz(t) =

ϵ0zT (t)Vz(t), it can be expressed as

zT (t)Vz(t)

≤
eαTf

ϵ0

∫ Tf

0
[2yT (s)�2ω(s) + ωT (s)�3ω(s)]ds

=
eαTf

ϵ0

∫ Tf

0
[2zT (s)BT0�2ω(s) + ωT (s)�3ω(s)]ds.

By applying Lemma 6, we obtain

2zT (t)BT0�2ω(t) ≤ zT (t)BT0 B0z(t) + ωT (t)�T
2�2ω(t).

From Assumption (2) and (3), we get

zT (t)Vz(t)

≤
eαTf

ϵ0

∫ Tf

0
[zT (t)BT0 B0z(t) + ωT (t)�T

2�2ω(t)

+ ωT (s)�3ω(s)]ds

≤
eαTf

ϵ0

[
ϵ11d + (ϵ12 + ϵ13)ωf

]
.

From condition (44), we obtain

zT (t)Vz(t) < c2.

As a result, the system (39) is finite-time bounded with an
extended dissipativity. The proof is now complete. □

IV. NUMERICAL EXAMPLES
Next, we show numerical examples to demonstrate the
efficientcy of the present results.
Example 1: Consider the generalized neural networks

described in (5) with the following matrix parameters:

A0 = diag{8.2345, 7.1258, 6.9563},

Fm = Gm = Hm = diag{0, 0, 0},

Fp = diag{0.3457, 0.5378, 0.1852},

GP = diag{1.2539, 0.1258, 0.5971},

HP = diag{1.7509, 0.0211, 0.0913},

A1 =

 1.2357 −1.5634 1.6938
−1.5361 1.3208 −1.7030
1.8239 −1.4675 1.6998

 ,

FIGURE 1. The trajectories of z1(t), z2(t) and z3(t) of system (5) in
Example 1.

A2 =

0.88 1.22 1.02
1.57 1.07 0.33
1.55 0.92 1.11

 ,
A3 =

 1.35 0.25 0.64
−1.82 −0.29 −0.12
0.36 0.87 1.11

 ,
A4 =

0.2 −0.6 0.8
0.3 −0.2 0.2
0.1 −0.5 0.7

 ,
W =

12.3654 2.5876 −0.9782
7.5867 22.5513 3.5236
0.8562 −2.7190 −21.5037

 ,
f (z) = [0.3457 tanh(z1), 0.5378 tanh(z2), 0.1852 tanh(z3)]T ,

g(z) = [1.2539 tanh(z1), 0.1258 tanh(z2), 0.5971 tanh(z3)]T ,

h(z) = [1.7509 tanh(z1), 0.0211 tanh(z2), 0.0913 tanh(z3)]T .

Let the discrete time-varying is τ (t) = 0.8+ 0.5 sin(t), the
distributed time-varying delays is γ (t) = 0.4+0.2 sin(t) and
the external disturbance is ω(t) =

1
1+et . For given scalars

τ = 0.5, ωf = 0.1, c1 = 1.12, T = 30, α = 0.1 and
V is identity matrix. Solving LMIs (6)-(10) in Theorem 1,
we obtain c2 = 3.56.
For an initial condition φ(t) = [−0.1 0.4 0.1]T ,

figure 1 demonstrates the trajectories of solutions z1(t), z2(t),
and z3(t) of generalized neural networks (5) with discrete
time-varying delay (τ (t)) and distributed time-varying delay
(γ (t)) via various activation functions f (z), g(z), and h(z).
Figure 2 illustrates the time history of zT (t)z(t) for the delay
generalized neural network system (5). In conclusion, system
(5) is finite-time boundedness with respect to (1.12, 3.56, 30,
I, 0.1). Thus, this proves the effectiveness of our obtained
results in Theorem 1.
Example 2: Consider the generalized neural networks

described in (29) with the following matrix parameters:

A0 = diag{2, 2}, Fm = Gm = Hm = diag{0, 0},

Fp = diag{0.2, 0.3}, GP = diag{0.4, 0.6},
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FIGURE 2. Time history of zT (t)z(t) for closed-loop system in Example 1.

FIGURE 3. The trajectories of z1(t) and z2(t) of system (29) in Example 2.

HP = diag{1, 0.5}, A1 =

[
1 1

−1 −1

]
,

A2 =

[
0.88 1
1 1

]
, A3 =

[
0.2 −0.6
0.3 0.2

]
, W =

[
1.35 0.45
0.21 1.29

]
,

f (z) = [0.2 tanh(z1), 0.3 tanh(z2)]T ,

g(z) = [0.2(|z1 + 1| − |z1 − 1|), 0.3(|z2 + 1| − |z2 − 1|)]T

h(z) = [tanh(z1), 0.5 tanh(z2)]T .

Let the discrete time-varying is τ (t) = 0.7 + 0.4 sin(t),
the distributed time-varying delays is γ (t) = 0.9+0.3 sin(t).
For given scalars τ = 0.5, c1 = 1, ωf = 0.1, T = 30,
α = 0.1 and V is identity matrix. Solving LMIs (30)-(34) in
Corollary 1, we obtain c2 = 3.89.
For an initial condition φ(t) = [−0.2 0.2]T , figure

1 demonstrates the trajectories of solution z1(t) and z2(t)
of generalized neural networks (29) with various activation
functions and mixed time-varying. Figure 2 illustrates the
time history of zT (t)z(t) for the delay generalized neural
network system (29). In conclusion, system (29) is finite-time
stable with respect to (1, 3.89, 30, I, 0.1). Thus, this proves
the effectiveness of our obtained results in Corollary 1.

FIGURE 4. Time history of zT (t)z(t) for closed-loop system in Example 2.

TABLE 1. Maximum allowable bounds of τ with different τd in Example 3.

Example 3: Consider the neural networks described in
(35) with the following matrix parameters:

A = diag{7.3458, 6.9987, 5.5949}, W0 = diag{0, 0, 0},

W1 = diag{1, 1, 1}, Fm = diag{0, 0, 0},

Fp =

0.3680 0 0
0 0.1795 0
0 0 0.2876

 ,
W =

13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

 ,
f (z) = [0.3680 tanh(z1), 0.1795 tanh(z2), 0.2876 tanh(z3)]T .

Table 1 lists the proposed criteria, the maximum delay
bounds with τ calculated by the Corollary 2. Furthermore
particular, we compare the obtained results to those that
have already been published. The results demonstrate that the
stability conditions given in this article aremore efficient than
those described in the previous literature.
Example 4: Consider the neural networks described in

(35) with the matrix parameters in the following:

A = diag{1.5, 0.7}, W = diag{1, 1},

Fp = diag{0.3, 0.8}, Fm = diag{0, 0},

W0 =

[
0.0503 0.0454
0.0987 0.2075

]
, W1 =

[
0.2381 0.9320
0.0388 0.5062

]
.

Let the neuron activation function is taken as f (z) =

[0.3 tanh(z1), 0.8 tanh(z2)]T . Table 2 displays the proposed
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TABLE 2. Maximum allowable bounds of τ with different τd in Example 4.

TABLE 3. Maximum allowable bounds of τ with different τd in Example 5.

conditions and maximum delay bounds computed by Corol-
lary 2. In addition, we compare the obtained results to those
of previously published studies. The results demonstrate that
the stability conditions presented in this paper are greater
than those found in the existing literature.
Example 5: Consider the neural networks described in

(35) with the matrix parameters as follows:

A = diag{2, 2}, W = diag{1, 1},

Fp = diag{0.4, 0.8}, Fm = diag{0, 0},

W0 =

[
1 1

−1 −1

]
, W1 =

[
0.88 1
1 1

]
.

Let the neuron activation function is taken as f (z) =

[0.4 tanh(z1), 0.8 tanh(z2)]T . The proposed criteria, the
maximum delay bounds with τ estimated by the Corollary 2
are shown in Table 3. Furthermore, we compare the results
with previously published research. The results suggest that
the stability conditions shown in this paper are superior to
those previously outlined in the literature.
Example 6: Consider the neural networks described in

(35) with the matrix parameters as follows:

A0 = diag{1.2769, 0.6231, 0.9230, 0.4480},

W = diag{1, 1, 1, 1}, Fm = diag{0, 0, 0, 0},

Fp = diag{0.1137, 0.1278, 0.7994, 0.2368},

A1 =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

 ,

A2 =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

 .

TABLE 4. Maximum allowable bounds of τ with different τd in Example 6.

TABLE 5. Matrices for each case of extend dissipativity performance.

Table 4 displays the proposed criteria, the maximum delay
bounds with τ computed by Corollary 2. Also, we compare the
obtained results to previously published research. The results
suggest that this paper’s stability conditions are better than
those stated in previous publications.
Remark 11: This paper extends the proof by incorporating

Jensen’s integral inequality, extended Wirtinger’s integral
inequalities, and orthogonal polynomials-based integral
inequality with improved LKFs. Consequently, our maximum
delay outperforms the existing literature, as presented in
Tables 1–4.
Example 7: Consider the generalized neural networks

described in (39) with the following matrix parameters:

A0 = diag{1, 1}, W = diag{1, 1},

Fm = Gm = Hm = diag{0, 0},

Fp = diag{0.12, 0.28}, GP = diag{0.24, 0.38},

HP = diag{0.35, 0.49}, A1 =

[
1.188 0.09
0.09 1.188

]
,

A2 =

[
0.09 0.14
0.05 0.09

]
, A3 =

[
0.44 −0.21
0.29 0.41

]
,

Let the discrete time-varying is τ (t) = 0.7 + 0.5 sin(t),
the distributed time-varying delays is γ (t) = 0.9+ 0.5 sin(t)
and the external disturbance is ω(t) =

√
0.1cos(t). For given

scalars τ = 0.5, c1 = 1.2, ωf = 0.1, T = 30, α = 0.1 and
V is identity matrix. Solving LMIs (40)-(44) in Theorem 2,
we obtain c2 = 4.12.
For an initial condition φ(t) = [−1 1]T , figure 5 demon-

strates the trajectories of solution z1(t) and z2(t) of gener-
alized neural networks (39) with discrete time-varying delay
(τ (t)) and distributed time-varying delay (γ (t)) via various
activation functions f (z) = [0.12 tanh(z1), 0.28 tanh(z2)]T ,
g(z) = [0.12(|z1+1|−|z1−1|), 0.19(|z2+1|−|z2−1|)]T , and
h(z) = [0.35 tanh(z1), 0.49 tanh(z2)]T . Figure 6 illustrates
the time history of zT (t)z(t) for the delay generalized neural
network system (39). In conclusion, system (39) is finite-time
stable with respect to (1.2, 4.12, 30, I, 0.1). Thus, this proves
the effectiveness of our obtained results in Theorem 2.
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FIGURE 5. The trajectories of z1(t) and z2(t) of system (5) in Example 7.

FIGURE 6. Time history of zT (t)z(t) for closed-loop system in Example 7.

TABLE 6. Minimum γd and Maximum β for different values of τd in
Example 6.

V. CONCLUSION
This paper employed the improved LKF to investigate the
problem of finite-time extended dissipativity for generalized
neural networks with time-varying delays. To estimate the
bound of the time derivative, we constructed a suitable
LKF and utilized effective inequalities, including orthogo-
nal polynomials-based integral inequality, Jensen’s integral
inequality, and extended Wirtinger’s integral inequality.
This allowed us to obtain several sufficient conditions
as linear matrix inequalities (LMIs). This article is less
conservative than other recently published publications by
stability criteria. However, there are numerical examples to
demonstrate that the presented results work and are better
compared to [5], [11], [34], [35], [36], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], and
[52]. In future work, this work can be extended to many
dynamical systems, such as neutral-type neural networks and
T-Sfuzzy neural networks, with more efficient techniques
[53], [54], [55], [56], [57], [58], [59], [60], [61], [62].
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