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ABSTRACT Face recognition technology despite its extensive application across various domains. However,
occlusion factors like masks and glasses are significantly impeded by current face recognition models,
resulting in limitations to their practical usage. We present Occlusion-Aware Module Network called
Occlusion-Aware Module-based Network (OAM-Net), designed to enhance the accuracy of occluded face
recognition. OAM-Net comprises two sub-networks: an occlusion-aware sub-network and a key-region-
aware sub-network. The occlusion-aware sub-network incorporates an attentionmodule to adaptivelymodify
the weights of convolutional kernels for optimizing the processing of occluded face images. Meanwhile,
the key-region-aware sub-network integrates a Spatial Attention Residual Block (SARB) for precise
identification and localization of key facial regions. The network’s generalization performance and accuracy
are further enhanced by implementing a meta-learning-based strategy to boost the network’s generalization
performance and accuracy. Experimental results affirm OAM-Net’s superior performance of OAM-Net over
other state-of-the-art methods in occluded face recognition, underlining its significant potential for practical
application.

INDEX TERMS Face recognition, occlusion, spatial attention residual block.

I. INTRODUCTION
Face recognition technology integral to a plethora of
applications in a wide range of applications, provides a
versatile, efficient solution across diverse sectors. In recent
years, the technology has been adopted in security systems,
access control, social media, marketing, and numerous smart
devices, demonstrating its growing importance and relevance
in everyday life [1]. By automatically detecting, verifying,
and identifying human faces within images or video frames,
face recognition systems offer confer numerous benefits,
including bolstered security, enhanced user experience, and
streamlined business processes. In the security and surveil-
lance domain, face recognition technology serves multiple
roles, such as suspect identification, crowd monitoring, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

border control, providing a non-intrusive and efficient mode
of public safety and security assurance public safety and
security [2]. The access control systems have also reaped
the benefits of this technology, as it enables secure and
contactless authentication for building entrances, restricted
areas, and even personal devices like smartphones and laptops
[3]. Social media platforms and marketing efforts have
adopted face recognition technology to refine user experience
and tailor content more precisely. For instance, platforms
such as Facebook use face recognition to automatically
detect and tag friends in photos, simplifying user interactions
[4]. In marketing, companies employ face recognition to
dissect customer demographics and preferences, enabling
personalized advertising and improving overall customer
engagement [5]. Smart devices, including home automation
systems, robotics, and autonomous vehicles, have started to
incorporate face recognition as a means of user identification
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and interaction, providing a more intuitive and personalized
experience for users [6].

FIGURE 1. Examples of Different Occlusion Scenarios in Face Recognition.
(a) shows a face with sunglasses acting as the occluding object,
(b) displays a face masked by a facial covering, and (c) presents a case
where both sunglasses and a mask are worn.

Despite the numerous benefits and widespread adoption
of face recognition technology, challenges such as occlu-
sion factors still pose significant limitations to its overall
performance and accuracy. Occlusions refer to objects or
factors that partially or fully block the view of the face,
such as sunglasses, masks, hands, or even environmental
factors like poor lighting. These occlusions can degrade
the system’s ability to correctly identify or verify faces,
especially in real-world, dynamic environments, as illustrated
in Figure 1. Therefore, it is crucial to develop innovative
methods and algorithms to address these challenges and
improve the reliability of face recognition systems in various
applications.

Occlusion-robust face recognition has been an area of
heightened interest over the years, drawing contributions
from various research paradigms. These paradigms can
be broadly categorized into several groups, based on the
techniques they employ and the challenges they aim to
address. For instance, methods relying on robust principal
component analysis (RPCA) such as the one by Kang et al.
[7] focus primarily on partial occlusions. These techniques
decompose the image into low-rank and sparse matrices, but
they often fall short when the occlusions are severe.

Deep learning-based approaches, like those proposed by
Cai et al. [8] and Cen et al. [9], attempt to integrate occlusion
detection and face recognition into a single framework.While
successful to some extent, these approaches suffer from
limitations such as the need for occlusion-free reference
images, making them less practical for real-world applica-
tions. Attention-basedmethods, pioneered by researchers like
Zhang et al. [10] and Mi et al. [11], adaptively focus on
non-occluded regions. Yet, their performance can degrade
significantly when faced with complex or varying patterns
of occlusion. Region-specific methodologies, like the ones
by Zhu et al. [12] and Yang et al. [13], divide the face
into multiple regions and analyze each independently. This
strategy is efficient for mild or single-region occlusions but
becomes problematic when multiple regions are occluded
simultaneously. On a similar note, generative approaches
such as the one by Lin et al. [14] aim to reconstruct non-
occluded faces. While promising, their success hinges on

the quality of generated faces, which can be inconsistent.
Methods that employ multi-scale or dual-attention mecha-
nisms, like those by Jiang et al. [15] and Miao et al. [16],
offer some relief by focusing both spatially and channel-
wise. However, they, too, are not universal solutions, as they
may struggle with diverse or extreme occlusion scenarios.
Finally, techniques that blend local and global features,
such as those by Ventura et al. [17] and Qi et al. [18],
have been effective to a degree but still have limitations
in dealing with severe or dynamically changing occlusions.
In summary, while each of these paradigms has advanced
the field of occlusion-robust face recognition, none have
provided a comprehensive solution to the myriad challenges
posed by occlusions. The limitations range from handling
severe or complex occlusions, the necessity for occlusion-free
reference images, adaptability to different and dynamically
changing occlusion patterns, to the performance degradation
in real-world scenarios [19], [20], [21].

While these studies have made significant strides in
combating the challenge of occlusions in face recognition,
there are still shortcomings when dealing with severe,
complex, or varying occlusion patterns. Moreover, many
methods require occlusion-free reference images or rely on
the successful generation of non-occluded faces, conditions
that may not always be feasible or pragmatic in real-world
applications. Therefore, continued research and development
are needed to further improve the performance and robustness
of face recognition systems in the presence of occlusions.
In response to these challenges, we propose a novel
convolutional neural network the Occlusion-Aware Module
Network, (OAM-Net) that aims to enhance the accuracy and
robustness of occluded face recognition.

(1) OAM-Net is comprised of two sub-networks: an
occlusion-aware sub-network and a key-region-aware sub-
network. The occlusion-aware sub-network employs an
attention module to adaptively adjust the weights of convo-
lutional kernels, allowing for better processing of occluded
face images. Meanwhile, the key-region-aware sub-network
introduces a Spatial Attention Residual Block (SARB) to
accurately identify and locate key regions in face images,
even in the presence of occlusions.

(2) Additionally, we incorporate a meta-learning-based
strategy to further enhance the generalization performance
and accuracy of the OAM-Net. This strategy allows the
network to adapt more effectively to various occlusion
patterns and to better handle real-world scenarios with
multiple simultaneous occlusions.

(3) Our experimental results substantiate that the OAM-
Net outperforms other state-of-the-art methods in occluded
face recognition, which suggests its significant potential to
propel the field forward and contribute to the development of
more robust and accurate face recognition systems.

II. NETWORK ARCHITECTURE
The OAM-Net is a novel Convolutional Neural Network
(CNN) specifically designed to address the challenges of
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FIGURE 2. Architecture of OAM-Net for enhanced face recognition in occluded scenarios.

occluded face recognition. The network aims to bolster the
accuracy of face recognition systems in the presence of
occlusions, such as masks, glasses, or other obstructions. The
incorporates two main sub-networks: the occlusion-aware
sub-network (OASN) and the key-region-aware sub-network
(KRASN). The OASN functions to adaptively adjust the
weights of convolutional kernels, allowing the network to
better handle occluded face images. This is accomplished
by integrating an attention module that focuses on the most
critical and discriminative features of the face, even in the
presence of occlusions. Consequently, the OASN learns to
prioritize and process only the most relevant information,
reducing the impact of occlusions on the overall recognition
performance. The KRASN is designed to accurately identify
and locate key facial regions accurately. This sub-network
integrates a SARB that refines the feature maps by attending
to the most important spatial locations within the face
image. By zeroing in on these key regions, the KRASN
ensures that the network can extract and leverage the
most discriminative features for face recognition, further
enhancing its robustness against occlusions. The OAM-Net
amalgamates the capabilities of both the Occlusion-Aware
Sub-Network and the Key-Region-Aware Sub-Network to
effectively tackle the challenges associated with occluded
face recognition. The network dynamically adjusts the con-
volutional kernel weights and selectively attends to key facial
regions, guaranteeing that the most germane information is
harnessed for accurate face recognition, even in the presence
of occlusions. The architectural framework of the OAM-Net
is depicted in Figure 2.

III. PROBLEM FORMULATION
A. OASN
The OASN an integral component of the OAM-Net,
is purpose-built to address the challenges presented by
occlusions in face images. The OASN utilizing attention
mechanisms, the OASN accentuates the most relevant
features while simultaneously mitigating the influence of
occluded areas on the recognition procedure.

1) ATTENTION MODULE
The attention module in the OASN is dedicated to the adap-
tive modification of the weights of convolutional kernels to
better process occluded face images. This module comprises
two branches: Channel Attention (CA) and Spatial Attention
(SA), which work together to synergize global and local
attention, facilitating superior feature extraction.

CA is engineered to furnish global context information,
achieving this by gauging the importance of different
channels, which can be computed as follows:

Fca(x) = σ (W2ReLU(W1AvgPool(x))) · x (1)

where x defines the input feature map, W1 and W2 are
the weight matrices of two fully connected layers, ReLU
represents the rectified linear unit activation function, Avg-
Pool denotes the global average pooling operation, σ is
the Sigmoid activation function, and · is the element-wise
multiplication operation.

SA concentrates on the local context and amplifies the
most salient spatial locations in the feature map, which can
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be computed using the following Eq. (2).

Fsa(x) = σ (Conv3×3ReLU(Conv1×1(x))) · x (2)

where Conv3×3 and Conv1×1 represent convolutional layers
with 1 × 1 and 3 × 3 kernel sizes, respectively.

2) ADAPTIVE ADJUSTMENT OF CONVOLUTIONAL KERNEL
WEIGHTS
To further refine the performance of the OASN in processing
occluded facial images, an adaptive adjustment of the convo-
lutional kernel weights, grounded in the attention information
derived from the attention module, is carried out. This
adjustive measure ensures that the network is more focused
on non-occluded regions while reducing the attention given to
occluded sections, thereby enhancing the overall recognition
accuracy. The adaptive adjustment of the convolutional kernel
weights can be expressed as follows:

The adaptation process initiates with a channel-wise
multiplication of the input feature map and the channel
attention weights Fca (x), succeeded by an element-wise
multiplication with the spatial attention weights Fsa (x). This
operation foregrounds the most critical features across both
the channel and spatial dimensions:

xatt (x) = x ⊙ Fca (x) ⊙ Fsa (x) (3)

Following this, the adaptively adjusted kernel weights
are calculated by adding a scaled version of the attention-
weighted feature map to the existing convolutional kernel
weights:

Wadj (x) = W + αxatt (x) (4)

Here,W denotes the original convolutional kernel weights,
Wadj (x) signifies the adaptively adjusted kernel weights and
stands for a learnable scaling factor.

By integrating the attention information into the convo-
lutional kernel weights, the network can concentrate on the
most distinguishing features while suppressing the influ-
ence of occlusions, ultimately yielding superior recognition
performance.

B. KRASN
The KRASN, another fundamental component of the OAM-
Net, is specifically engineered to concentrate on vital facial
regions to enhance recognition performance, particularly in
occluded situations. By pinpointing and localizing these
key facial sectors, the KRASN can extract more significant
features and augment the model’s robustness against a variety
of occlusion types.

1) SARB
Unlike SA, the SARB includes a Batch Normalization (BN)
layer to improve the model’s generalization ability. This is
particularly useful when dealing with complex or variable
data. The SARB acts as the foundational building block of
the KRASN, specifically engineered to identify and highlight

critical facial regions and further optimize corresponding
feature maps. SARB incorporates numerous convolutional
layers, batch normalization layers, activation functions, and
a spatial attention module. The spatial attention module is
particularly oriented toward local context, highlighting the
most relevant spatial locations in the feature maps. The
formulation of the SARB can be expressed as follows

Fsarb (x) = x + Fsa (Conv3×3 (ReLU (BN(Conv1×1(x)))))

(5)

Fsarb (x) representing the post-SARB output feature map.
The final layer of the KRASN generates feature maps that
correspond to the identified essential facial regions. These
feature maps are fused with those generated by the OASN,
resulting in a comprehensive representation of the face
image. This combined representation is then passed into
the classification layer for ultimate face recognition and
categorization.

Although OASN and KRASN employ similar attention
modules, they serve different purposes. The attention mod-
ules in OASN focus on accentuating the most relevant
features while mitigating the influence of occluded areas,
providing a cleaner and more useful feature map for
recognition tasks. On the other hand, those in KRASN are
designed to identify and highlight critical facial regions,
optimizing the corresponding feature maps to be more robust
against a variety of occlusion types. The combination of these
modules ensures comprehensive feature extraction, making
the model robust against various occlusion scenarios.

To harness the complementary data offered by both the
OASN and the KRASN effectively, a feature fusion strategy
is adopted. This strategy amalgamates the feature maps
produced by both sub-networks, resulting in a more robust
and information-rich face image representation. The fusion
is executed via an uncomplicated yet efficient element-wise
addition operation:

Ffusion (x) = Foasn (x) + Fkrasn (x) (6)

Here Ffusion (x) symbolizes the combined feature map,
Foasn (x) is the output feature map of the OASN, and
Fkrasn (x) defines the output feature map generated by the
KRASN.

2) IDENTIFICATION AND LOCALIZATION OF KEY FACIAL
REGIONS
The KRASN utilizes a spatial attention mechanism to
efficaciously recognize and locate crucial facial regions
within the input face images. This mechanism allows the
model to adaptively distribute its processing resources across
different face regions, thereby enhancing its capability to
identify occluded or partially visible facial regions.

The spatial attention module within the KRASN formu-
lates attention maps, accentuating the key facial regions. The
attention weights for each spatial location in the feature maps
can be calculated by applying a softmax function over the
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spatial dimensions:

A(x, y) =
exp(f (x, y))∑H

i=1
∑W

j=1 exp(f (i, j))
(7)

In the equation above, A (x, y) is the attention weight
at the spatial location (x, y) in the feature maps, f (x, y)
is the input feature map at the location (x, y), as well as
H and W represent the height and width of the feature
maps, respectively. Aggregate the weighted feature maps to
generate the final attention-guided feature maps:

Fattention =

H∑
x=1

W∑
y=1

Fweighted (x, y) (8)

These attention-guided feature maps are subsequently
inputted into the subsequent layers of the KRASN for further
processing and feature extraction. With the incorporation of
the spatial attention mechanism, KRASN improves its profi-
ciency in identifying and localizing key facial regions, even
in the presence of occlusions or varying facial expressions.
Consequently, it enhances the overall performance of the
OAM-Net in occluded face recognition tasks.

C. LOSS FUNCTION
To better cater to the unique architecture of the OAM-Net
and effectively tackle the challenges posed by occluded face
images, we propose a specialized loss function. This function
encapsulates three components: Occlusion-aware Subnet-
work loss (OASN loss), Key Region-aware Subnetwork loss
(KRASN loss), and Feature Fusion loss (fusion loss). The
OASN loss centers on modeling occlusion patterns and
modifying the convolutional weights to handle the obstructed
areas, while the KRASN loss emphasizes the facial regions
less impacted by occlusion, thereby supplying additional
discriminative information for the recognition process. The
Feature Fusion loss is formulated as follows:

Lfusion = 1 − cos inesimilarity
(
OASNOutput ,KRASNOutput

)
(9)

The weight coefficients λ1, λ2 and λ3 can be tuned to
control each component’s relative significance in the overall
optimization process. The cosine similarity between two
vectors A and B is defined as follows:

cos inesimilarity(A,B) =
A · B

||A||||B||
=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(10)

In the context of the loss function, A and B represent the
output feature maps of the OASN and KRASN, respectively.
The cosine similarity measures the angle between the two
feature maps and ranges from −1 to 1, with 1 indicating
complete similarity and−1 indicating complete dissimilarity.

For the OASN, the objective is to learn a representation
robust to facial occlusions. Therefore, the OASN loss should
encourage the model to concentrate on occlusion-free regions

while mitigating the impact of occluded regions. A fitting
loss function for this purpose could be a combination of a
binary cross-entropy loss and a masked mean squared error
loss. The binary cross-entropy loss gauges the classification
performance, while the masked mean squared error loss
concentrates on minimizing the reconstruction error in
occlusion-free regions. The OASN loss can be defined as:

LOASN = LBCE + γ · LmaskedMSE (11)

For the KRASN, the aim is to learn a representation that
focuses on the most discriminative facial regions. A suitable
loss function for this purpose could be a contrastive loss,
which aspires to minimize the distance between similar fea-
ture maps while maximizing the distance between dissimilar
feature maps. The KRASN loss can be defined as:

LKRASN =

N∑
i=1

(yi · d2i + (1 − yi) · max(margin− di, 0)2)

(12)

Here, N is the number of image pairs in a mini-batch,
yi is a binary label indicating whether the images in the i-
th pair belong to the same individual (1) or not (0), di is
the Euclidean distance between the feature maps of the i-th
pair, and margin is a positive margin value that represents the
desired separation between dissimilar feature maps.

Finally, we merge the OASN loss, KRASN loss, and the
Feature Fusion loss (as previously defined) into the overall
loss function:

L = λ1 · LOASN + λ2 · LKRASN + λ3 · Lfusion (13)

This loss function concurrently optimizes the performance
of the OASN, KRASN, and the feature fusion process,
and can be fine-tuned using the weight coefficients λ1, λ2
and λ3 to regulate the relative importance of each overall
optimization process.

D. META-LEARNING ALGORITHM
Meta-learning, often termed ‘‘learning to learn,’’ is a
potent machine-learning paradigm, which aims to train
models to adapt rapidly and efficiently to new tasks. Meta-
learning hinges on utilizing prior knowledge garnered from
numerous tasks to enhance a model’s learning capabilities
for novel or previously unseen tasks. Incorporating meta-
learning strategies, allows our OAM-Net to generalize more
effectively and achieve higher accuracy in occluded face
recognition scenarios. This adaptability is vital for handling
the inherent variability in occlusion patterns, ranging from
minor obstructions such as hair or glasses to more prominent
occlusions like masks or heavy makeup.

To improve the generalization capabilities and accuracy of
the OAM-Net, we incorporate a meta-learning strategy lever-
aging the model-agnostic meta-learning (MAML) algorithm.
The emphasis of this approach is on learning a model’s
weight initialization that allows quick adaptation to new
occlusion scenarios. This strategy involves training the model
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on a varied set of face recognition tasks, designed to cover
multiple types of occlusions. This way, optimal initialization
is learned using MAML. Consequently, when the model
encounters a new task or a previously unseen occlusion,
it adapts more efficiently by fine-tuning its parameters based
on the learned initialization.

To exploit the full potential of the MAML-based meta-
learning strategy, we integrate it seamlessly into our OAM-
Net architecture, thereby creating synergy between the
occlusion-aware and key-region-aware sub-networks and the
meta-learning approach. The integration process begins by
training the OAM-Net using a diverse set of face recognition
tasks that cover various occlusion scenarios. This training,
conducted using the MAML algorithm, allows the model to
learn an appropriate weight initialization for rapid adaptation
to new tasks. To thoroughly harness the capabilities of the
MAML-based meta-learning strategy, we adopt a 5-way 1-
shot learning configuration, where N=5 and K=1. In this
setup, each training task comprises N different classes, and
for each class, K labeled examples are provided. The model
is trained to rapidly adapt to new tasks by leveraging these
K examples from each of the N classes to classify the query
set. Mathematically, the objective function for the MAML
optimization in our N-way K-shot scenario can be defined
as:

MinimizeLmeta(θ ) =

∑
τ∼p(τ )

Lτ (fθ ′) (14)

where τ represents a task sampled from the task distribution
p(τ ),Lτ is the loss function for task τ, fθ ′ is themodel adapted
to task τ , and θ ′

= θ − α∇θLτ (fθ ) .

Subsequently, the occlusion-aware sub-network, with its
integrated attention module, processes the occluded face
images, adaptively modifying the convolutional kernel
weights to handle occlusions more effectively. Simultane-
ously, the key-region-aware sub-network, equipped with the
SARB, concentrates on identifying and localizing the key
facial regions in the occluded images. The MAML-based
meta-learning strategy then facilitates the model’s adaptation
to new occlusion patterns by fine-tuning its parameters based
on the learned weight initialization.

IV. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETTING
To assess the OAM-Net’s performance, we conducted exper-
iments on three renowned face recognition datasets. These
datasets were modified with various occlusions to verify the
method’s efficacy in recognizing occluded faces. AR Face
Database [22]: The AR Face Database consists of over 4,000
color images of 126 people, including frontal view faces
with different facial expressions, illumination conditions, and
occlusions (sunglasses and scarves). We selected a subset
of 2,600 images, featuring 50 male and 50 female subjects.
CelebADataset [23]: The CelebA dataset is a large-scale face
attributes dataset comprising over 200,000 celebrity images,
each annotated with 40 attribute labels. The dataset contains

Algorithm 1 The Learning Procedure of OAM-Net
Initialize OAM-Net
Initialize meta-learning algorithm (MAML)
Set number of training tasks (T)
Set number of adaptation steps (K)
Set inner-loop learning rate (α)
Set outer-loop learning rate (β)
1: for each epoch do:
2: for task = 1 to T do:
3: Get task data
4: Split into support and query set
5: for each step in K do:
6: Calc support loss
7: Get grads
8. Update params with α and grads
9: end for
10. Calc query loss
11. Get query grads
12. Update MAML with β and query grads
13: end for
14: end for

various occlusion types, including glasses and facial hair.
We chose a diverse subset of 10,000 images from this dataset.
CASIA-WebFace Dataset [24]: The CASIA-WebFace dataset
includes 494,414 images from 10,575 subjects, covering a
wide range of variations in pose, expression, and illumination.
This dataset, illustrating a broad range of pose, expression,
and illumination variations, was augmented with synthetic
occlusions through an occlusion simulation method.

The experimental setup included a machine equipped with
an NVIDIA GeForce RTX 3090 GPU, Intel Core i9-10900K
CPU, and 64 GB RAM. We started by preprocessing the
images in each dataset using MTCNN1 for face detection
and alignment. Next, we train the OAM-Net using stochastic
gradient descent (SGD) with a learning rate of 0.001,
momentum of 0.9, and weight decay of 5e-4, employing a
batch size of 64 and training the model for 100 epochs.

To evaluate our proposed method’s performance in
occluded face recognition more specifically, we conducted
experiments under various scenarios, including illumina-
tion variation experiments, natural scene experiments, real
occlusion experiments, and simulated random occlusion
experiments. The goal of this comprehensive evaluation
approach is to ensure robust performance across a multitude
of real-world conditions. By evaluating our method in differ-
ent scenarios, we can discern its strengths and weaknesses,
ensuring its capability to handle diverse occlusion types,
lighting conditions, and complex backgrounds.

B. RESULTS AND ANALYSIS
1) ILLUMINATION VARIATION EXPERIMENTS
In these experiments, we evaluated the capacity of OAM-
Net to recognize faces under varying illumination conditions.
First, we introduce artificial lighting changes to the dataset
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images using brightness adjustment techniques. These sim-
ulated real-world illumination conditions. The preprocessed
images, which reflect these various lighting scenarios, are
depicted in Figure 3.

FIGURE 3. Preprocessed images demonstrating varying illumination
condition.

Following image preprocessing, we carried out a com-
parative study of our proposed method alongside several
state-of-the-art face recognition algorithms. Specifically,
we compare the OAM-Net with VGG-Face [25], ArcFace
[26], DeepMaskNet [27], and SFMD [28]. This comparison
served to gauge the OAM-Net’s performance in recognizing
faces under diverse illumination conditions and to underscore
its effectiveness when juxtaposed with other established
methods in the field.

To evaluate the performance of the OAM-Net and the
competing methods under varying illumination conditions,
we employ several widely used evaluation metrics, including
the Rank-1 recognition rate, Rank-5 recognition rate, and
mean average precision (MAP). These metrics enabled us to
quantify the resilience of our proposed method in confronting
the challenges posed by varying illumination and to illustrate
its effectiveness in recognizing occluded faces under different
lighting conditions. The experimental results are outlined in
TABLE 1.

TABLE 1 shows the performance of our proposed OAM-
Net compared to ArcFace and MobileFaceNet on the AR
Face, CelebA, and CASIA-WebFace datasets under varying
illumination conditions. From the table, it is evident that
OAM-Net consistently yields competitive results across all
datasets, illustrating its effectiveness in recognizing occluded
faces under differing lighting scenarios. In particular, the
OAM-Net outperforms both ArcFace and MobileFaceNet on
the AR Face dataset concerning Rank-1 recognition rate,
Rank-5 recognition rate, and MAP. This can be attributed to
the unique architecture of OAM-Net, which incorporates the
OASN and the KRASN. The OASN dynamically adjusts the
weights of the convolutional kernels, allowing the network to
better handle occluded face images by focusing on the most
critical and discriminative features of the face. The KRASN
identifies and localizes key facial regions accurately, further
enhancing the network’s robustness against occlusions. Even
though OAM-Net does not surpass MobileFaceNet in terms
of performance on the CelebA andCASIA-WebFace datasets,
it still delivers competitive results, signifying its potential
for effective face recognition in challenging illumination
conditions. The combination of OASN and KRASN enables

TABLE 1. Performance comparison of OAM-Net, VGG-Face, and ArcFace
on AR Face, CelebA, and CASIA-WebFace datasets under varying
illumination conditions.

OAM-Net to selectively attend to key facial regions and
adaptively adjust the convolutional kernel weights, ensuring
that the most relevant information is used for accurate face
recognition, even in the presence of occlusions and varying
illumination.

2) NATURAL SCENE EXPERIMENTS
In real-world scenarios, face recognition systems often
operate in unrestricted environments, where factors such as
varying background complexities, illumination conditions,
and occlusions can significantly impact their performance.
Thus, assessing the effectiveness of our proposed OAM-
Net in recognizing occluded faces within natural scenes is
vital to ascertain its practical applicability and robustness
under real-world conditions. Our natural scene experiments
aim to highlight the OAM-Net’s competence in handling the
complexities posed by intricate background scenes and occlu-
sions, thereby underscoring its suitability for deployment in
real-life scenarios.

In the natural scene experiments, we continue to use the
same datasets (AR Face, CelebA, and CASIA-WebFace)
and compare the performance of the OAM-Net with the
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FIGURE 4. Examples of real occlusion types-sunglasses, masks, and a combination of glasses and masks.

previously mentioned methods, VGG-Face and ArcFace. The
results of these experiments are presented in TABLE 2, which
provides a comprehensive comparison of the performance
of our proposed method and the competing methods under
realistic, natural scene conditions.

TABLE 2 illustrates that the OAM-Net consistently
surpasses the VGG-Face and ArcFace methods across
all datasets under natural scene conditions. This superior
performance stems from the unique design and mechanisms
of the OAM-Net, which enable it to better manage occluded
faces in challenging environments. The OASN and KRASN
synergistically address challenges presented by natural scene
conditions. The OASN dynamically adjusts the weights of
the convolutional kernels, thereby enhancing the network’s
capability to process occluded face images. This is achieved
by incorporating an attention module that focuses on the
most critical and discriminative features of the face, even
in the presence of occlusions. Conversely, the KRASN is
engineered to accurately identify and localize key facial
regions. By integrating a SARB, the sub-network refines
the feature maps by attending to the most important spatial
locations within the face image. This approach ensures that
the network can extract and leverage the most discriminative
features for face recognition, further enhancing its robustness
against occlusions and complex backgrounds found in natural
scenes.

3) REAL OCCLUSION EXPERIMENTS
In this series of experiments, we assess the performance
of OAM-Net in recognizing faces featuring real occlusions
such as sunglasses, masks, and a combination of both. These
occlusions represent prevalent challenges encountered by
face recognition systems in real-world situations. Evaluating
OAM-Net’s competence in managing these particular occlu-
sion types is intended to demonstrate its capacity to deliver
accurate recognition outcomes under realistic conditions.
We assembled a test set by collecting 230 face images
featuring occlusions by sunglasses and masks. Subsequently,

TABLE 2. Performance comparison of OAM-Net, VGG-Face, and ArcFace
on AR Face, CelebA, and CASIA-WebFace datasets in natural scene
conditions.

we tested our proposed method by simulating sunglasses and
mask occlusions on the dataset and applying real-world sun-
glasses and mask occlusions for testing. This comprehensive
assessment allows us to gauge the performance of OAM-
Net under varied occlusion scenarios, further showcasing its
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TABLE 3. Real occlusion experiment results.

robustness and adaptability when faced with the complexities
of occluded face recognition. Examples of the test images are
depicted in Figure 4.

In addition, the results for the real occlusion experiments
using the real-world test set with sunglasses, masks, and a
combination of both are shown in TABLE 3.
TABLE 3 demonstrates that the contributions of OAM-

Net’s OASN and KRASN are instrumental in its ability to
recognize faces featuring real occlusions in authentic test
scenarios. Through the adaptive modification of the weights
of convolutional kernels and the selective attention to key
facial regions, OAM-Net retains accurate face recognition
performance even amidst challenging occlusions.

4) SIMULATED RANDOM OCCLUSION EXPERIMENTS
In this series of experiments, our objective is to assess OAM-
Net’s proficiency in managing diverse and unpredictable
occlusion scenarios by introducing simulated random occlu-
sions to the dataset images. These occlusions, encompassing
random patches, scratches, and blur effects, mimic complex
situations that are commonly encountered in real-world set-
tings. By gauging the network’s accuracy in recognizing faces
subjected to simulated random occlusions, we can discern
the effectiveness of OAM-Net in handling complex and
varied occlusion situations. To perform these experiments,
we initially simulate occlusions by incorporating random
patches, scratches, and blur effects into the dataset images.
We then test OAM-Net’s capacity to accurately identify the
occluded faces and juxtapose its performance with leading
face recognition algorithms. In Figure 5, we display test
samples with diverse occlusion ratios to further examine the
performance of OAM-Net under different levels of occlusion.

FIGURE 5. Performance of OAM-Net and baseline algorithms on face
recognition with simulated occlusions at different occlusion ratios.

The outcomes of the experiments are compiled in
TABLE 4. The proposed OAM-Net outperforms

TABLE 4. Simulated random occlusion experiment results.

TABLE 5. Simulated random occlusion experiment results.

state-of-the-art algorithms significantly in recognizing faces
with simulated random occlusions. The top recognition rate
of 92.5% is achieved at a 30% occlusion ratio, demonstrating
OAM-Net’s robustness and efficacy in handling diverse and
unpredictable occlusion situations. These results underscore
the potential of OAM-Net for practical face recognition
applications in challenging environments.

5) ABLATION STUDY
To validate the effectiveness of each module in our
OAM-Net, we conducted an ablation study. The goal of
this study is to assess the incremental contributions of
the occlusion-aware sub-network (OASN), the key-region-
aware sub-network (KRASN), and their respective attention
modules. We evaluated the following variants of our
model:

1) Baseline Model: A standard CNN without OASN or
KRASN.

2) OASN Only: Baseline + OASN without the attention
module.

3) KRASN Only: Baseline + KRASN without the
attention module.

4) OASN + Attention: Baseline + OASN with the
attention module.

5) KRASN + Attention: Baseline + KRASN with the
attention module.

6) OAM-Net (Full Model): Baseline+OASN+KRASN
+ Both attention modules.

The results are summarized in Table 5.
From Table 5, it is evident that each component contributes

to the overall performance of the model. The introduction of
OASN results in a substantial performance increase, mainly
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because it adaptively adjusts convolutional kernel weights
to handle occluded facial images. This enables the model
to focus on the most relevant features, thereby reducing the
impact of occlusions on recognition performance. Adding
KRASN offers a different set of advantages, primarily its
ability to identify and localize key facial regions, which
makes the model robust against various occlusion types. This
is particularly useful in complex scenarios where multiple
regions of the face are obscured, ensuring that the most
discriminative features are still captured. The inclusion of
attention modules in both sub-networks serves to fine-
tune the feature extraction process. Channel Attention (CA)
provides a global context, while Spatial Attention (SA)
focuses on local features, allowing the model to balance
between general and specific facial characteristics. Finally,
the full OAM-Net model, which combines all these compo-
nents, achieves the highest accuracy. This result reinforces
the synergy between the components, demonstrating that
their combined operation addresses multiple facets of the
occlusion problem more effectively than any individual part
could.

V. DISCUSSION
The introduction of OAM-Net marks a significant advance-
ment in face recognition by adeptly addressing the challenge
of identifying faces under diverse occlusion scenarios.
Traditional models have often underperformed in situations
with prevalent occlusions, such as crowded environments
or surveillance systems. In contrast, OAM-Net, with its
integrated attention mechanisms like OASN and KRASN,
not only fills this gap but also raises questions about
potential comparisons with other attention mechanisms like
self-attention or graph-based attention. Exploring alternative
or hybrid attention architectures might further enhance the
model’s capabilities.

While the robustness of OAM-Net against occlusions is
commendable, there are inherent challenges. Its computa-
tional complexity might limit its deployment in resource-
restricted settings. Therefore, future work should prioritize
optimization techniques like model pruning or quantization.
Additionally, the model’s dependency on extensive labeled
datasets underscores the potential benefits of semi-supervised
or unsupervised training approaches.

OAM-Net’s performance under extreme occlusion con-
ditions remains an area to be explored, especially when
confronted with heavy facial occlusions or those mimicking
facial features. Moreover, its versatile architecture has
implications beyond face recognition, such as object tracking
or gesture recognition, opening avenues for applications in
fields like autonomous driving or human-robot interactions.

Lastly, as OAM-Net’s applications broaden, particularly
in areas like surveillance, the ethical dimensions of privacy
and data security cannot be overlooked. It’s imperative that
responsible usage and secure data handling practices are
integral to its future developments.

VI. CONCLUSION
The OAM-Net is a specialized CNN architecture designed for
enhanced face recognition in occluded scenarios. It integrates
two synergistic sub-networks: the Occlusion-Aware Sub-
Network (OASN) and the Key-Region-Aware Sub-Network
(KRASN). OASN adaptively adjusts convolutional kernel
weights to focus on unobscured facial features, while
KRASN identifies key facial regions, enhancing the model’s
robustness against various types of occlusions. Experimen-
tal results demonstrate OAM-Net’s superior performance
compared to existing methods on challenging datasets,
underscoring its potential for real-world applications such as
security and human-computer interaction.
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