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ABSTRACT Blockchain technology is attracting attention for its high usability in various fields such as IoT
and healthcare, and it is being used as an alternative to distributed databases. Despite their high usability, the
techniques for efficiently indexing blockchain-based geospatial point data have not been studied much until
now. In this paper, we propose a hierarchical quadrant spatial LSM tree(i.e., HQ-sLSM tree) which effectively
indexes large amounts of geospatial point data from the blockchain by reflecting its write-intensive feature.
The geospatial point data is linearized using Geohash before being inserted into our proposed HQ-sLSM tree.
Furthermore, we present the concept of a spatial filter which enables low disk I/O generating algorithms to
process range and kNN queries over the HQ-sLSM tree. Experiments confirmed that the HQ-sLSM tree
performed exceptionally well for the insertion of point data, and the performance of range and kNN query
processing resulted second to the best after the R-tree.

INDEX TERMS Blockchain, component table, hierarchical quadrant spatial LSM tree, kNN query, LSM
tree, range query, spatial filter.

I. INTRODUCTION
As the prevention of forgery and falsification of geospatial
point data stored in real time has become a core require-
ment for various geospatial data services, blockchain-based
geospatial data services are attracting a lot of attention
recently. IBM has developed a blockchain-based food
distribution information system [14] that allows consumers
to track every step of delivery. A spatial blockchain system
FOAM [9] has developed a transaction service protocol
that combines blockchain addresses and geographic point
information. British university has developed a model that
responds to disasters by combining blockchain decentralized
P2P with drones and autonomous vehicles [4]. In addition,
it is being used in various fields that require reliability and
openness of information such as land transactions [3], IoT
[7], [29], and healthcare [4], [6].
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Numerous spatial indexing for geospatial spatial point
data such as the KD-tree [34] and Quad-tree [8] exist.
However, these structures are not optimized for write-
intensive workloads. In the case of the KD-tree, it is a
memory-based spatial index structure which is not suitable
for indexing massive amount of geospatial point data stored
on a disk-based blockchain.

For the Quad-tree, the data space is recursively decom-
posed into quadrants until the number of points in each
quadrant is less than the page capacity. However, it is not
suitable for indexing geospatial point data stored in the
blockchain since the insertion of a data point to a Quad-
tree incurs disk I/Os every time, leading to a large number
of disk I/Os in a write-intensive environment. This brings
up the need to research effective spatial indexing techniques
for geospatial point data stored in blockchains with a write-
intensive feature.

Blockchain-based geospatial information service has dif-
ferent characteristics from the data management environment
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assumed by existing geospatial databases [10], [30]. The first
characteristic is the immutability of data. In other words,
data stored on the blockchain is not deleted or changed.
Therefore, as the service continues, the size of geospatial data
in the blockchain increases, and we need an efficient disk-
based spatial index for these massive amount of immutable
geospatial data. Second, a blockchain is mostly managed
in a write-intensive environment where data blocks holding
large amounts of data are inserted in real time. Although
there is some difference in the TPS(Transactions per second)
between a centeralized blockchain system [20] such as VISA,
PAYPAL and a decentralized blockchain system which are
mainly used for cryptocurrency systems such as Ethereum
[36], insertion of data is the majority action related with
the blockchain. Therefore to index spatial data from the
blockchain, we need an index structure that perfoms well
against a write-intensive environment with large amounts of
data insertion.

A spatio-temporal blockchain query processing method
based on Merkle Block Space Index(BSI) was proposed [28].
The BSI is a modification of the Merkle KD-tree [21]. It was
developed to only index spatial point data stored in each block
of the blockchain. A separate BSI index is stored in each
block to support a fast local search for point data in the block.
Thus, BSI does not support indexing the entire point data
in the blockchain, which means it cannot perform a global
search. Various database systems use the R-tree [12] as a
spatial data indexing technique. However, disk-based R trees
are not optimized for indexing blockchain-based geospatial
data due to the large number of random disk I/Os generated
in the insertion process.

The LSM-tree [27] and its improved variations such as the
LSM B-tree [31] are a non-spatial data indexing technique
widely used and optimized for write-intensive environments.
Some examples of databases that use the LSM-tree structure
include AsterixDB [1], Google BigTable [5], Cassandra [18]
and Apache HBase [2]. There were several approaches to
utilize or expand the LSM-tree to cope with frequent spatial
data insertions and to efficiently support global spatial data
search.

One approach based on LevelDB [11], was to store spatial
data in a tree-like supplementary index [23], [37]. Instead of
directly searching the LSM-tree when processing a query,
the supplementary index is searched first. Although this
method provides a solution for indexing multi-dimensional
data, two weaknesses make this approach not suitable for
our needs. First, the need for reading two index trees to
process a query triggers read amplification. Second, the
supplementary index tree also needs to be merged when the
components of LSM-tree are flushed and merged causing
a large update cost. Recently, an embedded R-tree(ER-tree)
[13] was proposed which improved the two weaknesses of
using a supplementary index tree. However, the ER-tree is
not suitable for practical applications due to the fact that
it provides a decent performance only on a read-intensive
workload.

Another approach was to expand the LSM-tree structure
itself to directly index multi-dimensional data. As a result,
the LSM R-tree [1], [16], [33], the Dynamic Hilbert B+-
Tree(DHB-tree) [19] and the Dynamic Hilbert-Valued B+-
Tree(DHVB-tree) [19], SHB-tree [17], SIF [17] index have
been proposed.

A comparative performance analysis of these indexing
methods has been conducted [17], [24], [25], [26]. In this
study [17], DHB-tree and DHVB-tree were implemented
using the main ideas from [19], which explains in detail about
indexing spatial data points using a B-tree with space-filling
curves and methods to support spatial range queries.

From the index trees mentioned above, the LSM R-tree
was shown to perform better than the DHB-tree, DHVB-
tree, SHB-tree, SIF in terms of the disk I/O cost required
for data insertion and processing similarity (i.e., range and
kNN) queries. However, since a single R-tree at each disk
level covers the entire spatial data space, disk I/Os necessary
for spatial data insertion and similarity query processing of
LSM R-tree are still large.

To reduce the disk I/O costs of the existing spatial indexing
schemes mentioned above, we propose a disk-based external
index tree which resides outside a blockchain in this paper.
The index tree is named the Hierarchical Quadrant spatial
LSM tree(i.e., HQ-sLSM tree). We introduced the initial
version of the HQ-sLSM tree in [32], with the name spatial
LSM tree(i.e., sLSM tree). The sLSM tree lacked detail in the
index structure and the similarity query processing algorithms
were not given. We improved the sLSM tree to the HQ-sLSM
tree by refining and optimizing the index structure to support
the efficient processing of range and kNN queries.

The HQ-sLSM tree is a spatial extension of the LSM-tree
to index geospatial point data. The coordinates of the point
data are linearized via Geohash [22]. It also maintains the
separate B-trees for all the quadrant spaces at each disk level
of the LSM-tree, whose structure significantly reduces disk
I/Os needed for geospatial point data insertions and spatial
similarity query processing.

The key contributions of our proposed method are
summarized as follows:
• We propose a disk-based external index named HQ-
sLSM tree to efficiently index and handle similarity
queries on massive amount of geospatial point data
stored in a write-intensive blockchain environment
where large amounts of point data insertions are
generated in real time.

• We propose the disk I/O cost-effective range and kNN
query processing algorithms based on the HQ-sLSM
tree.

• We develop spatial filters for the HQ-sLSM tree to
avoid traversing its unnecessary disk components when
processing range and kNN queries.

The remainder of this paper is organized as follows.
Section II analyses and compares related research works
regarding using the LSM-tree structure to index spatial
data. Section III describes the detailed structure of the HQ-
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sLSM tree including its component table and spatial filters.
Furthermore, the algorithm for inserting geospatial point
data into the HQ-sLSM tree is also given in Section III.
In Section IV and section V, we present the range and kNN
query processing algorithms for the HQ-sLSM tree. The
extensive experimental results of our algorithm is analyzed
in Section VI. Finally, Section VII provides our concluding
remarks.

II. RELATED WORKS
This section discusses the relevant existing research works
on indexing spatial data using the LSM-tree structure. The
LSM-tree [27] structure is proven to perform well for write
operations. The one problem with this efficient structure is
that multi-dimensional data cannot be indexed directly. Two
approaches to utilize the LSM-tree structure for indexing
spatial data were briefly mentioned in section I.
Many index trees that inherit the characteristic of the

LSM-trees have been developed. By using the R-tree [12]
widely used in spatial databases, a LSM R-tree [1], [16],
[33] was developed to improve its performance for insertion
and query processing. An LSM R-tree consists of an in-
memory component and zero or more disk components.
An in-memory component of an LSM R-tree consists of
a traditional R-tree along with a deleted-key B+-tree that
captures deleted entries. A disk component is a variant of an
R-tree, where it orders indexed entries using a Hilbert curve
[15] when loading the tree. AsterixDB [1] is one of the main
databases that currently uses a LSM R-tree.

The Dynamic Hilbert B+-Tree(DHB-tree) [19] and the
Dynamic Hilbert-Valued B+-Tree(DHVB-tree) [19] use the
Hilbert space filling curve and a B+-tree to index spatial data.
The two spatial indexes can be applied to the LSM-tree, which
makes the direct indexing of point data possible. However,
the computation of Hilbert values for every point triggers a
large overhead in the insertion process. Thus, the LSMR-tree,
DHB-tree and the DHVB-tree is not an efficient structure for
indexing spatial point data in a blockchain environment.

The SHB-tree [17] is also based on an underlying LSM B-
tree index. It uses the Hilbert curve and a grid based approach
to index spatial data. The SIF [17] supports spatial indexing
based on an LSM inverted index. The focus of the SHB-tree
and SIF are set more towards a range query. It also tends to
be more suitable for indexing spatial objects other than points
because the point data is always only indexed in the last level
of the SHB-tree.

Using a secondary index outside the LSM-tree was an
another solution with a few drawbacks. The embedded R-
tree(ER-tree) [13] was proposed as an efficient method for
indexing spatial data while using a secondary index by
improving the drawbacks. The ER-tree is in the form of
a LSM-tree, built from a SER-tree index(embedded R-tree
on a SSTable). It uses the Hilbert space filling curve [15]
to sort the data points, and the disk nodes consist of a
integration between the R-tree index and a SSTable. Rather
than arranging the secondary index outside the ER-tree, it acts

TABLE 1. Indexing methods for spatial data.

as if the index is inside the ER-tree. This architecture reduces
the read amplication that occurs from reading two index trees
in order to process a query. Experiments in the paper state
that the ER-tree showed better results in query performance
compared to the LSM R-tree.

Although the ER-tree uses the LSM-tree structure opti-
mized for insertion, the R-tree indexes in the disk nodes
trigger high overhead as the write ratio in a workload
increases. While it may be efficient in processing queries, the
ER-tree is not suitable to use in a write intensive blockchain
environment, leading to the necessity of our proposed HQ-
sLSM tree. Table 1 shows the characteristics of the indexing
methods introduced above and our approach in a tabular form.

III. HIERARCHICAL QUADRANT SPATIAL LSM TREE
This section describes the structure of the hierarchical
quadrant spatial LSM tree (i.e., HQ-sLSM tree) along with its
component table and spatial filters. This section also presents
the algorithm for inserting geospatial point data into the HQ-
sLSM tree, which was developed based on the disk I/O cost-
effective component flush algorithm.

A. BASIC STRUCTURE OF THE HQ-sLSM TREE
As shown in Figure 1,the HQ-sLSM tree has two parts, the
memory and disk. The memory part consists of one memory
component and a component table which will be dealt in
detail in III-C. The memory component (i.e., C0) contains
the most recent point data extracted from the blockchain in
the form of a B-tree index. The disk part consists of disk
components, where each disk component corresponds to a
quadrant space at each hierarchical level. Likewise memory,
a disk component contains the index for the distributed
geospatial point data in the form of a B-tree.
Figure 2 shows an example of the hierarchical quadrant

space decomposition in the HQ-sLSM tree. The memory
component indexes the most recently inserted point data.
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FIGURE 1. Structure of the HQ-sLSM tree for Blockchain-based geospatial
point data.

FIGURE 2. Hierarchical quadrant space decomposition for disk levels 1 to
4 with MDL 3.

When the size of the memory component exceeds a
threshold x, the indexes in memory are partitioned into four
quadrant space groups and flushed to level 1. Then, the
flushed index from memory are merged with the four Level
1 quadrant space disk components(i.e., C1,0, C1,1, C1,2, C1,3)
accordingly. Similarly, when the size of a disk component
in level i exceeds a given threshold, the index of the disk
components are partitioned into four, gets flushed andmerged
with level i + 1 disk components. For example, if the size
of the disk component C1,1 in level 1 disk exceeds the
threshold x, it is flushed and merged with the four level 2 disk
components (i.e., C2,4, C2,5, C2,6, C2,7) corresponding to the
quadrants 4, 5, 6, 7 at level 2 space as shown in Figure 2.
Each disk component in a level i is given a number(i.e.,

a geohash value of a component) ranging from 0 to 4i − 1.
The geohash for the component uses a 2 · i-bit binary number.
The component numbers in Figure 2 are shown as decimal
numbers.

The hierarchical quadrant space decomposition increases
the number of components in each level. Thus without any
further restrictions, the total number of disk components of
the HQ-sLSM tree will increase as the tree gets deeper. Along
with it, the size of the component table holding metadata for
the components and the maintenance overhead of the tree will
get bigger as well.

In order to reduce the maintenance overhead, we set a
limit on a disk level to stop the decomposition of quadrant
space. We name this disk level as Maximum Decomposition
Level (MDL). The formal definition of MDL is given in the
following definition 1.

Definition 1: Given a HQ-sLSM tree with its component
threshold x, the disk level where the hierarchical quadrant
space decomposition is no longer allowed is defined as the
MDL(Maximum Decomposition Level) of the HQ-sLSM
tree. The threshold of all the disk components at level i disk
where i > MDL is set to 2(i−MDL)× x.
Definition 1 states that the component space is no longer

decomposed into smaller quadrants after MDL. Instead, the
threshold for each component increases. Before theMDL, the
threshold value for the components remain the same.

For example, Figure 2 shows the structure of the HQ-sLSM
tree when the MDL is set to 3. From level 4 and onwards,
the space does not get decomposed. The thresholds for all
disk components up to level 3 are set to x. Threshold for disk
components at level 4 are set to (2(4−3) × x) = 2x, which is
twice the size of the threshold of level 3. If disk components
of level 5 disk are added, their thresholds will be set to
(2(5−3) × x) = 4x, which is twice the size of the threshold
of level 4.

An node in the B-tree of the component has two
attirbutes (Geohash, Blockaddress) to index the point data.
The Geohash is a z-order number of point (x,y). Geohash
becomes the search key used for building the B-tree each
component Ci,j maintains. Note that unlike the geohash
values of disk components, a 32-bit binary number was used
as a geohash value to linearize each point in this paper. The
BlockAddress is the address of the blockchain where point
data (x,y) and its associated additional data are stored.

B. SPATIAL FILTERS
Each component in the HQ-sLSM tree has a spatial filter
which indicates the existence of a point data in the four sub-
quadrants of its component space. A spatial filter is a 4-bit
string in the form of b0b1b2b3 where b0, b1, b2, and b3
represent SW (South West), NW (North West), SE (South
East), and NE (North East) sub-quadrants of a component
space.

Figure 3 shows an example of a spatial filter of a given
component A. The sub-quadrant space of the component A is
shown in Figure 3a. At this point, only 2 data points(O1, O2)
exist in the NE sub-quadrant. Therefore, the spatial filter for
component A is 0001 as shown in Figure 3c. Figure 3b shows
the insertion of pointO3 into the SW sub-quadrant. After this
insertion, the spatial filter for component A will be updated
to 1001 as shown in Figure 3d.

Spatial filters play a key role in reducing disk I/O-costs for
processing range and kNN queries along with the hierarchical
structure of the disk components and the quadrant space
decomposition structure of the HQ-sLSM tree. With the
spatial filter, it is possible to avoid accessing unnecessary disk
components which result in a reduce of disk I/O costs. This
will be dealt in sections IV and V.

C. COMPONENT TABLE
The component table is managed in memory and maintains
metadata for all the components in the HQ-sLSM tree.
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FIGURE 3. An example of the spatial filter of a component.

The information in the component table helps to avoid
unnecessary disk component access while processing range
and kNN queries. Before creating the component table, a few
terms need to be defined.

To utilize the spatial filter and the query filter explained in
section III-B and , we define the smallest unit quadrant .
Definition 2: Given a HQ-sLSM tree with its MDL, the

smallest unit quadrant is a quadrant with the area of
dividing the total space into 4MDL+1 quadrants.

The smallest unit quadrants are also each given a geohash
value. In each disk component of each level, we are able
to obtain the range of the smallest unit quadrant geohash
values that fall into the component. Going back to Figure 2
for example, component 0 in level 1 will contain the smallest
unit quadrants numbered from 0 to 63. The component 0 in
level 2 will contain 0-15, and component 1 of level 2 will
contain 16-31 smallest unit quadrants respectively. This range
of smallest unit quadrants is named the unit quadrant range of
a component, and it is stored in the component table.

For a component, we define LL and UR in the following
definitions 3 and 3. We illustrate the examples of the two
definitions in Figure 4.
Definition 3: Given a component A in a HQ-sLSM tree,

and let LL be the smallest unit quadrant at the lower left
corner of A. minkey(A) returns the geohash value (32-
bit binary number) of the lower left corner point (x,y) of
LL of A.
Definition 4: Given a component A in a HQ-sLSM tree,

and let UR be the smallest unit quadrant at the upper right
corner of A. maxkey(A) returns the geohash value (32-bit
binary number) of the upper right corner point (x,y) of UR
of A.

As shown in Figure 4, the lower left corner unit quadrant
is named LL, and the upper right corner unit quadrant is
named UR. The geohash value of LL and UR becomes the
minimum and maximum geohash values for the component.
Thus, the geohash values inside the component will be
in between the minimum and maximum. We define the

FIGURE 4. Range of geohash values in a component.

TABLE 2. Column attributes for components in the component table.

two functions to compute this minimum and maximum
geohash values for a given component. The formal definition
of these two functions are also given in 3 and 4. The
column attributes of the component table are described
in table 2.
Figure 5a shows an example of geospatial point data

distribution indexed by an HQ-sLSM tree in memory, level 1,
and level 2. The corresponding component table is given in
Figure 5b. In this example, the MDL is set to 3, therefore
256 smallest unit quadrants are created with their geohash
values ranging from 0 to 255. The first row of the component
table stores information about the memory component. Since
the memory component covers the entire space, its lower and
upper bound for the unit quadrant becomes 0 and 255. The
minimum and maximum geohash key values for the memory
becomes minkey(0) and maxkey(255). The spatial filter is
stored as 1101 because the 12 point data shown in the leftmost
example of Figure 5a are distributed in the SW, NW, and the
NE sub-quadrants.

The second to the fifth rows of the component table store
the metadata of the four level 1 disk components(i.e., C1,0,
C1,1, C1,2, C1,3) which currently indexes 11 point data. The
second row has the meta data of level 1 C1,0 disk component,
which indexes the point data in the quadrant space with the
unit quadrant range of 0 to 63. The minimum and maximum
key for the component are minkey(0) and maxkey(63). Its
spatial filter is stored as 1011 because the 8 point data shown
in the middle example of Figure 5 are distributed in the SW,
SE, and NE sub-quadrants of its component space.

The third row has the meta data of C1,1 level 1 disk
component, which is indexing the point data in the quadrant
spacewith the unit quadrant range of 64 to 127. Theminimum
and maximum key for the components are minkey(64)
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FIGURE 5. An example of data distribution indexed by HQ-sLSM tree with
a component table.

and maxkey(127). Its sf , C_addr , and num are stored as
0000, NULL, and 0 because no point data exists in the
corresponding component space. The sixth row and thereafter
rows of the component table store the metadata of the sixteen
level 2 disk components (i.e., C2,0, C2,1, . . ., C2,15). Since
the component space is continuously being decomposed into
quadrants, the threshold value 12 remains the same up until
level 2.

D. INSERTION OF POINT DATA
An update is needed in the HQ-sLSM tree when a new block
is added to the blockchain. The point data contained in the
new block are indexed in the memory component first. If the
size of the memory component exceeds its threshold during
data insertion, the memory component is flushed and merged
to the level 1 disk components. The disk components at the
lower level are also flushed and merged with their next level
in a similar manner when they exceed their thresholds.

Algorithm 1 insert_data(P = (x, y), b_addr)
INPUT P:: a point (x, y)

b_addr :: the block address

1: Global Component Table CT;
2: int geo; ▷ geohash value of point

3: geo = GeoHash(P); ▷ compute the geohash value of
point P

4: Let BM be the B-tree of the memory component;
5: Insert (geo, b_addr) into BM ▷ CT [0].num++
6: if (CT [0].num ≥ CT [0].th) then
7: Flush Memory Component;

Algorithm 1 gives the method to insert point data
into the memory component located at the top level of

FIGURE 6. Flush and merge of components.

the HQ-sLSM tree. After receiving a data point and an
address of the block as the input, the geohash value for
the the point data(x,y) is computed(32-bit binary num-
ber). The newly computed geohash value and the address
of the block is the actual data that gets inserted in the
tree.

Figure 6a shows the flushing and merging of the first
component of level 1(i.e. C1,0) in detail. The range of
numbers in the figure represents the unit quadrant range.
When C1,0 having the unit quadrant range 0 to 63 exceeds
its threshold, it is first partitioned into four quadrant
space groups with the corresponding unit quadrant ranges
(i.e., 0-15, 16-31, 32-47, and 48-63). These four partitioned
groups are flushed to the level 2 disk. In the level 2 disk, the
components with the unit quadrant range of 0-15 and 32-47
already exists while the components with the unit quadrant
range of 16-31 and 48-63 do not exist. Thus, among the four
partitioned groups flushed to level 2, the two groups with
the unit quadrant range of 0-15 and 32-47 are merged with
the two existing level 2 disk components with the same unit
quadrant range. The other two flushed groups with the unit
quadrant range 16-31 and 48-63 become two new level 2 disk
components. The process of merging components are shown
in Figure 6b.

After flushing and merging processes are finished,
an update of the component table for all the affected
components are necessary(i.e., C1,0, C2,0, C2,1, C2,2, C2,3).
Since C1,0 was flushed to level 2, it is empty with no data
indexed. Thus, we update its metadata (i.e., sf = 0000, num=
0) in the component table. The metadata for the affected level
2 disk components are also done accordingly(sf , C_addr ,
and num).

While Figure 6 shows the process of flush and merge for
a component in the level before MDL, this process works
slightly differently for components in the level after MDL.
The levels after MDL has no more space decomposition.
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Thus, there is no need for the indexes in a component to be
partitioned into four quadrant space groups. All the indexes in
the component merely has to be flushed to the same quadrant
space at the next disk level.

Regardless of the location of the component, we make
sure that no component ever exceeds the threshold during
the flush and merging process. This is assured by checking
if the remaining space of the component corresponding
to the quadrant at the next disk level where the flushed
index data will be merged is bigger than the size of index
data being flushed. The remaining space of a component
is calculated by using the th and num attributes of the
component table. We compare the size of the indexes
being flushed with the value of (th − num) of the com-
ponent at the next level. If the latter value is smaller,
it implies that there is currently no sufficient space in the
component.

In this case, the component at the next level is pre-flushed
tomake space. This process is done recursively as many times
as needed. After making space in the next level, we flush the
indexes. The flushed indexes are merged with the pre-existing
B-tree of the component at the next level.

IV. RANGE QUERY PROCESSING
A. GENERATING QUERY FILTERS
A range query retrieves all the point data in the HQ-sLSM tree
whose distance from a query point q is within a given range r .
Our range query processing algorithm proposed in this paper
for the HQ-sLSM tree first generates a query filter based on a
given query range. The query filter is a set of smallest unit
quadrant numbers whose corresponding quadrants overlap
with our query range.

A detailed algorithm for creating the query filter is given
in algorithm 2. The create_query_filter function recieves
an MBR (Minimum Bounding Rectangle) as an input.
With the given MBR, the smallest unit quadrant containing
the lower left corner point of the MBR and the upper
right corner of the MBR is computed respectively. All the
smallest unit quadrants with the geohash value inbetween
the two values computed above are put into a candidate
set. Then a refinement step is performed. The overlapping
area between the MBR and the smallest unit quadrants
in the candidate set are checked. The geohash values of
the overlapping smallest unit quadrants become the query
filter.

The query filter gives us the set of specific components
subject to access for a query. However, to perform an even
better search, we compare the query filter with the spatial
filters of the relevant components to filter out accessing
unecessary components in the query filter. Figure 7 shows
the difference of using a spatial filter together with the query
filter in detail.

The shaded area in Figure 7 implies the query range.
Because it overlaps with component A, the component will
be included the query filter. If the spatial filter is not used

FIGURE 7. Example of using the spatial filter.

as shown in Figure 7a, component A is a subject of access.
However, using the spatial filter as shown in Figure 7b, we can
see that no data exists in the area where the component and
query range overlap. The first two bits of the spatial filter
(i.e., 0011) of component A are both 0. Therefore although
in the query filter, component A does not need to be accessed
while processing this query. The spatial filter and the query
filter together helps to reduce unnecessary disk component
accesses, making our search very effective.

Algorithm 2 create_query_filter(M )
INPUT M :: an MBR

OUTPUT Q_filter :: a set of z-order numbers

1: Set Q_filter, Q_cand;

2: Q_filter ←⊘
3: Q_cand ←⊘

4: Compute the smallest unit quadrant L to which the lower
left corner point ofM belongs;

5: Compute the smallest unit quadrant R to which the upper
right corner point ofM belongs;

6: Compute the geohash value i for L;
7: Compute the geohash value j for R;
8: Q_cand = {t|i ≤ t ≤ j}

9: for (each t in Q_cand) do ▷ refinement step
10: Let D be the smallest unit quadrant identified by the

geohash value t;
11: if (D overlapsM ) then
12: Q_filter ← Q_filter ∪ t

13: return Q_filter

B. A RANGE QUERY ALGORITHM FOR HQ-sLSM TREE
Figure 8a shows an example of creating a query filter for a
given range and utilizing it for a range query. The MDL is set
to 2 in this example, thus by dividing the space into 4MDL+1

units, the query filter has a range between 0-63. With the
given query point and the radius, we obtain the query filter
containing 16 smallest unit quadrants(i.e, 2,3,4,. . . 36,37) as
shown in Figure 8b.
Using the spatial filter information from the component

table given in Figure 8c, it is possible to filter out unnecessary
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components from the query filter at each level. In level 1,
the spatial filter of the component corresponding to the unit
quadrant range of 32-47 is 0000. Thus, the component does
not need to be accessed. Refering to the component table,
we filter out 3 more components in level 2 as shown in
Figure 8d.

Algorithm 3 receives a query point q and a radius r . The
output is all the point data included in the query range.
The algorithm uses a priority queue to store the query
result. A node of the priority queue has two attributes(point,
euclidean distance from query point). First, the memory
component is searched to obtain points that are inside the
query range. Then, an MBR for the circle centered at query
point q with a radius of r is created and the MBR is passed
to algorithm 2 to generate the query filter as shown in lines
10 and 11 of algorithm 3.

Next, we search the HQ-sLSM tree by going through
each row of the component table from the top. One detail
to take notice is that the component table is read from
the second row as shown in line 13 in algorithm 3. Since
the memory component has already been searched, the first
row of the component table storing information about the
memory component is ignored. From the second row and
onwards, a row(component) can be skipped if any of the two
following conditions are satisfied. First, if the num attribute of
a component is 0. This implies that the component is empty.
Second, if the area of a component does not overlap at all
with the MBR created at the beginning of the algorithm, the
component is not an interest for the query.

If a component does not fall into the two conditions
mentioned above, the spatial filter and the query filter
are compared to determine if the component needs to be
accessed. The accessing of a component happens when two
conditions are satisfied at the same time. First, a sub-quadrant
of a component has a spatial filter value of 1. Second,
the sub-quadrant mentioned in the first condition overlaps
with the query filter. To check for the second condition,
we use the function in_qfilter defined in line 31. Recieving a
quadrant and the set of the query filter as inputs, the in_qfilter
function computes the lb and ub of the quadrant. If a number
between the lb and ub exist in the query filter, it implies
that the quadrant overlaps with the query filter and 1 is
returned.

Assuming that the two conditions are satisfied, the next
step is to access the component and retrieve indexes which fits
our query. When accessing a component, we use the function
RQ. This function traverses the B-tree of the component and
returns all search key data points e=(x,y) whose geohash
value is between two given numbers. We compute theminkey
and maxkey of the sub-quadrant and use it with the function
RQ. Lines 27 to 29 describe the process of adding data
points actually within the query range to the result set. Going
through each search key data in the result of RQ, we calculate
the Euclidean distance between the data point and the query
point. If the distance is smaller than the range r , the data
point is en-queued to the result set. After searching the last

Algorithm 3 range_query(q, r)
INPUT q:: A query point (x, y)

r :: Radius
OUTPUT Q:: A set of query results

1: Global Component Table CT;
2: Global Set Q_filter;
3: Priority Queue Q;
4: Set R;
5: int i; ▷ row number of CT
6: int check; ▷ return value of in_qfilter function

7: Let BM be the B-tree of the memory component;
8: {p1, . . . , pn} = the set of points in BM within the distance
DistE (r, q) to q;

9: Q = <(p1,DistE (q, p1)),. . . ,(pn,DistE (q, pn))>

10: Construct a MBR M for the circle centered at q with a
radius r ;

11: Q_filter = create_query_filter(M );

12: Let N be the last row number of CT ;
13: for (i = 1; i ≤ N ; i++) do
14: if (CT [i].num == 0) then
15: continue;
16: Let M ′ be the quadrant corresponding to CT[i];
17: if (M ′ ∩M = ∅) then
18: continue;

19: Let b0b1b2b3 be the CT [i].sf
20: for (k = 0; k ≤ 3; k ++) do
21: Let X be the corresponding quadrant for bk ;
22: check = in_qfilter(X ,Q_filter);

23: if (bk == 1 & check) then
24: B is the B-tree accessed by CT[i].C_addr;
25: min=minkey(X); max=maxkey(X);
26: R← RQ(B,min,max);
27: for (each search key data point e in R) do
28: if (DistE (q, e) ≤ r) then
29: En-queue<(e,DistE (q, e))>;
30: return Q

▷ Determines if quadrant is in the Query filter
31: function in_qfilter(X ,Q_filter)
32: Compute the lb and ub of the quadrant X;
33: Let F = {s|lb ≤ s ≤ ub}
34: if ((F ∩ Q_filter) ̸= ∅) then
35: return 1
36: else
37: return 0

row of the component table, the result set is returned and the
algorithm terminates.
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FIGURE 8. Example of query filters for query processing.

V. kNN QUERY PROCESSING
The basic idea of the kNN query processing algorithm is to
quickly find the k-nearest neighbors to the query point in the
HQ-sLSM tree. The kNN candidates and the query range are
updated at the end of searching a level. We propose two types
of algorithms to process the kNN query for the HQ-sLSM
tree in this paper. The common idea of the two methods is
that we narrow the search range as we traverse the levels of
the HQ-sLSM tree.

A. A TOP-DOWN METHOD
The first is a Top-down method where we start by searching
the memory component and then move to the higher
level of disk components. Algorithm 4 is a kNN query
processing algorithm for the corresponding approach.

Algorithm 4 has a similar structure to the range query
algorithm proposed in section IV. The main difference is that
the query range changes for each level of the HQ-sLSM tree.
In other words, we conduct a range query at each level with a
range that gets smaller as the level increases. The first step in
algorithm 4 is to obtain the k-nearest neighbors and create a
candidate set for the query point in the memory component.
The initial distance is set to a large value in order to search the
entire memory space. The candidate set is stored in a priority
queue, with each node having two attributes(point, euclidean
distance from query point). The queue is always kept in a
descending order by the second attribute. Thus meaning that
the kth closest point is at the front of the queue and the closest
point is at the end of the queue. The reason for this order is
to de-queue the kth point efficiently when a closer neighbor
has been found.

Algorithm 4 TopDown_kNN (q, k)
INPUT q:: a query point (x, y)

k:: a number k
OUTPUT Q:: a set of query results

1: Global Component Table CT;
2: Global Set Q_filter;
3: Global Priority Queue Q; ▷ kept in descending order
4: int lvl = −1; ▷ current level
5: int check; ▷ return value of in_qfilter function
6: int r←∞; ▷ distance

7: Let BM be the B-tree of the memory component;
8: {p1, . . . , pk} = the k nearest points in BM sorted in

descending order of their DistE to q;
({pm, pm+1 . . . , pk} may be ⊘ if B contains < k points)

9: Q = <(p1,DistE (q, p1)),. . . ,(pj,DistE (q, pj))> (m≤j≤k)

10: if (|Q| == k) then
11: r = DistE (q, p1);

12: Let N be the last row number of CT
13: for (i = 1; i ≤ N ; i++) do
14: if (CT [i].dl > lvl) then ▷ new level
15: Construct a MBR M for the circle centered at q

with a radius r ;
16: Q_filter ←⊘;
17: Q_filter = create_query_filter(M );
18: lvl = lvl + 1;
19: if (CT [i].num == 0) then
20: continue;
21: Let M ′ be the quadrant corresponding to CT[i];
22: if (M ′ ∩M = ∅) then
23: continue;
24: Q = kNN_comp_access(i);
25: return Q

If k candidates are obtained from memory, the distance of
the query range r is updated to the first element in the queue.
If not, the distance of the query range does not change as we
move on to visit level 1. With the current distance, a query
filter is created for disk level 1. A search in a level follows the
same process described in section IV. A search of the HQ-
sLSM tree is made by visiting each row of the component
table. As line 13 of algorithm 4 shows, the component table
is scanned from the second row because the first row holds
information about the memory component which was already
searched earlier. We first check to see if the component can
be skipped by looking at the num attribute and comparing the
quadrant of the component with the MBR created earlier.

A component gets accessed when a sub-quadrant of
a component has a spatial filter value of 1 and the
corresponding sub-quadrant overlaps with the query filter.
This process is executed by the function knn_comp_access
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Algorithm 5 kNN_comp_access (i)
INPUT i:: row number of component table

OUTPUT Q:: a set of query results

1: Global Component Table CT;
2: Global Set Q_filter;
3: Global Priority Queue Q; ▷ kept in descending order
4: Set R;

5: Let b0b1b2b3 be the CT [i].sf
6: for (k = 0; k ≤ 3; k ++) do
7: Let X be the corresponding quadrant for bk ;
8: check = in_qfilter(X ,Q_filter);

9: if (bk == 1 & check) then
10: B is the B-tree accessed by CT[i].C_addr;
11: min=minkey(X); max=maxkey(X);
12: R← RQ(B,min,max);

13: for (each search key data point e in R) do
14: if (DistE (q, e) ≤ r) then
15: if (|Q| < k) then
16: En-queue<(e,DistE (q, e))>;
17: else
18: De-queue <(p1,DistE (q, p1))>;
19: En-queue<(e,DistE (q, e))>;
20: r = DistE (q, p1);
21: return Q

given in algorithm 5. The structure of algorithm 5 has a lot in
common with the middle part of the range query algorithm.
The same functions in_qfilter and RQ given in algorithm 3
are also used in algorithm 5. Going through each search key
data in the result of RQ, we calculate the distance between the
data point and the query point.

The difference between the two algorithms appear after
function RQ has been processed. If there are k entries in
the candidate set, and the computed distance of search key
data point is smaller than the distance to the first element
in the queue, the first element(current kth neighbor) is de-
queued and the new search key data gets en-queued. Once
the candidate set is sorted, the distance r is updated to the new
first element in the queue. However, if there are less than k
entries in the candidiate set, search key data is first en-queued
until the candidate set contains k entries.
After a search of a level is completed, the query filter

gets initialized. As described in line 14 of algorithm 4, the
beginning of a new level is determined by checking the dl
attribute of the component table. With the current distance
r , a new query filter for new level is made. The distance for
making the query filter will shrink at each level, which means
less components will be a subject of access as we traverse the
levels of the HQ-sLSM tree.

FIGURE 9. Example of top-down kNN query processing.

Figure 9 shows an example of a Top-down kNN query
processing algorithm. Assume that the query range shown in
Figure 8a and the query filter corresponding to Figure 8b are
created after searching the memory component and obtain a
candidate set of k-nearest neighbors. By the comparing the
generated query filters with the given range and the spatial
filters shown in Figure 8c, only the component corresponding
to the unit quadrant range of 0-15 are searched in level 1.
When the candidate set is updated after searching level 1, the
distance for the query range is changed to the furthest data
point entry in the set. As Figure 8b shows, the range has been
narrowed down as we search level 2.

The rest of the process is carried out in a similar manner.
Using the new distance range, we create a new query filter
for level 2. By comparing it with the spatial filters we retrieve
3 components in level 2. The top-down algorithm terminates
when we reach the last level of the HQ-sLSM tree, returning
the set of query results.

B. A BOTTOM-UP METHOD
The Bottom-up algorithm for processing a kNN query is
shown in algorithm 6. This method traverses the HQ-sLSM
tree from the last level to the top. For this algorithm, the
last level of the HQ-sLSM tree is defined as MAX_LEVEL.
The first step of this algorithm is to visit the last level of the
HQ-sLSM tree and access the component which corresponds
to the quadrant where the query point is located in. From
this component, we obtain k-nearest neighbors for the query
point and form a candidate set. The candidate set is stored in
the priority queue having the same structure as the top-down
method.

If the k candidates are not obtained from the component at
the last disk level, we check the spatially adjacent components
in the last disk level and obtain the lacking number of
candidates. k candidates must be obtained from the last level
of the HQ-sLSM tree before moving on to another level. After
creating the candidate set, the distance of the query range r is
updated to the first element in the queue.

Before we start traversing the tree, a range query needs
to be conducted with the distance r at the last disk level
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Algorithm 6 BottomUp_kNN (q, k)
INPUT q:: a query point (x, y)

k:: a number k
OUTPUT Q:: a set of query results

1: Global Component Table CT;
2: Global Set Q_filter;
3: Global Priority Queue Q; ▷ kept in descending order
4: int i; ▷ row number of CT
5: int lvl=MAX_LEVEL + 1; ▷ current level
6: int check; ▷ return value of in_qfilter function
7: int r←∞; ▷ distance

8: Find the largest row number a of CT whose disk
component contains the point q;

9: Let B be the B-tree accessed by CT[a].C_addr;
10: {p1, . . . , pk} = the k nearest points in B sorted in

descending order of their DistE to q;
({pm, pm+1 . . . , pk} may be ⊘ if B contains < k points)

11: Q = <(p1,DistE (q, p1)),. . . ,(pj,DistE (q, pj))> (m≤j≤k)

12: if (|Q| < k) then
13: Obtain the remaining top (k−|B|) points intoQ from

B-trees spatially close to CT[a] at disk level CT[a].dl;
14: r = DistE (q, p1);
15: With the distance r , perform a range query at at disk

level CT[a].dl to validate that Q holds the top-k nearest
indexes;

16: If Q changes, r = DistE (q, p1);

17: Let N be the last row number of CT
18: for (i = N − 4MDL; i ≥ 1; i−−) do
19: if (CT [i].dl < lvl) then ▷ new level
20: Construct a MBR M for the circle centered at q

with a radius r ;
21: Q_filter ←⊘
22: Q_filter = create_query_filter(M );
23: lvl = lvl − 1;
24: if (CT [i].num == 0) then
25: continue;
26: Let M ′ be the quadrant corresponding to CT[i];
27: if (M ′ ∩M = ∅) then
28: continue;
29: Q = kNN_comp_access(i);

30: Let BM be the B-tree of the memory component;
31: for (each search key data point e in BM ) do
32: if (DistE (q, e) ≤ r) then
33: De-queue <(p1,DistE (q, p1))>;
34: En-queue<(e,DistE (q, e))>;
35: r = DistE (q, p1);
36: return Q

as displayed in line 15 of algorithm 6. This is to assure
that the obtained candidate set actually contains the top-k
nearest indexes. There may be a case where the query point is
located very near a boundary of a component, and the nearest
neighboring indexes are actually located in the spatially close
components rather than the disk component that contains the
point q. If a change in the candidate set occurs, the query

range r is updated again to the first element in the queue.
After this step, the HQ-sLSM tree can be traversed upwards
with the candidate set Q. Since the last level has already
been searched with the process above, the HQ-sLSM tree
is traversed from (MAX_LEVEL − 1) level to the top after
creating a query filter with the current distance. Line 18 of
algorithm 6 shows that the component table is searched for
levels (MAX_LEVEL − 1) to 1.

The rest of the process is the same as the Top-downmethod.
The query filter is initialized and re-created at a new level,
and the accessing of a component is executed by the function
knn_comp_access given in algorithm 5. The transition of
levels is determined by the dl attribute of the component table
as described in line 19 of algorithm 6. After searching level 1,
the memory component of the HQ-sLSM tree is searched
before the termination of the algorithm.

By using the bottom-up method, we start the search of
the tree with a very small range compared to the top-down
method. Therefore as we traverse the tree, less components
become a subject of access resulting in less disk I/Os. Given a
querywith the same number of k , the bottom-upmethod tends
to perform better than the top-down method. A more detailed
comparison of the two kNN query processing algorithm is
analyzed in section VI-F.

VI. PERFORMANCE ANALYSIS
A. EXPERIMENTAL DATA
The proposed techniques for the HQ-sLSM tree were
experimented and compared with the existing LSM-tree,
and the R-tree which is primarily used for indexing data in
spatial database systems. Furthermore, comparisons with the
LSM R-tree was made as it showed the best performance
amongst other expanded LSM structures such as the DHB-
tree, DHVB-tree, SHB-tree and SIF [17]. To compare the
existing LSM-tree with the HQ-sLSM tree, we linearized
the coordinate information of the point (x,y) using a 32-bit
geohash value and indexed it using the LSM- tree. We name
this tree as the zLSM-tree. For the zLSM-tree used in the
following experiments, the size of the disk component at each
level was increased to 2 times the size of the disk component
at the previous disk level.

Two synthetically generated datasets and one real dataset
covering the territory of South Korea were used for the
experiments in this paper. All data points were either
generated or sampled within the geographic location. The
first synthetic dataset contains uniformly distributed point
data, and the second synthetic dataset contains point data
following a gaussian distribution. For the real dataset,
we used the real GPS point data provided by Open-StreetMap
[35]. Up to 10 million data points within the territory of
South Korea was sampled to create the dataset. A blockchain
storing the geospatial point data from the datasets were
created. The number of disk I/Os was measured for the HQ-
sLSM tree, the R-tree, the zLSM-tree, and the LSM R-tree
when indexing geospatial point data from the blockchain. The
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FIGURE 10. Performance comparisons for the index construction with an increasing size of blockchain data.

disk I/O was measured blockwise. A movement of a block
from memory to disk was counted as 1 disk I/O, and a disk to
disk movement was counted as 2 disk I/Os.

Our experiments were performed on a 64-bit Linux
operating system with 8 processors. Each processor was
a Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz model,
having a spec of 128GB RAM and 1TB SSD.

B. THEORETICAL ANALYSIS
A disk component is made up of multiple blocks, which are
referred to as disk blocks. Any actions(read or write) that
involve accessing a disk component is done in disk block
units. If the total number of data entries is N and B entries
fit into a disk block, the cost for inserting the data in the
zLSM-tree is O(1/B × logT (N/B)) I/Os where T represents
the ratio of the disk component size between adjacent levels.
In the zLSM-tree, each entry gets copied O(logT (N/B))
times. In order to copy an entry, a block has to be accessed
resulting in 1 disk I/O because all operations are processed
blockwise. Therefore, the cost of copying one entry can be
thought of as O(1/B). The multiplication of the two results
gives the insertion cost of the zLSM-tree.

In the worst case where an entire level is flushed, the HQ-
sLSM tree approximates the zLSM-tree. Due to the different
ratio of disk component size at levels, the HQ-sLSM tree can
be viewed as a mix of two zLSM-trees with a different value
T . Thus to calculate the disk I/O cost of the HQ-sLSM tree
for insertion and searching a data point, we analyze the tree
in two parts.

First, we calculate the disk I/O cost for insertion. The space
is divided into four until the MDL, which increases the total
disk component size of a level by a multiple of 4. In the worst
case, this approximates a zLSM-tree with the value T = 4.
Naming this part of the HQ-sLSM tree t1, its disk I/O cost
becomes O(1/B × log4(N/B)). The threshold is doubled for
components after the MDL level which increases the total
disk component size of a level by a multiple of 2. Again in
the worst case, this approximates a zLSM-tree with the value
T = 2. By naming this part of the tree t2, we can represent
the whole HQ-sLSM tree as t1 + t2. The disk I/O cost for
t2 becomes O(1/B× log2(N/B)).
The lower bound disk I/O cost of insertion for the HQ-

sLSM tree becomes O(1/B × log4(N/B)) when only the

t1 part exists in the tree. On the contrary, the upper bound disk
I/O cost of insertion becomesO(1/B×log2(N/B)) when only
the t2 part exists in the tree. To summarize, if the HQ-sLSM
tree consists of part t1 and t2, its disk I/O cost is less than
O(1/B × log2(N/B)) and greater than O(1/B × log4(N/B)).
In general, the HQ-sLSM tree tends to have a better disk I/O
cost than the worst case calculated above due to the fact that a
level is not very often flushed entirely in the HQ-sLSM tree.

Second, the disk I/O cost for searching a point data in the
zLSM-tree is O((logT (N/B))2) where T represents the ratio
of the disk component size between adjacent levels. The cost
above is obtained by multiplying the cost of traversing the
tree from the topO(logT (N/B)), and the cost of using a binary
search to search a point in a component O(logT (N/B)).

In the case of the HQ-sLSM tree, we can narrow down the
location of the point being searched. Using the component
table allows us to easily identify the disk component that
needs to be searched at each level. Thus, although the number
of components increase, only one component needs to be
searched per level unlike the zLSM-tree. This allows for the
traverse cost of the HQ-sLSM tree to be ignored. As a result,
the cost for searching a point data in the HQ-sLSM tree is the
binary search cost of a component O(logT (N/B)).

For t1 and t2 parts of the HQ-sLSM tree, the disk I/O
cost for searching a data point becomes O(log4(N/B)) and
O(log2(N/B)) respectively. Combining part t1 and t2, the
disk I/O cost for searching a point data in the HQ-sLSM
tree can said to be less than O(log2(N/B)) and greater than
O(log4(N/B)).

C. INSERTION PERFORMANCE
For this experiment, the two synthetic datasets and the
real dataset was used with their size each increasing from
5million to 10million points. TheMDLof theHQ-sLSM tree
was set to 3, and the threshold size of the component was fixed
to 4096. Figure 10 shows the results for the data insertion
performance of the HQ-sLSM tree, zLSM-tree, LSM R-tree,
and the R-tree using three datasets. The number of data in
each dataset started at 5 million and increased until 10 million
for this experiment.

Regardless of the dataset, the disk I/Os for all the baseline
index trees increased as a larger number of data was inserted.
The R-tree showed the worse performance of all trees while
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FIGURE 11. Performance comparisons by varying component threshold in
the HQ-sLSM tree.

the HQ-sLSM tree showed the best performance. A lot
of random disk I/Os occur when inserting data in the R-
tree, which gives a poor result for data insertion. Increasing
the capacity of each level by the decomposition of space
before the MDL, and increasing the threshold after the MDL
reduces disk I/Os for data insertion in the HQ-sLSM tree.
Furthermore, dividing the space into quadrants prevent the
flushing of an entire level, which also contributes to the lesser
disk I/Os.

One noticeable fact from Figure 10 was that the disk I/Os
of the zLSM- tree for all datasets were the same. In the zLSM-
tree, the entire space is indexed by one B-tree at each level.
Thus, the number of I/Os for the same number of data will
always be the same regardless of the distribution of data
points. In other words, the data distribution does not affect
the number of disk I/Os in the zLSM-tree.

D. INSERTION PERFORMANCE - VARYING THRESHOLD
For this experiment, the two synthetic datasets were used
with their size each increasing from 5 million to 10 million
points. The MDL of the HQ-sLSM tree was fixed to 3.
Figure 11 shows the effect of varying the threshold value
x of a component in the HQ-sLSM tree. Three threshold
values were tested for each size of the two datasets.
Starting with a threshold value of 2048, the value was
doubled twice. The order of the three threshold values for
the two distributions showed no change while the size of
the dataset increased. The threshold value of 2048 always
performed worse and the threshold value of 8192 performed
the best.

A larger threshold enables for more indexes to be stored in
a level of the HQ-sLSM tree. This lead to a fewer flushing
and merging of components which eventually resulted in a
smaller number of disk I/Os. Again, the Gaussian dataset
resulted with a little higher number of disk I/Os due to the
fact that the data-dense area requried a deeper level in the
HQ-sLSM tree.

E. INSERTION PERFORMANCE - VARYING MDL
For this experiment, the two synthetic datasets were used
with their size each increasing from 5 million to 80 million
points. The threshold size of the component was fixed to
4096. Figure 12 shows the results of measuring the number of
disk I/O by varying the MDL in the HQ-sLSM tree. The size

FIGURE 12. Performance comparisons of MDL change in the HQ-sLSM
tree.

FIGURE 13. Performance Comparison of Top-Down and Bottom-up kNN
query processing methods.

of the synthetic dataset was increased to a very large size for
this experiment because a distinct pattern could not be found
with a small dataset size. As the size of the dataset increased
drastically, the HQ-sLSM tree with a higher MDL turned out
to perform better for both distributions.

The reason for the marginal difference in the disk I/Os
with the small number of data was that the three HQ-sLSM
trees were at different stages of indexing data. Some were
still decomposing space into quadrants while others were
finished with the decomposition and were doubling threshold
values. Amix of the two made it unclear to determine the best
performing HQ-sLSM tree.

To index a large number of data, all HQ-sLSM trees need
a fairly deep level, all well past their MDL. Eventually,
a HQ-sLSM tree with a higher MDL creates much more
components in the tree, which allows for more indexes to
be stored in a level and ends up reducing the number of
disk I/Os. However, the increase of MDL did not show
a significant difference in the decrease of disk I/Os after
MDL 3. Moreover, there exists a tradeoff between the
maintenance overhead of the components. This is to be
discussed in section VI-I. The Gaussian distribution required
more flushes in the data-dense areas which resulted in
a higher number of disk I/Os compared to the uniform
distribution.

F. TOP-DOWN AND BOTTOM-UP PERFORMANCE
COMPARISON FOR THE kNN QUERY
For this experiment, the two synthetic datasets with a size of
5 million points were used. The MDL of the HQ-sLSM tree
was set to 3, and the threshold of a component was fixed to
4096.

Figure 13 shows the results of measuring disk I/O while
processing a kNN query in the HQ-sLSM tree with the
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FIGURE 14. The effect of the radius of the range query on disk I/O with 3 datasets.

FIGURE 15. The effect of the k of the kNN query on disk I/O with 3 datasets.

number of neighbors ranging from 10 to 1000. The disk I/O
was measured for the two different algorithms explained in
section V.

The Bottom-up method performed better compared to the
Top-down method in the both distributions. In the top-down
method, a candidate set is made from the memory first which
leads to a relatively large distance(query range). However,
in the Bottom-up method, the candidate set is obtained from
the component at the last level where the query point is
located. Using a HQ-sLSM tree withMDL 3, a tree having an
average depth of level 8 was created to index 5 million point
data. A component at the last level has a threshold size of
about 128,000. Thus, it was very likely to obtain k neighbors
in one component of the last level. This implies that the query
range would be created inside a component, and from the last
level to theMDL, only one component would be accessed per
level.

This caused the big reduce of disk I/O with the bottom-up
method. The components in the levels after MDL contains
much more data compared to the lower levels in the HQ-
sLSM tree. Therefore, filtering out one or two components
create a meaningful diffference in the number of disk I/Os.
To summarize, the difference in the initial query range of the
two methods produced the difference in the number of disk
I/Os.

As the number of k increases, the candidate set also grew
larger creating a bigger query range. Thus to find more
nearest neighbors, more components became a subject of
access at each level, increasing the total number of disk
I/Os while processing the query. Furthermore, the Gaussian
distribution showed more disk I/Os because more data had to
be searched in the data-dense areas.

G. RANGE QUERY AND kNN QUERY PERFORMANCE
For this experiment, two synthetic datasets and the real
dataset was used, each with a size of 5 million points. The
MDL of the HQ-sLSM tree was set to 3, and the threshold
of the component was fixed to 4096. Figure 14 and 15
shows the experimental results of comparing the HQ-sLSM
tree, the zLSM-tree, the LSM R-tree, and the R-tree for
the range query, and the kNN query for the three datasets.
In Figure 14 and 15, there are two versions of the HQ-sLSM
tree, marked with (o) and (x) respectively. The HQ-sLSM
tree(o) refers to a HQ-sLSM tree using the spatial filters
described in section III-B when processing queries. The HQ-
sLSM tree(x) is a HQ-sLSM tree which does not use the
spatial filter and process queries only based on the query
filter.

The area of the query range was set to 2 to 10 percent of
the total data space for the range query, and the number of
k was set to 10 to 1000 for the kNN query. As described
in section III-C, comparing query filters with the spatial
filters stored in the component table allows us to avoid
accessing unnecessary components while processing queries.
For both the range query and the kNN query, we were able
to see that the HQ-sLSM tree(o) performed the second best,
slightly worse than the R-tree. However, for queries based
on uniformly distrubuted data (i.e., Figure 14a, Figure 15a)
the effect of the spatial filter was very marginal. Due to the
uniform distribution, the all the spatial filters were very likely
to have a value of 1.

Thus regardless of the location of the query filter, all
components overlapping with the query filter was likely to
be a subject of access. With or without the spatial filter,
the number of component access was similar. The difference
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between the HQ-sLSM tree(o) and HQ-sLSM tree(x) in the
Gaussian and real dataset confirmed that the spatial filter we
proposed worked significantly. For the HQ-sLSM tree(o) in
Figure 15, we used the result of the better performing Bottom-
up method for processing the kNN query.

H. RANGE QUERY AND kNN QUERY PERFORMANCE -
VARYING MDL
For this experiment, the two synthetic datasets with a size of
5 million points were used. The MDL of the HQ-sLSM tree
was set to 3, and the threshold of a component was fixed to
4096. Figure 16 and Figure 17 show effect the MDL in the
HQ-sLSM tree has on the range query and kNN query. This
results show that a higher MDL results in less disk I/Os for
range and kNN queries.

FIGURE 16. Range query in the HQ-sLSM tree - varying MDL.

FIGURE 17. kNN query in the HQ-sLSM tree - varying MDL.

More space decomposition with the higher MDL improves
the filtering effect when using the the query filter and
the spatial filter together. Going back to the results from
section VI-E, a higher MDL in the HQ-sLSM tree tends to
perform better in terms of insertion and processing range and
kNN queries. By these two experiments, we can confirm that
a certain highMDL is needed for a well perfoming HQ-sLSM
tree in general. We used the results of the better performing
bottom-up method in Figure 17.

I. MAINTENANCE OVERHEAD OF DISK COMPONENTS
For this analysis, a HQ-sLSM tree having 15 levels was
assumed to be created. The number of components generated
in the tree was calculated while varying the MDL of the tree.

Following the results of the previous experiments,
it seemed logical to increase the MDL. However as the MDL
increases, the total number of created components increase
radically after a certain MDL as shown in Figure 18. The
overhead of opening and the maintenance of disk components
are the factors to consider when increasing components.

FIGURE 18. Number of components created for different MDL.

Along with this, the size of the component table holding
metadata for all components also increase, which causes a
tradeoff with performance results.

While a higher MDL might seem to perform better
for insertion and processing range and kNN queries, the
underlying problem of maintenence overhead cannot be
ignored. Comparing the marginal difference of improved
performance for insertion and processing queries as shown
in Figures 12 and 16 to the increase of components, it is
reasonable to select a value of 3 or 4 for the MDL in the HQ-
sLSM tree.

J. DISK SPACE FOR THE HQ-sLSM TREE
For this analysis, a HQ-sLSM tree having the parameters of
MDL value 3 and component threshold 4096 was used. The
uniform and gaussian synthetic datasets each ranging from
1M to 10M were inserted into the HQ-sLSM tree. The total
disk space used by the disk components created in the HQ-
sLSM tree from the insertion was measured each time and
the average disk space from the two datasets is displayed in
Figure 19. The disk space for the R-tree and the LSM R-tree
was measured as well when the same datasets were inserted.

The HQ-sLSM tree requires about 120MB of disk space
for a 10M dataset, whereas the R-tree and the LSM R-tree
requires twice as much. The increase of the disk space as the
size of the data gets larger is smaller for the HQ-sLSM tree.
Using Geohash to store the coordinate point data contributed
to shrinking the size of the spatial data when the HQ-sLSM
tree was used.

FIGURE 19. Disk space analysis for the HQ-sLSM tree, R-tree and LSM
R-tree.
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Likewise, the zLSM-tree also uses the geohash values of
the point data as keys. Although not shown on the graph
below, the space perfomance of the zLSM-tree will not be
very different to the HQ-sLSM tree in terms of disk space.
We successfully concluded that our proposed HQ-sLSM tree
performs much better in insertion and is more space-efficient
in the process compared to the R-tree and the LSM R-tree.

VII. CONCLUSION
In this paper, we proposed a hierarchical quadrant spatial
LSM tree (i.e., HQ-sLSM tree) which reduces disk I/O
costs when inserting geospatial data from a blockchain
environment. Disk components in the HQ-sLSM tree have
a hierarchical structure by decomposing space into four
quadrants as they go down the level. The experiments we
conducted confirmed that the HQ-sLSM tree performed the
best amongst other existing baseline index trees (i.e., the
R-tree, the zLSM-tree, and the LSM R-tree) for the insertion
of data, and showed a superior performance over the zLSM-
tree and the LSM R-tree when processing range queries and
kNN queries. Using the spatial filter and the query filter
together is the key to minimizing disk I/Os by avoiding
unnecessary component access. Although the HQ-sLSM tree
falls short in processing range and kNN queries compared
to the R-tree, the efficiency of inserting data is the more
important factor in a write intensive blockchain environment.
Thus, the overall performace of our HQ-sLSM tree provides
sufficient competitiveness against existing methods.

Furthermore, we identified the effects of changing the
thresholds of the component and changing MDL have on
the number of disk I/Os for inserting data and processing
range and kNN queries in the HQ-sLSM tree. A HQ-sLSM
tree with a higher MDL eventually showed better results
in both insertion and processing queries. However, the fact
that the difference in disk I/Os become very marginal for
insertion of data at a certain MDL level, and the increasing
maintenance overhead that comes along with a higher MDL
gives a tradeoff between a higher MDL and the maintenance
overhead of the tree. Currently, we are developing an HQ-
sLSM tree to index line and polygon data stored in the
blockchain.
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