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ABSTRACT Quadriplegics face a communication obstacle as their physical abilities are restricted, leaving
them unable to speak or use their limbs, with only their upper neck beingmobile. So, we propose a recognition
system and a new communication language utilizing Morse code and head movements, to break this barrier.
We aim to overcome the limitations of camera-based and wearable-sensor methods, including occlusion,
privacy concerns, and user inconvenience. The goal is to passively detect quadriplegics’ head movements
and map them to their corresponding character. The dataset including all 26 alphabet letters, was gathered
in various settings, including single-user and multi-human environments, with multiple locations for each
setting. For evaluation, 2% samples are randomly selected from the unseen environment to be used with the
seen environment as a training dataset. Based on the results, our system demonstrates practical feasibility for
real-world implementation, with accuracy rates of 94% and 80% achieved in single-user and multi-human
environments, respectively.

INDEX TERMS Wireless sensing, Wi-Fi CSI, quadriplegia, deep learning, location diversity.

I. INTRODUCTION
According to World Health Organization (WHO)1 reports
that between 250,000 to 500,000 people suffer from Spinal
Cord Injury (SCI) [1] due to avoidable incidents such
as accidents, falls, and violent crimes. SCI disrupts body
systems and causes significant changes and limitations in
many areas of life, resulting in disability. Quadriplegia,
which affects the legs, arms, and trunk, is a common result
of SCI. Patients suffering from C5 damage lose speech
function, making it impossible to use known sign language
for communication. To give them the spirit to complete their
life and improve their emotional status, we propose a system
that translates head nodding into characters to improve
communication and emotional well-being for patients and
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their relatives, aiding in understanding patients’ needs and
pain sites. The capabilities of sign language recognition
techniques have been investigated in many devices, based
on computer vision such as infrared and depth image
sensors [2], [3], wearable sensors [4], [5], and radio frequency
signals [6], [7], [8]. However, camera-based systems require
good lighting conditions and raise privacy concerns and
bad performance in non-line-of-sight (non-LOS) scenarios.
Furthermore, users of wearable sensors may find it uncom-
fortable to wear them constantly for them to function.
In contrast, wireless sensing mechanism based on Radio
Frequency (RF) signals has been taken into consideration in
the context of interior environments owing to its vast range
of coverage, abundance of availability, noninvasive nature,
user privacy, and identity protection. Recently, RF signals
have shown a rise in passive sensing techniques. The
utilization of radar [9], RFID [10], and Wi-Fi signals [11],
[12] is important in various applications, including indoor
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FIGURE 1. Conceptual diagram of the proposed morse code based on the head-motion framework. The system consists of three modules: data collection
of CSI reading of the 26 English alphabets, the noise removal techniques and learning module, and the classification module.

localization [13], [14], [15], human behavior recognition
(HAR) [16], and identification [17], and healthcare, where
they play a key role in tracking and identifying objects and
people. In [18], the authors leverage the radar signals from an
ultra-wideband (UWB) sensor along withWi-Fi channel state
information (CSI) measurements through universal software
radio peripheral (USRP) devices to read lips under the
mask. The lip reading with mask system achieves recognition
accuracy above 80% based on deep learning (DL) models.
Meanwhile, RFID and radar-based systems are contactless
sensing techniques and can trackmovement and detect human
presence without capturing any visual data, they require
special hardware with expensive installation costs. While,
Wi-Fi sensing systems make use of the infrastructure and
communication channels already in place, such as Wi-Fi
routers. Moreover, it can detect and track macro and micro
motions in both line of sight (LOS) and non-LOS.

To overcome the above limitations of existing sensing
systems, the proposed system shown in Fig. 1 detects the
head motions based on the Wi-Fi signals. Nowadays, Wi-Fi
signals are considered a promising sensing technique because
it is ubiquitous and readily available, as they are commonly
used in homes, offices, and public spaces. This means
that the proposed system could potentially be implemented

without the need for additional sensors to be attached
to the target object or special hardware to be installed.
Furthermore, wireless signals can track the patients at any
location and achieve better performance thanks to deep
learning techniques. The head gestures act as scatters that
result in variations in the channel frequency response (CFR)
which also refers to CSI. Unique signatures associated with
head motion are provided to the DL algorithm to classify
into their appropriate character by capturing, monitoring,
and analyzing these variations. Herein, we have leveraged
Wi-Fi CSI waveforms to track the head motions in a passive
manner and extract the gesture signatures of each character.
The data was gathered using a real wheelchair and ESP32
microcontroller. The previous HAR CSI systems tackle the
domain independent problem using few-shot learning in a
single-user environment which is different from the real-
time scenarios. Inspired by the few shot algorithms, we have
tackled the location robustness issue in amulti-human context
environment by adding a few samples from the unseen
environment to the seen environment. To achieve the domain
independent, the impact of amplitude and phase features is
studied to improve the recognition accuracy with the smallest
samples from the target source. The classification findings
emphasize the effectiveness of diagonal links configuration
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and smoothing the time-domain CSI amplitude variations
gives the best in different domain independent scenarios.

Our main contributions are as follows:

• We propose a new communication method that uses
Morse code generated by a head motion. Also, we pro-
pose to apply Wi-Fi sensing for detecting a head motion
without a camera and wearables.

• We examine the effects of location diversity in a multi-
context environment where patients are surrounded by
others, making it more practical and closely aligned with
real-world scenarios.

• Inspired by few shot learning algorithms, we merged
randomly small samples from the target environment in
the learning phase to improve the system performance to
make the classifier able to extract the signature of each
alphabet.

• We conducted the practical experiments in two different
environments with different locations, and also gave
diverse analytic comparisons of system performance by
studying the impact of different base signals, different
link configurations, and state-of-art classifiers.

In this paper, we follow a specific structure. Firstly,
we review the existing literature on the topic in Section II.
Then, in Section III, we provide a detailed explanation of
the theory and properties of Wi-Fi CSI and introduce our
proposed system. The evaluation results for our system are
presented in Section IV, followed by a discussion of these
results in Section V. Finally, we conclude this paper in
Section VI.

II. RELATED WORK
Numerous studies have already been conducted that utilize
Wi-Fi CSI to identify and detect human activities. These
studies typically involve either manually extracting features
from the data and using machine learning models or utilizing
deep learning methods for automatic feature extraction.

A. HEAD MOTION SYSTEMS BASED ON WI-FI CSI
In our previous work [19], we presented a passive system
called Wi-Nod, which utilizes Wi-Fi CSI to detect head
nodding gestures based on time-frequency features to detect
three basic symbols dot, dash, and space. These symbols
are the base blocks for HeMoFi4Q system to build alphabet
characters based on the combination of these symbols.
Wi-Nod system checked the user and session diversity
robustness in a fixed location with people surrounded to the
target subject. The results indicate that the proposed system
achieves over 95% recognition accuracy, demonstrating its
feasibility for real-life deployment.

In [20], This system provides driver’s face localization
based on the variance of CSI amplitude and phase, with the
aim of detecting distraction and fatigue activity. It consists
of three modules: CSI preprocessing, feature extraction, and
classification. The noise removal techniques employed are
the Butterworth filter for amplitude and linear transformation

for phase. The feature set includes mean, standard deviation,
median absolute deviation, maximum peaks, 25th percentile,
and 75th percentile, which are fed to the classification
module. The system utilizes the KSVM classifier, which
combines the advantages of SVM and KNN and achieves a
recognition accuracy of over 91%.

The WiHead system [21] is a system that utilizes wireless
signals to measure human head orientation in various direc-
tions, including yaw, roll, pitch, and their combinations, for
obtaining feedback in online courses. It uses 56 subcarriers
at 2.4GHz with the Atheros CSI extractor tool to retrieve
phase and amplitude, which are then filtered and calibrated
to eliminate noise and unpredictability. The filtered data
is then sent to a PCA method for dimensional reduction.
Additionally, WiHead developed a CNN model that achieved
recognition accuracy of 90% for three different head motion
angles: pitch, roll, and yaw.

In [22], the authors utilize the CSI waveforms from ESP32
microcontroller to track the head motions. They aim to
estimate the student’s engagement in online courses based
on their head movements. CSI amplitude is extracted and
preprocessed via Hampel filter, discrete wavelet transforms
and smoothed by Savitzky-Golay, After that, the filtered
amplitude is fed to the XGBoost (XGB) model for the
classification task and achieved 98% recognition accuracy.

B. ENVIRONMENTAL INDEPENDENT SYSTEMS BASED
ON WI-FI CSI
Some recent studies have developed methods for recognizing
human activities in different environments using Wi-Fi
signals.

Authors in [23] present ReWis, which is a single-user
environment human activity recognition system. They inves-
tigate the impact of using multiple receivers and multiple
antennas per receiver to improve the system’s accuracy.
ReWis reduces the dimensionality of the time diversity
based on singular value decomposition (SVD) and captures
the correlation across subcarriers by estimating the Pearson
correlation coefficients. During the training phase, the CSI
waveforms of the source environment are fed to CNN model
for representative feature extraction besides five samples of
the four activities from the unseen/target environment to
reduce the gap between the seen and unseen environment.
The ProtoNet model aims to explore the similarity between
the two different domains to solve the domain independent
issue.

Another HAR work was introduced in [24] where the
conjugate multiplication (CM) is utilized to enhance the CSI
waveforms quality. CM aims to remove the randomness of
the phase by capturing the best CSI quality and setting it
as a reference. In other words, the reference CSI vector
contains themaximum ratio of themean of CSI amplitude and
standard deviation over the subcarriers. Then, CM is calcu-
lated between all transmitter-receiver pairs and the reference
vector. The authors apply principal component analysis for
dimensionality reduction. Furthermore, to capture the activity
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TABLE 1. Summary of related Wi-Fi CSI work.

FIGURE 2. Overview architecture of HeMoFi4Q system.

FIGURE 3. CSI vector for each t packet in ESP32 system.

related features, the Fast Fourier Transform (FFT) is applied
to get the spectrogram of the filtered CSI. The spectrogram
is fed to the CNN-LSTM network for the embedding
task. Finally, the MatNet network aims to maximize the
cosine similarity between the source environments to extract
the representative features. The system achieves over 74%
average recognition accuracy.

Francesca et al. proposed SHARP [25] which is a single
independent environment HAR based on Wei-Fi CSI. The
authors present a new phase sanitization method based on

the strongest path to remove the phase offset from the raw
CSI signals. After that, they extracted the Doppler trace from
the normalized amplitude and filtered phase. The inception
model is used to perform the classification task. SHARP data
collection is done in three different environments using the
Nexmon tool. The average accuracy in the worst scenario is
about 95%.

The key features of current Wi-Fi CSI-based systems are
presented in Table 1. However, based on our knowledge, there
is currently no Wi-Fi CSI system that is capable of handling
multi-human context environments with location diversity
robustness.

III. PROPOSED SYSTEM
This paper presents a novel head motion system utilizing
three modules: data collection, data preprocessing, and
feature extraction and classification module as shown in
Fig. 2. For the first time, a comprehensive Wi-Fi Channel
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FIGURE 4. First three and last two alphabets motions corresponding to the raw and filtered CSI amplitude. a. Visual representation of A, B, C, . . . , Y, and Z
characters. b. Raw CSI amplitude for each character across the first link. c. Filtered CSI amplitude after applying weighted moving average.

State Information (CSI) dataset has been gathered from
various locations in two distinct settings using a cost-
effective, low-power ESP32 microcontroller. This device is
viewed as a promising tool for CSI sensing in the Internet of
Things (IoT) realm due to its standalone capabilities. Then,
the CSI readings are fed to the data preprocessing phase for
signal segmentation and noise removal. After that, the filtered
amplitudes are input to ECA to extract representative features
for the classification task.

A. ESP32 WI-FI UNIT
The currently employed Wi-Fi CSI-based systems for HAR,
head detection, and gesture recognition rely on open-source
CSI tools developed by Halperin et al. [26] and Atheros
CSI Tool [27]. Although these tools are widely used, they
have certain drawbacks, such as limited device support
and hardware compatibility, complex setup, limited data
processing capabilities, and lack of official support and
updates. The former can extract CSI across 30 subcarries
from Intel 5300 wireless network card interface (NIC).
However, it relies on hardware support that may not be
available on all Wi-Fi chipsets. The latter provides a more
accurate and details analysis. Furthermore, it supports both
the 802.11n and 802.11ac Wi-Fi standards, which allows
it to capture and analyze CSI data from the latest Wi-Fi
technologies. However, it has some limitations such as

hardware compatibility, limited device support, complex
setup, limited data processing capabilities, and lack of
official support and updates. The challenges of Wi-Fi CSI
sensing systems include utilizing a small, low power and
memory consumption, cost-efficient, and compatible CSI
tool; handling the noisy CSI values in multi-human context
environments, and extracting the variations of the most
informative base signal related to the head motions. ESP32
unit is a microcontroller a single system on a chip, which
means that it integrates multiple components, such as the
processing unit, memory, and communication interfaces,
onto a single chip. It is a low power consumption and
cost-effectiveness.

The proposed system works in three different pairs of
ESP32microcontrollers attached to a wheelchair surrounding
the target’s head. ESP32 module utilizes orthogonal fre-
quency division modulation (OFDM) to transmit wireless
signals, which consists of 64 narrow band subcarriers, 12 of
them are null subcarriers and the rest 52 are data subcarriers.

The CSI data collected by the ESP32 node is represented as
a complexmatrix with dimensions of l×m, where l represents
the number of packets and m represents the number of
subcarriers as shown in Fig. 3.

Yi(f ) = Hi(f ) × Xi(f ) + N (1)
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where i represents the subcarrier index, H i(f ) ∈ CNRx×NTx ,
Y i(f ) ∈ RNRx , and X i(f ) ∈ RNTx denote the CSI complex
matrix, received and transmitted signals across ithsubcarrier,
respectively where NRx and NTx are the number of receiving
and transmitting antennas. Since the ESP32 device used in
this context has a single antenna, both NRx and NTx is equal
to 1, and the form of the CSI matrix for each packet isH (f ) =[
h1 h2 . . . h52

]
. N is a noise vector.

Typically, the H matrix records the the amplitude attenua-
tion, ||Hi(f)||, and phase response, ̸ Hi(f), of each subcarrier
frequency.

Hi(f ) = ∥Hi(f )∥ × ej̸ Hi(f ) (2)

B. DATA PREPROCESSING PHASE
The process was conducted in three stages, which involved
1) dividing the data into segments based on timestamps,
2) adding mean values to mitigate the effects of packet loss
in Wi-Fi CSI measurements, and 3) eliminating any noise in
the signal amplitude. More specific information regarding the
segmentation, padding, and filtering procedures can be found
in the following descriptions.

1) TIMESTAMP SEGMENTATION
The goal of signal segmentation is to divide the CSI
measurements of each link based on their timestamps. This
process is necessary to combine the signals from each link
in order to create a distinct pattern for each user’s head
movement. By doing so, the character can be mapped to its
corresponding signature. In other words, signal segmentation
enables the system to identify and distinguish between
different head movements made by each user, which are then
translated into their corresponding characters. This process is
essential for accurate and reliable communication through the
system.

2) MEAN PADDING
Mean padding is a widely adopted approach to address
the issue of packet loss in Wi-Fi CSI measurements while
maintaining the distribution of remaining packets. Rather
than simply discarding the missing packets, mean padding
involves estimating their values based on the surrounding data
points in the time series. By using the average value of the
neighboring data points to fill in the gaps, mean padding can
help to preserve the distribution of the packets and maintain
the continuity of the overall time series.

3) AMPLITUDE NOISE REMOVAL
This section outlines the noise removal technique used to
smooth the CSI amplitude. It is worth mentioning that we
investigated three different features to evaluate the system’s
performance. These features are including the filtered
amplitude, time-frequency feature, and the combination of
the filtered amplitude and the calibrated phase. However,
the variations of the filtered time-domain CSI amplitudes

outperform other features in the recognition accuracy. they
reveal distinct signatures for different alphabets.

Since it is not reliable to use raw amplitude directly
as a feature selection due to the signal interference and
environmental changes noise. Therefore, we adopt a weighted
moving average filter (WMA) [28] to remove the out-
liers and smooth the CSI amplitude waveforms as shown
in Eq.3

Ât,i =
m× At,i + (m− 1) × At-1,i + . . . + 1 × At-m-1,i

m+ (m− 1) + . . . + 1
(3)

where Ât,i and At,i are the filtered and raw amplitude
corresponding to the subcarrier i at time t, and m that
is empirically set to 30 in this paper. The illustration in
Fig. 4a showcases the visual head motions of A, B, C, Y,
and Z alphabets, while corresponding raw and filtered CSI
amplitudes are shown in Fig. 4b and Fig. 4c, respectively.
Further details of the experiment setup are described in the
following sections.

C. FEATURE EXTRACTION AND CLASSIFIER PHASE
Nowadays, deep convolutional neural networks (DCNN)
outperform traditional machine learning techniques (ML) in
Natural Language Processing (NLP), Computer Vision (CV),
sensing techniques, etc. The reason is that the performance
of a ML-based system depends on the quality of extracted
features. The ML depends on hand-crafted features extracted
from the data which can be inefficient for the classification
task. On the other hand, the DL is a black box that is
able to automatically capture more discriminative features
from the input. The main issue with the current DCNN
is that more layers added to it will improve performance,
but will make the model more complex. Additionally,
the current attention technique non-identically weights the
extracted feature depending on how crucial it is to the
classification task. Therefore, information is lost as a result of
the unnecessary and ineffective dependencies across several
channels.

To get over these restrictions, the ECA module [29] is
presented to aggregate the local inter-channel information.
During the learning process, ECA assigns the weights of each
channel based on its significance in the channel attention
map (CAM). Then, to emphasize the distinct patterns and
suppress the uncorrelated data, the input features of each
channel are multiplied by the corresponding CAM weights.
The following is a description of how Fig. 2 depicts the ECA
network’s process. First of all, the global average pooling
(GPA) layer aggregates the input features fa. Then, the fast
one-dimensional convolution layer 1d with k kernel size f k1d
is applied to each input channel to generate the weights of
CAM fb. The k establishes how many neighbors take part
in the attention prediction via each channel. In the proposed
system, k value is equal to 3. After that, the sigmoid function
normalizes the attention weights f ‘b . Finally, the significant
input features are generated by multiplying the input features
with the channel weights f ‘b . In ECA network, the adaptive
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FIGURE 5. Data collection setup based on ESP32 microcontroller. a. Top view of wheelchair setup used in
both environments. b. Single-user environment layout. c. Multi_human context environment layouts.

TABLE 2. HeMoFi4Q Code: D-down motion, R-right motion, L-left motion.

selection of the kernel size is an exponential function that
depends on the number of channels C.

This model is a convolutional neural network (CNN) with
an ECA module. The input to the model is a tensor of

shape (1000,52,2). The model has two convolutional layers,
each followed by an ECA module, batch normalization, and
max-pooling layers. The output of the second max-pooling
layer is flattened and fed into a dense layer with 256 units,
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TABLE 3. Training and testing size for HeMoFi4Q performance evaluation.

followed by a dropout layer with a dropout rate of 0.25. The
final output layer contains 26 units representing the number
of characters with softmax activation.

The ECA module is a feature recalibration mechanism
that enhances the performance of CNNs by recalibrating the
feature maps. It applies a convolutional operation with a
small kernel size to squeeze the feature maps into a single
channel and then applies a sigmoid activation function to
obtain attention maps. The attention maps are multiplied with
the original feature maps to generate the scaled feature maps,
which are then passed to the next layer.

IV. EVALUATION
A. DATA ACQUISITION
In our experiments, two different environments are consid-
ered where ESP32 modules are used as both transmitter,
Tx, and receiver, Rx, devices. This work utilized six ESP32
microcontrollers using 2.4GHz frequency band and IEEE
802.11n protocol for the CSI data collection task as shown
in Fig. 5. Three of them were used as transmitters connected
to a mini-PC having Ubuntu 16.04 operating system and
the remaining served as receivers. The distance between
each transmitter and its corresponding receivers is 84.3 cm,
52.3 cm and 84.3 cm for link 1, link 2, and link 3, respectively.

For both environments, Env1 and Env2, the subject moved
his head in a way outlined in Table 2, with each symbol and
the end motion taking two seconds for a total of 10 seconds
per character. We gathered data for each character in separate
files, with a duration of 10 minutes for each character.
Each of the three Txs concurrently transmit Wi-Fi frames to
the Rxs at 100Hz. Env1 represented a single environment
with only the subject existed and the data collected in
two different locations in it as shown in Fig. 5b. Whereas
Env2 was a multi-human context environment as shown in
Fig. 5c. The dimension of each character is represented as
1000 × 52 × n, where 1000 refers to the number of packets,
52 is the number of subcarriers, and n depends on the number
of links used. We investigate the impact of various link
configurations, which are discussed later in IV-C. For a single
link configuration, n is set to 1. When utilizing two links,
n is equal to 2, and when utilizing all available links, n is set
to 3. The collected dataset is balanced, meaning that an equal
number of samples were collected from all locations. We had
a total of 5 locations, and for each location, we gathered
100 instances of each character. This results in a total of
2600 alphabet samples for each location. Altogether, across

all locations, we accumulated 13,000 samples in total. For
our experiments, we focused on 26 alphabet characters as the
number of classes. This choice is based on the functionality
of HeMoFi4Q, which extracts the signature for Morse code
using headmotion andmaps it to the corresponding character.

B. EVALUATION METRICS OF CLASSIFICATION MODELS
We evaluate the HeMoFi4Q effectiveness on different
environments based on CSI data. Firstly, the HeMoFi4Q is
implemented to be applicable in the real world. Inspired by
few shot learning algorithms, we fuse a small amount (x)
from the unseen/test environment to the seen/train dataset to
tackle the location diversity robustness problem as shown in
Fig. 1. The performance of the proposed system is evaluated
through accuracy and F1-score metrics. Accuracy is defined
as the total number of correct predictions divided by total
number of predictions. The F1-score represents the harmonic
mean of two measures (precision and recall). It is a range
of numerical values from 0 to 1, where the worst and best
values are 0 and 1, respectively. The performance metrics are
calculated by following equations from Eq.4 and Eq.7:

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
(4)

Recall =
TP

TP+ FN
(5)

Precision =
TP

TP+ FP
(6)

F1 − score = 2 ×
Recall × Precision
Recall + Precision

(7)

where True Positive (TP) refers to the model accurate
identification for the positive class, whereas True Negative
(TN) refers to the predicted and actual values is negative.
False Negative (FN) represents the cases when the actual is
positive and the model classified them as positive while False
Positive (FP) represents the cases where the actual is negative
and the predicted is positive.

C. RESULT ANALYSIS
The major objective of this paper is to introduce passive com-
munication between the quadriplegics and others based on
head motions detected by Wi-Fi signals and DL algorithms.

To evaluate the robustness of location diversity, the source
dataset is combined with 2% of the target dataset for training
the model, and the rest 98% is then used for the testing phase.
Table 3 provides information about the sample sizes used in
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TABLE 4. Location diversity comparative results of different base signals at Env1.

TABLE 5. Location diversity comparative results of different base signals at Env2.

different experimental settings. In particular, we compared
the performance of ECA learning model with two state-of-art
classifiers namely, CNN and ResNet on different locations
of the same environment as in Table 4 and Table 5 and
cross domain environments which is the combination of
one environment’s locations and 2% amount of the second
environment locations as a training dataset and testing on
the rest 98% amount of the second environment as shown in
Table 6. The parameters for the two baseline models are as
follows.

• CNN model: This is a simple convolutional neural
network (CNN) model for image classification. The
model consists of two CNN blocks, each composed
of several sequential layers. The input shape is (1000,
52, 2), representing a 2D image with 1000 packets,
52 subcarriers, and 2 links used. The first block
starts with a convolution layer with 32 filters of size
P5 × 5 and a stride of 1, applying zero-padding with
a padding value of 1. This is followed by a batch
normalization layer for input normalization, a ReLU
layer for introducing non-linearity, and an average
pooling layer with a window size of 3 × 3 and a stride
of 3. A dropout layer is employed to prevent overfitting
by randomly dropping out units during training. The
second block consists of two fully connected layers.
The first fully connected layer has 1000 neurons with
a ReLU activation function and a dropout rate of 0.5.
The second fully connected layer has 26 neurons,

corresponding to the number of classes, and utilizes the
softmax function for classification. The model is trained
using the Stochastic Gradient Descent with Momentum
(SGDM) optimization algorithm, with a learning rate of
0.02 and momentum of 0.9.

• ResNet model: This is a deep neural network archi-
tecture commonly used for image classification tasks.
The input shape of the model is (1000, 52, 2), where
1000 refers to the number of packets, 52 represents the
subcarriers, and 2 denotes the links used. To maintain
the spatial dimensions, the input is initially padded with
zeros using a (3, 3) padding size. The model consists
of two stages. In the first stage, a convolutional layer
with 64 filters, a kernel size of (7, 7), and a stride of
(2, 2) is applied to extract features. This is followed by
a batch normalization layer for activation normalization,
a ReLU activation layer to introduce nonlinearity, and a
max pooling layer with a pool size of (3, 3) and a stride
of (2, 2) for downsampling. The second stage includes
a convolutional block with three identity blocks. Each
identity block comprises three convolutional layers with
filter sizes of [16, 32, 64], a kernel size of 3, and a stride
of 1. The first identity block has a different shape due to
the change in filter sizes. An average pooling layer with
a pool size of (2, 2) is applied to further downsampling
the data. The output is then flattened into a 1D vector
and fed into a fully connected layer with 26 neurons,
which corresponds to the number of classes in the
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FIGURE 6. Overall accuracy of different learning models.

FIGURE 7. F1-score of different learning models.

TABLE 6. Cross domain results of different classifiers.

classification task. The softmax activation function is
used to generate predicted probabilities for classifica-
tion. The model is trained using the Adam optimizer
with a learning rate of 0.001, beta_1 of 0.9, beta_2 of
0.999, and epsilon of 1e-08.

ECA classifier outperforms other algorithms as shown in
Fig. 6 and Fig. 7 by achieving highest recognition accuracy
and f1-score of location diversity evaluation for Env1 and
Env2, training on Env1 with 2% of Env2 and testing on 98%
of Env2 (S1), and training on Env2 with 2% of Env1 and
testing on 98% of Env1 (S2), respectively. CNN algorithm
achieves the lowest performance when using the single-user
environment for the learning phase because of overfitting.
CNN and ResNet cannot capture the unique patterns for
each character compared to ECA which uses an attention
layer to highlight the signatures of the characters from the

FIGURE 8. Confusion matrix of single user environment.

FIGURE 9. Confusion matrix of multi-human context environment.

single environment and the small amount of the multi-human
sensing environment.

1) SINGLE USER ENVIRONMENT DATA
The system was trained in a single-user environment where
only the participant existed, Env1, using the entire dataset
collected from location 1 and an additional 2% of data
from location 2, which equates to two samples for each
character collected in the second location. This approach
was taken to improve the system’s performance and location
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diversity robustness. Table 4 displays the evaluation out-
comes of three distinct image classification algorithms,
namely Efficient Channel Attention (ECA), Convolutional
Neural Network (CNN), and Residual Network (ResNet).
The results were obtained by assessing the accuracy of each
classifier, and they are presented for comparison purposes.

It is observed from Table 4 that ECA slightly outper-
forms CNN on combined datasets of the diagonal links
configuration (link1_3) for different base signals, while the
ResNet classifier achieves the worst performance. Moreover,
ECA achieves the highest recognition accuracy with 94%
when using the variations of amplitude filtered by WMA
filter from diagonal links datasets and transforming the
filtered amplitude of the combined dataset between one of
the diagonal links and the horizontal link to the wavelet
domain by applying the discrete wavelet transform (DWT).
The confusion matrix is introduced in Fig. 8. The confusion
matrix shows that there are 13% and 9% misclassifications
betweenC andD and B, respectively. Additionally, the model
classified R character as T character with 16% rate and S as R
character with 36% rate which is the highest misclassification
rate. Finally, ECA classified W character with the same rate,
7%, as V and X.

2) MULTI-HUMAN CONTEXT ENVIRONMENT DATA
The classification accuracy of data collected from various
locations in a multi-human context environment is presented
in Table 5. Our study also investigated the optimal link
configurations, different base signals, and three classifiers.
The results demonstrated that the dataset of diagonal links
outperformed other link configurations, achieving 89.3%
accuracy based on the variations of filtered amplitude and
using the ECA classifier. Furthermore, the ResNet classifier
achieved its highest accuracy of 85% by utilizing the
wavelet of the filtered amplitudes from one of the diagonal
link data with the horizontal one. On the other hand, the
combination of the variation of the filtered amplitude and
calibrated phase was verified as the worst base signal
that could be fed to the system because the randomness
of the phase increased with the number of people in the
sensing environment, leading to a degradation of the system’s
performance. Fig. 9 presents the confusion matrix. As it
can be observed from this visual representation, the model
classified the B character with about 48% accuracy as C
character. Additionally, it misclassified the C character as
17% and 16% as B and D characters, respectively. Moreover,
there is a misclassification rate between M and N with 12%
and 22%, respectively.

3) CROSS DOMAIN RESULTS
This study examined the cross-domain or environment
diversity robustness meaning that the model training on
some locations of one environment merged with randomly
selected 2% from another environment to investigate the
effectiveness and robustness of the proposed system. There
are two scenarios which considered as the worst scenarios.

The first scenario (S1) is training on the single-user dataset
with small samples from the multi-human one and testing
on the multi-human environment (Env1→Env2). The second
one (S2) uses a multi-user environment dataset for learning
with small samples from the single-user environment and for
the interference stage using the unseen samples of the single-
user environment (Env2→Env1).

The classification results of different classifiers and
confusion matrix are given in Table 6 and Fig. 10. Table 6
shows the overall performance of different classifiers. ResNet
gives the lowest accuracy in both scenarios while ECAmodel
gives the best performance among the other classifiers in
terms of accuracy and F1-score metrics. However, ECA
takes a little bit more time consumption in the learning and
inference stages than others.

To evaluate the performance of S1, the training dataset
consisted of the single-user environment (Env1) dataset
merged with 2% of the third location dataset from the
multi-human context environment (Env2), while the testing
dataset comprised the remaining 98% of the data. The
ECA algorithm outperformed the other algorithms, achieving
84.3% accuracy and 0.84 F1-Score with slightly more time
consumption than CNN. On the other hand, ResNet achieved
the shortest time consumption compared to CNN and ECA
models but yielded an unacceptable classification accuracy
as 37%. Interestingly, CNN achieved poor accuracy due
to overfitting, where the model could not distinguish the
signatures for each alphabet of the multi-human environment
from the small target samples used in the learning phase. the
model achieves 70% and higher for each character except the
C and T characters, it achieves 53% and 55%, respectively.
ECAwrongly classified theC character as B and F characters
with accuracy of 18% and 24%, respectively. For T character,
it misclassified it as S character with 18% accuracy.
The classification results for S2 give better accuracy than

S1 results because the classifiers are able to extract the most
significant features for each character. ECA achieves the best
accuracy in 85.6% which is slightly higher than CNN model
performance and 0.83 F1-score. From the confusion matrix
in Fig. 10, ECA achieves 72% and above for most of the
characters. In particular,W character gives the worst accuracy
43% since the model wrongly classified it as X and V with
32% and 14% accuracy, respectively. Moreover, B character
accuracy is slightly higher thanW one 54.3% since there is a
wrong classification as C and A 29% and 14%, respectively.
The model classified C character as B with 33% accuracy.
Furthermore, There is also misclassification between S as U
and R with accuracy rates of 15% and 14%, respectively.

V. DISCUSSION
In this study, a Morse code based on Wi-Fi CSI head
motion detection is presented using ESP32 microcontroller.
we investigated the impact of different link configurations,
base signals, and state-of-art deep learning classifiers on
the location diversity performance as shown in Table 4 and
Table 5. It is worth mentioning that these results by using
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FIGURE 10. Confusion matrix of Env2 → Env1.

2% amount From the target or unseen location. from these
tables, it is obvious that the combination of the diagonal links’
data outperforms other link configurations by extracting
the variation of the CSI amplitude and filtering it using
the weighted moving average algorithm outperforms other
link configurations by achieving 94% and 89% recognition
accuracy, for single and multi-human context environment,
respectively.

A. IMPACT OF DIFFERENT TARGET AMOUNT
Our study aimed to explore the effects of altering the
target amount incorporated into the training data on the
enhancement of model accuracy during instances of limited
data availability. Specifically, we conducted an experiment
involving the testing of different target amount values within
the training data and the subsequent evaluation of their
impact on model performance in location diversity. Our
findings contributed novel insights into the potential benefits
of adjusting the target amount in the training data to improve
the environmental robustness of the Wi-Fi CSI system.

Fig. 11 depicts the accuracy of the ECA algorithm, under
various link configurations, for different amounts from the
unseen location (Loc2) merged with the training dataset,
which is the data gathered from Loc1, (Target Amount%)
during the learning phase. According to the information
presented in the figure, it is evident that the utilization of
the diagonal links dataset results in the highest performance
for the ECA algorithm. This configuration yielded the best
results even when only two randomly selected samples were
taken for each character collected in the target location.
As shown in Fig. 12, the performance of each link alone
yielded the worst recognition accuracies, ranging from 66%

FIGURE 11. Classification accuracy using different amounts from the
unseen location merged with the seen location in a single-user
environment.

FIGURE 12. Classification accuracy for different amounts from the unseen
location merged with the seen location in a multi-user environment.

to 74.7% for the diagonal and horizontal links, respectively,
due to the influence of the target’s surrounded movements
by individuals. However, when the diagonal links were
combined, the system achieved the highest performance
of 89.3%. This can be attributed to the ECA classifier,
which utilizes a channel attention layer to highlight the most
significant features from the filtered amplitude captured by
these links.

B. IMPACT OF DIFFERENT LINK CONFIGURATION
Table 4 and Table 5 reveal a significant finding that the
diagonal link configurations consistently achieve the highest
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FIGURE 13. Accuracy of different base signals.

accuracy for both single-user and multi-human context envi-
ronments. Moreover, the variations of the filtered amplitude
were found to be a robust and reliable signature for each
character, regardless of the location diversity. In addition, the
channel attention layer of the ECA algorithm was identified
as a crucial component that enhances the classification task.
It is noteworthy that the overall accuracy of the system in
a multi-human context environment is lower compared to
a single-user environment. This is due to the fact that the
presence of more individuals leads to increased interference
and reflection, which ultimately degrades the system’s
performance. Overall, the study highlights the importance of
an effective link configuration, signal processing technique,
and utilizing advanced classification algorithms in achieving
accurate and reliable character recognition based on passively
tracking head motion via Wi-Fi CSI signals in various
environments.

C. IMPACT OF DIFFERENT BASE SIGNALS
We investigated the impact of the variations of different base
signals on the classification performance as shown in Fig. 13.
The impact of different base signals like, filtered amplitude
using WMA filter, transforming the filtered amplitude to
the wavelet domain by applying discrete wavelet transform
technique (DWT_Amp), and combining both the filtered
amplitude based on WMA and calibrated phase based on
the linear transformation algorithm (Amp+Phase) on the
performance are studied. As the results show in the previous
tables, the combination of the CSI amplitude and phase
variations degrades the performance as it achieves 79.7% and
70.2% for the first and second environments, respectively.
The impact of the randomness of the Wi-Fi CSI is obviously
shown in themulti-human environment because there are a lot
of reflections and interference due to the existence of many
dynamic subjects in the sensing environment.

VI. CONCLUSION
In this paper, we introduce HeMoFi4Q which is a passive
head motion detection system by analyzing the Wi-Fi Chan-
nel State Information to enable non-verbal communication
with quadriplegia patients through new sign language. To the

best of our knowledge, it is the first attempt to build a new
sign language for quadriplegia patients based on Morse code
and head motions. The proposed HeMoFi4Q extracts the CSI
amplitude variations from ESP32 microcontrollers and feeds
the filtered amplitudes using the weighted moving average
to the Efficient Channel Attention (classifier). The dataset
was collected from two different environments with multiple
locations in each environment. Inspired by few shot learning
techniques, the small sample amount, randomly 2% samples,
from the unseen environment were merged with the training
dataset in the model learning interference to verify the system
effectiveness and location diversity robustness. A variety of
performance metrics of HeMoFi4Q including accuracy, F1-
score, and confusion matrix outperforms all baseline models.
the study underscores the crucial role of an effective link
configuration, signal processing technique, and advanced
classification algorithm in achieving accurate and reliable
character recognition through passive tracking of head
motion via Wi-Fi CSI signals across diverse environments.
In the future, we are planning to build a word recognition
system based on Wi-Fi CSI using NLP algorithms for word
correction to make the system applicable in real world.
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