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ABSTRACT Spintronic devices are expected to replace the recent nanoelectronic memories and sensors due
to their efficiency in energy consumption and functionality with scalability. To date, spintronic devices,
namely magnetoresistive junctions, employ ferromagnetic materials by storing information bits as their
magnetization directions. However, in order to achieve further miniaturization with maintaining and/or
improving their efficiency and functionality, new materials development is required: 1) increase in spin
polarization of a ferromagnet or 2) replacement of a ferromagnet by an antiferromagnet. Antiferromagnetic
materials have been used to induce an exchange bias to the neighboring ferromagnet but they have recently
been found to demonstrate a 100% spin-polarized electrical current, up to THz oscillation and topological
effects. In this review, the recent development of three types of antiferromagnets is summarized with offering
their future perspectives towards device applications.

INDEX TERMS Antiferromagnetic materials, Hall effect, magnetoresistance, spintronics, spin polarized
transport.

I. INTRODUCTION
Spintronics is one of the emerging fields in condensed
matter physics in the view of replacing the recent nanoelec-
tronic devices by improving their efficiency and functionality
[1], [2]. In spintronic devices, further improvements are
required to continue miniaturization to be comparable with
the Si-based semiconductor technology. With a ferromagnet
(FM), the miniaturization may induce edge domains and
cross-talk between junctions via stray fields, which may pre-
vent fast and reliable operation. On the other hand, using
an antiferromagnet (AF), these obstacles can be avoided.

The associate editor coordinating the review of this manuscript and
approving it for publication was Montserrat Rivas.

Namely for the reduction in power consumption, highly effi-
cient generation and detection of a spin-polarized electrical
current need to be developed using the spin-orbit torque, spin
caloritronic and topological effects. AF materials and their
properties were initially investigated by Néel [3] and have
been utilized to exchange couple with the neighboring FM
magnetization [4]. This can be measured as a shift in the
corresponding magnetization curve as known as an exchange
bias (EB) field Hex. Hex has been used to pin one of the
FM magnetizations in a FM/non-magnet (NM)/FM trilayer,
i.e., a spin-valve structure [5]. This is a basic structure for a
read head of a hard disk drive (HDD). By replacing the NM
layer with an insulating barrier, a magnetic tunnel junction
(MTJ) has been fabricated in a similar manner, which has
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been commonly used as the latest HDD read head and a bit
cell of a magnetic random access memory (MRAM). For
these applications, an IrMn3 alloy has been predominantly
employed due to its corrosion resistance and robustness
against nanofabrication processes.

Recently, the studies on AF materials and devices have
been revitalized after the demonstration of spin polariza-
tion by simply flowing an electrical current in an AF layer,
which has led to AF spintronics [6], [7], [8]. AF materials
have also been demonstrated to generate a spin current at
THz frequency [9]. Additionally with the exchange coupling
with a FM layer attached, interfacial interactions including
Dzyaloshinskii-Moriya interaction (DMI) [10], [11] can be
controlled, resulting in the formation of a magnetic skyrmion
[12], a semimetal [13] and topological states [14]. These
phenomena can offer further improvement in the performance
and functionality of spintronic devices.

In parallel, a search for new AF materials which can main-
tain their AF properties with miniaturisation especially in a
film form has been made intensively. There are large vari-
ety of AF materials investigated as summarized in Table 1:
(i) cubic and (ii) hexagonal structures as shown in Figs. 1
and 2, respectively. The cubic AF includes Group III-VI as
appeared in the Periodic Table (e.g., FeO, CoO andNiO [15]),
II-VI (e.g., MnO [16],MnS2, MnSe2 andMnTe2 [16]), Group
III (e.g., Cr, FeMn [17] and NiMn [18] ) and III-V (e.g., FeN
[19] andMnN [20]) compounds as well as ternary/quaternary
Heusler alloys (with some atomic substitutions) [21]. The
hexagonal AF contains Group III (e.g., IrMn3 [22]), I-III-VI
(e.g., CuFeO2 [23], CuFeS2 [24], CuFeSe2 [25] and CuFeTe2
[26]), tetragonal AF (e.g., CuMnAs [27], [28]), antiperovskite
manganites [29], [30], [31], [32], [33] and binary Heusler
alloys (with some atomic substitutions).

The cubic Heusler alloys crystallize in (i) L21 phase with
X2YZ composition (full-Heusler) and (ii) C1b phase with
XYZ composition (half-Heusler) [34]. The half-Heusler alloys
have an X -vacancy in the unit cell, making them susceptible
to atomic displacement. Even for the full-Heusler alloys,
the perfectly-ordered L21 phase can be deformed into the
B2 phase by atomically displacing Y -Z elements, the D03
phase by X -Y displacements and the A2 phase by randomly
exchanging X -Y -Z elements. We have recently found that
Ru2YZ [35], Ni2YZ [36], [37] and Mn2YZ [38], [39] Heusler
alloys exhibit AF behavior in their L21, B2 and A2 crystalline
ordering phases. By attaching a FM Fe layer to these AF
layers, Hex of up to 600 Oe at 100 K, 90 Oe at 100 K
and 30 Oe at 100 K for Ru2MnGe, Ni2MnAl and Mn2Val,
respectively, have been found. Mn2Val is found to maintain
its AF properties at room temperature (RT). These differences
are found to be induced by the AF alignment of spin moments
at the Y site in unique ordered phases. In the ordered L21 type
Ru2MnZ (Z = Si, Ge, Sn and Sb), the complex AF order-
ing (2nd type) is a consequence of the frustrated exchange
interaction between the Mn atoms. It is concluded that Néel
temperature TN sharply depends on the Z element and that

TN in Ru2MnGe can be increased by avoiding the disorder in
the Mn-Z sub-lattice. For Ni2MnAl, the (checkerboard-like)
AF order only exists in the chemically disordered B2 phase
due to the large AF nearest neighbor Mn-Mn interaction
as schematically shown in Fig. 1. Decreasing the atomic
disorder in the Mn-Al sublattice leads to non-zero total mag-
netization (i.e., ferrimagnet; FI). The excess of Mn or Ni
does not improve the anisotropy of the AF state. From the
device application point of view,Mn-basedAFHeusler alloys
are ideal due to their robustness against atomic disordering,
especially at the interfaces to neighboring layers.

FIGURE 1. Schematic crystalline and spin structures of the pseudo-B2 (I
and II) phases for Ni2MnAl created by VESTA [40].

As Mn-based AF Heusler alloys, binary Heusler alloys
with perpendicular anisotropy, such as the D019 Mn3Z
(Z = Ga, Ge and Sn) have been studied to determine
their structural and magnetic properties. In perpendicularly
anisotropic AF films, the effect of AF-coupled ‘‘domains’’
can be minimized in the in-plane electron scattering as shown
schematically in Fig. 2. The Mn3Ge binary alloy is taken
as an example. It allows two stable crystalline structures of
the tetragonal D022 and hexagonal D019 structures which is
distorted from the basic full-Heusler L21 structures along
the <001> and <111> directions, respectively [41]. As a
result of different crystalline structures, the D022 or D019
structure exhibits different magnetic anisotropy such as a
FI with perpendicular magnetic anisotropy and low satura-
tion magnetization [42] or AF with noncollinear magnetic
moments in which the EB effect [43] appears. Recently,D019
Mn2.8Ga1.2 films have been grown with exhibiting Hex up
to 430 Oe at 120 K [44], which is almost comparable with
recent reports on IrMn with Hex = 688 Oe [45] and MnN
(Hex = 3.6 kOe but with less corrosion resistance) [46].

FIGURE 2. Schematic crystalline and spin structures of the D019 phase for
Mn3Ga from the top and side views created by VESTA [40].
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TABLE 1. List of major AF materials and their properties. After Refs. [6] and [21]. The bulk and calculate (calc.) values are also included as references.
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TABLE 1. (Continued.) List of major AF materials and their properties. After Refs. [6] and [21]. The bulk and calculate (calc.) values are also included as
references.

The major challenge in the development of AF Heusler
alloys is that there are over 3000 known Heusler alloy com-
positions [96]. The key parameter in an AF order is the
spacing between planes where the magnetic spins are ordered
ferromagnetically in the (001) plane as shown in Figs. 1 and 2
(with slight canting from the plane). Hence it is critical to
engineer the composition, so that the right spacing is achieved
with typically B2 or D019 ordering. This can be confirmed
using our recently developed Q-factor analysis as shown in
Fig. 3 [37]. The Q-factor is defined as the peak intensity

measured by X-ray diffraction (XRD) divided by full width
at half maximum, which offers a very simple measure to
evaluate the crystallinity of Heusler alloys and beyond.

II. ELECTROMAGNETIC CHARACTERISATIONS
For the characterization of AF materials, the following
techniques have been traditionally used: Magnetization mea-
surements with and without a FM layer attached, trans-
port measurements with and without a magnetic field,
and synchrotron-based measurements. The former two
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FIGURE 3. Calculated Q-factors and the corresponding crystallization of
Fe72.1V14.4Al13.5/Ru samples annealed at elevating temperatures.

techniques are relevant for macroscopic analysis, while
the last one is sensitive to microscopic characterization as
detailed below and Fig. 4.

A. MAGNETIC SUSCEPTIBILITY
In a simplified picture, AF can be treated as two sets of FM-
coupled magnetic moments antiparallelly aligned with each
other, MA = – MB (see Fig. 1). The temperature dependence
of this antiparallel alignment can be calculated similar to that
of a ferromagnet with the parallel alignment. The antiparallel
alignment is stable up to the characteristic temperature, TN,
above which the alignment becomes random due to thermal
fluctuation, typically leading to paramagnetic phase [97].
This magnetic phase transition becomes apparent by plotting
the temperature dependence of magnetic susceptibility χ .
For a single crystal, by applying a magnetic field along the
moments, χ increases linearly with increasing temperature T .
By applying a field perpendicular to the moments, χ stays
constant. For polycrystalline AF, χ (T ) follows between these
two cases. Above TN, χ decreases almost inversely propor-
tional with T , forming a kink in χ (T ) at TN (see Fig. 4). This
method can be useful for a bulk material to generate sufficient
change in the magnetic moments, especially in a single phase.

B. EXCHANGE BIAS
As AF does not produce intrinsic magnetization macro-
scopically, no signal can be detected by a magnetization
measurement. Instead, by attaching a FM layer to induce
an EB at the interface, a shift of the corresponding FM
magnetization curve (Hex) can be measured, the amplitude
of which is proportional to the interfacial exchange coupling
between AF and FM. This is particularly useful for AF films.
Hex can be evaluated by the York Protocol [98]. In an AF/FM
bilayer, AF is first set at the setting temperature TSET for
90 min., which is above TN of AF but below the Curie
temperature TC of the FM film. The bilayer is then cooled
to the thermally activated temperature TNA, followed by the

heating to the activation temperature TACT for 30min. and the
magnetization measurement at TNA. In the activation period
any activated FM grains reverse their magnetic moments to
their originally set direction. This procedure removes the first
loop training effect and any thermal activation that may occur
during the temperature rise and fall. In polycrystalline bilay-
ers, individual grains have their own blocking temperature
TB, which can be determined by increasing TACT until the
loop shift becomes zero, which represents the median value
of TB (< TB >). < TB > satisfies the reversed AF volume to
be the same with that of the initially set volume [98], which
can be an indicative measure of TN.

C. ELECTRICAL RESISTIVITY AND MAGNETORESISTANCE
Similarly, the temperature dependence of electrical resistiv-
ity ρ(T ) exhibits a kink in the gradient [21]. Below TN,
antiparallelly-coupled magnetic moments in single-crystal
AF can suppress electron scattering. Above TN, however,
the moment alignment becomes random and changes the
corresponding resistivity. It should be noted that the changes
in the resistivity are found to be 11% maximum, which can
be smaller than that due to electron scattering at grain bound-
aries by over three orders. This is a powerful technique to
determine TN for epitaxial or highly-textured films as well.
By applying an external magnetic field during the transport
measurements, similar changes in anisotropic magnetoresis-
tance (AMR) [99] and tunneling AMR (TAMR) [100] can be
used to determine TN due to the magnetic phase transforma-
tion. TAMRwas experimentally demonstrated by Gould et al.
with a junction consisting of Ga0.94Mn0.06As/Al-O/Ti [101].
A TAMR ratio was found to increase using an AF layer up to
0.15% with a IrMn/MgO/Pt multilayer at room temperature
[102]. Recently, AF materials has also been used for TAMR,
demonstrating 10% TAMR in IrMn/MgO/Ta junctions [103]
and 20% TAMR using CsCl-ordered FeRh magnetic phase
transition in FeRh/MgO/FeRh junctions [100].

D. X-RAY MAGNETIC LINEAR DICHROISM
For microscopic evaluation, synchrotron radiation can be
used. X-raymagnetic linear dichroism (XMLD) [104] utilizes
a pair of linearly polarized soft X-ray with perpendicular
polarization. XMLD signals are proportional to the average
value of the magnetic moment squared in a domain <M2>.
For an AF material, < M > is zero asMA = –MB within an
AF domain but <M2> is a finite value, allowing AF domain
imaging. Such domain imaging requires a relatively large uni-
form domain (>a fewµm) due to the spatial resolution, which
makes it difficult to be used for AF films. Recently, XMLD
has been combined with photoemission electron microscopy
(PEEM) imaging to achieve sub-µm resolution [105].

E. POLARISED NEUTRON REFLECTIVITY
Another synchrotron-based technique for the characteriza-
tion of AF materials is polarized neutron reflectivity (PNR).
PNR can determine magnetic properties of bulk and layered
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FIGURE 4. List of characterization techniques for AF materials and devices. For AF only, magnetic susceptibility, electrical
resistivity and (tunneling) anisotropic magnetoresistance, X-ray magnetic linear dichroism, and polarized neutron
reflectivity can be used for characterization as detailed in Sections II-A, C, D and E. By attaching FM and a heavy metal
(HM), exchange bias, and (inverse) spin Hall and spin caloritronic effect can indirectly show the AF properties as discussed
in Sections II-B and III, respectively. Using a trilayer consisting of AF/NM/HM, spin pumping and ferromagnetic resonance
can be used for characterization as described in Section IV.

materials [106]. Due to the magnetic moment of neutron
beam interacting with magnetic materials to be imaged, not
only layer structures, such as thickness, density, composi-
tion and interfacial roughness as similar to X-ray reflectivity
(XRR), but also in-plane magnetic moments can be deter-
mined. PNR has higher accuracy in a shorter scanning period
(<1 min.). The latter magnetic information can be obtained
by detecting the neutron reflection with its spins interacted
with those in an AF and/or FM layers.

III. SPIN-ORBIT TORQUE
In AF spintronics, three key phenomena can be used for
device applications: spin-orbit torque (SOT), spin dynam-
ics and interfacial effects as schematically listed in Fig. 5.
These phenomena are discussed in the following sections.
In this section, (inverse) spin Hall effects and spin caloritronic
effects are reviewed, both of which are induced by SOT.

A. ANOMALOUS HALL AND SPIN HALL EFFECTS
The Hall effect is induced by the Lorentz force under an
external magnetic field (ordinary Hall effect). In a magnetic
material, anomalous Hall effect (AHE) can be induced due
to the spin-orbit interaction, where an effective magnetic
field exists by the presence of an intrinsic magnetization.
Large AHE was reported in Mn3Sn [107]. This is due to a
weak ferromagnetism induced in the non-colinear AF align-
ment (∼0.002 µB/Mn [87]). Note that additional topological
contribution to the Hall signals may need to be consid-
ered in a noncolinear magnet [108]. This was employed to

FIGURE 5. Concept of antiferromagnetic spintronics, showing spin Hall
effects, spin caloritronics, THz oscillation, magnetic skyrmions,
topological effects, Heusler alloys and exchange bias (from left to right).

develop an AF memory with the writing capability at THz
frequency [109].

Spin accumulation in a semiconductor was theoretically
predicted by Averikev and Dyakonov under the flow of an
electron charge current, introducing the resultant spin current
perpendicular to the charge current [110]. This is induced by
spin-dependent scattering by an impurity and intrinsic spin-
orbit interactions of the material. Averikev and Dyakonov
also proposed the inverse effect by aligning the spins by
an electromagnetic wave to generate a charge current [111].
These predictions were revisited by Hirsch and named as
spin Hall and inverse spin Hall effects (SHE and ISHE),
respectively (see Fig. 6) [112]. The relationship between the
charge and spin currents can be defined as

(Spin current) = θSH × (Charge current), (1)
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where the coefficient θSH is the spin Hall angle specific
to a material used. The corresponding Hamiltonian can be
determined as

H =
ℏ2k2

2m
+ λSO (σ × k) , (2)

where ℏ: Planck constant divided by 2π , k: wave vector, m:
electron mass, λSO: spin-orbit coupling constant and σ : spin
matrix.

Experimentally, magneto-optical Kerr effect (MOKE)
imaging was used to detect the spin accumulation at the edges
of GaAs at 30 K, resulting in a spin current of the order of
10 nA/µm2 [113]. In a similar system, a spin current was also
electrically detected [114].

FIGURE 6. Schematic diagram of the (a) SHE and (b) ISHE measurements.

SHE and ISHE do not require an external magnetic field
unlike the original Hall effect. When a large magnetic field
is applied perpendicular to the material, the accumulated
spins start to precess and diminish SHE and ISHE. This
induces the corresponding resistance changes with respect
to the field, spin Hall magnetoresistance (SHMR) [115].
SHMR was experimentally measured in Y3Fe5O12 (YIG)/Pt
bilayer [116].

In AF materials, large (I)SHE signal has been shown, e.g.,
(5.3 ± 2.4)% for Mn3Sn [117], as listed in Table 2. These
signals are induced by the spin Hall angles θSH as listed in
Table 2, which are almost one order of magnitude smaller
than those for heavy-metals, e.g., −35 (−50)% for W [118]
(WOx [119]) and 5.6% for Pt [120].

B. SPIN CALORITRONIC EFFECTS
Spin caloritronic effects, namely spin Seebeck and Nernst
effects (SSE and SNE, respectively), can induce a spin current
as originally demonstrated in Ni80Fe20/Pt [133] and YIG/Pt
(see Fig. 7) [134]. InAFmaterials, a pioneeringworkwas per-
formed with a Cr2O3/Pt bilayer by Seki et al. [135] as listed
in Table 3. These effects have been intensively investigated
for energy harvesting. For SSE, the figure of merit ZT can be
determined as [136]

ZT (SSE) =
σS2

κ
T , (3)

where T : temperature, σ : electrical conductivity, S: Seebeck
coefficient and κ: thermal conductivity. ZT > 1 is needed for
practical device applications. Similarly for SNE, ZT can be
obtained using the Nernst coefficient N as follows:

ZT (SNE) =
σN 2

κ
T . (4)

An anomalous Nernst effect (ANE) is normally propor-
tional to the intrinsic magnetization of the material under

TABLE 2. List of spin Hall angle and SMR reported for AF and Weyl
materials. After Ref. [7]. SP, SSE and FMR represent spin pumping, spin
Seebeck effect and ferromagnetic resonance measurements, respectively.

investigation as similar to AHE. Even so, a Nernst signal of
∼0.35 µV/K was reported at RT [135], which is over two
orders of magnitude greater than that expected from the weak
ferromagnetism [87]. This increase is due to the fact that
the transverse thermoelectric conductivity is determined by
the Berry curvature in the vicinity of the Fermi level (EF)
offering adiabatic electron motion, while the anomalous Hall
conductivity is defined as the sum of the Berry curvature for
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FIGURE 7. Schematic diagram of the (a) SSE and (b) SNE measurements.

TABLE 3. List of spin caloritronic properties reported for AF materials.

all the occupied bands. Hence, a Weyl metal can be advan-
tageous for spin caloritronic applications due to the unique
Berry curvature at Weyl points near EF [see Fig. 10(b)] The
detailedmodel to calculate the corresponding spin current can
be found in Ref. [137].

IV. DYNAMICS
A. SPIN PUMPING
In a FM/AF bilayer, a spin current can be introduced by
spin pumping (SP) from FM to AF by precessing the FM
magnetization (see Fig. 8). The spin current may be damped
in AF and may reduce the reflected spin current into FM,
which accordingly increases the damping constant of FM.
Using ISHE, the spin current JSPS satisfies the following
relationship [145].

VISHE = wRθSH

(
2e
ℏ

)
JSPS , (5)

where w and R are the width and resistance of the bilayered
Hall bar and e is the electron charge. VISHE takes the max-
imum at the resonant magnetic field, where the maximum
precession is achieved and the resulting maximum JSPS is
introduced to AF. Using this condition, θSH can be estimated
as listed in Table 2. This is sensitive to a small spin current
to be introduced by increasing R of the Hall bar sample. This

FIGURE 8. Schematic diagram of the spin pumping (SP) measurement in
a trilayered structure with ferromagnet (FM)/nonmagnet (NM)/
antiferromagnet (AF). Spin current (Js) generated by magnetization
precession is converted to charge current (Jc) via inverse spin Hall effect
in the AF.

technique can also be applied to characterize a spin current
generated optically and thermally.

B. FERROMAGNETIC RESONANCE
Similar to SP, a FM/AF bilayer is used for ferromag-
netic resonance (FMR) as schematically shown in Fig. 9(a).
A high-frequency current I (typically at 10 GHz) is applied
to a FM/AF bilayer to generate an in-plane radio-frequency
(rf) magnetic field perpendicular to the current in the AF
layer accompanying with the spin current from the AF layer.
This experimental technique is called ‘‘spin-torque FMR
(ST-FMR)’’, which was originally employed to evaluate θSH
in the bilayer consisting of FM and NM [146], and has
widely been used for a variety of materials [147], [148].
The in-plane rf magnetic field exerts a torque and induces
the magnetization precession in the FM layer. At the same
time, a spin current can be generated by SHE in the AF
and/or at the FM/AF interface, which diffusively flows into
the FM layer and exerts a torque perpendicular to the layer.
Here, the in-plane torque is in-phase with the high-frequency
current, while the perpendicular spin-current torque is shifted
byπ /2 from the current frequency. By fitting a FMR spectrum
to antisymmetric and symmetric contributions due to the
in-plane and perpendicular torques, respectively, JSFMRcan
be estimated from the latter contribution. VFMR

sym and
VFMR

antisym are given as follows [146] and [149]:

V sym
FMR =

1
4
dR
dθ

γ I cos θ

2π
(
df

/
dH

)
H=H0

×

[
ℏJFMR

S

2eµ0MStFM

1

(H − H0)
2

]
(6)

V antisym
FMR =

1
4
dR
dθ

γ I cos θ

2π
(
df

/
dH

)
H=H0

×

[
JCtAF
2

(
1+

eµ0MS

ℏ

)1/2 (H − H0)

12 + (H − H0)
2

]
(7)
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where dR
/
dθ : resistance change by the precession, θ : angle

between the external magnetic field (H ) and I , γ : gyromag-
netic constant, f : frequency of I ,H0: FMRfield,µ0: magnetic
permittivity in a vacuum (4π × 10−7 H/m), MS: saturation
magnetisation of FM, tFM: FM thickness, 1 is half width of
half maximum of FMR spectrum, tAF: AF thickness and JC:
charge current.

Using the symmetric and antisymmetric FMR spectrum
components, θSH can be calculated as follows [146]:

θSH =
JFMR
S

JC
= tFMtAF

V sym
FMR

2VFMR
antisym

eµ0MS

ℏ

√
1 +

(
4πM eff

H

)
(8)

The literature values of θSH measured by ST-FMR are listed
in Table 2. An example of ST-FMR for the FM/AF bilayer
is shown in Fig. 9, in which the Ni81Fe19 and Ir22Mn78
(IrMn3.55) were chosen as FM and AF materials, respec-
tively. Fig. 9(b) displays the optical microscope image of the
coplanar-waveguide-shaped device with the sputter deposited
Ni81Fe19 (3 nm)/IrMn3.55 (10 nm) bilayer together with the
measurement setup for ST-FMR. The representative ST-FMR
spectra are shown in Fig. 9(c), in which the rf current with the
frequency of 8 GHz was applied and the in-plane H angles
were set at 45◦ and 225◦. The spectra were well fitted with
the summation of antisymmetric and symmetric Lorentzian
functions. Using Eq. (8), θSH was evaluated to be 3% for the
IrMn3.55 alloy.

FIGURE 9. (a) Schematic diagram of the spin torque ferromagnetic
resonance (ST-FMR) measurement in a bilayer with ferromagnet (FM)/
antiferromagnet (AF). (b) optical microscope image of the
coplanar-waveguide-shaped device together with the measurement
setup. (c) ST-FMR spectra for the Ni81Fe19 (3 nm)/IrMn3.55 (10 nm)
bilayer. The rf current with the frequency of 8 GHz was applied, and the
in-plane magnetic field angles were set at 45◦ and 225◦.

C. THz OSCILLATION
By overlaying a direct current (dc) on I in the FMR technique
as described in Section IV-B, an effective damping constant
of FMMeff can be modified as

1αeff =
sin θ(

H +Meff
/
2
) ℏJFMR

S

2eµ0MStFM
. (9)

TABLE 4. List of spin dynamics reported for AF materials.

FIGURE 10. Schematic band diagram of the (a) Dirac and (b) Weyl
semimetals.

By controlling I , the in-plane and perpendicular torques can
be cancelled out, resulting in 1αeff = 0. This allows oscilla-
tion of the FM magnetisation.

THz oscillation can be observed in AF due to strong
exchange interactions between two sublattices with MA and
MB [150], [151]. In NiO, the first demonstration of THz oscil-
lation was achieved [151]. Since then, a great deal of research
has been made to achieve higher oscillation frequency in AF
materials as listed in Table 4.

V. TOPOLOGICAL EFFECTS AND BEYOND
Topological and interfacial phenomena in AF materials have
been intensively investigated recently [154]. For example,
Dirac and Weyl semimetals can be formed with AF nature as
schematically shown in Fig. 10. The Dirac semimetals form a
point connection between the valence and conduction bands
at EF, which is known as the Dirac point. The Dirac point
can demonstrate the ideal conductance of 2G0 (G0 = e2/h,
where e is the electron charge and h is the Planck con-
stant). The Weyl semimetals contain the chirality at the Dirac
point as schematically shown in Fig. 10(b). Weyl semimetals
show large AHE, e.g., anomalous Hall angle and conduc-
tivity of 0.23 and 60 �−1cm−1 for GdPtBi [155], 0.11 and
1258.9 for Co2MnGa, and 0.08 and 1421.6 for Co2MnAl,
respectively [156]. The chiral topological semimetal CoSi
shows a small spin Hall angle of ∼ 0.03 due to the unique
electronic structure [157].

A. MAGNETIC SKYRMIONS
Néel-type magnetic skyrmions were stabilized by attaching
IrMn3 underneath Co20Fe60B20 at RT [12], which has been
supported by theoretical calculations [158]. According to
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theoretical prediction, skyrmions in AF can be displaced
faster by a smaller critical current density (106∼107 A/cm2)
than those in conventional FM materials [159], [160].
Although AF skyrmions were stabilized and imaged in a
synthetic AF [161] and FI [162], no report has been made
to date in AF materials.

B. TOPOLOGICAL EFFECTS
SHE can be induced in an individual layer in two-dimensional
MnBi2Te4, achieving layer Hall effect with up and down
spins to be generated at the edges of the top and bottom layers
at 1.7 K [163]. This is induced by the layer-locked Berry
curvature, which can open a new research field of topological
AF spintronics.

C. ORBITAL FERRIMAGNETISM
‘‘Orbital Ferrimagnetism’’ was firstly termed for FI CoMnO3
by Bozorth et al. [164]. Orbital FI is defined as a system
where the net magnetic moment is only attributed to the
orbital magnetic momentum. To date, CoMnO3 is the only
material known to exhibit orbital FI, consisting of Co2+

and Mn4+, which possess S = 3/2, respectively. Since these
cations are antiferromagnetically coupled, the spin angular
momenta cancel each other out. This causes the spinmomenta
to be compensated, while the orbital angular momentum of
Co2+ in the crystal field to be conserved. Consequently, the
net magnetic moment is proportional to the orbital angu-
lar momentum [165], [166]. In other words, an orbital FI
has the properties of antiferroic-spin momenta and ferroic-
orbital momentum. Therefore, one can expect that the orbital
FI would become a bridge between AF spintronics and
orbitronics.

D. ALTERMAGNETISM
Recently, a new class of collinear antiferromagnet is the-
oretically predicted by classifying magnetic material based
on spin-group formalism, which is termed as altermagnetism
[167], [168]. Altermagnetism is induced by the anisotropic
band structure that non-degenerate but equally populated
spin-up and spin-down energy isosurfaces. Altermagnetism
is predicted to exhibit various spintronics phenomena [169],
[170], [171] such as AHE and tunneling magnetoresistance
(TMR) similar to AF, and is expected to be a functional
material in a novel region of antiferromagnetic spintronics.
For example, field-free switching was demonstrated in the
heterostructure using RuO2 [172], [173]. Some other alter-
magnets, e.g., MnTe [174], [175] andMn5Si3 [176], have also
been predicted and characterized.

VI. CONCLUSION AND FUTURE PERSPECTIVES
We have reviewed the recent development and characteri-
zation of AF materials and devices. In general, hexagonal
(or non-colinear) AF exhibits larger magnetic anisotropy con-
stants of the order of 10 Merg/cm3, while cubic AF shows
smaller constants as summarized in Fig. 11. They corre-
spond to the spin Hall angle θSH and spin Seebeck/Nernst
coefficients. In order to develop efficient AF spintronic

FIGURE 11. Correlations between the magnetic anisotropy constant and
the spin Hall angle θSH (closed symbols) as well as the spin
Seebeck/Nernst coefficient (open symbols). After [190], new data added
on Mn3Ga [132] and NiO [137]. Open and closed symbols represent cubic
and non-colinear spin configurations, respectively. Blue and red data
show θSH and spin Seebeck and Nernst coefficients, respectively. Target
ranges are highlighted as broad lines in the corresponding axes.

TABLE 5. List of abbreviations used in this review.

devices, higher anisotropy without atomic disordering is
needed as highlighted by broad lines. Such materials can
be used for an electric-field controlled device [177], SOT-
MRAM [178] and energy harvesting [136]. Hall memory
concept has also demonstrated with CuMnAs [109] and
Mn2Au [179].
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By antiferromagnetically coupling two FM layers through
a non-magnetic spacer, a synthetic AF (SyAF) can be formed,
which has been commonly used to pin the magnetization
of the neighboring FM layer in perpendicularly-magnetized
MRAM [180]. Such SyAF has also been used to demonstrate
memory operation [181], [182], [183] similar to AF as dis-
cussed in Sec. III-A. SyAF can offer broad controllability in
the quantization axis in the system, offering design flexibility
in AF spintronic devices.

Recently, AF-based magnetic tunnel junctions (MTJs)
have been fabricated by showing about a 100% TMR
ratio with Mn3Pt/MgO/Mn3Pt [184] and 2% ratio with
Mn3Sn/MgO/Mn3Sn [185]. By enhancing the TMR ratio,
such an AF-based MTJ may offer a new architecture for
spintronic devices. Such a large TMR ratio is predicted using
a noncolinear antiferromagnet, Mn3Sn [186], and even larger
ratio of 500% is predicted with a RuO2/TiO2/RuO2 junc-
tion [170].

FI can also be used in a similar manner to induce AMR
[187], SHE and laser-induced magnetization reversal [188].
The magnetization of FI can be controlled by engineering
the composition in the vicinity of the compensation point.
This can minimize the corresponding stray field used as an
alternative FM in MRAM and magnetic sensors. These AF
and FI (as well as a new class of symmetry, altermagnetism
[189])-based devices are anticipated to improve the efficiency
of their spintronic devices.
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