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ABSTRACT This study explores the implementation of advanced machine learning techniques to enhance
the integration of renewable energy into smart grids, focusing specifically on predicting solar power gener-
ation for the upcoming year. Three distinct machine learning models are employed: the Long Short-Term
Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM) and a hybrid model that combines
Autoencoder and Long Short-Term Memory (AE-LSTM). Using real-time solar power production data
spanning a year, these models are trained and evaluated using mean absolute error (MAE) and mean squared
error (MSE) as performance metrics. Results highlight the superior accuracy of the hybrid AE-LSTMmodel
compared to the LSTM model as well as Bi-LSTM model, attributed to its capability to capture intricate
temporal patterns and correlations within the data. This research underscores the significant potential of
machine learning techniques, particularly the hybrid AE-LSTM approach, in facilitating the seamless inte-
gration of renewable energy resources into smart grids, contributing to more efficient and environmentally
conscious power systems. Furthermore, a comprehensive analysis reveals the hybrid AE-LSTM model’s
capacity to produce superior predictions due to its additional training, solidifying its advantage over models
solely reliant on the other model’s architecture. In summary, this study demonstrates the effectiveness of
advanced machine learning methodologies in revolutionizing renewable energy integration, with the hybrid
AE-LSTM model standing out as a promising avenue for enhanced prediction accuracy.

INDEX TERMS Renewable energy, smart grids, power forecasting, bi-LSTM model, hybrid autoencoder
LSTM model.

I. INTRODUCTION
As global concerns increasingly center around long-term
sustainability, the imperative for environmentally sound and
sustainable energy sources has grown more pronounced. The

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

dwindling availability of non-renewable resources like fos-
sil fuels not only threatens resource scarcity but also poses
severe environmental risks. Consequently, alternative renew-
able energy sources, such as solar, wind, and hydroelectricity,
have been gaining substantial traction [1]. Yet, the integration
of these renewable assets into intelligent electricity grids
presents multifaceted challenges. Scholars are responding by
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innovating hybrid solutions aimed at bolstering grid stability
and refining control mechanisms [2], [3], [4], [5]. These
inventive approaches encompass specific control method-
ologies to enhance failure ride-through capabilities, voltage
regulation, and reactive power injection, effectively address-
ing the complexities of grid failures. This endeavor draws
support from meticulous comparative analyses and simula-
tion findings, which further chart a course for prospective
research directions [2], [3], [4], [5]. Looking ahead, the role
of artificial intelligence (AI) techniques in smart grid man-
agement, spanning wind, solar, and biogas systems, is poised
for pivotal significance [6], [7]. An illustrative breakthrough
lies in a groundbreaking system designed by researchers for
tracking solar panels within photovoltaic power stations. This
novel system harnesses algorithms and image-processing
methodologies, underscoring the growing reliance on tech-
nologies like UAVs and automated recognition [8], [9]. Solar
energy’s ascendancy in meeting energy demands is evident
[10]. However, accurate prediction of solar plant energy out-
put remains a formidable challenge, necessitating advanced
methodologies [11]. The limitations of conventional forecast-
ing approaches, especially in predicting power generation
and related attributes, have spurred researchers to explore
diversemodels, particularly those rooted inmachine learning.
The utilization of data from diverse energy and electricity
sources has underscored the significant predictive capabili-
ties of these models [12]. Illustratively, hybrid models that
amalgamate ARIMA and LSTM techniques have shown
promise in short-term electric energy forecasts for photo-
voltaic power plants. By capitalizing on the strengths of
both approaches, these models strive to elevate the accuracy
of power supply forecasts [13], [14]. Similarly, Bi-LSTM
models have been exclusively applied to anticipate energy
parameter production within solar plants. These models con-
sider temporal and spatial interdependencies to refine the
accuracy of predictions [15], [16]. Nevertheless, some studies
exhibit a narrower focus on specific input features, poten-
tially overlooking influential elements impacting electricity
production [17]. The application of machine learning models
extends beyond solar energy to include wind power predic-
tion. Research investigating the effectiveness of ARIMA,
LSTM, and ELM models in short-term wind power forecast-
ing has revealed the superior accuracy of the ELM technique
[18], [19]. Yet, certain studies in this domain fall short in clar-
ifying model training and preprocessing procedures, which
could compromise result reproducibility [20], [21], [22],
[23]. While promising, machine learning models for energy
forecasting are not devoid of limitations, including complex-
ity, future data dependency, fixed-length input sequences,
challenges in handling long-term dependencies, and the
specter of overfitting. Researchers have explored alterna-
tive machine learning methodologies, exemplified by hybrid
encoder-decoder designs that exhibit exceptional accuracy in
predicting dynamic energy patterns in thermal power plants
[24], [25]. In parallel, LSTM Auto-encoder models have

demonstrated efficacy in forecasting solar plant production
a day in advance, adeptly addressing data uncertainties and
distortions [26], [27]. These models tap into deep learn-
ing frameworks like deep belief networks (DBN), LSTM
neural networks, Autoencoders, and LSTM-recurrent neural
networks (RNN) to estimate Photovoltaic production [28],
[29], [30], [31]. Against this backdrop, the study’s focus
shifts towards assessing the efficacy of the Autoencoder
LSTM (AE-LSTM)model in energy forecasting applications.
Envisioned as a means to enhance the precision of time
series predictions, this inquiry strives to conceive a hybrid
model by fusing the Autoencoder with the Long Short-Term
Memory (AE-LSTM) framework. The crux of this innova-
tion lies in the Autoencoder LSTM’s dual role—encoding
sequential data while encapsulating temporal correlations.
The preprocessing phase will meticulously tailor time series
data to optimize input sequences, followed by comprehensive
training and validation, leveraging methodologies like cross-
validation.

This study’s trajectory orbits around forecasting three piv-
otal metrics grounded in real-time solar plant data spanning a
year: ‘‘daily power generation,’’ ‘‘maximum grid-connected
power generation,’’ and ‘‘radiance.’’ It commences with the
prediction of these parameters utilizing machine learning
LSTM and Bi-LSTM models, followed by iterative refine-
ment through the incorporation of the hybrid AE-LSTM
approach. The crescendo of this effort will culminate in
an intricate and holistic comparison of outcomes from both
models, thereby facilitating a nuanced and comprehensive
evaluation. Accordingly, the study is meticulously structured
to delve into the design and methodology of the proposed
models, their inherent differences, the context-specific case
scenario, the intricacies of the dataset, the profound find-
ings encompassing losses and forecasts, the intricacies of
the employed system and software, and finally, encapsulating
overarching insights gleaned from the research endeavor. The
main contributions of this study are as follows:

• The key finding is that the hybrid AE-LSTM model
demonstrates superior accuracy and performance com-
pared to the other two benchmark models LSTM and
Bi-LSTM model in predicting solar power generation
for various parameters. The hybrid AE-LSTM model
introduces a novel architecture that combines the feature
extraction functionality of Autoencoders with the mem-
ory capabilities of LSTM networks.

• The study employs performance metrics such as MAE,
MSE and RMSE to evaluate the effectiveness of the
models. Results demonstrate that the hybrid AE-LSTM
model consistently outperforms the LSTM as well as
Bi-LSTM model across multiple parameters including
‘‘daily power generation,’’ ‘‘maximum grid-connected
power generation,’’ and ‘‘radiance.’’

• By improving the accuracy of solar power generation
predictions by hybrid AE-LSTM model. This contribu-
tion is crucial for enhancing decision-making processes
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related to solar power facilities and optimizing resource
distribution.

• The research underscores the potential AE-LSTM
approach, in enhancing the integration of renewable
energy resources into smart grids. This contribution
aligns with the broader goal of developingmore efficient
and environmentally friendly power systems.

The paper is organized as follows: Section II outlines the
design andmethodology of the proposedmodels. This section
not only explains the functioning of the models but also
highlights the initial distinctions between the two. Moving
on, Section III delves into the particulars of the specific
case scenario and provides a comprehensive overview of the
dataset. In Section IV, we thoroughly examine the findings of
the study, encompassing both losses and forecasts. The tech-
nological infrastructure, including the system and software
used to derive the experimental results, is elaborated upon in
Section V. Finally, in Section VI, concluding insights drawn
from the research are presented.

II. PROPOSED FRAMEWORK/METHODOLOGY
In the context of a stationary time-series dataset, this research
employs a strategic approach utilizing three machine learn-
ing models: LSTM (Long Short-Term Memory), Bi-LSTM
(Bidirectional Long Short-Term Memory) and a hybrid
AE-LSTM (Autoencoder Long Short-Term Memory). The
dataset comprises a year’s worth of readings for three key
parameters: ‘‘daily power generation (kWh)’’, ‘‘maximum
grid-connected power generation (MW)’’, and ‘‘radiance
(MJ·m−2)’’. These real-timemeasurements are sourced from
a substantial solar power facility. To ensure a seamless time
sequence, the dataset undergoes preprocessing to meet unin-
terrupted criteria. Initially, 80% of data is used as a training
data while the remaining 20% data is used for the testing or
validation.

For the testing set, the models’ efficacy is evaluated,
and adjustments are made to enhance accuracy. Validation
data is then utilized to assess the models’ performance
with unseen data. With refined and validated models, the
research extrapolates power generation for the subsequent
year. This prediction involves extending the time series data
into the future and predicting forthcoming values. The LSTM,
Bi-LSTM and hybrid AE-LSTM models are leveraged for
these power generation forecasts. These predictions offer
actionable insights to solar power plant operators for resource
allocation, pricing strategies, efficient power system plan-
ning, system stability, and key design considerations. The
research outcomes prominently demonstrate that the hybrid
Autoencoder LSTM model enhances accuracy and dimin-
ishes both mean absolute error (MAE) and mean squared
error (MSE) compared to other two model. A comprehen-
sive comparison of these models is thoughtfully incorporated
within the study article. Furthermore, Fig. 1 visually delin-
eates the comprehensive procedural flowchart along with
visual outcomes derived from both models. In-depth eluci-
dations of the structural and mathematical nuances of the

LSTM, Bi-LSTM and AE-LSTM models are exhaustively
covered in subsequent subsections.

A. STRUCTURE OF LSTM
An essential component of recurrent neural networks
(RNNs), the Long Short-Term Memory (LSTM) cell,
is designed to manage and capture dependencies within
sequential data effectively. It accomplishes this through a
well-structured composition of interconnected elements that
enable the cell to selectively retain or forget information over
time. The core structure of a simple LSTM cell as shown
in Fig.2 comprises three crucial components: the input gate,
the forget gate, and the output gate. These gates play pivotal
roles in controlling the flow of information through the cell,
while a memory cell continuously updates and stores data.
In a Long Short-TermMemory (LSTM) neural network, there
are four crucial gates that govern the flow of information. The
input gate plays a pivotal role by assessing the importance of
new data through a sigmoid activation function, considering
both the current input and the previous hidden state. It selects
essential elements from the input for storage in the memory
cell. Conversely, the forget gate determines which data should
be discarded from the memory cell, again considering the
current input and the previous hidden state with a sigmoid
activation function. Thememory cell itself acts as a repository
for persistent information, receiving input from the input gate
to incorporate fresh data and from the forget gate to regulate
information removal. Finally, the output gate decides how
much information from the memory cell should be passed
on to the next hidden state. It employs sigmoid activation
to make this determination and further scales the output
with a tan h activation function, constraining it within the
range of −1 and 1. Together, these gates enable an LSTM
to effectively manage and utilize information for various
tasks in neural network processing. Collectively, these com-
ponents empower the LSTM cell to make informed decisions
about updating its memory, retaining crucial information,
discarding irrelevant data, and generating outputs. With its
unique architecture featuring a dedicated memory cell and
gate-controlled information flow, LSTMs excel at captur-
ing and preserving long-term relationships within sequential
data.

B. MATHEMATICAL EXPRESSION OF LSTM
Within the architecture of the Long Short-Term Memory
(LSTM) cell, there are three crucial gates: the forget gate,
input gate, and output gate. These gates have the essential
responsibility of governing the information flow inside the
LSTM cell. Let’s delve into a detailed explanation of the
equations:

The forget gate assumes a pivotal role in determining
which information should be retained or discarded from the
previous time step’s hidden state (ht−1) and the current input
(xt ). Its calculation involves the application of the sigmoid
function (σ ) to the weighted sum of inputs (Wf ), as described
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FIGURE 1. Results visualization process using LSTM, Bi-LSTM and AE-LSTM.

FIGURE 2. LSTM internal structure.

in Eq. (1):

ft = σ {Wf (ht−1, xt )} (1)

where σ represents the sigmoid function, Wf denotes the
weighted sum of inputs within the forget gate, ht−1 represents
the previous time step’s hidden state, and xt stands for the

current input. The input gate determines which elements
should be incorporated into the current cell state (ft ).
It comprises two key components: first, an input gate layer
employing the sigmoid function to select values for updating,
and second, a tan h layer that generates new candidate values
(C ′

t ) potentially added to the cell state. Eq. (2) and Eq. (3)
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detail the input gate’s parameters.

It = σ {Wi(ht−1, xt )} (2)

C ′
t = tanh{Wc ∗ (ht−1, xt)} (3)

The cell state (Ct ) undergoes modifications based on sev-
eral factors, including the forget gate outputs (ft ), the previous
cell state (Ct−1), the input gate (It ), and the candidate cell
state (C’t). Eq. (4) outlines the specific process for updating
the cell state:

Ct = (ft∗Ct−1) + Ct∗C ′
t (4)

The hidden state (ht ) is determined by multiplying the cur-
rent cell state (Ct ), after it has been processed through the tanh
activation function, by the output gate (Ot ). Eq. (5) provides
the mathematical representation of this computation:

Ot = σ {Wo.(ht−1, xt ) (5)

ht = Ot ∗ tanh (Ct) (6)

In the equations provided, the recurrent weights (Wf , Wi,
Wc, Wo) are responsible for encoding the memory and rela-
tionships in the LSTM. These equations describe the dynamic
interactions at each time step t involving input xt , hidden
state ht , and cell state Ct . At the previous time step t − 1,
the corresponding values were represented as ht−1 and Ct−1.
The sigmoid activation function, denoted as σ , is consistently
employed across these equations. Specifically, σ represents
the input gate, ft represents the forget gate, Ot represents the
output gate, xt is the input at the current time step, ht signifies
the hidden state at that step, Ct reflects the current cell state,
C ′

t represents the candidate cell state at time step t , and Ct−1
denotes the previous cell state. These equations capture the
intricate computations that underlie the updates to the cell
state and the generation of the hidden state within an LSTM
cell.

C. STRUCTURE OF BI-LSTM
A widely employed recurrent neural network (RNN) in the
realm of time series forecasting and sequence classification is
the bidirectional long short-term memory (Bi-LSTM) model.
Designed to adeptly process sequential data, the fundamental
structure of the Bi-LSTM model is illustrated in Fig. 3.
In this depiction, a sequence of input data is fed into the
Bi-LSTM architecture through the input layer. The core of
the architecture comprises two LSTM modules, forming the
bidirectional LSTM layer. This unique layer processes the
input sequence both in the conventional forward direction and
simultaneously in reverse, effectively capturing dependencies
from both past and future inputs. This configuration enhances
the model’s ability to discern intricate relationships within
the data. To counteract overfitting during the training phase,
a dropout layer follows the bidirectional LSTM layer, inter-
mittently deactivating a fraction of units. The output from the
LSTM layer is then channeled to the dense layer, constituting
the fourth layer, where it undergoes linear transformation
to yield the final output. This layer can also incorporate

activation functions and regularization techniques, enhancing
model performance. Techniques such as grid optimization
can be employed to fine-tune model parameters, includ-
ing the number of LSTM components, layers, and dropout
frequencies. Crucially, the process of updating the model dur-
ing training involves backpropagation through time (BPTT),
which takes into account the sequence of previous inputs and
outcomes, as depicted in Fig. 3.

D. MATHEMATICAL EXPLANATION OF BI-LSTM
Eq. (7) outlines the input gate’s operation within a bidirec-
tional long short-term memory (Bi-LSTM) model. It entails
computing a balanced adding of the input xt , the hidden
state from preceding ht−1, and a term related to bias bi. All
three of these components undergo multiplication with their
respective learned weight matrices Wi and Ui. The resulting
products are subsequently summed together. Finally, function
of sigmoid σ is employed to determine the range of the input
gate, which is applied to the aforementioned sum to produce
the result [32].

it = σ (Wi (xt) + Ui(ht−1) + bi (7)

At time step t , the gate’s input column represents the activa-
tion of the gate, while xt denotes the input vector, and ht−1
signifies the state that is hidden at the t−1 previous time step.
The input gate’s weighted matrixWi operates on xt , the input
and the weighted matrix for the state of hidden, Wi, acts on
ht−1. bi as bias term contributes to the input gate. Moving on
to Eq. (8), it delineates that how the forgotten gate operates
within a Bi-LSTM model. This gate calculates an input xt
sum that is weighted, preceding state of hidden ht−1, and term
related to bias bf . The correspondingweightedmatricesWf as
well as Uf have been multiplied by all three of these factors.
The resulting products are subsequently summed together.
Ultimately, the function of sigmoid σ to the sum is applying
to determine the result of the forgotten gate, denoted as ft .

ft = σ (Wf (xt) + Uf (ht−1) + bf (8)

At time step t , ft the forgotten gate column represents
the activation of gates, while xt denotes the input vector.
At t − 1 time step the state of hidden denoted as ht−1, and
the weighted matrices for the forgotten gate are Wf and Uf ,
respectively and they have been assigned to the input as xt
and state of hidden as ht−1. The term related to bias for
the forget gate is bf . Moving on to Eq. (9), it illustrates the
Bi-LSTM network calculation of the potential state for cell
memory. The potential state of a cell memory c′t is produced
by applying the (tan h) tangential function by hyperbolic upon
the resultingmatrix after adding the sums of weights and bias.

c′t = tan h(Wa (xt) + Ua (ht−1) + ba) (9)

At time step t , the potential activated vector c′t represents
the activation, while xt denotes the input vector. At t − 1
time step the state of hidden is denoted by ht−1. Wa and Ua
are the weighted matrices for potential activated, assigned
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FIGURE 3. Bi-LSTM internal structure.

to the input xt and state of hidden ht−1, respectively. The
term related to bias for potential activation is ba. Shifting to
Eq. (10), it presents the Bi-LSTM model’s computation for
the cell’s state at a unique time step t . Whatever data from
the previous state of the cell ought to be kept or left behind
is decided by the forget gate ft . Every bit of data obtained
from the preceding state of the cell is lost if the forgotten gate
output ft equals 0, but is retained if ft equals 1. Subsequently,
via the gate for input, fresh information is incorporated into
the state of cell’s, determining which components of the
potential state of the cell c′t should be retained. Nothing fresh
information is included if the input value of the gate is 0, and
all fresh information is retained once it equals 1. The state of
the cell ct for the present time step t is updated by combining
the both components.

ct = (ft ∗ ct−1) + it ∗ c′t (10)

In Eq. (10), the terms ct and ct−1 refer to the state of cell
vectors at time steps t and t − 1, respectively. At time step t ,
the input of the gate matrix it and the forgotten gate matrix
ft are both used. Additionally, at time step tc′t stands for the
potential activation matrix. Moving on to Eq. (11), the final
state ot at each step-in time t is calculated. The learnable
parameters Wo, Uo, and bo, along with the most recent input
xt , the prior state of hidden ht−1, define this output state.
These factors, which are learned during training, are used to
balance and mix the input and the prior state of hidden in
order to determine the ultimate outcome state.

ot = σ (Wo (xt) + Uo (ht−1) + bo (11)

The given input vector, xt , at each step-in time t determines
the resultant gate vector, ot . The symbol for the state of hidden
at each step-in time t − 1 is ht−1. When applies on the input
xt and the state of hidden ht−1, Wo also Uo are the weighted
matrices for the resultant gate, respectively. bo stands for
the output gate’s bias term in addition. Moving to Eq. (12)
is then used to get the state of hidden, ht , for each step-in
time t . The resultant state, ot , and the memory state of cell,
C t , serve as the foundation for this computation. The earlier
state of hidden, ht−1, and the present input, xt , are used to

calculate the memory state of cell. The state of output is then
established using the present state of hidden, ht , and is used
for filtering information from the state of memory cell in a
certain manner.

ht = (ot) ∗ tan h
(
C t) (12)

In the equation, ht denotes the state of hidden, ot represents
the resultant gate, and C t signifies the memory state of cell at
each step-in time t [32].

E. STRUCTURE OF HYBRID AE-LSTM
The concepts of autoencoders and LSTM (Long Short-Term
Memory) networks are combined in an autoencoder LSTM.
One specific type of neural network structure, called an
‘‘autoencoder,’’ is taught to recreate the data being input by
‘‘encoding’’ it in a simplified form. The autoencoder frame-
work shown in Fig. 4 incorporates LSTM cells, which allows
the model to capture temporal relationships and produce
useful representations for data that is sequential. The encoder
component’s LSTM cells handle the ordered input, capturing
time relationships and creating a condensed form known as
the ‘‘encoding’’ or ‘‘latent space.’’ This encoding often rep-
resents the datamore effectively than the input sequence since
it has fewer dimensions. The LSTM decoder is then given the
encoded data. The decoder LSTM cells reconstruct the orig-
inal input sequence by generating an output sequence. The
decoder makes an effort to minimize the error of reconstruc-
tion by comparing the original input with the reconstructed
output as little as feasible. The collection of input sequences is
used to train the autoencoder LSTM. The goal is to lessen the
disparity among the input sequences and the outputs of their
reconstruction. In order to minimize the disparity among the
original and reconstructed data, a function of loss, such as the
mean-squared error (MSE) or bi cross-entropy loss, is usually
used to achieve this. The autoencoder LSTM may be used
for compression and reconstruction tasks once it has been
trained. The encoder makes a compressed version (encod-
ing) of a new input sequence, while the decoder extracts
the original sequence from the encoding. As a result, the
input sequence may be compressed into a lower-dimensional
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FIGURE 4. Structure of hybrid autoencoder LSTM.

structure and reliably and efficiently reconstructed using the
model. Autoencoder LSTM models are particularly suitable
for tasks like sequential prediction, finding anomalies, and
extraction of features from sequential data because they com-
bine the strengths of LSTM networks in capturing temporal
relationships with the compression skills of autoencoders.
The model gains the ability to recognize the fundamental
patterns of the input sequence, extract significant information
from it, and properly recreate it.

F. MATHEMATICAL EXPLANATION OF HYBRID AE-LSTM
The autoencoder is typically used to gather dimensions or
features. Let X = {x1, x2, . . . , xk}, wherein xi ∈ Rd indicates
the first input series of data. To ascertain the distinctive layout
of the starting data, the function f is used. The series T =

{t1, t2, . . . , tk}, wherein ti ∈ Rl is the sequence that identifies
the first series as x. The encoder’s output is used as the
decoder’s input. The decoder reconstructs the original data
with regard to the characteristic sequence T . Reconstructed
data is represented as Y = {y1, y2, . . . , yk}, with yi ∈ Rd . The
collected characteristics are validated by decoding. When the
autoencoder’s training is complete, its encoder is only used to
acquire the original data’s attributes, improving data within
the organization. The Eq. (13) and Eq. (14) for encoding and
decoding are as follows [33]:

ti = f (wt .xi + bt ) (13)

yi = g(wy.ti + by) (14)

here wt and wy stand for weights, bt and by for biases, and
f ( ) and g( ) for sigmoid functions. The initial equation is
used in an autoencoder to calculate the state of hidden ft
before the start of the procedure. This requires merging the
input xt , extra data zt , and the final concealed state ht−1
through a weighted sum. The equation of sigmoid is then used
to introduce nonlinearity to the resultant sum. The second
equation computes the input gate it by averaging the inputs
and the most recent state of hidden, then using the sigmoid
function for further processing the results. Next, the candidate
state of cell Ct is obtained by applying an average to the
inputs, additional information, and the previous hidden state.
The outcome sum is after which it underwent the hyperbolic

function of tangent.

C ′
t = tanh {Wc ∗ (ht−1, xt)} (15)

Ot = σ {Wo.(ht−1, xt ) (16)

Eq. (15) merges the previous state of the cell Ct−1 with
the potential state of the cell C ′

t based on the forgotten gate’s
worth ft and also gate of input it to reflect the Ct state of the
cell at each step-in time t .While the forgotten gate determines
whatever information from the cell’s previous state needs to
be kept, the gate of input controls the influence on the candi-
date state. Eq. (16) calculates the output gate ot by averaging
the inputs and the most recent state of hidden before sending
it via the sigmoid function.

ft = σ (wf 1.xt + wf 2.zt + wf3.ht−1 + bf ) (17)

it = σ (wi1.xt + wi2.zt + wi3.ht−1 + bi) (18)

C ′
t = tanh(wc1.xt + wc2.zt + wc3.ht−1 + bc) (19)

Ct = ft .Ct−1 + it .C ′
t (20)

Applying the state of cell Ct to deduce the final state
of hidden results in the state of hidden ht . The hyperbolic
function of tangent changes the result to produce the final
hidden state, while the process of multiplication specifically
collects pertinent information from the state of cell. The
autoencoder can execute encoding and decoding processes,
efficiently compressing and recreating input data, with the
help of these equations.

ot = σ (wo1.xt + wo2.zt + wo3.ht−1 + bo) (21)

ht = ot .tan h(Ct ) (22)

The features of the data covering upstream as well as
downstream movements of traffic are captured by the repre-
sentation zt . The biases (bf , bi, bc, bo), and recurrent weights
(Wf , Wi, Wc, Wo) used in the computations. The current
input xt , the features of the preceding and succeeding steps
zt , and also ht−1 the final state of the unit, make up the input
for the forget gate. Ct and Ct−1 are used to designate the cell
states at each step-in time t and t-1, respectively. The acti-
vation function is the sigmoid function, which is frequently
denoted by the symbol σ . A piece of the cell’s state from the
previous phase is now removed, and a portion is added. The
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output gate’s data from input is similarly equivalent to that of
the forgotten gate. The gate for output selects the information
that must be output. The tanh function, which has completed
analyzing the state of the cell [33], multiplied this result.

In our proposed framework, the enhanced input data
undergoes the training phase, which comprises two distinct
sections, a hybrid model that combines Autoencoder and
Long Short-Term Memory (AE-LSTM). The hybrid model
as shown in Fig. 4, our propose hybrid AE-LSTM to predict
three critical parameters: ‘‘Daily power generation’’, ‘‘Max-
imum grid-connected power generation’’, and ‘‘Radiance’’.
The hybrid AE-LSTM model developed for solar power pre-
diction combines the memory capabilities of LSTM networks
with the feature extraction functionality of Autoencoders.
This combination aims to enhance prediction accuracy by
effectively grasping the intricate temporal patterns and corre-
lations present in solar power generation data. To achieve this,
the model follows a sequence of steps: the initial preparation
of raw solar power data, the extraction of key features using
an autoencoder, which compresses essential data elements
into a condensed form, and the subsequent utilization of this
compressed representation by the LSTM component. The
LSTMprocesses this representation in a step-by-stepmanner,
capturing the underlying temporal relationships. Moreover,
standard LSTMs struggle with learning temporal depen-
dencies across sequences. To overcome these challenges,
we devised a hybrid architecture to develop a robust solution
for precise power prediction. Through training and validation
on historical data, the hybrid AE-LSTM model becomes
skilled at forecasting future solar power generation values,
making use of the insights derived from the extracted fea-
tures and temporal dependencies.While a basic LSTMmodel
performs well, it falters in capturing temporal dependencies
between sequences. In contrast, AE-LSTM effectively learns
such dependencies. This empirical evidence is discussed in
section IV. As a result, we assert that our hybrid Autoencoder
LSTM model yields impressive outcomes, surpassing even
the Bi-LSTM model in terms of performance and effective-
ness.

III. CASE STUDY
A. SOLAR PLANT’S STRUCTURE
In Chakwal, Punjab, Pakistan, there is a notable 100 MW
solar plant called the Sapphire Solar Power Plant (SSPP). The
Sapphire Group, a well-known Pakistani corporation with
diverse holdings in textile production, electricity generation,
and property development, built this remarkable plant. The
installation, which spans a vast area of over 650 acres, impres-
sively contains over 400,000 solar panels. The National
Transmission and Dispatch Company (NTDC) painstakingly
built a 132 kV transmission line that efficiently connects the
SSPP to the national grid. Since it began doing business in
April 2018, the SSPP has faithfully performed its duties by
producing clean and renewable energy to meet Pakistan’s
rising energy needs. With an estimated 165 GWh of yearly
power production, the plant significantly lessens Pakistan’s

TABLE 1. Installed equipment detail.

dependency on energy from fossil fuels and actively aids in
the country’s attempts to tackle global warming. The SSPP’s
successful development and operation represent an impor-
tant turning point for Pakistan’s renewable energy industry,
demonstrating unequivocally the viability and potential of
large-scale solar power projects there.

B. INSTALLED EQUIPMENT DETAILS AT SOLAR PLANT
The following provides thorough details about the installed
equipment, with Table 1 serving as a guide.
Solar Panels: An astonishing network of over 400,000

solar panels, each with a 330-watt capacity, is installed at
the solar power plant. Trina Solar, a well-known solar panel
maker with its head office in China, is the source of these
solar panels.
Inverters: The facility uses centralized inverters made by

Sungrow, a major Chinese business famous for creating
high-quality solar inverters, to efficiently convert the DC
power generated by the solar panels into AC electricity that
is acceptable for the grid.
Mounting Structures: The solar panels are firmly secured

to fixed-tilt mount systems that have been meticulously engi-
neered to maximize energy output by optimizing panel angle.
These mounting structures are produced by Array Technolo-
gies, a reputable supplier of solar tracking systems.
Transformers: The power plant uses step-up transformers

to raise the voltage of the energy produced by the solar panels
before putting it into the grid. These transformers are pro-
duced by Siemens, a well-known provider of power-related
goods and services.
Switchgear: The switchgear at the power plant is carefully

planned to guarantee the electrical equipment’s security and
dependability. The switchgear is produced by ABB, a promi-
nent manufacturer of power and automation technology.
Monitoring and Control System: Through an elabo-

rate monitoring and control system, the power plant uses
cutting-edge technology to allow operators to remotely mon-
itor the performance of equipment and maximize energy
output. This cutting-edge monitoring and control system is
provided by Huawei, a top supplier of information and com-
munications technology services.
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FIGURE 5. Data analysis of solar plant parameters via a histogram.

C. DATA ANALYSIS
A histogram is a valuable analytical tool used to examine
the characteristics of a dataset, where the curve is known as
distribution curve. By displaying the frequency distribution
of data, it can reveal outliers, trends like normal distribution,
and compute statistical measures such as mean, median, and
standard deviation. Moreover, it unveils peculiar patterns and
offers a clear and straightforward representation of data dis-
tribution, enabling easy comparison of different datasets and
uncovering insights not readily apparent from raw data alone.
The histogram’s organization of data is akin to that of a pie
chart.

In Fig. 5, the ‘‘Daily Power Generation’’ section of the
histogram illustrates the flow of daily solar electricity pro-
duction. The x-axis shows the quantity of units produced
in bins of 0 kWh to 700,000 kWh, while the y-axis depicts
unit showing frequency, which ranges from 0. to 8. Similarly,
the histogram for ‘‘Maximum Grid-Based Power Genera-
tion’’ displays the maximum grid-based power generation
frequency, with scores ranging between 0.00 to 0.06, and
the x-axis representing power generation values in bins
of 0 to 100 MW. It also depicts the variation in power
generation values over time via calculating frequencies of
maximum grid-based power values in each and every bin,
displayed on the y-axis. For the ‘‘Radiance’’ histogram, the
y-axis runs between 0.00 to 0.15, while the x-axis found
between 0 to 30 MJ·m−2. The x-axis represents radiance

values at 1-width intervals, with the final interval being
from 29 to 30 MJ·m−2. The histogram’s form sheds light
on how the radiance readings are distributed. The right side
as the histogram tilts, it indicates a higher frequency of low
radiance scores, whereas a tilt towards the left signifies a
higher frequency of high radiance scores. If the histogram is
symmetrical, it indicates a uniform radiance distribution.

Box plots provide a concise and informative summary
of extensive datasets, offering insights into their distribu-
tion. Fig. 6 showcases box plots representing three features
extracted from a substantial solar power facility: ‘‘Daily
Power Generation’’ (measured in kWh), ‘‘Maximum Grid
Connected Power Generation’’ (measured in MW), and
‘‘Radiance’’ which is measured in MJ·m−2. The vertical
extent of each box displays the data’s middle 50%, with the
lines extending from the box indicating the minimum and
maximum values falling inside the range that is interquartile
by 1.5 times. Any data points beyond these intervals appears
as separate dots or circles as well, which may indicate poten-
tial significant anomalies.

In the first box plot, ‘‘Daily Power Generation in kWh,’’
displays the interval of generated units on the y-axis, span-
ning from 100,000 kWh to 600,000 kWh. First quartile
(Q1) covers the range from 330,000 to 450,000, represent-
ing the data’s lowest 25%. The second quartile (Q2) ranges
from 450,000 to 500,000, signifying the midpoint of the
data, or 50%. Third quartile (Q3) encompasses the range
from 500,000 to 530,000, representing the upper 25% of the
data. Finally, the fourth quartile (Q4) spans from 530,000 to
610,000, indicating that this interval includes the top 1% of
the data.

The box plot in second, ‘‘MaximumGrid Connected Power
Generation in MW,’’ displays the power generation range
from 10 MW to 90 MW on y-axis. Q1 runs between 60 to 70,
indicating the bottom 25% of the data. Q2 covers the range
from 70 to 73, representing the midpoint of the data, or 50%.
Q3 encompasses the interval from 73 to 78, signifying the
upper 25% of the data. Lastly, Q4 ranges from 78 to 88,
indicating this interval includes the top 1% of the data.

The last box plot, ‘‘Radiance,’’ presents the power gener-
ation found between 5 MJ·m−2- 30 MJ·m−2 on y-axis. Q1
spans from 14 to 20, representing the bottom 25% of the
data. Q2 ranges from 20 to 22.5, signifying the middle 50%
of the data. Q3 encompasses the range from 22.5 to 23.5,
representing upper 25% of the data. Finally, Q4 ranges from
23.5 to 27, indicating that this interval includes the top 1% of
the data, as depicted in Fig. 6.

The heat map shown in Fig. 7 provides a visual represen-
tation of the correlation between the three parameters. The
heat map consists of three columns and three rows, where
the correlation value among any two parameters is shown
in each of the cells. The cells that are diagonal show how
closely every parameter is correlated by itself, resulting in
a correlation coefficient of 1, indicating perfect correlation.
The correlation coefficient values within the cells range from
0 to 1. Higher values indicate a stronger positive correlation
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FIGURE 6. Data analysis of solar plant parameters via box plot.

FIGURE 7. Data analysis of solar plant parameters via a heat map.

between the two parameters, while lower values suggest a
weaker or negative correlation. A correlation coefficient of
1 represents an absolute positive correlation, indicating that
the two parameters move in perfect harmony. On the other
hand, a coefficient of 0 signifies no correlation, meaning the
two parameters are independent of each other. A coefficient of
-1 indicates an absolute negative correlation, indicating that
the two parameters move in opposite directions. To aid inter-
pretation, the right side’s color bar of the heat map represents
the range of correlation coefficients. The color bar spans from
0.6 to 1.0, with darker colors representing higher positive
correlation values, while lighter colors indicate lower positive
correlation values. The color intensity provides a visual clue
to the strength of the correlation between the parameters.

In next section IV, results acquired from both the models
are discussed in graphical visualization form.

IV. RESULTS AND DISCUSSION
In this study, a solar power plant provided a one-year database
that included real-time data for three parameters: ‘‘daily

TABLE 2. Hybrid model sequential steps for prediction.

power generation (kWh)’’, ‘‘grid-connected power genera-
tion (MW)’’, and ‘‘radiance (MJ·m−2)’’. These parameters
were used to predict the ‘‘daily power generation, grid-
connected power generation, and radiance’’ for the following
year. To achieve this, three distinct models were employed:
the long short-term memory (LSTM) model, bidirectional
long short-term memory (Bi-LSTM) model and the Hybrid
Autoencoder LSTM (AE-LSTM) model. These models were
chosen after a thorough assessment of the literature that
demonstrated their effectiveness for this goal and their accu-
racy. The outcomes from the models show good agreement
between forecasts and the findings of the genuine real-
time data. However, through graphical visualizations and a
comparison table, it is evident that the hybrid Autoencoder
LSTM model outperformed the LSTM as well as Bi-LSTM
model. The Autoencoder LSTM exhibited a lower error rate
and significantly improved prediction accuracy. This section
presents the results, tables, and graphical visualizations
obtained from these models, emphasizing the remarkable
advancements achieved by the Autoencoder LSTM.

Table 2 provides valuable insights into the hybrid model’s
architecture and parameters. The model consists of multiple
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layers, each with distinct roles in data processing. The ‘‘Out-
put Shape’’ column specifies the dimensions of the output
produced by each layer. For example, the first LSTM layer
(lstm_105) generates outputs with a shape of (None, 4, 10),
indicating a batch size of none, sequence length of 4, and
feature dimension of 10. Similarly, the subsequent LSTM
layers (lstm_106 and lstm_107) have output shapes of (None,
4, 6) and (None, 1), respectively. The ‘‘Param #’’ column
provides the number of trainable parameters for each layer,
including weights and biases. In this model, lstm_105 has
480 parameters, lstm_106 has 408 parameters, lstm_107 has
32 parameters, repeat_vector_21 has no parameters as it is
a repeating layer, lstm_108 has 480 parameters, lstm_109
has 840 parameters, and dense_21 has 11 parameters. There
are 2,251 parameters that can be trained in the model, all
of which are trainable. Additionally, the table highlights the
absence of non-trainable parameters in this specific model.
The dictionary keys listed in the table, such as ‘loss’, ‘mse’,
and ‘mae’, represent various loss metrics used for training
and evaluating the effectiveness of model. Metrics like Mean
Squared Error (MSE) andMean Absolute Error (MAE) assist
in assessing the model’s effectiveness. Overall, Table 2 offers
crucial details about the hybrid model’s architecture.

The dataset consists of data which are available in real-time
values collected over one year. 80% of the dataset is used
for training the LSTM (long short-term memory) model,
Bi-LSTM (bidirectional long short-term memory) model and
the hybrid AE-LSTM (Autoencoder long short-term mem-
ory) model, while the remaining 20% is reserved for testing
and validation. The losses obtained from both models are
compared and graphically visualized.

In Fig. 8(a-c), the validation loss results for the parameters
‘‘daily power generation,’’ ‘‘grid-connected power genera-
tion,’’ and ‘‘radiance’’ from the solar power plant are depicted
for models LSTM, Bi-LSTM and hybrid AE-LSTM. Seeing
that, the LSTM and Bi-LSTM model’s validation loss results
are acceptable, but the AE-LSTM model shows significantly
lower losses. Table 3 provides a detailed comparison of losses
for both models. The AE-LSTM model achieves the low-
est loss of 0.018571 for ‘‘daily power generation (kWh),’’
outperforming Bi-LSTM model with a loss of 0.022655 and
LSTM model with validation loss of 0.04876. Similarly, for
‘‘grid-connected power generation,’’ the AE-LSTM model
achieves the lowest validation loss of 0.008305, compared to
Bi-LSTMmodel’s loss of 0.008836 and LSTMmodel loss of
0.01936. Lastly, for ‘‘radiance,’’ the AE-LSTMmodel attains
a minimum validation loss score of 0.019438, during this
time the Bi-LSTM and LSTMmodel’s score is 0.022582 and
0.03714 respectively. However, the validation loss of all these
models is acceptable but these findings unequivocally show
that hybrid AE-LSTM model surpasses both the LSTM and
Bi-LSTM model in terms of minimizing losses. The graphi-
cal representations in Fig. 8(a) through (c) also demonstrate
the absence of anomalies within the data. Moreover, the
recorded errors signify a high level of accuracy, exceeding
95% precision. This suggests that the data is well-balanced,

FIGURE 8. Losses comparison (a) Daily power generation;
(b) Grid-connected power generation; and (c) Loss of radiance.

indicating an appropriate suitability for subsequent analysis
and prediction.
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Similarly, to compute the Mean Absolute Error (MAE) for
a machine learning model and assess the absolute variance
between the predicted and true scores of the target vari-
able, several steps can be followed. First, obtain the model’s
predicted values. Next, gather the true values of the target
variable from the dataset or ground truth. Then, calculate
the absolute difference among them. Finally, calculate the
average of all these absolute differences to obtain the MAE
result. A low MAE score suggests that the predictions made
by the model are more accurate, being closest to the true
scores. The mathematical expression of the Mean Absolute
Error (MAE) is represented by Eq. (23).

MAE =
1
N

∑N

n=1
|xn − xn| (23)

where xn represents the predicted score, xn represents the
observed score, and N is the number of data points.

Table 3 presents the results of the mean absolute errors
(MAEs) comparison between the LSTM (Long short-term
memory), Bi-LSTM (bidirectional long short-term memory)
model and the hybrid AE-LSTM (Autoencoder long short-
term memory) model using the parameters ‘‘daily power
generation,’’ ‘‘grid-connected power generation,’’ and ‘‘radi-
ance’’ from a power plant of solar.

Additionally, Fig. 9(a-c) depict that the hybrid AE-LSTM
model achieves significantly lower validation MAE results
compared to the LSTM and Bi-LSTM model. Specif-
ically, in Table 3, the AE-LSTM model achieves the
lowest MAE values of 0.090133 for ‘‘daily power gener-
ation (kWh),’’ 0.056495 for ‘‘grid-connected power gen-
eration,’’ and 0.094229 for ‘‘radiance.’’ In contrast, the
Bi-LSTM model scores 0.106682, 0.0554, 0.102336 while
LSTM model scores 0.111165, 0.06098, 0.10792 for ‘‘daily
power generation (kWh),’’ ‘‘grid-connected power genera-
tion, (MW)’’ and ‘‘radiance (MJ/m2)’’ respectively. These
results clearly indicate that the AE-LSTMmodel outperforms
both the models in minimizing MAE. The results emphasize
the improved effectiveness and performance of the hybrid
Autoencoder LSTMmodel in capturing the fundamental pat-
terns and generating more precise forecasts for the power
generation of the solar plant. Fundamental patterns and gen-
erating more precise forecasts for the power generation of the
solar plant.

In Fig. 10(a-c), the results of validation mean squared
error (MSE) between the LSTM, Bi-LSTM and hybrid
AE-LSTMmodels are compared using the parameters ‘‘daily
power generation,’’ ‘‘grid-connected power generation,’’
and ‘‘radiance’’ from a solar power plant. As shown, all
the models MSE results are acceptable but the AE-LSTM
model’s MSE results are significantly lower. Moreover,
in Table 3, the AE-LSTM model achieves the lowest MSE
of 0.018571 for ‘‘daily power generation (kWh),’’ while
the Bi-LSTM model has an MSE of 0.022655 and LSTM
model has 0.04876. For ‘‘grid-connected power generation
(MW),’’ the AE-LSTM model achieves the lowest MSE
of 0.008305 compared to the Bi-LSTM model’s 0.008836.

FIGURE 9. MAE comparison (a) Daily power generation;
(b) Grid-connected power generation; and (c) Loss of radiance.

Similarly, for ‘‘radiance (MJ/m2),’’ the AE-LSTM model
obtains the lowest MSE of 0.019438, while the Bi-LSTM
model scores 0.022582 and LSTM with slightly high
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FIGURE 10. MSE comparison (a) Daily power generation;
(b) Grid-connected power generation; and (c) Loss of radiance.

0.03714. These results clearly demonstrate that the
AE-LSTM model surpasses the Bi-LSTM as well as LSTM
model in minimizing MSE.

FIGURE 11. Comparison between tested and predicted data of models on
daily power generation of a solar plant.

In a similar manner, to calculate the Mean Square Error
(MSE) for a machine learningmodel and evaluate the squared
variance between the predicted scores and the true scores of
the target variable, several steps are involved. First, obtain
the predicted values from the model. Next, collect the true
values of the target variable from the dataset. Then, compute
the squared variance between each predicted score and its
corresponding true score by subtracting the true value from
the prediction and squaring the result. Finally, calculate the
average of all these squared differences to obtain the MSE
result. The MSE provides insight into the average magnitude
of errors made by the model, A lowMSE score denotes more
precise forecasts from the model and closely aligned with the
true scores. The mathematical expression of the Mean Square
Error (MSE) is represented by Eq. (24).

MSE =
1
N

∑N

n=1
(xn − xn)2 (24)

where xn stands for the predicted score, xn for the observed
score, and N total number of points of data.
Furthermore, upon analyzing the graphical representations

of the models, a high degree of similarity is evident, indi-
cating that the data accuracy exceeds 95%, and no outliers
have been identified. These findings further affirm the appro-
priateness and precision of the data acquired from the solar
power plant, establishing a robust foundation for subsequent
analysis and decision-making processes.

Fig. 11, 12, and 13 provide graphic representations of
forecast results from an analysis given data, exercise car-
ried out on a 100 MW solar power facility. In this study,
three machine learning models LSTM (long short-termmem-
ory), Bi-LSTM (bidirectional long short-term memory) and
hybrid AE-LSTM (autoencoder long short-term memory)
were trained on three key parameters using 80% of an entire
year of data available in real-time: ‘‘daily power gener-
ation (kWh)’’, ‘‘grid-connected power generation (MW)’’,
and ‘‘radiance (MJ·m−2)’’. An additional data of 20% was
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FIGURE 12. Comparison between tested and predicted data of models on
grid connected power generation of a solar plant.

FIGURE 13. Comparison between tested and predicted data of models on
radiance of a solar plant.

dedicated for testing and validation. To compare the per-
formance of the two models, a comprehensive analysis was
conducted using training data of 10-months and test data of
2-months. Moreover, each of the models produced forecasts
for the next year for each of the three parameters. The
graphical representations in Fig. 11, 12, and 13 provide an
easy-to-read comparison of the findings and forecasts for all
three factors in a single graph. The first section of the visuals
shows the contrast between the real forecast database and
the solar plant’s 60-day test data. The solar plant’s one-year
forecasts for the future are shown in the second section of the
graph depending on each parameter. Ideally, the prediction
data should closely align with the test data, indicating that
the models have successfully captured the true trends and

patterns in the solar plant’s parameters. The closer the pre-
diction data aligns with the test results, the more accurate the
models are in forecasting the values of the parameters.

Table 4 shows the results from Model Confidence Set
(MCS). The Model Confidence Set (MCS) is a statistical
technique used to assess and compare the accuracy of mul-
tiple models for forecasting based on their out-of-sample
performance [11]. MCS aims to create a confidence set of
models that are statistically indistinguishable in terms of their
performance. It relies on statistical tests and p-values to assess
the significance of differences in model performance. The
term ‘‘null hypothesis’’ is a foundational concept in statistical
hypothesis testing. The null hypothesis can be agreed or
rejected based on p-values resulting from the models under
investigation. In the MCS procedure, the initial step involves
considering different models for forecasting. These models
may have diverse specifications and assumptions. The final
set of models that ‘survive’ the MCS procedure is determined
by the chosen significance level. In the last step, the final
confidence set consists of models with p-values greater than
or equal to the significance level. In our study, the results of
all the models are acceptable, but the Hybrid Autoencoder
LSTM model outperforms the Bi-LSTM and LSTM models
in terms of our three parameters: ‘‘Daily Power Genera-
tion’’, ‘‘Maximum Grid Connected Power Generation’’, and
‘‘Radiance’’.

Fig. 11 displays the range of the ‘‘daily generation (kWh)’’
parameter, whose y-axis spans 200,000 to 700,000 kWh and
whose x-axis represents the number of days. The predicted
data from the LSTM, Bi-LSTM as well as hybrid AE-LSTM
models and the actual 60-day test data can be compared, and
it can be shown that the predictions from all these models
are in acceptable range but the hybrid AE-LSTM model are
well synced with the findings from the test, with just tiny
differences at select places. On the other hand, Bi-LSTM
and LSTM results do not match the test data closely, likely
due to their limited ranges. However, the results of Bi-LSTM
are slightly better when compare to LSTM which shows out
of range at certain time. The daily generating statistics for
the upcoming entire year (365 days) will be predicted using
each trained models for prediction after this comparison.
Fig. 11 shows that the hybrid Autoencoder LSTM model’s
predictions are much closer to the test data as compared to
Bi-LSTM’s and LSTM’s results, displaying minimal devia-
tions. As a result, the hybrid Autoencoder LSTM model is
highly recommended for its superior performance in accu-
rately forecasting the parameter’s values.

Similarly, Fig. 12 represents the ‘‘maximum grid-
connected power generation (MW)’’ parameter, y-axis
fluctuates between 40 MW to 90 MW, while the x-axis
represents the total number of days. The comparison of
predicted data using LSTM, Bi-LSTM and AE-LSTM mod-
els with the test data of 60-days demonstrates that hybrid
AE-LSTM’s predictions are well synced with the findings
from the test, with just tiny differences at select places. Con-
versely, Bi-LSTM results do not match the test data closely
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TABLE 3. Comparison table between LSTM, Bi-LSTM and hybrid AE-LSTM.

TABLE 4. Models confidence set result.

but better than LSTM results which shows much deviations.
The grid-connected power statistics for the upcoming entire
year (365 days) will be predicted using each trained models
for prediction after this comparison. Upon evaluating the
accuracy and performance of the models based on the test
and prediction data graphs in Fig. 12, It’s clear that the hybrid
Autoencoder LSTM model performs better than the other
models. The hybrid Autoencoder LSTM model’s predictions
exhibit closer alignment with the test data, showing minimal
deviations and higher accuracy in forecasting the parameter’s
values.

Finally, Fig. 13 illustrates the ‘‘radiance (MJ/m2)’’ whose
y-axis spans 0 to 30 MJ/m2 and whose x-axis represents
the number of days. The predicted data from the LSTM,
Bi-LSTM as well as hybrid AE-LSTMmodels and the actual
60-day test data can be compared, and it can be shown that
the predictions from all the models are acceptable but the
hybrid AE-LSTM model are well synced with the findings
from the test, with just tiny differences at select places. In con-
trast, Bi-LSTM results do not closely match the test data.
The radiance for the upcoming entire year (365 days) will
be predicted using each trained models for prediction after
this comparison. Fig. 13 highlights that the hybrid Autoen-
coder LSTM model outperforms the Bi-LSTM as well as
LSTM model, as its predictions closely align with the test
data, exhibiting minimal deviations and demonstrating higher
accuracy in forecasting the parameter’s values.

V. SOFTWARE AND SYSTEM DETAILS
There were certain software and hardware setups used for
this study’s experimental phase. An Intel(R) Core i7-10875H

CPU with a base frequency of 2.30 GHz and an NVIDIA
GeForce RTX 2060 graphics card with 6 GB of GPUmemory
and 16 GB of RAM were the computer components used. A
64-bit version of the Windows operating system served as the
foundation for the whole system. Software-wise, the research
used the Keras and TensorFlow version 2.12.0 libraries for
deep learning modeling, together with the Python 3.11 pro-
gramming language. These hardware and software sets were
carefully chosen, which emphasizes how important they are
to assuring the efficacy and accuracy of the research results.

VI. CONCLUSION
The findings of this investigation demonstrate that our
proposed Hybrid AE-LSTM (Autoencoder long short-term
memory) model outperformed the both Bi-LSTM (bidirec-
tional long short-term memory) as well as LSTM (long
short-term memory) model in regards of accuracy and per-
formance measures for each of the parameters. The visual
representations provided compelling evidence that theHybrid
Autoencoder LSTM model consistently outperformed the
other models in every scenario. However, all these models
exhibited expected behaviors, but the Hybrid Autoencoder
LSTM model consistently showed lower error rates and
higher data similarity. In particular, the daily power gener-
ation parameter yielded an RMSE of 0.136 for the Hybrid
Autoencoder LSTM model, 0.150 for the Bi-LSTM model
and 0.220 for the LSTMmodel. Similar results were obtained
for the grid-connected power generation parameter, where
the RMSE for the Hybrid AE-LSTM model was 0.091 and
the RMSE for the Bi-LSTM model was 0.094. Last but
not least, for the radiance parameter, the AE-LSTM model
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outperformed the Bi-LSTM model as well as LSTM model
with an RMSE of 0.139 as opposed to 0.150 and 0.192 respec-
tively. These findings show that the Hybrid Autoencoder
LSTM model can make more accurate and reliable predic-
tions for these parameters, especially crucial for controlling
solar power facilities in an efficient manner.

Future studies should examine the use of additional
deep-learning models for power forecasting in time series
from renewable sources, such as convolutional neural net-
works (CNNs) and other hybrid-based models. Additionally,
adding more pertinent elements, including information on the
grid load and weather, might improve the models’ forecasts
substantially.
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