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ABSTRACT Markov Chain Monte Carlo (MCMC) approaches are widely used for tuning model parameters
to fit process measurements. While modern probabilistic programming languages (PPLs) such as Stan,
PyMC, and Turing have made it easier to implement efficient MCMC samplers, configuring them for
high dimensional and multi-modal parameter distributions remains a challenging task. In Pandey and Lie
(2022), the No-U-Turn Sampler (NUTS) was employed via Turing to estimate parameters of an air-cooled
synchronous generator model using real-world experimental data, but the produced posterior distributions
were excessively narrow. The present study extends the findings in Pandey and Lie (2022) by producing
more realistic parameter estimates using the same data. To accomplish this, the study first reviews the
basics of MCMC; it offers some general advice for choosing appropriate settings for MCMC to ensure
successful estimation, as well a discussion of the impact of measurement data on the computation of
posteriors. The study then implements the simple classical MCMC technique, Metropolis, from scratch to
estimate the generator model parameters, providing more insight into MCMC — its fundamental process
and terminology. Finally, the knowledge gained is applied to select appropriate settings for NUTS —
implemented via Turing — that yield more accurate parameter estimates.

INDEX TERMS Markov chain Monte Carlo, Metropolis-Hastings, model uncertainty, no-U-turn sampler,
parameter estimation.

I. INTRODUCTION

The sensor-actuator configuration, or control architecture [2],
is crucial to the design of a control system. Physical
and budgetary constraints prevent us from monitoring and
adjusting every state of a system. Thus, successful control
involves judicious placement of a few sensors and actuators.
Ignoring system uncertainty in this regard might compromise
the reliability and performance of the system. Therefore,
uncertainties must be reduced whenever possible and any
remaining uncertainties must be accounted for; when process
data is available, parameter estimation may be useful for this.

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Giangrande

In this work, we use the thermal model of an air-cooled
synchronous generator presented in [3] as a case study.
The operation of such a generator on the power grid
is strictly regulated by the transmission system operator
(TSO). The TSO typically specifies hard constraints on the
allowed power factor (PF). One reason for this restriction
is to prevent overheating the generator. Recently, it has
been suggested that through continuous monitoring of the
generator’s temperature, there is potential to temporarily
relax the PF constraints for short periods [4]. This adjustment
could facilitate handling frequency fluctuations in the grid.
If this approach is adopted, it becomes essential to keep
track of the generator’s temperature evolution to avoid
destroying it or significantly reducing its lifespan. Conse-
quently, development of methods to assess and minimize
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FIGURE 1. Thermal process of the synchronous generator. Source: [3].

the uncertainties associated with temperature monitoring
becomes a central objective. Previous studies have dealt
with state and parameter estimation for the generator model
presented in [3]: in [1] the No-U-Turn Sampler (NUTS) [5]
— a popular MCMC algorithm — is used. The posterior
distributions of the parameters computed in that study,
however, are extremely narrow, i.e., there is very little residual
uncertainty. It is of significant interest to investigate the cause
for this.

The primary aim of this paper is to reduce uncertainty
in the thermal generator model using MCMC methods and
experimental data. Accordingly, we look at how a simple
MCMC algorithm, Metropolis, can be implemented from
scratch; this would give us some insight into the underlying
mechanics of MCMC methods, even though not all methods
are created equal. Then we apply the more sophisticated
NUTS algorithm via Turing [6] in Julia [7].

The paper is organized as follows: Section II provides a
description of the thermal generator model; Section III briefly
introduces Bayesian inference and how it relates to MCMC
techniques; Section IV gives a brief introduction to MCMC
methods, discusses in detail the Metropolis algorithm, and
explains how NUTS differs from Metropolis; Section V
describes how to use Turing to implement MCMC; Section VI
presents the results of parameter estimation; Section VII
discusses some noteworthy findings; and Section VIII draws
some conclusions regarding the work.

Il. THERMAL GENERATOR MODEL

Fig. 1 depicts the thermal process of the air-cooled syn-
chronous generator considered in this work. The cold air from
the heat exchanger is blown into the air gap between the rotor
and stator using a fan. There, the air gets heated by the heat
flow from the rotor, the windage of the air gap, and the
bearings’ friction. The heated air is then directed into the iron
cores, where it gets heated further by the heat flow from the
iron cores. Finally, the heated air is collected from an outlet
at the stator and returned to the heat exchanger. There, it is
cooled by a steady supply of cold water. The cooled air is then
delivered back into the rotor/stator air gap forming a closed
loop system.

The mathematical model used here is proposed in [3]; it
is an extension of the model proposed in [4]. The system is
modelled by a set of Differential-Algebraic Equations (DAE),
which, for the purposes of our work, we reformulate as a mass
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FIGURE 2. Experimental data for the generator model. Source: [3].

matrix ODE as follows,
d(x,z)
dr

M

=f(x,z,u,t;0)
where
x = (T, Ts, Tre) , differential variables
7= (T;, e, T;‘) , algebraic variables
u= (It, I, Ty,) , control inputs
0 = (UAns, UAsre, UARera, UAx, OF,, 0F ) ,

unknown parameters
M =diag (1,1, 1,0, 0, 0) , the mass matrix.

The differential variables x are the rotor temperature T;, the
stator temperature 7§, and the iron core temperature Tg.. The
algebraic variables z are the cold air temperature Ty, the air
gap temperature Tf, and the hot air temperature Tgl. The
control inputs u are the rotor field current It, the terminal
current /, and the cold water temperature T,. The unknown
parameters are the heat transfers from rotor to air gap UA;2s,
from stator copper to iron UAgF., from stator iron to air
UAEe2,, from air to water UA; stator iron generated heat Qg o
and friction heating Qf . For the complete description of the
mathematical model, see [3].

The measured variables of the system are the control inputs
It, I, T ; two of the differential variables, T and Tr.; and two
of the algebraic variables, T and . Experimental data for
these are available in [8]; the data are plotted in Fig. 2. (Note:
I; is not measured but is calculated using a mathematical
expression that relates it to generator terminal voltage Vi,
active power of the generator Pg, and reactive power of the
generator Q, — which are all measured quantities.)

This study aims to estimate the following critical parame-
ters of the generator model:
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« Heat transfer coefficients: Due to their susceptibility to
variable environmental conditions such as humidity and
air composition, accurate measurement of the coeffi-
cients UA s, UAFe, UAFe2a, and UAy is challenging.

o Heat sources: Heat generated by the stator iron Qge and
friction heating Qf cannot be measured; only educated
guesses of their magnitudes are available.

« Initial states: Uncertainty in initial states can propagate
through the entire model and influence subsequent
predictions. Hence, it is crucial to accurately estimate
the initial states Ty(t = 0), Ts(t = 0), and Tre(t = 0).
T:(t = 0) is not directly measured due to rotor motion;
although wireless sensors are an option, their practical
use in synchronous generators is severely limited, and
the concept is still in its early stages of exploration.
Ts(t = 0) and Tg.(r = 0) are measured, yet they are
compromised by measurement noise and error.

o Measurement variances: Intrinsic to this work is also the
estimation of measurement variances, Var(7s), Var(Trge),
Var(Ty), and Var(T;‘), which encompass the inherent
measurement uncertainties.

Accurately estimating these parameters and integrating them
into the model will yield a more reliable representation of the
generator’s thermal dynamics. This knowledge will facilitate
the development of optimized control strategies, ultimately
contributing to improved performance and longevity of the
generator.

Ill. BAYESIAN INFERENCE
Parameter estimation techniques based on Bayesian inference
generate posterior probability density functions (PDFs)
for the unknown parameters instead of point estimates.
A posterior PDF serves as a model that captures the inherent
uncertainty surrounding the true values of the estimated
parameter, given the available evidence.

Bayesian inference involves revising our beliefs about a set
of parameters 0 based on observed data D. This process relies
on Bayes’ theorem

P(D|0) - P(0)
POID) = ——— 1
(@1D) PD) (1)
where:

P(@|D) = posterior PDF of 8 given D,
P(D|9) = likelihood of D given 6,
P(@6) = prior PDF of 0,
P(D) = marginal likelihood or evidence, which is

the probability of observing the data over
all possible parameter values.

Computation of P(6|D) is known as the inference problem.
In many cases, especially those involving a high number
of dimensions, deriving an analytical solution for the
inference problem is intractable. The primary source of this
intractability stems from the computation of the denominator
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term in (1):

P(D) = / P(D|0)P(6)do. 2)

The integral in (2) is usually either unavailable in closed
form or requires exponential time to compute — because
it has to evaluate the probability for all possible values
of 6. In such scenarios, numerical techniques are frequently
employed to approximate the posterior PDFs. Among these
techniques, Markov Chain Monte Carlo (MCMC) stands out
as the most prevalent. The basic idea of MCMC sampling
is to simulate draws from the posterior PDFs. The samples
generated provide an estimate of the distribution, which can
be used to infer other quantities of interest with a reasonable
degree of accuracy.

IV. MCMC METHODS
MCMC combines two concepts: Markov Chains and Monte
Carlo simulations.

A Markov Chain is a mathematical process involving
random transitions from one state to another in a chain. One of
its defining characteristics is that the next state X, | depends
solely on the current state X;, — not on those that came
before it. This is referred to as the Markov property. It is
possible to design a Markov chain to have what is known
as a stationary distribution. This type of chain is referred
to as an ergodic Markov chain, and it is what serves as the
basis for MCMC approaches. After a time of jumping from
one state to another, called the burn-in period, an ergodic
Markov chain will converge to its stationary distribution no
matter what state it started in. When it does, it will stay
at this distribution for all subsequent samples. A simple
illustration of an ergodic Markov Chain is provided in
Fig. 3.

In MCMC, we engineer a Markov Chain whose stationary
distribution is the posterior PDF that we want to sample
from. This means that after a period of burn-in, the
Markov Chain is going to simulate draws from the posterior
PDF. When it does, we use the Monte Carlo method to
approximate the posterior PDF. Essentially, we record many
samples from the converged Markov Chain and take their
distribution to be equivalent to the posterior PDF; from
the law of large numbers, the more samples we record,
the more accurate the approximated posterior distribution
becomes.

To ensure successful approximation of the posterior
PDFs it is helpful to pay attention to the following when
implementing an MCMC sampler.
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o Initial state

Initial state is where the MCMC chain begins. Setting
initial values that are likely under the main body of
the posterior distribution helps accelerate convergence
of the chain. Therefore, this should be done whenever
possible.

o Adaptation samples

MCMC algorithms have parameters which affect the
efficiency of the sampling process. Most algorithms,
e.g. NUTS, include an adaptation phase — distinct from
the burn-in phase — in which the parameter values are
changed until their optimal is found. The number of
adaptation steps used affect whether or not this optimal
is found.

(Note: Similar to the burn-in phase, the samples
generated during the adaptation phase are discarded.
Majority of models converge to the posterior distribution
during adaptation. So, the samples discarded during
adaptation are often sufficient, and further burn-in is not
required.)

o Chain length

It is essential that the chain contains enough samples:
enough to reach convergence as well as to achieve an
acceptable level of accuracy in estimating the posterior
distribution. The number of samples required for this is
dependent on model complexity and the MCMC method
used; some algorithms are more efficient than others at
exploring the parameter space.

o Number of chains

There is no assurance that the MCMC algorithm will
converge to the correct chain of iterates. Consequently,
it is generally required to compute several chains
initialized with markedly different initial states, and
assess whether or not they all converge to the same
distribution. Typically, an evaluation of this sort requires
the usage of at least three chains.

o Measurement data

Unnecessarily large data sets with redundant/uninfor-
mative samples should be avoided in order to reduce
computational cost. This could entail, e.g., decimating
the data or down-sampling it, choosing more samples
from the transient-states and fewer from the steady-
states, etc.

A. METROPOLIS-HASTINGS

The main idea of the Metropolis-Hastings (MH) algorithm [9]
is to evolve the Markov chain by randomly proposing a
candidate , at each step, from a proposal distribution: given
the current position in the parameter space 6;, the proposal
distribution J (é |6;) defines possible locations to step to next.
An accept-reject criterion is then used to decide whether to
move to the proposed location or remain at the current one.
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A special case of MH, known as the Metropolis algorithm,
requires that the proposal distribution be symmetric; this
implies that J @ 6) =J (9i|é), i.e., the probability of stepping
from the current position to the proposed one is the same as
the probability of jumping from the proposed position back
to the current one. Fig. 4 provides a simple illustration of the
difference between the MH and the Metropolis algorithm.

In this work, we use the Metropolis algorithm whose
proposal distribution is a Gaussian distribution with specified
variance o2 — the tuning parameter of the Metropolis
sampler. Below we state the parameter estimation prob-
lem and present the steps of the Metropolis algorithm.
Problem description:

Given

« aprocess output model (possibly a dynamic model)
y=f (& zut0)

where x is the differential variables, z is the algebraic
variables, u is the control inputs, 6 is the unknown
parameters, and ¢ is time,

« prior distributions of the unknown parameters P (6),

o measurement data yp corresponding to the known
control input uy,.

Then find

« the posterior distributions of the unknown parameters 6,
P (0|ym, tm).
The random walk Metropolis algorithm:

1) Initialization:

« Define the prior distributions P (9).

e Choose the tuning parameter: the co-variance
matrix o2 of the multivariate proposal distribution
N@,a?).

¢ Choose the total number of iterations N.

o Create an N-vector 6 for storing the iterations of
the chain.

« Set the iteration countto i = 1.

o Draw an initial position 6. (‘“‘current”) randomly
from P (0), and set 0 (i) = 6.

The acceptance ratio « = gp/q. is used to decide whether
to accept or reject candidates proposed by the algorithm.
The denominator g. (‘“current”) and the numerator g,
(““proposed”) are computed in steps 3 and 6, respectively.
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FIGURE 5. Visual illustration of the second term of (3). The circle-markers
indicate the measurement data and the star-markers indicate model
outputs corresponding to the proposed parameters.

2) Simulate the dynamic model of the system using 6. to
find the current system outputs y. (¢),

Ye (1) =f (O, tm) .

3) Calculate In (g.) as follows,

In(gc) = D logpdf - (P (6) , 6.)
0

+ > logpdf (N (v (1), 02), ym () . ()
t

Here,

o P () is a vector of scalar distributions,

o 02 is the measurement variance that is either

known or estimated as a part of 6.

A visual illustration of the second term of (3) is
provided in Fig. 5

4) Propose a candidate position ¢, to move to next
by randomly sampling from the proposal distribution
centered at the current position N (6., o2).

5) Simulate the dynamic model of the system using 6, to
find out the proposed system outputs y, (¢),

Yp ®=f (ep» um) .
6) Calculate In (qp),

In (gp) = D logpdf - (P (6) ., 6p)
0

+ > logpdf (NG (1, 02), ym (1))
t

7) Assess whether to move to the proposed position 6, or
remain in the current position 6.

a) Calculate In («),

o= C]p/CIc
In (@) = In (¢p/qc)
In(a) =1In (qp) —1In(qc) .
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b) Draw a random number a from the uniform
distribution Uy, 1).

¢) IfIn(x) > In(a)
« move to the proposed position, 6 (i + 1) = 6,
e setin(gc) =1In (qp)
else
« remain at the current position, 6 (i + 1) = 6,
« maintain current In (g)

end
8) Increment i by 1 andif i < N,set8; = 6 (i + 1), and
go back to step 4.

B. NO-U-TURN SAMPLER (NUTS)

Traditional MCMC techniques like Metropolis can be slow
to converge for high-dimensional posterior PDFs, since
they use random walks to explore the parameter space.
A family of MCMC algorithms known as Hamiltonian
Monte Carlo (HMC) [10] improves upon Metropolis by
replacing the random walks with Hamiltonian dynamics-
based proposals; first-order gradient information from the
likelihood guides its every step, enabling much more efficient
estimation compared to simplistic random-walk methods.
HMC algorithms are featured in modern PPLs like Stan [11],
PyMC [12], and Turing [6], contributing to their widespread
use in Bayesian inference.

The original HMC algorithm, however, necessitates man-
ual tuning of two critical parameters — the leapfrog step size
and the integration time (trajectory length) — to be efficient.
[5] proposed a groundbreaking solution to this: the No-U-
Turn Sampler (NUTS), an extension of HMC that automates
the parameter tuning.

Details of NUTS are omitted here, since PPLs provide
automated and efficient implementations. The following
section describes how to use NUTS in Turing.

V. MCMC USING TURING
To perform parameter estimation using Turing, the statistical
model that should be used for generating samples must be
specified using the @model macro. The general syntax of a
Turing model is as follows.

@model function prediction_model (Ym, Um)
# Specify prior distribution
Op ~ P(0)

# Simulate process output
yp = dynamic_model (6p, um)

# Output: dynamic model + noise
for i in 1l:length (yq)
ymlil ~ N (yplil, o)
end
end

VOLUME 11, 2023
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Once we have defined the statistical model, MCMC
sampling can be performed using the sample function,
which has the form

sample (prediction_model, sampler,
parallel, N, nchains).

This generates nchains number of independent chains,
each contaning N samples, using the statistical model and
specified MCMC sampler. The sampling is performed in
parallel using multiple cores if a parallel algorithm is
specified.

Turing offers several MCMC samplers, among which
are two distinct implementations of the NUTS sampler:
AdvancedHMC [13] and DynamicHMC [14]. In this work,
we use the implementation from AdvancedHMC. The NUTS
sampler function from AdvancedHMC has the form

NUTS (n_adapts, §),

where
n_adapts is the number of adaptation samples,
§ is the target acceptance rate for dual averaging.

It should be noted that Turing discards the adaptation
samples of NUTS by default. In other words, the resulting
chains provided by Turing do not include the adaptation
samples.

In [5], it was found that NUTS’s optimal performance
occurs around § = 0.6, but depends little on § within the range
8 € [0.45, 0.65].

V. PARAMETER ESTIMATION

All the simulations discussed below are implemented in
Julia v1.6.5 and are executed on a 2.40 GHz laptop
workstation with 32 GB memory. To solve the generator
model for parameter estimation calculations we use the
DifferentialEquations package [15].

We employ the same priors P () used in [1]. For the initial
states and unknown model parameters, truncated normal
distributions are adopted, following common practice. Mean
values for these distributions are selected based on the
best physical knowledge of the system. (In cases lacking
such insights, uniform distributions could be used.) As for
the ranges/truncation points of the distributions, initially,
reasonably informed approximations are available. To refine
these ranges, Monte Carlo simulations of the model are
conducted using the priors; the goal is to ensure that
the simulation results encompass the measurement data,
displaying a symmetrically balanced spread around the
data (see Fig. 10). Moreover, the refinement also aims to
ensure realistic representations of uncertainties in the model
predictions; the uncertainties relate to the degree of spread
of Monte Carlo results. This entire process involves trial-
and-error. When it comes to the priors for measurement
noise variances, the conventional choice is the inverse gamma
function; the same is chosen in [1]. Since the measurement
magnitudes are comparable, the same prior is assumed for
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TABLE 1. Prior distributions of the unknown parameters P () and

Metropolis tuning parameter values ¢2.

0 P(0) Metropolis o2
Var(Ts) r-1(2,3) 0.1
Var(Tre) r-1(2,3) 0.1
Var(TY) r-1(2,3) 0.1
Var(T)2) r-1(2,3) 0.1
Te(t = 0) T (N (30,3),25,35) 0.6
Tu(t = 0) T (N (30,3),25,35) 0.3
Tre(t = 0) T(N(30 2),25,35) 0.3
UA.95 T (N (2.7,1),0.2,5) 0.12
UAgare T (N (20.5).1,50) 0.4
UApe2a T (N (15,2),0.5,40) 0.12
UA T (N (44,5),1,100) 0.2

0% T (N (212, 40) , 20, 400) 4
Q7 T (N (422, 20) 200, 500) 45

all measurement noise variances; comparable magnitudes in
general is achieved by normalizing or standardizing the data.

The second column of Table 1 lists all the priors.
I'~! (@, B) represents an inverse Gamma function with shape
parameter « and scale parameter 8; N (u, o) represents a
normal distribution with mean yx and standard deviation o
and 7 (P (0) , Omin, Omax) represents a truncated distribution
of a distribution P (0) to the interval [Opin, Omax |-

We write custom Julia scripts to implement the Metropolis
algorithm presented in Section IV-A. Three different chains
are run for 100 000 iterations each, with different, randomly
chosen starting positions; the values of the Metropolis tuning
parameter o> that we use for this are given in the third
column of Table 1. These values were determined through
a process of trial-and-error: different values, several times
smaller than corresponding prior variance values, were tried,
and the trace plots (evolution of the chains) were examined
for convergence. The final trace plots obtained are shown in
the left column of Fig. 6. Based on the plots, we choose to
discard the first 25 000 iterations as burn-in. The resulting
posterior PDFs — after removal of the burn-in iterations —
are shown in the right column of Fig. 6; although mixing of
the chains could be better, we can nevertheless infer that the
chains have converged to the target posterior distributions.

We also set up the parameter estimation problem in
Turing using the default automatic differentiation backend,
ForwardDiff [16]. Three chains are then sampled in parallel
using the NUTS algorithm; a target acceptance rate of § =
0.65 and 1 000 adaptation samples — which are taken to be
equivalent to the burn-in samples — are used. Fig. 7 shows
the resulting trace plots and posterior PDFs — after removal
of the burn-in iterations. Based on the trace plots, the NUTS
chains also seem to have converged; mixing of the chains here
is observed to be much better than with Metropolis.

It is observed that NUTS generated uni-modal posteriors
for all parameters, whereas Metropolis yielded uni-modal
distributions only for the measurement variances; all other
posteriors are multi-modal. It should be noted here that the
same tool, MCMCChains package, is used to summarize
and visualize the results of both Metropolis and NUTS. The
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FIGURE 7. Trace plots and posterior PDFs - NUTS (Note: trace plots do not
include burn-in iterations, i.e., iteration 0 - 1 000; neither do posterior

PDFs.).
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FIGURE 8. Prior PDFs (grey) vs. posterior PDFs (blue) - Metropolis.

difference in posteriors is possibly best explained by the
algorithms’ choice of step length — i.e., distance between
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FIGURE 9. Prior PDFs (grey) vs. posterior PDFs (blue) - NUTS.

consecutive samples — which is reflected in the trace plots.
Metropolis trace plots, given in Fig. 6, indicate consistently
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small step lengths, in line with our chosen value for the
tuning parameter o, In contrast, NUTS trace plots, given in
Fig. 7, demonstrate better traversal of the parameter space
with more varied step lengths. The extent of “noise” in
the chains is indicative of this difference in the manner of
stepping: NUTS chains are noisier than Metropolis chains,
except the Metropolis chains that correspond to the unimodal
posteriors, which appear just as ‘“noisy” as corresponding
NUTS chains. Smoother unimodal posteriors may potentially
be achieved by adjusting Metropolis’s o> parameter and/or by
increasing its number of iterations. If the posteriors generated
by Metropolis were smoothed out, the resultant distributions
would closely resemble those produced by NUTS. Moreover,
the posterior statistics — standard deviations and means — in
Table 2 for Metropolis and NUTS also largely align. This
agreement between Metropolis and NUTS outcomes is a
good indication of the success of our implementation of both
samplers.

A visual overview of how well the two algorithms
estimated the parameters is provided in Fig. 8 for Metropolis
and in Fig. 9 for NUTS; these figures illustrate how the
calculated posterior PDFs compare to the prior PDFs. The
spread of the distributions reflects the associated uncertainty.
The extent of uncertainty reduction from prior to posterior
is observed to vary across parameters; for certain parameters
like UAs, UARe, UAx, etc., uncertainty is significantly
decreased. However, for others such as T:.(t = 0), Ts(t = 0),
etc., the reduction is less pronounced. Nonetheless, these
observations suggest successful uncertainty reduction across
all parameters using both sampling methods.

For the majority of parameters, the mode of the posterior
closely aligns with the mode of the prior, and the posterior
limits remain within the prior limits. This alignment implies
that our prior knowledge of the parameters is consistent with
the measured data. However, the posterior for 7:(t = 0)
found by NUTS appears to cross the lower limit of the chosen
prior. A similar observation holds true for Metropolis (see
Fig. 8), although it is less prominent. These observations
could potentially suggest that the prior information does not
align well with the observed data, possibly signalling a need
for revisiting and revising the priors. However, a check of
the sampled values for all estimated parameters reveal that
none of them actually lie outside the limits of the chosen
prior. Therefore, any apparent crossing of prior limits by the
posteriors is solely a result of the plotting procedure and not
an actual violation of the prior boundaries.

Our objective for using the Metropolis algorithm in this
work was to gain insight into MCMC. Therefore, we do
not delve into investigating how it stacks up against NUTS.
However, the difference in performance is obvious in many
ways: Metropolis requires more burn-in iterations and more
samples after convergence to estimate the posterior PDFs,
mixing of its chains is poorer, etc. A standard metric for
evaluating and comparing the efficiency of different MCMC
samplers is the effective sample size (ESS). Due to the
Markov property — which is described in Section IV —
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FIGURE 10. Data retrodiction of measured outputs (green) compared to
the measurement data (blue) and prior model solutions (grey).

samples generated using MCMC techniques will typically
be correlated. ESS is a measure of the number of generated
samples that are truly independent or uncorrelated, and it is
generally lower than the total number of generated samples.
A higher ESS is generally considered better because it
signifies more independent information. For instance, 1,000
samples with ESS 200 offer more information than 2,000
samples with ESS 100. ESS values for our implementations
of Metropolis and NUTS are provided in Table 2 (columns
6 and 7); NUTS displays significantly higher ESS values
across all the parameters (note: we used far fewer iterations
with NUTS than with Metropolis). This finding indicates
that NUTS has superior efficiency. Even though we are quite
certain that our tuning of Metropolis may be optimized,
it is possible that even with expert tuning, it will have
a lower efficiency than NUTS; it is widely acknowledged
that, at least for some problems, dynamical approaches such
as NUTS may be faster [17]. This is primarily due to
the fact that Metropolis explores the parameter space via
inefficient random walks, while dynamical approaches avoid
this random walk behaviour, as stated in Section IV-B.

To find out how good the model fit is, we simulate
the model for 10 000 randomly picked posterior samples
generated using NUTS; this is referred to as retrodiction.
In Fig. 10 we compare the retrodiction results with measure-
ment data — which was used for parameter estimation — and
model solutions for 10 000 randomly drawn prior samples.
The figure reveals that the fitted model closely tracks the
measurement data, as might be expected since the same data
was used for estimation. It is also seen that the uncertainties
in the model predictions have been reduced significantly, and
this must be attributed to the use of improved values of the
parameters. Thus, we have successfully managed to compute
improved estimates of the poorly known model parameters.

The rotor temperature 7, — which is not measured — is the
most crucial model output. Predictions of 7; corresponding
to the 10 000 prior samples and the 10 000 posterior samples
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TABLE 2. Metropolis and NUTS results statistics.

m o ESS &
Parameter Metropolis NUTS Metropolis NUTS Metropolis NUTS
Var(Ts) 0.8899 0.9009 0.1285 0.0678  2368.9769  2863.1459
Var(Tre) 1.2275 1.2372 0.1465 0.0899 1726.6946  2366.7368
Var(TY) 0.5357 0.5459 0.1129 0.0367  4272.1781  3218.9983
Var(Th) 1.3838 1.3879 0.1634 0.0956 1271.1659  2981.8289
T (t = 0) 28.4742 27.6622 2.1977 1.9209 457.0653 3158.5520
Ts(t = 0) 31.2221 31.2304 0.6694 0.8219 467.8964  3648.1030
Tre(t = 0) 31.6258 31.6314 0.4154 0.4132 488.0645 2340.7117
UA 25 0.4383 0.4363 0.0449 0.0455 600.4225 2664.1551
UAsoFe 11.7892 11.8194 0.1416 0.1506 644.5336  3502.4526
U AFe2a 15.8679 15.8091 0.4170 0.3948 455.9358 1620.1733
UAx 40.2556 40.3766 0.3192 0.3119 476.3352  2855.2070
Q%e 246.7329  244.8987 9.6073 8.7633 455.7214 1564.9992
Qf 378.8497 383.5085 12.8495 11.0508  458.0514 1667.5499

#When comparing ESS, it is important to note that for Metropolis, a total of 75 000 samples —
excluding burn-in — were generated per chain, whereas for NUTS, only 1 000 samples were

generated per chain.

0 100 200 300 400 500
time [min]

FIGURE 11. Posterior rotor temperature predictions (green) compared to
prior rotor temperature predictions (grey).

are shown in Fig. 11. In both instances, the uncertainty of the
prediction grows rapidly with time, but in the posterior model,
this growth is greatly decreased.

VII. DISCUSSION
The DAE formulation of Section II permits priors to be
proposed for both the initial differential and algebraic
variables; however, when this was attempted, it seemed
that the DifferentialEquations package disregarded the initial
algebraic variable priors. This means that the solvers
in the DifferentialEquations package compute the initial
algebraic variables on their own based on the specified initial
differential variables. This stands to reason since algebraic
variables are essentially functions of differential variables.

In Fig. 11, the uncertainty in the rotor temperature
prediction was observed to grow over time. To address this,
online state estimation may be utilized; in [18], Bayesian
inference techniques such as the particle filter and the
ensemble Kalman filter are used to perform state estimation
on the generator model. Such a solution may benefit from
using the parameter estimation results produced in this study
as apriori estimates for filter initialization.

It should be noted that we used the same measurement data
for both estimating the model and then testing the model fit.
Although it is preferable to validate the posterior model on
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new measurement data — that was not used for estimation —
retrodiction checks are still helpful in assessing if the model
makes sense to explain the observed data.

VIil. CONCLUSION

In this paper, using real-world experimental data, we illus-
trated how MCMC sampling approaches may be used
effectively to address uncertainties in a thermal generator
model. We first implemented the Metropolis algorithm from
scratch to get a basic understanding of the underlying
mechanics of MCMC methods. The Turing package in
Julia was then used to apply the more sophisticated NUTS
algorithm. Both samplers produced posterior distributions
that were comparable and narrower than the predicted prior
distributions — but NUTS clearly outperformed Metropolis.
We further tested the model’s posterior predictive capabilities
using the posteriors produced by NUTS; this revealed that the
predictive powers had indeed improved greatly.

To conclude, the findings of this study improve on those
of [1] — obtained for the same model using the same data and
methodologies. The results indicate that employing MCMC,
specifically the Metropolis and NUTS algorithm, is an
effective way for producing best estimates of the unknown
parameters of the thermal generator model. In future work,
a better choice of sensors for the generator may be considered
in a control architecture study.
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