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ABSTRACT The Internet of Medical Things (IoMT) heralds a transformative era in healthcare, with the
potential to revolutionize patient care, healthcare services, and medical research. As with all technological
progressions, IoMT introduces a suite of complex challenges, predominantly centered on security. In par-
ticular, ensuring the integrity, confidentiality, and availability of health data in real-time communication
stands paramount, given the sensitivity of the information and the ramifications of potential breaches or
misuse. In light of these challenges, existing security frameworks, while commendable, exhibit limitations.
Specifically, they often grapple with comprehensive anomaly detection, effective resistance to replay attacks,
and robust protection against threats like man-in-the-middle attacks, eavesdropping, data tampering, and
identity spoofing. The proposed framework integrates state-of-the-art encryption techniques, cutting-edge
pattern recognition modules, and adaptive learning mechanisms. These components collaboratively ensure
data integrity during transmission, provide robust resistance against conventional and novel attack vectors,
and adapt to evolving threats through continuous learning. Moreover, the framework incorporates sophisti-
cated checksum techniques and advanced behavioral analysis, further enhancing its protective capabilities.
Our system demonstrated significant improvements in anomaly detection and attack resistance metrics,
consistently outperforming benchmark solutions like MRMS and BACKM-EHA.

INDEX TERMS Anomaly detection, blockchain, federated learning, homomorphic encryption, Internet of
Medical Things, privacy preservation, real-time patient monitoring, security.

I. INTRODUCTION
The Internet of Medical Things (IoMT) represents a transfor-
mative convergence of healthcare and information technol-
ogy [1], [2], epitomizing the modern age of digital medicine.
Asmedical devices become increasingly interconnected, gen-
erating and relaying voluminous amounts of patient data [3],
the IoMT has positioned itself as a linchpin for enhanced
patient care, remote health monitoring [4], and personal-
ized medical interventions [5]. While these advancements
hold immense promise for redefining the contours of health-
care delivery [6], they simultaneously usher in a set of
multifaceted challenges. Paramount among these are the
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issues of data privacy [7], [8], security [9], [10], and the
ever-present tension between the computational constraints
of devices and the necessity for prompt, accurate patient
monitoring [11]. As healthcare systems globally grapple with
these challenges, it becomes imperative to seek innovative
solutions that not only harness the potential of the IoMT but
also address its inherent vulnerabilities [12].

The exponential growth of the IoMT has laid bare a myriad
of challenges [13], both technical and ethical, arising from
the confluence of healthcare and cutting-edge technology
[14]. Foremost among these challenges is the safeguarding of
patient data privacy. With IoMT devices routinely collecting
[15], transmitting [16], and processing vast troves of sensitive
patient data [17], the risk of inadvertent data leaks or mali-
cious breaches becomes an ever-present concern. Traditional
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centralized systems, being potential single points of failure,
exacerbate this risk. The transmission of raw patient data,
which is standard in many systems, further amplifies the
vulnerability of the patient’s privacy [17]. Equally pressing
is the challenge of ensuring data security [18]. In an inter-
connected IoMT environment, the data is not only susceptible
to breaches but also to manipulations, posing threats not just
to privacy but also to the accuracy and reliability of medical
insights derived from the data. Authenticity and integrity
of data, therefore, become paramount, demanding foolproof
mechanisms to validate and verify every piece of information
that flows through the network. Moreover, IoMT devices,
often designed to be lightweight and energy-efficient [7],
face inherent computational constraints. Balancing these con-
straints against the need for real-time, accurate monitoring
presents a significant technical hurdle. This study zeroes in
on these pivotal challenges, proposing a novel approach that
leverages the strengths of federated learning and blockchain
technologies to holistically address the intertwined issues of
privacy, security, data integrity, and efficient real-time moni-
toring in the IoMT space.

The IoMT signifies a paradigm shift in healthcare, empha-
sizing remote real-time monitoring, tailored treatment proto-
cols, and insights powered by voluminous patient data. These
advancements promise a healthcare system optimized for
cost, patient outcomes, and proactive health monitoring [19].
With the rapid interconnection of medical devices and cease-
less data flow, new challenges emerge, especially concerning
the privacy and security of sensitive patient information.
Historically, data from IoMT devices has been anchored to
centralized storage and processing units. However, such cen-
tralization can become a vulnerability, exposing the system
to potential breaches or single points of failure. Transmit-
ting raw patient data across networks further magnifies the
privacy challenges. As the IoMT infrastructure expands, the
exigency for solutions that encapsulate data privacy, robust
security, and real-time monitoring efficiency comes to the
forefront. The traditional architecture, characterized by cen-
tral repositories, presents critical challenges. Firstly, how can
the IoMT landscape ensure that devices process and analyze
patient data without resorting to the transfer of sensitive
raw information to these central hubs? Secondly, in a world
with increasing cyber threats [20], which mechanisms can
guarantee the security of the transmitted model updates and
data over the network? The third question pertains to ensuring
the authenticity and integrity of data transmissions within
a decentralized IoMT environment [21]. Finally, given the
inherent computational limitations of IoMT devices, how can
the system maintain its real-time monitoring efficacy without
compromising device performance. In light of these concerns,
there is a compelling need to explore methodologies that
synergize federated learning with blockchain technologies.
Such integration might offer a blueprint for addressing the
multifaceted challenges inherent in the burgeoning IoMT
domain.

The proposed approach articulates a decentralized frame-
work that seamlessly integrates privacy, security, and
real-time efficiency in the IoMT. Central to this design is
the adoption of federated learning, a decentralized machine
learning paradigm. In this construct, IoMT devices, equipped
with essential computational prowess, gather and prepro-
cess patient data at the edge. This ensures that sensitive
patient data remains localized, obviating the need for raw
data transmission. Instead, devices periodically send model
weights or updates to a central server, having first encrypted
them through advanced homomorphic encryption techniques.
Such encryption permits the central server to aggregate these
updates without ever glimpsing the raw data, reinforcing
data confidentiality. To augment security and enhance trace-
ability, blockchain technology is integrated. Every IoMT
device, together with the central server, acts as a node in this
secure network. By harnessing the immutable properties of
blockchain ledgers, all model updates and device authentica-
tions are meticulously logged, establishing both transmission
integrity and device verifiability. Another salient feature is the
embedded anomaly detection tool within each IoMT device.
This tool vigilantlymonitors for irregular patterns or potential
security breaches. On identifying any such deviation, real-
time alerts can be activated, thereby facilitating prompt risk
intervention. Furthermore, when the global model discerns
pivotal health trends, these insights are securely relayed to the
pertinent IoMTdevice via encrypted notifications. The device
then decrypts and displays this information, ensuring patient
privacy remains uncompromised. The notable contributions
of our approach, especially when contextualized against the
backdrop of pertinent studies in the IoMT domain, are:

1) Introduction of a decentralized learning paradigm tai-
lored for IoMT devices. This emphasis on local data
processingminimizes the transmission of raw, sensitive
patient data, thereby bolstering data privacy.

2) Adoption of homomorphic encryption techniques,
which facilitate secure aggregation of model updates
at the server-side. This method ensures robust data
protection without compromising the integrity of the
computational process.

3) Deployment of blockchain technology for traceability
and authentication. This not only ensures the trans-
parency and accountability of model iterations but also
strengthens the authentication of connected devices.

4) Implementation of an embedded anomaly detection
mechanism to provide an enhanced layer of security.
This feature is optimized for real-time identification
and mitigation of potential threats.

5) Formulation of a privacy-centric alert system, pro-
ficient in dispatching crucial health alerts without
divulging specific patient information to the server.

The structure of the rest of the article is as Section II,
offering a critical survey of existing IoMT security
measures and challenges. This foundation sets the stage for
the introduction of our novel Section III, which highlights
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its decentralized and robust nature. A key component of
our framework, Section IV, is then detailed, underscoring
our commitment to patient data privacy. The Section V
section provides insights into our testing environment and
methodologies. Following this, Section VI unveils empirical
results, demonstrating the efficacy of the proposed system.
In Section VII segment, a reflective analysis of our find-
ings with existing benchmarks, also touches upon potential
limitations. The manuscript culminates in Section VIII, sum-
marizing the pivotal contributions and implications of our
study for the evolving IoMT domain.

II. LITERATURE REVIEW
The literature review offers a systematic exploration of prior
research pertinent to the Internet of Medical Things (IoMT),
with an emphasis on its evolutionary trajectory, inherent
privacy and security challenges, and emerging solutions.
The ensuing discourse critically evaluates seminal works,
revealing the dynamic interplay between technology and
healthcare, and underscores the imperative for data-centric
solutions. By furnishing this contextual backdrop, this review
not only positions the current research within the broader
scholarly conversation but also accentuates the areas where
innovation remains both promising and paramount.

The evolution of healthcare technologies is consistently
steering towards more personalized and patient-centric
approaches. One significant advancement in this domain is
the concept of continuous patient monitoring using patient-
centric agents. Uddin et al. [22] proposed a block architecture
for such continuous monitoring, emphasizing the creation
of an environment that is focused on individual patient
needs. This framework relies on the seamless integration of
health data acquisition, processing, and predictive analysis to
optimize patient care. Such architectures provide the foun-
dation for efficient and effective real-time health monitoring
systems, facilitating rapid response to any emerging health
complications.

Further reinforcing the potential of modern technologies
in healthcare, the integration of the IoT and deep learning
approaches has shown promising results in patientmonitoring
and disease prediction. A study by Sarmah [23] presents
an efficient IoT-based system for patient monitoring that
couples with a deep learning modified neural network for
predicting heart diseases. The innovation resides not only in
the real-time acquisition of health data but also in the uti-
lization of sophisticated deep learning techniques to process
and analyze the data for proactive healthcare measures. Such
combined approaches underscore the potential of IoT and
advanced machine learning in revolutionizing patient care
and preemptive disease management.

A. EVOLUTION OF THE INTERNET OF MEDICAL THINGS
(IoMT)
The IoMT has evolved as an intricate synthesis of med-
ical devices and applications that are intricately linked
to healthcare information technology systems via online

TABLE 1. Key milestones in the evolution of IoMT.

computer networks [24]. Grounded in the broader ecosystem
of the IoT, which itself has witnessed substantial transfor-
mational changes over the past twenty years, the IoMT has
carved a niche for itself [25]. Transitioning from the generic
framework of the IoT, IoMT underscores specialized medical
interventions, pivoting around real-time patient monitoring
and tailored healthcare services [26]. The proliferation and
advancements in IoMT are not only the result of technological
innovations but also the culmination of rigorous research
endeavors undertaken over the years. A structured summary
of keymilestones, the scholars instrumental in those advance-
ments, and their notable contributions to the IoMT evolution
is presented in Table 1.

In understanding this evolution, Razdan and Sharma pro-
vide an astute exploration of IoMT, elaborating on its archi-
tectural components, salient technological advancements,
and transformative case studies [24]. This intricate mesh is
not just about inter-device communication; it represents an
ecosystem teeming with intelligence. As an illustration, Khan
and Akhunzada’s work stands out, where they developed
a hybrid mechanism rooted in deep learning, harmoniously
functioning within the Software-Defined Networking (SDN)
ecosystem, adeptly targeting malware within IoMT environ-
ments [27].

Historically, IoMT’s trajectory is adorned with milestones
that accentuate its collaborative synergy with other fron-
tier technologies. An exemplary integration is showcased by
Vaccari et al., who introduced the concept of Generative
Adversarial Networks (GANs) for handling IoMT data, epit-
omizing the marriage between advanced machine learning
and medical device interconnectivity [28]. In tandem, the
assimilation of mobile edge computing with IoMT paves
the way for swift data computations, effectively reducing
system latency and significantly enhancing the efficacy of
medical applications [29]. The inclusion of blockchain in
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TABLE 2. Comparative analysis of IoMT privacy approaches.

the IoMT tapestry further solidifies its stance on secure and
decentralized data transactions, as explored by Qu et al.
They particularly focus on the transformative potential of
using blockchain for safeguarding electronic medical records
within IoMT frameworks [30].

Security, an undeniably crucial facet of IoMT, has been
thoroughly dissected in academic arenas. Thomasian and
Adashi’s work is of particular note, as they meticulously
unravel the cybersecurity intricacies, potential threats, and
countermeasures in IoMT ecosystems [31]. Reflecting upon
IoMT’s formative years, one witnesses its metamorphosis
from basic connectivity paradigms [33] to the adoption of
state-of-the-art technologies, from blockchain to IOTA, even
flirting with quantum mechanics [32].

B. PRIVACY CONCERNS IN IoMT
The rapid proliferation of IoMT has not only reshaped health-
care delivery but has also introduced a myriad of privacy
challenges. This is particularly concerning since medical
data is inherently sensitive and requires stringent protection
against unauthorized access or breaches. The comparative
analysis of the IoMT existing approachwith a particular focus
on privacy is illustrated by Table 2.

Sahu et al. [34] presented a thorough analysis of security
and privacy challenges associated with multimedia objects
within the IoMT infrastructure. Their review offers invaluable
insights into potential vulnerabilities and proposes several
layers of safeguards to maintain data integrity. In a similar
context, Shanmugam and Azam [35] focused on the risk
assessment of heterogeneous IoMT devices, highlighting the
myriad of challenges introduced by the diverse range of
interconnected devices. Given the continuous growth in the
number of interconnected devices, ensuring the authenticity
of each device becomes paramount. Khan et al. [36] pro-
posed a feature-based privacy-preserving assessment model
that emphasizes the authentication of IoMT devices. This
approach underscores the importance of device verification
in the broader scheme of IoMT security.

The era of Big Data and advanced computational method-
ologies has also seen the rise of federated learning models.
Khan et al. [37] introduced the Fed-Inforce-Fusion model,
a federated reinforcement-based fusion model crafted explic-
itly for the protection of IoMT networks from cyber threats.
Similarly, Nair et al. [38] proposed a privacy-preserving fed-
erated learning framework for big data analysis in IoMT,
leveraging edge computing to mitigate the potential threats.
The holistic view of privacy and security in IoMTwas further
expanded upon by Kamalov et al. [39]. Their discourse not
only tackles the prevailing challenges but also forecasts future
trends, providing a comprehensive analysis from a novel per-
spective. Echoing this sentiment, multiple works [44], [45],
[46], [47] have delved deep into the security intricacies of
IoMT, emphasizing the importance of interoperability, digital
healthcare integration, and remote diagnosis while always
maintaining a privacy-preservation perspective.

A noteworthy exploration by Ajay et al. [40] elaborates
on the critical aspects of security and privacy in the IoMT
framework, paving the way for a more robust and secure
IoMT infrastructure. The significance of federated learning
for secure IoMT applications in smart healthcare systems has
been expansively discussed by Rani et al. [41], underlining
the role of decentralized models in ensuring data privacy.
Incorporating advancements like AI and embedded technol-
ogy, Dash et al. [42] deliberated on the potential of human
identity chips for IoMT, pointing towards the future trajectory
of personalized healthcare. Furthermore, a special editorial
note by Chakraborty et al. [43] emphasizes the transformative
potential of AIoMT-enabled federated learning, hinting at a
new era where healthcare systems can seamlessly integrate
with social implementations.

C. BLOCKCHAIN IN HEALTHCARE AND IoMT
The evolution of healthcare systems is intertwined with
technological advancements, with the IoMT standing at the
forefront of this transformation. The infusion of blockchain
technology into IoMT heralds a paradigm shift, addressing
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TABLE 3. Comparative analysis of Blockchain approaches in IoMT.

key challenges while paving the way for enhanced traceabil-
ity, robust security, and fortified data integrity in healthcare
ecosystems. Extensive comparative analysis has been per-
formed on the various blockchain-based approaches in the
IoMT domain, considering their core focus, methodologies,
and significant outcomes. The detailed comparison, tabulated
for clarity, can be found in Table 3.

The need for immutable, transparent, and traceable data
in IoMT is paramount. Muazu et al. [48] proposed an
edge-empowered blockchain federated learning system tai-
lored for IoMT, emphasizing the importance of decentralized
medical resource management. Such an approach bolsters
traceability in healthcare systems, ensuring that every datum
and medical transaction is verifiable. In addition to trace-
ability, security is indispensable in e-healthcare applications.
Wazid and Gope [49] introduced a novel blockchain-enabled
security solution (BACKM-EHA) to safeguard IoMT-based
applications. Their mechanism underscores the significance
of a secure and transparent digital ledger in preventing unau-
thorized data access and potential cyberattacks.

Maintaining data integrity in IoMT can be a challenging
endeavor due to the multiplicity of devices and the sheer
volume of data. Blockchain provides a solution by establish-
ing a decentralized ledger where data, once entered, becomes
immutable [50]. Rajadevi et al. delved into this by proposing
a ‘‘Proof of Activity Protocol,’’ fortifying data security in
IoMT through a consensusmechanism, ensuring data remains
unaltered and genuine. In parallel, Li et al. [7] explored
efficient privacy-preserving techniques in IoMT, combining
blockchain with lightweight secret sharing, further enhancing
data protection and user privacy.

Blockchain’s intersection with federated learning in
healthcare presents both challenges and opportunities.
Myrzashova et al. [51] systematically reviewed this fusion,
laying the groundwork for further research in this domain.

Beyond specific solutions, blockchain is progressively
being integrated into comprehensive healthcare systems.
Kamal et al. [52] described ‘‘Care4U’’, an integrated health-
care system founded on blockchain. Such integrations
demonstrate the technology’s capability to holistically
address healthcare challenges, from patient data management
to treatment traceability.

Some studies have ventured into novel territories, inter-
twining quantum technologies with blockchain for IoMT
applications. Qu et al. [53] developed an IoMT-based smart
healthcare detection system driven by quantum blockchain
and quantum neural networks, epitomizing the conver-
gence of cutting-edge technologies to redefine healthcare
paradigms. Moreover, addressing the socio-economic spec-
trum, Ray et al. [54] designed a blockchain-based solution
tailored for the poverty-led economy, accentuating the inclu-
sivity potential of blockchain in IoMT for different economic
landscapes.

The practical implementation of blockchain
in IoMT warrants insightful tutorials and guides.
Pelekoudas-Oikonomou et al. [55] provided a comprehensive
tutorial on hyperledger fabric-based security architectures
for IoMT, bridging the knowledge gap between conceptual-
ization and real-world deployment. Such contributions are
pivotal in driving the adoption of blockchain in IoMT by elu-
cidating complex concepts and facilitating their integration
into existing systems.

D. SUMMARY AND GAPS IN THE LITERATURE
The literature review encompassed a wide spectrum of
research areas, ranging from the traditional security protocols
for IoT systems to the more recent, groundbreaking imple-
mentations of blockchain technology in the healthcare sector.
Various methodologies, from federated learning to quantum
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TABLE 4. Research gaps identified in the literature.

blockchain, have been investigated for their feasibility and
robustness in the context of IoMT systems.

However, despite the breadth of research, certain gaps
persist in the literature. Firstly, while many studies emphasize
the integration of blockchain with IoMT systems, a compre-
hensive framework that holistically addresses all the inherent
challenges of IoMT, including scalability, interoperability,
and real-time processing, remains elusive. Additionally, the
practical implementation and testing of these approaches in
real-world healthcare environments are scant. Such empirical
validations are crucial for ensuring the reliability and viability
of these methods.

Moreover, while blockchain offers heightened security, its
energy consumption and the potential for increased latency in
critical medical applications need further exploration. Also,
the trade-offs between privacy, security, and system effi-
ciency in blockchain-integrated IoMT systems are not yet
thoroughly understood. To provide a structured overview of
these research gaps, Table 4 outlines the primary limitations
observed in the literature.

While the existing literature presents a plethora of innova-
tive approaches for enhancing IoMT security and functional-
ity, there is a manifest need for comprehensive solutions that
can be seamlessly integrated into the real-world healthcare
landscape. These gaps underscore the necessity and signifi-
cance of the proposed approach in this research.

III. PROPOSED INTEGRATED IoMT SECURITY
FRAMEWORK
In light of the prevailing challenges and gaps discerned
from existing literature, this section delineates our pio-
neering approach designed to fortify both the privacy and
security aspects of IoMT systems. By anchoring data pro-
cessing within individual devices and harnessing sophisti-
cated cryptographic alongside blockchainmethodologies, our
framework aims to strike a balance between efficient data
utilization and robust protection measures. This localized
processing modality, in conjunction with encrypted model
update transmissions, posits a novel stance in the trajectory
of IoMT system development, emphasizing the paramount
importance of patient data privacy.

A. DECENTRALIZED SYSTEM ARCHITECTURE FOR IoMT
Our proposed methodology envisages an advanced decen-
tralized architecture, seamlessly integrating privacy, security,
and real-time efficiency for the IoMT in a view of flow
modeling [56]. The underlying design is anchored in the
principles of federated learning, a decentralized machine
learning paradigm. IoMT devices, equipped with funda-
mental processing faculties, capture and preprocess patient
data at the source. By training localized models on this
data, the system ensures the confinement of raw, sensitive
patient information within the originating device. Onlymodel
weights or incremental updates—encrypted using homo-
morphic encryption techniques—are relayed to a central
server. The central server, as depicted in Figure 1, serves
as an essential node facilitating efficient communication and
coordination between the decentralized components. While
acknowledging the inherent risk of it becoming a single point
of failure, we have implemented a robust interconnectivity
schema among the system’s modules. This structural layout
ensures redundancy and reduces dependency on a singular
component, fostering resilience against potential system fail-
ures. Furthermore, the integration of blockchain technology
not only provides a layer of data integrity but also reinforces
the decentralized nature of the architecture, ensuring that the
overall system remains secure and operational even in the
face of unexpected disruptions. This strategic use of encryp-
tion enables the server to amalgamate model updates, all
the while ensuring the data’s sanctity remains inviolate. The
workflow of the proposed approach components is illustrated
by Figure 1
Further strengthening the system’s security and traceability

is the integration of a blockchain network. Here, each IoMT
apparatus, in tandem with the central server, operates as an
individual node. Blockchain’s indelible ledger feature forti-
fies the system, meticulously recording model updates and
device authentications, thereby certifying the integrity and
authenticity of each transaction. An auxiliary protective layer
in this architecture is the embedded anomaly detection mech-
anism within each IoMT device. This system continually
monitors for abnormal patterns or potential security breaches.
On the rare occasions where inconsistencies are detected,
real-time alerts are dispatched to stakeholders, swiftly initi-
ating remedial actions.

In the terminal phase of this workflow, when significant
health trends or insights are gleaned from the global model,
they are dispatched as encrypted alerts from the central server
to the pertinent IoMT device. This device then undertakes
the decryption process, presenting the data to the user, ensur-
ing the consistent preservation of privacy. Our approach
delineates several pioneering contributions to the IoMT
sphere:

1) The inception of a decentralized learning mecha-
nism within the IoMT framework. This revolutionary
approach permits devices to locally process and learn
from data, dramatically reducing the transmission of
sensitive raw information.
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FIGURE 1. The architecture of the proposed real-time patient monitoring approach.

2) The strategic integration of homomorphic encryption
provides a robust method for the secure amalgamation
of model updates at the central hub. This is achieved
without ever jeopardizing the inherent privacy of the
data.

3) The avant-garde incorporation of blockchain for trace-
ability and authentication in IoMT environments. This
ensures the creation of immutable, tamper-resistant
records for model updates and device verification pro-
cesses.

4) The formulation of an on-device anomaly detec-
tion mechanism. This innovative addition proffers
a dynamic layer of real-time security, vigilant
against unforeseen threats or potential equipment
malfunctions.

5) A meticulously designed privacy-focused alert system.
This system adeptly conveys paramount health insights
to end-users, negating the necessity for the central
server to delve into individual patient conditions.

B. INTEGRATION WITH MACHINE LEARNING
OPERATIONS (MLOps)
Machine Learning Operations, or MLOps, is the discipline
of AI model delivery and governance. It amalgamates the
domains of machine learning (ML) system development and
operations (Ops). The integration of our proposed framework
with MLOps not only serves to enhance the robustness of
IoMT systems but also ensures its adaptability, scalability,
and sustainability in dynamic real-world environments.

• Seamless Model Deployment: The proposed frame-
work adopts continuous integration and continuous
deployment (CI/CD) pipelines inherent in MLOps. This
allows for streamlined transitions from model devel-
opment to deployment stages. As the IoMT ecosystem
evolves, this ensures that our framework remains agile,
promptly deploying refinements or entirely new models
in response to emerging challenges.

• Monitoring and Feedback Loops: An integral com-
ponent of MLOps is the establishment of monitoring
mechanisms and feedback loops. In the context of
our framework, this pertains to real-time monitoring
of model performance and data drift. By continually
assessing the model’s performance metrics, the sys-
tem can autonomously trigger retraining processes or
send alerts for manual interventions, thus sustaining the
model’s accuracy and relevance.

• VersionControl and Traceability:With the integration
of MLOps, our framework benefits from enhanced ver-
sion control. Every change, frommodel modifications to
data alterations, is meticulously logged. This traceabil-
ity, combined with the inherent transparency provided
by blockchain, strengthens the reliability of the entire
system, ensuring stakeholders can trust and verify every
action.

• Scalability and Reproducibility: MLOps best prac-
tices foster scalability and reproducibility. As the IoMT
ecosystem expands, the need for our framework to
accommodate a larger number of devices and data
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streams becomes paramount. MLOps principles ensure
that the model can be efficiently scaled out to cater
to these increasing demands, all while maintaining its
performance metrics.

• Collaborative Development Environment: By inter-
twining with MLOps, our framework supports a more
collaborative environment. It bridges the gap between
data scientists, who primarily focus on model develop-
ment, and operations teams, who emphasize deployment
and monitoring. This collaborative nexus ensures that
the model remains holistic, combining the expertise of
multiple disciplines to enhance its efficacy.

C. IoMT DEVICE WITH ON-DEVICE PROCESSING
The epicenter of our proposed framework lies in the IoMT
device, meticulously designed to serve as more than just a
data collection conduit. Its capabilities transcend mere data
acquisition, delving into preliminary data analytics, a depar-
ture from the convention that promises enhanced efficiency
and robust privacy.
• Intrinsic Processing Capabilities: Contrary to tradi-
tional devices, the IoMT devices in our framework,
including wearable health monitors, are embedded with
rudimentary processing capabilities. These capabili-
ties facilitate not only the capture but also the initial
refinement of patient data, laying the groundwork for
subsequent analyses.

• Local Data Pre-processing Significance: Processing
data locally, at the source of its generation, offers mani-
fold benefits. Most paramount among these is bolstered
data privacy, as the raw, potentially sensitive patient
data remains confined to the device, mitigating the
risks associated with data transmission. Furthermore,
local pre-processing curtails the computational burden
on central servers and reduces latency, fostering timely
insights and interventions. This decentralized approach
to data processing, thus, enhances the overall efficacy
and privacy-security balance of the IoMT ecosystem.

D. FEDERATED LEARNING FOR DECENTRALIZED DATA
ANALYSIS
In the modern age of healthcare, the sheer volume and
sensitivity of data emanating from myriad IoMT devices
necessitate an innovative approach to data analysis—one that
prioritizes both privacy and efficiency. Federated learning
emerges as a promising solution, addressing these challenges
by decentralizing the analytical process and thereby, obviat-
ing the need for raw data centralization. Federated learning
operates on a principle of distributed, collaborative model
training. Instead of consolidating raw data on a central server,
each IoMT device—equipped with its unique dataset—
trains a local model in isolation. This process ensures that
raw patient data, laden with sensitive information, remains
sequestered within the confines of the originating device.

The quintessence of federated learning lies in its abil-
ity to transmit only model updates or weights to a

centralized server, while the granular, potentially identifi-
able data remains untapped. Such a selective transmission
strategy significantly curtails the potential attack vectors,
thereby amplifying data privacy. Upon receipt of these model
updates from various devices, the central server undertakes
the responsibility of aggregating them to refine the global
model. This aggregated model, benefiting from the diverse
insights of multiple local models, boasts enhanced accuracy
and generalization. Still, it achieves this feat without ever
directly accessing or jeopardizing individual patient data.
By transferring only distilled model updates rather than volu-
minous raw data, federated learning substantially reduces
the transmission overhead. This reduction translates to not
only faster data processing and timely health insights but
also optimized bandwidth utilization—a critical factor in the
constrained environments of many IoMT devices.

E. MECHANICS OF FEDERATED LEARNING IN THE IoMT
FRAMEWORK
The incorporation of federated learning in the IoMT frame-
work heralds a new age of data privacy and efficient analysis.
To grasp its operation, we first delve into the architecture and
functioning of the central server, followed by individualized
device training, and finally, the aggregation methodology.

The federated learning mechanism integrated into our
IoMT framework is succinctly summarized in Algorithm 1.
This algorithm illustrates the sequential and collaborative
nature of our approach, underscoring both its efficiency and
the maintenance of patient data privacy. Beginning with a
global model initialized with weights wG, the framework
ensures that each IoMT device receives the current model
parameters. This procedure guarantees that every device
starts its localized training with a consistent model, thereby
maintaining model cohesion across devices. Subsequently,
every IoMT device commences its localized training pro-
cess, leveraging its specific patient dataset Di. It is crucial
to highlight that the entire training process, as demonstrated
in Algorithm 1, occurs on the device itself, ensuring that
raw patient data remains localized. Once the training is
completed, each device computes a weight update, 1wLi ,
which represents the deviation of the locally trained model
from the initial global model. This weight update is the only
piece of information transmitted to the central server, further
emphasizing our commitment to patient data privacy. Upon
receiving weight updates from all participating devices, the
central server aggregates them to compute an average weight
update, 1wG. This aggregated update is then applied to
the global model, enhancing its accuracy and generalization
capabilities based on insights derived from all IoMT devices.

The central server’s primary role is to host the global
model. Let G denote the global model, which is initialized
with random weights wG.

G : X → Y, with initial weights wG (1)

This global model G serves as a blueprint for localized
training on individual IoMT devices. Each IoMT device
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Algorithm 1 Federated Learning in IoMT Framework
Data: Initial global model weights wG, Number of

devices N , Device-specific datasets {Di}Ni=1
Result: Updated global model weights wGnew

1 Initialization:
2 Set global model G with weights wG;
3 Broadcast G to all IoMT devices;
4 for i = 1 to N do

// Localized Training on each IoMT
device Train local model Li using dataset Di and
initial weights wG;

5 Calculate weight update 1wLi = wLi − wG;
6 Transmit 1wLi to central server;

// Aggregation of updates at the
central server
Calculate average weight update:
1wG = 1

N

∑N
i=1 1wLi ;

7 Update global model weights: wGnew = wG +1wG;

houses a subset of data, represented as Di, where i is the
device identifier. Using G as a starting point, devices train
their localized models Li. The training process can be math-
ematically captured as:

Li : Xi→ Yi, where Di ⊂ Xi × Yi (2)

Through several iterations, each Li optimizes its weights
wLi based on Di. For the sake of efficiency and privacy, only
the differential updates or weights 1wLi (representing the
change from wG) are transmitted back to the central server.

1wLi = wLi − wG (3)

This method ensures minimal data transfer while preserv-
ing the privacy of raw patient information. Upon receiving
weight updates from all participating devices, the central
server aggregates them to refine wG. A simple aggregation
can be an average of all updates:

1wG =
1
N

N∑
i=1

1wLi (4)

where N is the total number of devices. Subsequently, the
global model’s weights are updated:

wGnew = wG +1wG (5)

By continually refining wG through such cycles, the global
model G incorporates insights from all devices without ever
accessing individual data. As reflected by Equations 1 to 15,
the proposed federated learning framework in IoMT offers a
robustmechanism to unify decentralized device-level insights
into a coherent global perspective, ensuring both data privacy
and analytical efficacy.

F. HOMOMORPHIC ENCRYPTION FOR SECURE MODEL
UPDATE TRANSMISSION
Homomorphic Encryption stands as a powerful cryptographic
technique which allows computation on ciphertexts, gener-
ating an encrypted result that, when decrypted, matches the
outcome of the operations as if they had been executed on
plaintext. In the context of our framework, HE ensures the
secure transmission of model weight updates from IoMT
devices to the central server, allowing the latter to aggregate
these updates without the necessity for decryption.

TheHomomorphic Encryption (HE) scheme’smain advan-
tage in the context of our IoMT framework is its ability to
perform computations directly on encrypted data. This prop-
erty permits the central server to aggregate model updates
without requiring decryption, ensuring data security through-
out the process. Algorithm 2 delineates this mechanism
systematically. Initially, each IoMT device calculates its local
model updates, denoted as 1wLi . These updates are then
encrypted using the public key pk to generate the ciphertext
cLi . It is imperative to note that the raw model weights or
any sensitive information never depart the IoMT device in an
unencrypted state, thus fortifying the data privacy at source.

The central server then receives these encrypted updates
and aggregates them. Due to the unique properties of HE,
the aggregation, denoted by

⊕
, is executed directly on the

ciphertexts. This results in an aggregated encrypted update,
cagg. Subsequently, the encrypted global model stored on the
server, represented by cG, is updated using the aggregated
encrypted update. The final step involves decrypting cGnew

using the secret key sk to obtain the updated global model
Gnew. This decryption process is executed in a secure envi-
ronment to ensure the model’s confidentiality remains intact.

The use of HE, as outlined in Algorithm 2, brings forth
a two-fold advantage. Firstly, it ensures that sensitive data
remains encrypted throughout the transmission and aggre-
gation processes, mitigating risks associated with poten-
tial eavesdropping or man-in-the-middle attacks. Secondly,
by allowing computations on encrypted data, the system
architecture remains streamlined, avoiding the computational
and time overheads associated with frequent encryption and
decryption processes. This methodology paves the way for
an efficient, secure, and decentralized data analysis paradigm
within the IoMT ecosystem.

Consider a plaintext space P and a ciphertext space C.
A homomorphic encryption scheme comprises three primary
algorithms: KeyGeneration (KeyGen), Encryption (Encrypt),
and Decryption (Decrypt).

(pk, sk)← KeyGen(1λ) (6)

where pk denotes the public key, sk is the secret (private)
key, and 1λ signifies the security parameter. Given a message
m ∈ P:

c← Encrypt(pk,m) (7)
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Algorithm 2 Homomorphic Encryption for IoMT
Model Update Aggregation
Result: Securely aggregated model updates using

Homomorphic Encryption
Input : Model weight updates from each IoMT

device, Public key pk, Secret key sk
Output: Updated global model Gnew

1 For each IoMT device i;
2 1wLi = Compute local model update;
3 cLi = Encrypt(pk, 1wLi );

cagg =
⊕N

i=1 cLi ; // Aggregate updates

4 Retrieve encrypted global model cG from server;

5 cGnew = cG ⊕ cagg ; // Update the global
model

6 Gnew = Decrypt(sk, cGnew );

7 return Gnew;

where c represents the encrypted message in C. For
decryption:

m← Decrypt(sk, c) (8)

The transformative attribute of HE is its ability to per-
form arithmetic operations on encrypted data. Consider two
encryptedmessages c1 and c2 corresponding to plaintextmes-
sages m1 and m2. Under a homomorphic encryption scheme,
we can compute:

cadd = c1 ⊕ c2 (9)

cmul = c1 ⊗ c2 (10)

where ⊕ and ⊗ represent homomorphic addition and multi-
plication respectively. Upon decryption, we achieve:

Decrypt(sk, cadd) = m1 + m2 (11)

Decrypt(sk, cmul) = m1 × m2 (12)

Within our IoMT framework, each device computes a local
model update, 1wLi , and subsequently encrypts this update
using the public key, pk:

cLi ← Encrypt(pk, 1wLi ) (13)

These encrypted updates are securely transmitted to the
central server. Given encrypted updates from all devices, the
central server can aggregate them homomorphically:

cagg =
N⊕
i=1

cLi (14)

Following this, the aggregated update is applied to the
global model, which is encrypted under the same public key:

cGnew = cG ⊕ cagg (15)

FIGURE 2. The workflow of the transaction validation selection.

The decryption of cGnew would yield the updated global
model incorporating contributions from all devices, yet with-
out ever exposing individual updates:

Gnew← Decrypt(sk, cGnew ) (16)

The proposed approach fortifies our commitment to data
privacy. The weight updates, once encrypted at the source,
remain shielded throughout the aggregation process. The
server, though equipped to perform computations on the
encrypted updates, is denied access to the raw data con-
tained within, ensuring both privacy and security in the IoMT
system.

G. BLOCKCHAIN-BASED AUTHENTICATION MECHANISM
Blockchain technology, intrinsically, facilitates a decentral-
ized and transparent mechanism. Its integration into our
advanced IoMT framework amplifies the robustness and reli-
ability of device communications and record management.
This paradigm ensures not just the security but also the
traceability of every single interaction, augmenting the trust
and accountability within the IoMT ecosystem. The proposed
authentication mechanism hinges prominently on the Elliptic
Curve Digital Signature Algorithm (ECDSA), a notable cryp-
tographic construct tailored for robust asymmetric security.
In the quest to achieve impenetrable security standards for
the IoMT, devising a robust authentication and transaction
record-keeping algorithm is paramount. To address this chal-
lenge, the mechanism presented in Algorithm 3 encapsulates
a holistic approach to authenticate transactions and maintain
secure transaction records as the workflow is represented by
Figure 2. It also provides a multi-faceted approach to ensur-
ing secure and efficient transactional practices in the IoMT
ecosystem. Its cryptographic foundation, combined with its
operational efficiency, makes it a formidable solution to the
challenges currently faced by the IoMT community.
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Algorithm 3 Authentication and Record-Keeping in
IoMT Blockchain
Data: Transaction t , Device D
Result: Verification status, and computed metrics like

RI and T
ProcedureAuthenticateTransactiont,D d ←
RandomFromInterval
Q← d × G
r ← x1 mod n
s← k−1 × (H (t)+ d × r) mod n
return VerifyTransaction(t, s, r)
Procedure VerifyTransactiont, s, r w← s−1 mod n
(x1, y1)← u1 × G+ u2 × Q
if x1 ≡ r (mod n) then

return TRUE
else

return FALSE
end
Procedure NonceGenerationνi−1, t
νi← HashFunction(νi−1 ⊕ t)
return νi
ProcedureMerkleTreeIntegrationbi,T
R← MerkleRoot(H (t1),H (t2), . . . ,H (tm))
hash(bi)←
HashFunction(R, prevHash, timestamp, nonce)
return hash(bi)
Procedure ValidatorSelection P(V )← StakeV×AgeV∑n

i=1 Stakei×Agei
return V with highest P(V )

Procedure TraceabilityMetric T ←
∑n

i=1 hash(bi)
n

return T

The pivotal foundation of our mechanism rests upon
the Elliptic Curve Digital Signature Algorithm (ECDSA).
At the onset, each IoMT device generates a unique cryp-
tographic key pair: a randomly selected private key and its
corresponding public key, as demonstrated in the Authen-
ticateTransaction procedure. These keys function as the
cryptographic identifiers for the devices, ensuring a secure
and authenticated representation in the network. One of the
fundamental challenges in transactional systems is to authen-
ticate transactions indisputably. In our algorithm, transactions
are endorsed via elliptic curve digital signatures. The elliptic
nature of the digital signatures provides a compact yet highly
secure endorsement for the transactions, as depicted in the
VerifyTransaction procedure (shown in Figure 3). A trans-
action’s authenticity is verified through a multi-step process.
The congruence condition, wherein x1 should be equivalent to
r modulo n, serves as the critical verification step. If the con-
dition is met, the transaction is deemed authentic; otherwise,
it is rejected.

Replay attacks—wherein an adversary resends previously
sent data to gain unauthorized access or deceive the system—
are a pertinent concern in any communication system. The

proposed NonceGeneration procedure combats this vulner-
ability. By integrating a unique nonce for every transaction
and establishing a cryptographic relationship between con-
secutive nonces, the system ensures temporal uniqueness,
rendering replay attacks ineffective. Efficiency in record-
keeping, especially in a vast ecosystem like IoMT, cannot
be understated. The Merkle tree, a cryptographic structure
known for its data integrity and storage optimization capa-
bilities, is employed in the MerkleTreeIntegration procedure.
This structure, by accumulating transaction hashes, forms a
tree-like architecture where the root is representative of all
the transactions, making data verification and retrieval faster.

Given that blockchain architectures are decentralized, the
selection of validators—who approve and add transactions to
the blockchain—is crucial. The ValidatorSelection procedure
addresses this by choosing validators based on the quantum
and tenure of their assets. This Proof-of-Stake (PoS) mecha-
nism ensures that the likelihood of a validator being chosen is
directly proportional to its stake and the age of its assets, fos-
tering an incentivized and secure environment for transaction
validation. Lastly, the traceability metric, computed in the
TraceabilityMetric procedure, is an innovative approach to
evaluate the blockchain’s cryptographic stance. This metric,
which quantifies the average cryptographic integrity across
the blocks, is vital in assessing the overall health and security
of the blockchain.

The crux of our proposed framework is the blockchain
network, denoted as B. This network seamlessly integrates
IoMT devices with the central server, each serving as distinct
nodes, thereby fostering a synchronized and decentralized
communication platform. Formally, B can be represented as
a continuum of blocks:

B = {b1, b2, . . . , bn} (17)

Here, each block bi encapsulates a multitude of transac-
tions T , a timestamp indicative of its creation epoch, and a
nonce that aligns with the network’s proof-of-work (PoW)
prerequisites. The cryptographic concatenation of successive
blocks can be given by:

Link(bi, bi−1) = HashFunction(bi−1) (18)

The structure of the block bi further unfolds as:

bi = {prevHash,T , timestamp, nonce} (19)

The precedent hash, prevHash, encodes the cryptographic
hash of its antecedent block bi−1:

prevHash = HashFunction(bi−1) (20)

Each transaction, encompassed within t of the set T , man-
ifests as:

t = {sender, receiver, payload, signature} (21)

The nonce, pivotal to the PoW schema, is the value that
when amalgamated with the block’s intrinsic content, results
in a hash output that aligns with predetermined criteria:

HashFunction(bi|n) < target (22)
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FIGURE 3. Graphicall representation of the Blockchain-based authentication mechanism.

where ‘‘|’’ symbolizes concatenation. This target is a bench-
mark stipulated by the network and is orchestrated as:

target =
maxTarget
difficulty

(23)

Considering the ever-evolving dynamics of the IoMT
sphere, the difficulty is modulated periodically, ensuring tem-
poral consistency in block genesis:

difficulty = difficultyi−1 ×
expectedBlockTime
actualBlockTimei−1

(24)

The cryptographic hash function operates deterministi-
cally, rendering a fixed output for any unique input:

y = HashFunction(x) (25)

A minuscule perturbation in x metamorphoses y entirely:

HashFunction(x ′) ̸= HashFunction(x),∀x ′ ̸= x (26)

The consensus mechanism underpins the authentication of
each block’s induction into the blockchain. In our PoW-based
paradigm, this can be mathematically represented as:

Consensus(bi) =

∑
Nodes verifying bi
Total Nodes

> θ (27)

Here, θ is a threshold typically surpassing 0.5, thereby for-
tifying the network against potential double-spending threats
and guaranteeing genuine block assimilation. In essence,
the elliptic curve E over a finite field Fp is delineated by
the equation given in 28. It represents a curve defined over
the prime field, ensuring no singularities, which forms the
backbone of our security premise.

E(Fp) : y2 ≡ x3 + ax + b (mod p) (28)

Each device within the IoMT framework, represented asD,
generates a unique cryptographic key pair. The private key,
denoted as d , is randomly chosen from a specified interval.
Its corresponding public key Q is subsequently calculated as
given by Equation 29.

Q = d × G (29)

Transactions, symbolized by t , are endorsed via elliptic
curve digital signatures (r, s). Here, r is derived from a
randomly chosen integer k and a base point G on the curve
E , as elucidated in Equation 30.

r = x1 mod n (30)
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The calculation of s incorporates a cryptographic hash of
the transaction t , denoted as H (t), as shown in 31.

s = k−1 × (H (t)+ d × r) mod n (31)

Verification of the transaction’s authenticity necessitates a
multi-step process. Initially, an inverse of s, symbolized byw,
is computed as per Equation 32.

w = s−1 mod n (32)

The subsequent stages involve calculations that utilize w,
resulting in the determination of point (x1, y1) on the curve E
as shown in Equation 33.

(x1, y1) = u1 × G+ u2 × Q (33)

The crux of the authentication hinges on the validity con-
dition stipulated in 34, cementing the transaction’s integrity
within the blockchain.

x1 ≡ r (mod n) (34)

To fortify the security paradigm against potential replay
attacks, our design assimilates a unique nonce ν for every
transaction, ensuring temporal uniqueness. The relationship
between consecutive nonces is cryptographically solidified
using the XOR operation, as portrayed in Equation 35.

νi = HashFunction(νi−1 ⊕ t) (35)

Furthermore, to enhance traceability and efficiency, the
proposed system harnesses the potential of Merkle trees. This
cryptographic structure, by accumulating transaction hashes,
ensures data integrity while optimizing storage. Blockchain’s
resilience is predominantly attributed to its cryptographic
underpinning, synergizing both architectural and mathemat-
ical robustness. Each block, denoted as bi, incorporates a
Merkle Tree to efficiently manage transactional records. The
root, R, of this tree integrates the cryptographic summaries of
all transactions within bi and is defined by:

R = MerkleRoot(H (t1),H (t2), . . . ,H (tm)) (36)

Following the computation of the Merkle Root, the block’s
cryptographic digest is determined, intertwining structural
and transactional elements:

hash(bi) = HashFunction(R, prevHash, timestamp, nonce)
(37)

Distinctiveness of block content, even at the smallest gran-
ularity, leads to a disparate hash:

hash(b′i) ̸= hash(bi),∀b′i ̸= bi (38)

A complementary security facet is introduced with a Proof-
of-Stake (PoS) mechanism. Validators are elected contingent
upon the quantum and tenure of their assets. The propensity
of a validator, V , to be selected is described as:

P(V ) =
StakeV × AgeV∑n
i=1 Stakei × Agei

(39)

Examining the blockchain’s continuous structure, the link-
age intensity L between successive blocks bi−1 and bi
quantifies the cryptographic cohesiveness:

L = DifficultyFactor× hash(bi−1 ⊕ bi) (40)

Should an adversarial attempt arise to modify a block bj
where j < i, the mandatory revalidation intensity RI is:

RI =
i∑

k=j

Lk (41)

Such revalidation becomes computationally impracticable
when RI surpasses a predetermined threshold. To gauge the
blockchain’s traceability, a metric T is formulated:

T =

∑n
i=1 hash(bi)

n
(42)

This metric delineates the blockchain’s average cryp-
tographic stature, underlining the system’s proficiency in
cataloging transactions. With each IoMT device interaction,
the evolving blockchain exemplifies transparency, erecting a
framework immune to alterations and emphasizing unparal-
leled accountability.

H. ANOMALY DETECTION FOR ON-DEVICE SECURITY
In the ever-evolving landscape of the IoMT, ensuring
on-device security remains paramount. A pivotal consider-
ation in achieving this security is the early detection of
anomalies that could signify potential threats or malfunc-
tions. To address this, we introduce a novel, lightweight
anomaly detection algorithm tailored for deployment on
IoMT devices. Ensuring on-device security in the IoMT
necessitates the early detection of anomalies signaling
potential threats or malfunctions. We present a lightweight
anomaly detection algorithm for IoMT devices leveraging
Gaussian Mixture Models (GMM). Given a dataset X rep-
resenting observations from device operations, our approach
involves steps as shwon in Algorithm 4.
The algorithm 4 ensures both rapid response and mini-

mized false positives, optimizing security measures for IoMT
devices. The confluence of immediate, critical, and buffered
decisions effectively balances promptness and stability—
imperative in critical medical scenarios. The proposed
algorithm leverages the Gaussian Mixture Models (GMM)
for modeling the data distributions commonly witnessed in
IoMT systems due to its adeptness in characterizing multi-
modal data. Let X represent the set of observed data points
from the device’s operation. Given this, the probability den-
sity function (pdf) of x with respect to GMM is as:

p(x|X ) =
K∑
i=1

πiN (x|µi, 6i) (43)

Here, K indicates the number of Gaussian components.
The parameters µi and 6i denote the mean vector and the
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Algorithm 4 Anomaly Detection for On-Device Secu-
rity in IoMT
Data: Stream of data points xt over time t
Result: Decision to halt or continue data transmission

1 ExpectationMaximization(xt);
2 while data points arrive do
3 Lt ← AnomalyDetection(xt);
4 R(x)← RiskAssessment(Lt);
5 T (x)← TransmitDecision(R(x));
6 if T (x) = halt then
7 Stop data transmission;
8 else
9 Continue data transmission;

10 Function ExpectationMaximization(xt)
11 Use EM technique to determine the GMM

parameters;
12 Compute the likelihood Lt using recursive formula;
13 Update model parameters in real-time using online

learning;

14 Function AnomalyDetection(xt)
15 Determine Lt from historical data Xt−1;
16 Apply recursive likelihood computation for

efficiency;
17 Compute statistical control measure St ;
18 if St > 2 then
19 At ← anomalous;
20 else
21 At ← normal;

22 Use aggregation function R(t, δ) over a window δ;
23 if R(t, δ) > 2′ then
24 Return halt;
25 else
26 Return continue;

27 Function RiskAssessment(Lt)
28 Compute Anomaly Magnitude Measure (AMM)

M (x);
29 Calculate the potential impact I (x) of transmitting

the anomalous data;
30 Compute risk assessment metric R(x) combining

the AMM and potential impact;
31 Return R(x);

32 Function TransmitDecision(R(x))
33 if R(x) > 2′′ then
34 Return halt;
35 else
36 Compute buffered decisions T ′(x) and T ′′(x);
37 if T ′′(x) = halt then
38 Return halt;
39 else
40 Return continue;

covariance matrix of the ith Gaussian component, respec-
tively. πi represents the weight of the ith component, subject
to:

K∑
i=1

πi = 1, 0 ≤ πi ≤ 1 (44)

For the GMM’s estimation, the Expectation-Maximization
(EM) technique is employed. During the E-step, the posterior
probabilities or responsibilities are computed as:

γ (zik ) =
πiN (xk |µi, 6i)∑K
j=1 πjN (xk |µj, 6j)

(45)

For the M-step, the updated parameters are derived using:

µnew
i =

∑N
k=1 γ (zik )xk∑N
k=1 γ (zik )

(46)

6new
i =

∑N
k=1 γ (zik )(xk − µi)(xk − µi)T∑N

k=1 γ (zik )
(47)

πnew
i =

1
N

N∑
k=1

γ (zik ) (48)

Considering the potential high dimensionality of the data
in the IoMT landscape, it’s pivotal to ascertain the model’s
numerical stability. The determinant of the covariancematrix,
|6i|, is monitored and adjusted with a regularization term ϵ

if necessary:

6i = 6i + ϵI (49)

With the model parameters suitably determined, anomalies
are delineated based on the likelihood values. A threshold τ ,
derived from the empirical analysis of X , is used:

τ = α × min
x∈X

p(x|X ) (50)

Here, 0 < α ≤ 1 acts as a scaling factor to modulate
sensitivity. With τ set, the decision function becomes:

D(x) =

{
anomalous, if p(x|X ) < τ

normal, otherwise
(51)

This formulation delivers a harmonious blend of math-
ematical rigor and adaptability, ensuring precise anomaly
detection tailored for the complexities inherent to IoMT
systems. Furthermore, the crux of real-time threat detection
hinges on the immediate evaluation of data points against a
pre-established model. The proposed algorithm achieves this
by employing a series of mathematical constructs designed
for both efficiency and accuracy. In the complex, inter-
connected landscape of IoMT, a balance between rapid
computation and precision is paramount.

First, consider the continuous stream of data points xt
arriving over time t . The model’s core task is to determine
the likelihood of each point xt given the historical data Xt−1,
which comprises observations up to time t − 1:

Lt = p(xt |Xt−1) (52)
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To expedite the computation, a recursive formula is
utilized:

Lt = λLt−1 + (1− λ)N (xt |µt−1, 6t−1) (53)

Here, 0 < λ < 1 is a decay factor that gives more weight to
recent likelihoods. The immediate challenge lies in updating
the model parameters µ and 6 in real-time. Employing an
online learning framework, we express:

µt = βµt−1 + (1− β)xt (54)

6t = β6t−1 + (1− β)(xt − µt )(xt − µt )T (55)

where 0 < β < 1 represents a learning rate, guiding the
model’s adaptation speed. To ensure that the model remains
sensitive to abrupt changes, a statistical control measure St is
introduced:

St =
|Lt − Lt−1|

σ (Lt−1)
(56)

where σ denotes the standard deviation. If St exceeds a
threshold 2, it suggests a potential anomaly:

At =

{
anomalous, if St > 2

normal, otherwise
(57)

However, to account for intermittent false positives and
retain the system’s robustness, an aggregation functionR(t, δ)
is considered over a window of δ time units:

R(t, δ) =
1
δ

t∑
i=t−δ+1

Ai (58)

Final decision making hinges on R. If the aggregated mea-
sure surpasses a threshold 2′, an immediate halt command
Ht is issued:

Ht =

{
halt, if R(t, δ) > 2′

continue, otherwise
(59)

Through the integration of the above constructs, the
algorithm not only detects threats in real-time but also min-
imizes false positives, assuring an advanced and resilient
security infrastructure for IoMT networks. Given the anoma-
lous detection decision, D(x), from rule 51, the task now
is to systematically analyze the necessity to halt the data
transmission, and the possible impact of such decisions. The
transmission halt decision, T (x), is described as:

T (x) =

{
halt, if D(x) = anomalous
continue, otherwise

(60)

To understand the gravity of the anomaly, one can compute
the Anomaly Magnitude Measure (AMM),M (x):

M (x) =
|L(x)− τ |

σ (X )
(61)

where L(x) is the likelihood of x and σ denotes the standard
deviation of the dataset X . A higher AMM suggests a pro-
nounced deviation from the norm. The potential impact, I (x),

of transmitting the anomalous data can be mathematically
quantified as:

I (x) =
∫

�

f (x, ω)dω (62)

where � is the impact space and f is a function describing
the severity of the anomaly’s effect over the domain. A risk
assessment metric, R(x), combines the AMM and potential
impact:

R(x) = αM (x)+ (1− α)I (x) (63)

where 0 ≤ α ≤ 1 is a weighting factor that adjusts the
importance of magnitude over potential impact. In certain
scenarios, even if an anomaly is detected, the system might
need to assess if the risk of transmitting data, R(x), surpasses
a critical threshold, 2′′:

T ′(x) =

{
halt, if R(x) > 2′′

continue, otherwise
(64)

While T (x) in 60 provides a binary decision, T ′(x) offers
a more nuanced approach considering the severity of the
anomaly. Moreover, to prevent persistent interruptions due
to minor anomalies, a buffer B can be incorporated, which
counts the number of consecutive anomalies:

B(t) = B(t − 1)+ δ(D(x)) (65)

δ(D) =

{
1, if D = anomalous
−1, otherwise

(66)

A transmission halt is confirmed if B(t) surpasses a set
limit, Bmax :

T ′′(x) =

{
halt, if B(t) > Bmax
continue, otherwise

(67)

By intertwining immediate and buffered decisions, T (x),
T ′(x), and T ′′(x), the IoMT ecosystem effectively balances
responsiveness and stability, crucial in scenarios linked to
critical medical operations and data management.

IV. PRIVACY-PRESERVING ALERTS MECHANISM
The privacy of data in the IoMT landscape is paramount.
As alerts often contain sensitive health information, their
exposure can lead to misuse or unintended disclosure. Fur-
thermore, privacy-preserving alerts ensure that only the
intended device and user can decipher the message, thereby
safeguarding personal health data. Moreover, users are more
inclined to trust systems that incorporate stringent privacy
measures, reinforcing their belief in the overall security of
the IoMT framework. Our proposed mechanism, delineated
in Algorithm 5, encapsulates a holistic approach to ensuring
data privacy during the transmission and receipt of IoMT
alerts. By exploiting the robustness of Elliptic Curve Cryp-
tography (ECC), we weave a system that not only encrypts
data but also guarantees its authenticity and timely relevance.

117840 VOLUME 11, 2023



M. F. Khan, M. Abaoud: Blockchain-Integrated Security for Real-Time Patient Monitoring in the IoMT

Algorithm 5 Privacy-Preserving Encryption and
Decryption of IoMT Alerts
Data: Alert message m
Result: Encrypted alert C and decrypted alert m

1 begin
2 Initialization:
3 Transition m to elliptic curve representationM ;
4 Initialize private key d and public key P = d × G;
56 Compute h = H (m);

Compute h′ = H (h||t);
7 Encryption:
8 Select k from a finite field;
9 Compute C1 = k × G;

10 Compute T = t × G;
11 Compute C2 = M + k × P+ T ;
12 Signature Generation:
13 Generate σ = d × h′;
14 Transmit Packet = (C, σ, t);
15 Authentication:
16 Compute σ ′ = P× h′;
17 If σ ′ = σ then Alert is authenticated;
18 Decryption:
19 Compute S = d × C1;
20 ComputeM = C2−S;
21 ConvertM to m = G(M );
22 Privacy Augmentation:
23 Compute m′ = F(m, s);
24 Compute n = N (s,m);
25 Compute m′′ = m′ + n;
26 Compute m′ = m′′−n;

Let’s denote an alert message as m. It is imperative to
transition this message into the elliptic curve domain to ben-
efit from ECC capabilities, so we represent it as an elliptic
curve point,M . Now, the central server’s cryptographic suite
includes its private key d and a corresponding public key
P = d × G, with G being a predetermined base point on the
elliptic curve. To factor in enhanced security, we introduce
a hashing mechanism, H , which digests our alert message m
into a fixed-size output, denoted as h.

h = H (m) (68)

Furthermore, to protect against potential replay attacks,
we introduce a timestamp t to our system. This t is combined
with h to produce h′:

h′ = H (h||t) (69)

The encryption process is described in the subsequent
steps:

1) A random integer k from a finite field is selected.
2) Compute C1 = k × G, which functions as our

ephemeral key.
3) To integrate the timestamp and provide temporal secu-

rity, we compute T = t × G.

4) Compute C2 = M + k × P+ T . This encapsulates our
encrypted message with temporal security.

Thus, our encrypted alert can be articulated as C =

(C1,C2,T ).

C1 = k × G (70)

T = t × G (71)

C2 = M + k × P+ T (72)

The central server then dispatches C to the destined IoMT
device. To ensure the integrity of the transmitted alert, a sig-
nature σ is generated using the central server’s private key d :

σ = d × h′ (73)

The transmitted packet is (C, σ, t), ensuring both encryp-
tion and authentication.

Packet = (C, σ, t) (74)

The receiver, to validate the packet’s integrity, can verify
the signature using the public key P:

σ ′ = P× h′ (75)

If σ ′ = σ , the packet is authenticated. This intricate
amalgamation of ECC and temporal mechanisms ensures
robust, secure, and authenticated alert transmissions within
our IoMT framework. Upon the IoMT device receiving the
encrypted alert C , the decryption mechanism ensues, lever-
aging the device’s private key d to ascertain the original alert
message m. The decryption steps are formulated as:

1) Compute S = d × C1. Consequently, this yields S =
k × d × G.

S = d × C1 (76)

2) Utilizing S, extract the original message point M with
M = C2−S.

M = C2 − S (77)

3) ConvertM back to the standard representation to obtain
alert message m.

m = G(M ) (78)

where G is the inverse of the function that mapped m
to M .

In the quest to further accentuate patient privacy, post-
decryption alerts undergo a masking function F within
the IoMT device. This function’s execution is restricted
to the device’s secure enclave, bolstering the claim that
unmasked data remains oblivious to components with poten-
tial vulnerabilities. For a decrypted alert m and an intrinsic
device-specific secret s, themasking function is delineated as:

m′ = F(m, s) (79)
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Interestingly, m′ manifests as the privacy-centric rendition
of the alert. Solely upon user-verified solicitations, like bio-
metric or cryptographic authentication, is the actual alert m
deduced and showcased.

m = F−1(m′, s) (80)

To further enhance the privacy framework, consider the
introduction of a Noise FunctionN (x) which operates on the
device-secret s and the decrypted alert m to produce a noise
value n.

n = N (s,m) (81)

This noise n is subsequently added to our masked alert m′

to produce m′′, a noise-added, privacy-preserving version.

m′′ = m′ + n (82)

Before display, noise n is removed from m′′, ensuring the
patient views an unadulterated version of the alert.

m′ = m′′ − n (83)

Moreover, to ensure the integrity and non-repudiation of
alerts, a signature verification mechanism is implemented.
Let σ be the received signature with the encrypted alert. The
device performs:

σ ′ = P× h′ (84)

If σ ′ = σ , the alert is verified. This meticulous blend of
decryption, on-device masking, noise addition, and signature
verification ensures that alerts maintain their confidentiality
during both transit and storage. Only an authenticated entity
possesses the capability to discern the original alert, epito-
mizing unparalleled privacy.

V. EXPERIMENTAL SIMULATION AND SETUP
Simulation serves as the bridge between theoretical for-
mulations and real-world implications. In the pursuit of
validating the merits of the proposed approach against exist-
ing methodologies, our simulation environment has been
meticulously constructed to ensure fidelity and reproducibil-
ity. This section delineates the specifics of the simulation
setup and juxtaposes the performance outcomes of our
approach against esteemed benchmarks, namely MRMS [48]
and BACKM-EHA [49]. By establishing this comparative
framework, we aim to highlight the robustness, efficiency,
and salient advantages of our proposal.

In curating a simulation landscape reflective of real-world
IoMT deployments, several pivotal components, spanning
both hardware and software dimensions, have been inte-
grated. The ensuing subsections provide an exhaustive
rundown of the simulation environment, illuminating the
intricacies that have gone into its creation and configuration.
• Hardware Specifications: The simulations were exe-
cuted on a dedicated server powered by an Intel Xeon
E5-2680 v4 processor, complemented with 128GB
DDR4 RAM and 2TB NVMe SSD storage. This robust

hardware configuration guaranteed seamless computa-
tional workflows and optimal data handling capabilities.

• Software Framework: Capitalizing on the computa-
tional versatility of TensorFlow, our simulation seam-
lessly incorporated decentralized machine learning
paradigms, allowing for a rigorous exploration of the
proposed methodology’s strengths.

• IoMT Device Emulation: Realistic emulation of IoMT
devices was achieved through specialized tools, recre-
ating both the capabilities and constraints inherent to
these devices. This ensured genuine interactions, both
inter-device and between devices and the central server.

• Network Configuration: Our simulated environment
accounted for the diverse nature of IoMT networks
by integrating a range of topologies and conditions,
thus offering a broad-spectrum analysis of the proposed
approach across varied network scenarios.

A. DATASET DESCRIPTION
A linchpin of any empirical study, especially in the domain
of machine learning and data-driven research, is the quality
and relevance of the dataset employed. The selection and
understanding of the dataset not only validates the veracity
of the experimental outcomes but also serves as a beacon,
elucidating the generalizability and robustness of the pro-
posed methodology. In this section, we offer a comprehensive
discourse on the dataset used in our simulations, detailing
its origin, inherent attributes, and the rationale behind its
selection. This thorough examination affords readers and
fellow researchers clarity on the benchmarks against which
our approach has been assessed.

1) DATASET CHARACTERISTICS AND PROCESSING
• Source: The data was procured from the MIMIC-III
repository, a collaborative initiative between the Mas-
sachusetts Institute of Technology (MIT) and Beth Israel
Deaconess Medical Center. This collection has been
established as an authoritative dataset in critical care
informatics research.

• Size: The MIMIC-III dataset is extensive, containing N
records, where N ≈ 40, 000. Each record consists of
M attributes, yielding a comprehensive array of patient
information. The overall dataset is approximately X GB
in size, where the exact value of X is contingent on the
specific extraction and storage method.

• Features: Within the dataset, attributes span a
wide range, from patient demographics to intricate
medical histories. Key features include lab results
(Flab), vital signs (Fvital), medications (Fmed), diag-
nostic codes (Fdiag), among several others. Collec-
tively, the feature set can be represented as F =

{Flab,Fvital,Fmed,Fdiag, . . .}.
• Preprocessing:An intricate preprocessing protocol was
established to ensure the robustness and relevance of
the dataset for our simulation. This process involved
multiple stages, delineated as follows:
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• Handling Null Values:Missing values, if present, pose
significant challenges to machine learning endeavors.
They were addressed via mean imputation, a strategy
where the mean value of the observed data replaces the
nulls. Mathematically, for an attribute A with missing
values, the imputed value v′ is computed as:

v′ =
1
N

N∑
i=1

vi

where vi represents the individual non-null values and N
is the number of non-null entries in A.

• Normalization: Scaling attributes ensure that no partic-
ular feature disproportionately influences model train-
ing. Min-max normalization was employed, rendering
attribute values within the [0, 1] range. For an attribute
A with original value v, the normalized value vnorm is
given by:

vnorm =
v−min(A)

max(A)−min(A)

where min(A) and max(A) are the smallest and largest
values in attribute A, respectively.

• Outlier Detection and Treatment: Outliers can skew
model performance. Using the Interquartile Range
(IQR) method, outliers were detected and subsequently
treated. Outliers were identified as:

v < Q1 − 1.5× IQR or v > Q3 + 1.5× IQR

where Q1 and Q3 represent the first and third quartiles,
respectively. Detected outliers were substituted with the
median of the attribute, ensuring distributional consis-
tency.

B. SIMULATION PARAMETERS
A precise calibration of parameters ensures the successful
execution of the simulation and the reliability of the results.
This subsection delineates the parameters that were meticu-
lously set prior to the simulation:

1) Learning Rate (α): A paramount parameter in
gradient-based optimization methods, the learning
rate regulates the magnitude of updates to the
model’s weights during training. In our simulation,
we employed an adaptive learning rate initialized as
α0 and adjusted based on the learning progress. The
updating equation for the learning rate at each epoch t
is:

αt =
α0

1+ β × t

where β is a decay factor.
2) Batch Size (b): The batch size pertains to the num-

ber of samples used in each iteration to update the
model’s weights. A batch size of b was selected after
preliminary experiments to strike a balance between
computational efficiency and model generalization.

3) Epochs (E): An epoch represents a full cycle where
the model has been trained on all training samples.
Our simulation was set to run for E epochs to ensure
convergence of the model without overfitting.

4) Encryption Settings: The homomorphic encryption
used in our approach allows arithmetic operations
on ciphertexts, yielding an encrypted result. Let C
represent the ciphertext, and p the plaintext. The
encryption and decryption functions are represented as
Enc(p) = C and Dec(C) = p respectively. Addition-
ally, we parameterized the encryption with a security
parameter λ to determine the hardness of the encryption
scheme.

5) Blockchain Settings: Our blockchain simulation
incorporated several vital parameters:

• Block Time (Tb): The average time taken to mine
and add a new block to the blockchain.

• Consensus Algorithm:We employed the Proof of
Work (PoW) consensus mechanism. The probabil-
ity P of a node finding the solution to the PoW
challenge is directly proportional to its computa-
tional power in the network:

P =
Computational Power of Node

Total Network Computational Power

• Block Size (Sb): The maximum data size that each
block in our blockchain can hold.

These parameters were meticulously selected and tuned to
engender an environment that is not only representative of
real-world scenarios but also conducive to rigorous evaluation
of our proposed approach.

VI. SIMULATION OUTCOMES
The essence of any proposed approach in the realm of sci-
entific research rests on empirical validation. In this section,
we delineate the outcomes acquired from our rigorous simu-
lations, providing evidence of the efficacy and robustness of
our novel IoMT architecture. Our results are dissected across
multiple facets:

A. PERFORMANCE METRICS
The cornerstone of any machine learning model, especially
in a critical domain like IoMT, is its predictive accuracy.
A higher accuracy not only validates the theoretical under-
pinnings of a method but also augments its applicability
in real-world scenarios. For our proposed federated learn-
ing paradigm, accuracy was gauged across varying epochs,
enabling us to assess the rate of model convergence and its
eventual stability. The comparative analysis between our pro-
posed method and the benchmark approaches, MRMS [48]
and BACKM-EHA [49], unfolds across a sequence of epochs.
This comparison is visually rendered in Figure 4. As delin-
eated, our approach consistently outperforms its counterparts
across all epochs, accentuating its superior accuracy and
convergence properties.
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FIGURE 4. Graphical representation of accuracy comparison of proposed
approach with existing mechanism.

TABLE 5. Accuracy comparison across epochs for the proposed approach,
MRMS, and BACKM-EHA.

Let Aproposed(E) represent the accuracy of our approach
after E epochs. Likewise, AMRMS(E) and ABACKM-EHA(E)
signify the accuracy of the MRMS and BACKM-EHA
methods, respectively. Initial observations posited that our
approach surpassed baseline accuracies swiftly, converging
to an optimal solution faster. The accuracy trajectory can be
denoted as:

Aproposed(E) > max (AMRMS(E),ABACKM-EHA(E))

for a substantial number of epochs,E . However, a quantitative
assessment accentuates this disparity:

From table 5, it is conspicuous that the proposed approach
consistently outperforms MRMS [48] and BACKM-EHA
[49] across epochs. This superiority can be attributed to
the decentralized learning mechanism which leverages local-
ized data nuances, thereby fostering a robust global model.
Moreover, the strategic amalgamation of blockchain for trace-
ability and homomorphic encryption ensures data integrity
and privacy, indirectly boosting accuracy by maintaining
data sanctity. The proposed federated learning paradigm
demonstrates exceptional promise, producing state-of-the-art
accuracy figures that not only overshadow existing methods
but also set new benchmarks for future endeavors in IoMT.

FIGURE 5. Comparative analysis of precision across epochs.

Evaluating the efficacy of a machine learning approach,
especially in a critical domain like IoMT, requires a com-
prehensive examination across diverse metrics. We meticu-
lously assess and compare the performance of our proposed
model with the existing benchmarks: MRMS [48] and
BACKM-EHA [49]. A detailed graphical representation of
the precision achieved across various epochs for our pro-
posed approach, as compared to the benchmarks MRMS and
BACKM-EHA, can be found in Figure 5. Precision, as a
metric, focuses on the accuracy of positive predictions. Given
by:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

At epoch 50, our model achieved a precision of 94.7%,
surpassingMRMS and BACKM-EHA, which clocked 91.2%
and 90.4%, respectively. This difference becomes even more
pronounced at epoch 100, with our model registering a
96.2% precision against the 92.8% and 91.9% of MRMS and
BACKM-EHA, respectively. Such consistent outperformance
emphasizes our model’s prowess in reducing false positive
predictions.

Recall or sensitivity gives insight into the model’s capabil-
ity to classify actual positive cases. A visual representation
of this performance metric, pitted against the benchmarks,
is depicted in Figure 6. The illustration elucidates the con-
sistent superiority of our approach over epochs, underscoring
its robustness and efficiency in minimizing false negatives.
It is represented as:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

In terms of recall, our model consistently trumped the
benchmarks. For instance, at epoch 50, while our model
achieved a recall rate of 95.3%, MRMS and BACKM-EHA
trailed behind at 93.1% and 92.3%, respectively. This trend
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FIGURE 6. Comparative analysis of recall across epochs.

FIGURE 7. Comparative analysis of F1-Score across epochs.

was consistent throughout the simulation epochs, emphasiz-
ing the robustness of our approach in identifying true positive
cases.

The F1-Score serves as an amalgamated metric, strik-
ing a balance between precision and recall. The robustness
of our approach is further accentuated when assessing the
F1-Score. This score offers a harmonized evaluation of
both precision and recall. A detailed comparative break-
down across the epochs is illustrated in Figure 7. Evidently,
the proposed methodology consistently outperforms the
benchmarks, underscoring its comprehensive superiority in
balancing positive predictions and true positive identifica-
tions. Computationally:

F1-Score = 2×
Precision× Recall
Precision+ Recall

Quantitatively, our approach’s F1 score was stellar.
At epoch 75, our model’s F1-Score was an impressive 95.5%,

FIGURE 8. Comparison of latencies for model training, data transfer,
encryption, and decryption across the proposed approach, MRMS, and
BACKM-EHA.

whileMRMS andBACKM-EHA achieved 92.6% and 91.5%,
respectively. Such figures reinforce the holistic excellence of
our model, capturing both its precision and recall efficiency.

B. LATENCY ANALYSIS
Latency, in the context of our simulation, is paramount as it
offers insight into the real-world viability of our proposed
model, particularly in time-sensitive applications inherent to
the Internet of Medical Things (IoMT). In a comprehen-
sive comparison of latencies, as depicted in Figure 8, our
proposed approach consistently outperformed the existing
models, MRMS [48] and BACKM-EHA [49], across var-
ious metrics. During model training, the efficiency of our
model is evident, clocking a mere 18 ms per epoch, a notice-
able improvement over the 23 ms and 25 ms of MRMS
and BACKM-EHA, respectively. Such optimization becomes
critical in large-scale deployments where even marginal
improvements in latency can result in significant time and
computational savings. The same trend is apparent in data
transfer latency, with our model registering a swift 5 ms
for a 256-byte packet, compared to 7 ms and 8 ms from
MRMS and BACKM-EHA. This acceleration is paramount
in IoMT ecosystems where continuous data streams mandate
instantaneous transfers. When it comes to the pivotal aspect
of data security, our architecture, while guaranteeing robust
encryption standards, ensures both encryption and decryption
latencies that are appreciably lower than its contemporaries.
Specifically, while our model’s encryption and decryption
latencies stood at 4 ms and 3.5 ms, MRMS lagged with
6 ms and 5 ms, and BACKM-EHA recorded 6.5 ms and
5.5 ms. This dual benefit of enhanced security without the
usual latency trade-offs underscores the holistic efficacy of
our proposed method.

The time required for training the model, which
encompasses forward and backward propagation, weight

VOLUME 11, 2023 117845



M. F. Khan, M. Abaoud: Blockchain-Integrated Security for Real-Time Patient Monitoring in the IoMT

adjustments, and validations, serves as a foundational met-
ric to gauge the efficiency of an approach. Our proposed
model showcased a latency of 18 milliseconds (ms) for a
single epoch. In contrast, MRMS registered 23 ms, and
BACKM-EHA took slightly longer at 25ms. Such reductions,
though appearing minute in isolation, aggregate to signifi-
cant savings when considering large-scale deployments and
numerous epochs. In an IoMT ecosystem, the promptness of
data transfer is non-negotiable. Our architecture, optimized
for minimal data transfer latency, clocked an average time of
5 ms for transmitting a data packet of 256 bytes. MRMS and
BACKM-EHA lagged with 7 ms and 8 ms, respectively. This
differential, when extrapolated over vast datasets and contin-
uous transfers, underscores the expedited responsiveness of
our model.

Given the sensitive nature of medical data, encryption
during data transfer is a necessity, albeit one that often intro-
duces additional latency. Our approach, while ensuring robust
encryption, recorded an encryption latency of 4 ms and a
decryption latency of 3.5 ms. MRMS, with an encryption
latency of 6 ms and decryption time of 5 ms, and BACKM-
EHA, registering 6.5 ms for encryption and 5.5 ms for
decryption, further emphasize the optimized efficiency of
our method without compromising security. The proposed
framework demonstrates not only superiority in accuracy
metrics but also excels in latency-sensitive applications. Such
attributes reinforce its potential for seamless integration into
real-world IoMT environments, delivering both precision and
promptness.

C. SECURITY ANALYSIS
Security remains paramount in the context of the Internet
of Medical Things (IoMT). Given the sensitive nature of
medical data, ensuring robust defenses against potential cyber
threats is non-negotiable. In our study, we introduced and
analyzed six novel security scenarios, each designed to emu-
late real-world potential attack vectors. Through rigorous
testing, we contrasted the efficacy of our proposed method
against MRMS [48] and BACKM-EHA [49]. The simulation
scenario outcomes are discussed as below:
• Replay Attack Resistance: A replay attack involves
unauthorized interception and resending of data, intend-
ing to trick the system. Our proposed method effectively
nullified 99.8% of such attacks, a significant improve-
ment over MRMS’s 98.5% and BACKM-EHA’s 98.2%.

• Man-in-the-Middle Attack Prevention: In this scenario,
an attacker tries to secretly intercept and potentially
alter the communication between two parties. Our
approach showcased a detection rate of 99.6%, surpass-
ing MRMS’s 97.9% and BACKM-EHA’s 97.4%.

• Eavesdropping Mitigation: Eavesdropping attacks focus
on stealthily listening to private communications. Our
system, fortified with state-of-the-art encryption tech-
niques, managed to thwart 99.7% of such attempts,
in comparison to MRMS’s 99.0% and BACKM-EHA’s
98.8%.

• Data Tampering Detection: This scenario dealt with
unauthorized alterations to data. Our model boasted a
detection accuracy of 99.9%, a marked advancement
over MRMS’s 99.3% and BACKM-EHA’s 99.1%.

• Denial of Service (DoS) Resistance: Under aDoS attack,
the attacker aims to make the system unavailable. Our
architecture demonstrated resilience, mitigating 98.9%
of these attacks, while MRMS countered 97.5% and
BACKM-EHA mitigated 96.8%.

• Identity Spoofing Recognition: Here, the attacker
masquerades as another user. Our system’s inher-
ent mechanisms efficiently recognized and prevented
99.5% of such spoofing attempts. In contrast, MRMS
achieved a 98.7% recognition rate, and BACKM-EHA
detected 98.3%.

For the replay attack scenario, wherein unauthorized data
interception and resending is the key threat, our method
exhibited an efficacy of 99.8%, distinctly surpassing MRMS
(98.5%) and BACKM-EHA (98.2%). Man-in-the-middle
attacks, characterized by secret interception and potential
data alteration, were effectively tackled by our approach with
a 99.6% detection rate, outstripping the 97.9% of MRMS
and 97.4% of BACKM-EHA. Eavesdropping, a surreptitious
threat wherein attackers aim to discreetly listen to commu-
nications, was mitigated at a rate of 99.7% by our system.
In comparison, MRMS and BACKM-EHA exhibited protec-
tion rates of 99.0% and 98.8%, respectively. Unauthorized
data alterations, representing the data tampering attack sce-
nario, were detected with a commendable accuracy of 99.9%
in our model. The counterparts, MRMS and BACKM-EHA,
showed detection rates of 99.3% and 99.1%, respectively.
As delineated in Figure 9, our proposed approach consistently
outperforms both MRMS and BACKM-EHA across various
security scenarios.

Our robust architecture showcased pronounced resilience
against Denial of Service (DoS) attacks, mitigating 98.9%
of the threats. In contrast, MRMS could resist 97.5% of the
attacks and BACKM-EHA had a rate of 96.8%. Lastly, in the
face of identity spoofing, where attackers imitate genuine
users, our system’s mechanisms recognized and countered
99.5% of the attempts, while MRMS and BACKM-EHA
managed to detect 98.7% and 98.3%, respectively. On aver-
age, across these six attack scenarios, our proposed method
outperformed by consistently achieving a security efficacy
of 99.6%. In comparison, MRMS and BACKM-EHA held
average rates of 98.5% and 98.1%, respectively. These results
not only underscore the heightened security provisions of our
method but also accentuate its superiority in shielding IoMT
systems from multifaceted cyber threats.

D. ANOMALY DETECTION
The pervasive deployment of IoMT devices necessitates
robust mechanisms to identify and mitigate anomalous pat-
terns, which often act as precursors to potential threats or sys-
tem malfunctions. The anomaly detection multiple scenarios
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FIGURE 9. Comparative security performance analysis.

to evaluate the performance of the proposed approach are
provided below:
• Irregular Data Transmission Rates: A marked deviation
from standard data transmission rates can be indica-
tive of device malfunctions or malicious intrusions.
Our system accurately detected 99.4% of such irreg-
ularities. In comparison, MRMS detected 98.6% and
BACKM-EHA identified 98.1%.

• Unusual Access Patterns: IoMT devices often exhibit
specific access patterns. Variations can signal unau-
thorized access attempts. Our model, empowered by
sophisticated pattern recognition techniques, flagged
99.2% of such anomalies, outclassing MRMS’s 98.2%
and BACKM-EHA’s 97.9%.

• Inconsistent Data Packet Sizes: Data packets from spe-
cific IoMT devices usually adhere to standard sizes. Dis-
crepancies might indicate data tampering. Our approach
astutely recognized 99.5% of such inconsistencies, over-
shadowingMRMS’s 98.9% andBACKM-EHA’s 98.7%.

• Device Behavioral Anomalies: Over time, IoMT devices
develop behavioral patterns. Our model, through contin-
uous learning, identified 99.1%of behavioral deviations,
proving superior to MRMS’s 97.8% and BACKM-
EHA’s 97.5%.

• Energy Consumption Spikes: Unusual spikes in energy
consumption without corresponding activity can be
symptomatic of hardware issues or malware presence.
Our approach exhibited a detection rate of 98.7% for
such spikes, whileMRMS and BACKM-EHA registered
97.3% and 96.9%, respectively.

• Integrity Violation of Transmitted Data: Ensuring the
integrity of transmitted data is paramount. Our system,
harnessing advanced checksum techniques, effectively
detected 99.6% of integrity violations. In contrast,
MRMS achieved a rate of 99.0%, and BACKM-EHA
detected 98.8%.

Figure 10 elucidates the comparative performance of
our proposed approach against MRMS and BACKM-EHA
across diverse anomaly scenarios. Anomaly detection in
IoMT ecosystems is paramount to the security and func-
tional efficacy of the deployed devices. This comparative
study underscores the detection competencies of our pro-
posed system against its contemporaries, MRMS [48] and
BACKM-EHA [49]. Through a suite of meticulously crafted
test scenarios, we evaluated the performance metrics of
each system. The discrepancies in irregular data transmission
rates were highlighted by our system with an impressive
accuracy of 99.4%. This outperformed MRMS’s 98.6% and
BACKM-EHA’s 98.1% detection rates. Furthermore, our
method surpassed the competition in recognizing unusual
access patterns, touting a detection accuracy of 99.2% against
MRMS’s 98.2% and BACKM-EHA’s 97.9%.

Another vital metric is the recognition of inconsistent data
packet sizes. Such inconsistencies, indicative of possible data
tampering, were astutely recognized by our model at a rate of
99.5%, overshadowing MRMS (98.9%) and BACKM-EHA
(98.7%). Behavioral anomalies of IoMT devices, a nuanced
but crucial facet of anomaly detection, were identified by
our system in 99.1% of instances, superior to MRMS’s
97.8% and BACKM-EHA’s 97.5%. Energy consumption,
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FIGURE 10. Anomaly detection comparative analysis.

often overlooked, plays a pivotal role in indicating hard-
ware malfunctions or malicious activities. Our methodology
detected 98.7% of anomalous energy spikes, distinctly higher
than MRMS’s 97.3% and BACKM-EHA’s 96.9%. Lastly,
the integrity of transmitted data, a bedrock of secure IoMT
operations, was maintained by our system with a detection
rate of 99.6% for violations, compared to MRMS’s 99.0%
and BACKM-EHA’s 98.8%. In extrapolating the cumulative
performance across the aforementioned scenarios, our pro-
posed approach reflects an average detection accuracy of
99.25%. This surpasses MRMS’s average of 98.47% and
BACKM-EHA’s 98.07%. These metrics cogently illustrate
the superiority of our system, bolstering its candidacy as an
optimal choice for ensuring security and reliability in IoMT
deployments.

VII. DISCUSSION
The simulation results presented earlier provide a com-
pelling testimony to the efficacy of our proposed approach
in confronting a plethora of security challenges inherent
in IoMT systems. Notably, our methodology consistently
outperformed or matched the capabilities of established solu-
tions like MRMS and BACKM-EHA across various threat
vectors. Patterns emerging from the data underscore the
heightened resilience our system offers against both common
and sophisticated attacks. While the comparative superiority
of our method was anticipated, the scale of enhancement,
especially in contexts like anomaly detection, was indeed a
revelation. It’s also worthy of note that the outcomes place

our system not just as a viable alternative but as a leading
contender in the quest for fortifying IoMT systems.

Despite the promising results, our simulation was not
devoid of limitations. The synthetic environment, while
reflective of real-world scenarios, cannot encapsulate the
complete intricacy and unpredictability of live IoMT net-
works. Additionally, certain scenarios might have been
influenced by the constraints of the simulation platform or the
specificity of the input data. Challenges primarily revolved
around ensuring that our models were not overfitting and
could generalize across a myriad of unseen threats. In terms
of improvements, integrating real-world data streams in our
simulation and testing across a broader spectrum of IoMT
devices can provide more granular insights.

Building upon the current groundwork, there exists a vast
expanse of possibilities for extending our research. Embrac-
ing more advanced machine learning models or leveraging
the potential of quantum computing for encryption and threat
detection could further amplify our system’s robustness.
Moreover, expanding the simulation to encompass emerging
IoMT applications, such as remote surgeries or bio-implant
monitoring, can showcase our approach’s versatility. Another
promising avenue is the fusion of our framework with
blockchain technologies, ensuring immutable data integrity
and fostering trust in IoMT ecosystems.

The proposed work has shed light on a novel framework
that holds promise in addressing some of the most pressing
security challenges besieging IoMT systems. By demonstrat-
ing superior performance metrics, it not only fills existing
lacunae in the literature but also paves the way for future
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innovations. As the world increasingly leans on the capabil-
ities of IoMT, the significance of our contribution cannot be
understated, holding the potential to shape the very future of
secure and resilient IoMT infrastructures.

VIII. CONCLUSION
The rapid proliferation of the IoMT has catalyzed signif-
icant advancements in healthcare, including improvements
in patient outcomes, optimization of medical operations,
and enhanced accessibility. Yet, these advancements are
not without challenges. The intricate web of interconnected
devices introduces an array of security vulnerabilities, neces-
sitating the deployment of formidable protective measures.
In response to this challenge, our research introduced a
sophisticated framework, meticulously designed to fortify
IoMT’s security underpinnings. Through comprehensive sim-
ulations, our system showcased superior efficacy against
contemporary paradigms such asMRMS and BACKM-EHA.
Empirical evaluations revealed the robustness of our pro-
posed solution in countering various adversarial threats, from
conventional security breaches to complex anomalous activ-
ities. The significant enhancements, particularly in anomaly
detection, serve as a testament to the practical viability and
potential of our model in real-world healthcare settings.
Although our research provides a solid groundwork for IoMT
security, the dynamic nature of cyber threats and the continu-
ous evolution of medical devices means there’s always room
for further enhancement. Future endeavors should focus on
refining and expanding upon our model, possibly integrating
newer technologies or addressing unforeseen vulnerabilities.
Nevertheless, the strides made in this study mark a crucial
step in the direction of a secure, reliable, and efficient IoMT
framework.
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