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ABSTRACT Many physical processes display complex high-dimensional time-varying behavior, from
global weather patterns to brain activity. An outstanding challenge is to express high dimensional data in
terms of a dynamical model that reveals their spatiotemporal structure. Dynamic Mode Decomposition
is a means to achieve this goal, allowing the identification of key spatiotemporal modes through the
diagonalization of a finite dimensional approximation of the Koopman operator. However, these methods
apply best to time-translationally invariant or stationary data, while in many typical cases, dynamics
vary across time and conditions. To capture this temporal evolution, we developed a method, Non-
Stationary Dynamic Mode Decomposition, that generalizes Dynamic Mode Decomposition by fitting global
modulations of drifting spatiotemporal modes. This method accurately predicts the temporal evolution of
modes in simulations and recovers previously known results from simpler methods. To demonstrate its
properties, the method is applied to multi-channel recordings from an awake behaving non-human primate
performing a cognitive task.

INDEX TERMS Dynamic mode decomposition, non-stationary methods, multi-variate time-series, data-
driven modeling, computational neuroscience.

I. INTRODUCTION
Data-driven models of spatio-temporal systems are critical
to understanding the evolution dynamics of natural systems
and have become especially valuable given the increasing
prevalence of large-scale measurements across all scientific
disciplines. Many methods have been introduced to derive
approximate dynamical models from data in domains such as
fluid flows [1], climate systems [2], [3] and brain activity [4],
[5], [6]. However, in many data-driven approaches and
algorithms, the data are assumed to be stationary when fitting
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the data. The stationarity assumption is violated in many
datasets of interest, thus limiting potential model accuracy
and forecasting capabilities. Deriving non-stationary gener-
alizations of data-driven modeling is an area of active interest
(e.g. [7], [8], [9]). We add to this effort by proposing a new
method,Non-Stationary DynamicMode Decomposition (NS-
DMD), which explicitly approximates the non-stationarity of
the data while simultaneously constructing a low dimensional
linear DMD approximation of multi-variate time-series.

NS-DMD builds on Dynamic Mode Decomposition
(DMD) [10], [11], a systematic and unbiased method
to reduce high-dimensional time-series data to a set of
spatiotemporal modes. DMD approximates the Koopman
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operator [12], a linear infinite dimensional operator whose
eigendecomposition models the observables that describe
a finite dimensional, potentially non-linear, dynamical sys-
tem [13], [14], [15]. In short, DMD approximates the data
x(t) as

x(t) ≈

r∑
k

bkφkeωk t , (1)

where the φk are the DMD modes, ω are the DMD
eigenvalues and bk determines the weight of each mode. The
modes are indexed by k up to a reduced rank r . The limitation
of such an approach is the assumption of stationarity of the
data. Simulated datasets of particular interest (Fig. 1(A)) are
poorly reconstructed with stationary approaches (Fig. 1(B))
due to the spatial mixture of time-varying modes with time-
varying amplitudes in the data. NS-DMD improves upon
DMD by including time-dependence of the modes:

x(t) ≈

r∑
k

bk (t)φk (t)eωk (t)t . (2)

The additional time dependence in NS-DMD allows for
accurate reconstruction of the underlying data (Fig. 1(C)).
Further details on the NS-DMD method are found in
Sec. II-B.

Many approaches exist to fit non-stationary systems [7],
[8], [9], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], but the approaches do not find representations in
the form of Eq. 2. Related work is discussed in Sec. IV-A.
As with many other methods, NS-DMD assumes that

the data are stationary in small time windows. We further
assume that the data contain a low dimensional set of
spectral components which may vary slowly with respect to
their frequency. However, in contrast to previous methods,
NS-DMD subsequently takes advantage of machine learning
methods to associate modes across time windows, while
systematically eliminating overfit and redundant modes. This
allows us to detect global modulations of spatiotemporal
modes that gradually drift across time.

We validate NS-DMD on synthetic data from several
non-stationary systems. We then demonstrate its practical
utility by analyzing multi-channel neuroscience time-series
data. NS-DMD is able to recapitulate results found using
other more traditional time-series analysis methods, but also
identifies non-stationary modes in these time-series data.
We further demonstrate the utility by applying NS-DMD
to sea surface temperature data, where NS-DMD recovers
seasonal effects along with modes specific to the El Niño
phenomena. Taken together, the novel findings and the
connection to previous methods demonstrate the promise of
NS-DMD for the analysis of non-stationary data.

The organization of this manuscript is as follows. In Sec. II,
we summarize DMD (Sec. II-A) and introduce the NS-DMD
method (Sec. II-B). A summary of NS-DMD is presented in
(Sec. II-B4). We then test NS-DMD on a variety of simu-
lations (Sec. III-A), electrophysical brain data (Sec. III-B),

and sea surface temperature data (Sec. III-C). We provide
concluding remarks (Sec. IV), along with related work
(Sec. IV-A) and a summary of future directions (Sec. IV-B).

II. METHODS
NOTATION
We follow the notation in [28]. Scalars are denoted by
lowercase letters (s), vectors by bold lowercase letters (v),
matrices by bold capital letters (M ), and tensors of third order
by calligraphic bold letters (T ). In summary:

• vi denotes the ith entry of v;
• mij denotes element (i, j) inM ;
• tijk denotes element (i, j, k) in T ;
• mi: and m:j denote the ith row and jth column ofM ;
• More compactly,mj ≡ m:j, denotes the jth column ofM ;
• tij:, ti:k , and t:jk denote the vectors given by the
corresponding free dimension of T ;

• Ti::, T:j:, and T::k denote the matrices given by the
corresponding free dimensions of T ;

• More compactly, Tk ≡ T::k denotes the kth frontal slice;
• The nth element in a sequence is denoted by a superscript
in parenthesis; e.g.M (n) is the nth matrixM .

A. DYNAMIC MODE DECOMPOSITION
Dynamic Mode Decomposition (DMD) [11] forms the back-
bone of NS-DMD. DMD approximates a low-dimensional
representation of the data X in terms of linearly (exponential)
evolving spatial modes (Eq. 1). That is, at fixed frequencies
given by Im(ωk ), there are spatial modes φk with loadings bk
that exponentially grow or decay. DMD is thought to combine
the strengths of singular value decomposition across space
with Fourier transforms across time.

There have been many improvements made to DMD
since the original algorithm was introduced in 2008 [10],
including a number of regression techniques for estimating
the best fit linear dynamics [8], [29], [30], [31], [32], [33].
We build NS-DMD upon Optimized DMD (OPT-DMD) [30],
which estimates the DMD modes and eigenvalues by using a
variable projection optimization scheme

argminωk ,φk ,bk

∥∥∥∥∥X −

r∑
k=1

bkφk exp(ωk t)

∥∥∥∥∥ (3)

where the data is estimated up to a desired rank r . Optimized
DMD iterates to a solution of this non-convex problem
by using variable projection [34]. To improve convergence
capabilities, often the exact DMD algorithm can be used
as a seed for the initialization of the DMD algorithm. The
OPT-DMD framework has been found to be the most robust
algorithm to noise [30], providing an unbiased estimate of the
DMD modes and eigenvalues for real data.

B. NON-STATIONARY DYNAMIC MODE DECOMPOSITION
For a data matrix X ∈ RN×M , DMD aims to accurately
represent the data with a low dimensional set of K spatiotem-
poral modes S ∈ RN×K×M as given by Eq. (3). When the
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FIGURE 1. (A) The spatial distribution |φk | and global amplitude fk (t) of a simulated dataset, originating from the form
x(t) =

∑
k φk (t) exp

(
i
∫ t
t0

ωk (t)dt
)

fk (t). The frequencies ω(t) are 20 Hz (red mode) and 30 Hz (green mode). The spatial modes mix
together at the same time with varying amplitudes. The red modes spatial distribution fluctuates while the green mode turns on and off
with irregular amplitudes. OPT-DMD fails to recover the original modes (B). NS-DMD samples the data with OPT-DMD during different time
intervals, where dynamics are combined to find a subset of modes with modulating amplitude to reconstruct the data. NS-DMD recovers
the original modes (C). Further exploration of NS-DMD and OPT-DMD on non-stationary datasets is shown in Fig. 3.

governing processes vary in time, the set of spatiotemporal
modes that best describe the data at one point in time may not
describe the data well at another point in time. Furthermore,
nonlinear dynamical systems may be better described locally
by different linear approximations in different regions of
phase space. We postulate that there are common dynamical
modes that recur throughout an extended dataset. That is,
we assume only a fewmodes exist that either vary in structure
or vary in amplitude throughout time. The goal of NS-DMD is
to find these recurring modes and weight their amplitude with
time-dependent functions F ∈ RK×M that characterize the
time-varying contribution of each mode to a reconstruction
of the data. Thus, NS-DMD seeks to approximate the data at
any snapshot tj with

xj ≈

∑
k

s:kjfkj. (4)

To approximate S, a common approach [7], [8], [27],
[35] is to split the data X of length M into W short
overlapping windows of length P < M , X̃ (w)

∈ RN×P,
defined by the corresponding set of time points t (w) =

{t (w)1 , t (w)2 , . . . t (w)P }. The processes governing the dynamical
systems are assumed to be approximately stationary in each
window, an assumption that is valid depending on the size
of the window. If the size is too large, then the stationarity
assumption is likely false. If the size is too small, there is a
lack of statistical sampling to find reasonable solutions that
may not generalize well across time. For example, in the limit
of two snapshots, it is unlikely for modes to generalize to any
another snapshots.

The data of each window are extracted with OPT-DMD
[30], an iterative algorithm that finds r modes per window,
where r is a chosen hyperparameter. For the first sampled
window X̃ (1), OPT-DMD is executed without initial condi-
tions or with educated guesses; OPT-DMD can automatically

determine an initial guess if needed [11], [30]. For sampling
windowsw > 1, OPT-DMD is initialized with the normalized
eigenvalues 3(w−1)/|3(w−1)

| from the previous window,
a process that favors spatiotemporal smoothness.

Having determined modes 8(w)
∈ CN×r , 3(w)

∈ Cr×r ,
and b(w) ∈ Rr , local to every window w, the goal is
to identify a set of modes that apply across the full M
length dataset. A visual description of this process is shown
in Fig. 2 (a). Formally, similar spatiotemporal modes are
grouped into K groups across consecutive windows w̃ =

{w,w + 1, . . .w + nk − 1}, a process defined and explained
in Sec. II-B2. We write this as 2̃(k), where each 2̃(k) contains
a variable number nk of modes {θ (w), θ (w+1), θ (w+nk−1)

},
and 2 is a placeholder for 8, 3, b, and t . To find time
dependent quantities θ

(k)
j = h(2̃(k)) at time tj, the function h

averages 2̃(k) during overlapping windows and extrapolates
2̃(k) outside the range of t (k):

θ
(k)
j =


1
N

∑
i∈w̃:tj∈t (i)

θ (i) t (w)1 ≤ tj ≤ t (w+nk−1)
P

θ (w) tj < t (w)1

θ (w+nk−1) tj > t (w+nk−1)
P ,

(5)

where N refers to the number of summed terms. We use a
notation where i ∈ w̃ : tj ∈ t (i) indicates all elements
i ∈ w̃ such that tj ∈ t (i). A visualization of the function h
is shown in Fig. 2 (b). The application of h leads to |φ:kj| =

h(|8̃(k)
|) and ωkkj = h(̸ 3̃(k)). The angular part of 8(w)

defines the phase of every channel at the start of the respective
window. To find ̸ φ:kj, the phases are aligned to the start of
the full dataset. For a mode k and window wi, the phase is
̸ φ

′(w)
k ≡ ̸ φ

(w)
k −

∑i−1
j=1 ωkkj., and the phase at any time is

̸ φ′
:kj = h(̸ φ̃

′(w)
k ). To gain greater temporal smoothness, one

can apply amoving average to the time dependentmodes. The
k time dependent spatiotemporal modes form the matrices
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8j ∈ CN×K and ̸ 3j ∈ CK×K for every time point tj.
With the time dependent modes, the spatiotemporal modes
S ∈ RN×K×M are:

Sj ≡ Re(8jei
∑j−1

i=1
̸ 3i ), (6)

where the real part of each mode recovers the complex
conjugate pairs in the definition of Sj.

S is weighted with an unknown temporal modulation
F ∈ RK×M . A visualization of F is shown in Fig. 2(C). The
time-series is reconstructed with

x̂j =

∑
k

s:kjfkj, (7)

where the vectors x̂j form the estimated data matrix
X̂ ∈ RN×M . To solve for F , we use gradient descent
(Sec. II-B1). An alternate, ‘‘exact’’ method is proposed in the
supplementary text (Sec. S1-A), which aims to directly solve
Eq. 7. However, this method tends to be noisier than gradient
descent.

1) FITTING TIME-VARYING MODES WITH GRADIENT
DESCENT
Constraints are needed before applying gradient descent to
find F . First, F is non-negative; assemblies are either ‘‘on’’
with some variable amplitude, or they are ‘‘off.’’ Second,
a sparsity constraint is added since S may contain redundant
modes. Lastly, F is continuous since we assume that modes
turn on or off on the timescale defined by the sampling rate
1/sr = 1t .

The following loss function satisfies these constraints
on F :

L =
1
2

∣∣∣∣∣∣X̂ − X
∣∣∣∣∣∣2
F

+ α
∑
k,j

|fkj|

+
β

2

N∑
l=−N

∑
k,j

(
fk,j − fk,j+l

)2
. (8)

The first term is a standard least-squares loss term on the
reconstruction of the data given F . The α term enforces
sparsity in the solutions of F . The absolute value will
be dropped since F is forced to be non-negative after
every iteration of gradient descent. Lastly, the β term
enforces continuity across time; β controls the degree of
smoothing, and the smoothing timescale is controlled by N .
For simplicity, β is fixed for each l, although in principle β

can fluctuate.
The gradient of F for each mode k and snapshot tj is

dL
dfkj

= (x̂j − xj)s:kj + α + β

N∑
l=−N

(fk,j − fk,j+l). (9)

Finally, this allows us to compute the gradient descent for an
iteration i > 1:

F (i)
= F (i−1)

− γ
dL
dF

(i)
+ γ ν

dL
dF

(i−1)
, (10)

where γ is the learning rate and ν is the
momentum [36].

The initial guess of fkj is found by setting dL
dfkj

= 0 and
solving for α = 0 and fk ′ ̸=k,l ̸=0 = 0:

fkj =
xjs:kj

|s:kj|2 + β(2N + 1)
. (11)

To remove noise, the initial guess is lowpass filtered.
After each iteration, all negative values of F are set to

0, and 2N + 1 consecutive values are averaged to further
control the smoothness of F . F is reflected at the boundaries.
It is possible for edge artifacts to occur when F > 0, so a
minimum of N values should be trimmed at the boundaries.
After running gradient descent, the average amplitude of

each mode is typically smaller than the true value due to α,
β, and the averaging step. The amplitude, defined as a ∈ RK ,
of each mode is adjusted with the least squares algorithm:
xj =

∑
k s:kjak fkj. The amplitude a is absorbed into F .

2) FEATURE SELECTION
Typically, while estimating S, one finds a large number of
redundant modes, evenwith the sparsity constraint in gradient
descent. We turn to feature selection to subselect modes.

To combine redundant spatiotemporal modes, the similar-
ity of pairs Si and Sj̸=i is determined. The frequencies, spatial
amplitudes, and spatial phases are all needed to be similar
for two modes to be defined as similar. The difference in
frequencies f = ̸ λ/(2π) must be within a desired threshold:
|fi − fj̸=i| < thresh1. The cosine similarity C(A,B) =

A·B
|A||B|

between spatial amplitudes |φ| must be above a desired
threshold: C(|φi|, |φj̸=i|) > thresh2. The spatial phases ̸ φ

need to first be aligned since they are referenced to their
window’s initial t0. To align, we define 1̸ φ ≡ (̸ φi +

2π fi1t/2) − (φj̸=i − 2π fj̸=i1t/2), where 1t = t0,j̸=i − t0,i.
Due to periodicity, all 1̸ φ are shifted to within −π to π .
The spatial phase is similar if 1

n

∑n
i 1̸ φi < thresh3. The

solutions Si and Sj̸=i are considered similar (i.e., redundant)
if all three threshold checks are valid.

The first redundant set of modes are found from the
parity of spatiotemporal modes. If the data is sufficiently
approximated by sines and cosines, then OPT-DMD returns
pairs of solutions S with opposite signs: |φ|ei̸ φei̸ λti and
|φ|e−i̸ φe−i̸ λti . The real part of S is compared between
pairs, where one mode is removed per pair.

Next, the modes from consecutive windows are compared.
Since OPT-DMD is computed on each window using the
eigenvalues of the previous window as an initial guess,
the modes typically remain similar across time unless the
assembly drastically changes. In some cases, the frequency
or spatial distribution of modes may fluctuate over time.
A method that is very sensitive to such changes would
generate additional new modes. Our modeling goal is to have
a single mode describe the fluctuation, so the method needs to
be flexible when the frequency or spatial distribution drifts in
time. This is later tested with great success in Sec. III-A2.
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FIGURE 2. Flowchart of the NS-DMD algorithm. (A) A data matrix (first panel) is subdivided into windows. The number, size, and stride of the windows
are hyperparameters. For each window, OPT-DMD is computed with r modes. The modes are visualized as squares in the second panel, where 2̃ is a
placeholder for the OPT-DMD modes: 8 and 3. Modes are deemed similar to each other based on the procedure in Sec. II-B2; similar modes are
connected by dashed lines and have similar colors. Different shades indicate that the modes may not be exactly the same. Groups of minimum 2
(another hyperparameter) similar modes (third panel) are transformed into continuous modes across time in the fourth panel via the function h(2̃).
The function h(2̃) is visualized in (B). Similar, but slightly different modes, are indicated by slightly different colors. For example, the frequency could
be 10Hz in window 2, 10.2 Hz in window 3, and 10.4 Hz in window 4. For overlapping windows, modes are averaged and extended outside the range
of the windows. Following the example, the frequency would be 10.2 Hz before window 3 begins, 10.1 Hz during the overlap of windows 2 and 3,
10.3 Hz during the overlap of windows 3 and 4, and 10.4 Hz for the remainder. The modes θ (k)(t) comprise the spatiotemporal modes S (see text).
Lastly, temporal modulations fk (t) of each mode Sk are found with gradient descent. fk (t) is visualized in (C), where the colored bars indicate when
each mode well describes the data. fk (t) is flexible and can find gradual changes to the modes (e.g. the green and light blue mode). Other times, the
modes turn on/off rapidly (e.g. the orange, purple, and pink modes). Lastly, the timing is flexible, indicated by the modes not necessarily turning
on/off exactly at the dashed lines.

If modes are similar across time, we stitch them together
according to Eq. 6, as described in Sec. II-B.
Next, if desired, one can retain only groups of modes

that have more than a user-defined minimum number
of consecutive similar windows. This enforces that S is
somewhat consistent across time. Then, the reconstruction
error is calculated for each mode independently, defined as
the cosine distance between X and the reconstruction X̂ . The
cosine distance is chosen since it does not depend on the
amplitude of each mode. A user-defined number of modes or
any modes with a reconstruction error above a user-defined
threshold are retained. This drastically reduces the number
of modes to ones that generally reconstruct the data
well.
After initially reducing the number of modes, standard

feature selection methods [37] are used to find the subset
of the remaining modes that best reconstruct the data.
The basic feature selection algorithms of [38] have been
implemented. These methods start with either none or
the entire set of modes and add/subtract one mode at a
time while checking the reconstruction error. We first run
gradient descent (Sec. II-B1) while adding/removing each
mode independently. Then, the mode that decreased the
cosine distance the least is removed. The process is repeated
until a final, user selected number of modes have been
added/removed. The best sub-selection of modes can be

chosen from an ‘‘elbow’’ curve of overall cosine distance as
a function of number of modes.

3) SAMPLING FROM A BROAD FREQUENCY RANGE
A dataset may contain a large number of modes at many
different frequencies. Running OPT-DMD with many modes
can be slow and inaccurate if some frequency bands have
smaller amplitudes. To compensate, an additional step to
NS-DMD is to bandpass over many different frequency
ranges. Initial guesses of frequencies should lie within the
bandpass ranges, and OPT-DMD is computed for each
window in each band. Only solutions where the frequency
is within the bandpassed range are included. All modes from
all bandpassed ranges are combined in the feature selection
step. Gradient descent is ran on the original, non-bandpassed
data.
Either a type I Chebyshev filter of order 5 and a pass-band

gain of 1 or a Butterworth filter of order 5 is used to bandpass
filter the data. Due to edge artifacts at the temporal extremes
of the data, it is recommended to bandpass for a longer time
range than of interest and trim the excess timepoints.
To determine the accuracy of the reconstruction during

sequential feature selection methods, it’s best to calculate the
reconstruction similarity for each frequency band:

1
N

N∑
i=1

C(BPi(X ),BPi(X̂ )), (12)
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where BPi(A) is a function that bandpasses the data A to
the ith frequency range. This method of calculating the
reconstruction similarity does not preferentially bias toward
modes that occur with a comparatively large amplitude.

4) NON-STATIONARY DYNAMIC MODE DECOMPOSITION
ALGORITHM

Algorithm 1 NS-DMD
Input : (X , t, sampling rate, hyperparameters)
Procedure : NS-DMD(X , t, sampling rate)
1: Bandpass(X ) into bands (Optional)
2: for band and window in bands and windows do

Compute 8, 3, b with OPT-DMD
end for

3: for mode i and window j in modes and windows do
Calculate f (j)i , |φ(j)

i |, and 1̸ φ
(j)
i

if j = 0 or (
|f (j)i − f (j−1)

i | < thresh1 and
C(|φ(j)

i | − |φ
(j−1)
i |) > thresh2 and

1
n

∑n
k 1̸ φ

(j)
ik < thresh3

) then
make new group with mode j

else
mode j joins group with mode j− 1

end if
end for

4: Reject groups where size < minimum size (optional)
5: Stitch groups of modes to define S
6: Reject modes with worst reconstruction error (optional)
7: Run forward/backward algorithm to reject modes

(optional)
8: Run gradient descent to get F
9: Trim edge artifacts

10: Find overall amplitude with least squares

We conclude this section by summarizing the full method.
An algorithmic version is given in Algorithm 1.

• Step 1 (optional): If the data has a large number ofmodes
or includes modes with a much smaller amplitude,
we bandpass the data into many different small bands.
To evaluate the necessity, we suggest analyzing the
power spectral density.

• Step 2: Run OPT-DMD for every window of interest and
for every frequency band if applicable.

• Step 3: Find the similarity of consecutive modes. Group
modes if they meet thresh1, thresh2, and thresh3 require-
ments.

• Step 4 (optional): Keep only solutions that are similar
for a user defined number of windows.

• Step 5: define S based on the similarity of consecutive
modes. Optionally include temporal lags for each
recording location.

• Step 6 (optional): Initially reduce the number of modes
by finding the reconstruction error of each mode
independently.

• Step 7 (optional): Run the forward/backward elimina-
tion algorithm.

• Step 8: Run gradient descent on the final subset of
modes. Make sure that this is done on the non-
bandpassed data.

• Step 9: trim the data to remove edge artifacts.
• Step 10: use a least squares algorithm to find the final
estimate of F .

III. RESULTS
We tested NS-DMD on simulations, electrophysiological
brain data from multichannel recordings of local field
potentials in the macaque brain, and from sea surface
temperature (SST) data. NS-DMD recovers the underlying
dynamics in the simulations. In the electrophysiological
brain data, we show a rich set of modes that are active
during different periods of performance of a cognitive task.
In the SST data, NS-DMD recovers seasonal modes along
with El Niño modes. Hyperparameters are described for
all applications in Appendix B. Further simulations, which
require optional steps of NS-DMD or are of interest to
specific communities, are included in the supplementary
material (Sec. S2).

A. SIMULATIONS
Synthetic data is generated from the following generic
equation:

x(ti) =

∑
k

fk (ti)φA,k (ti)

∗ cos(
i−1∑
j=0

ωk (tj)1t + φP,k (ti)), (13)

where x(t) is the data consisting of a vector of channels,
fk (t) is the amplitude modulation of all channels, ω(t) is
the time varying angular frequency, φA,k is the time varying
normalized amplitude (|φ| ≡ 1), φP,k is the time varying
phase, and 1t ≡ 0.001 is the time delay between snapshots.
This is the more explicit form of the simplified form of the
data in Eq. 4, which can be seen by expressing the cosine in
terms of exponentials and combining with φA,k to form S.

1) NON-STATIONARITY IN MULTIPLE ASSEMBLIES
The simplest case of interest is when multiple assemblies
switch on/off with non-constant amplitudes, corresponding to
the following simplification of Eq. 13:

x(ti) =

∑
k

fk (ti)φA,k cos(ωk ti + φP,k ). (14)

We construct a group of modes that are active in the
beginning, a group of modes that are active towards the end,
a switching period where multiple modes coexist, and a mode
with non-constant amplitude. The assemblies, labeled fromA
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FIGURE 3. (A) The simulated data, generated from 4 assemblies with frequencies of 4 Hz, 30 Hz, 17 Hz, and 30 Hz. The dotted lines in (D) show the
modulation f (t) for each assembly, and the small solid circles show the amplitude and phase of 8 in (E) and (F). Gaussian noise with a standard
deviation of 0.1 is added independently to each channel and snapshot. (B) shows the reconstruction of the data with NS-DMD with 4 modes per
window. (C) shows the best reconstruction with OPT-DMD (rank of 4). (D) compares the true (dotted lines) and fit F (solid lines) for each
mode/assembly. (E) and (F) compares the true (small, solid dots) and fitted (large, transparent dots) 8 amplitudes and phases for each channel. From
this, we see the accuracy of the underlying modes, f (t), and reconstruction of the data when using NS-DMD with an optimal number of 4 modes per
window. We compare the the true (dotted lines) and fit F (solid lines) when running NS-DMD with 2 (G), 2 and an initial guess of ±30 Hz (H), and 6 (I)
modes per window. We find that 2 modes per window fits lower frequency modes well. Forcing the initial guess to higher frequency modes, as in (H),
leads to higher deviations from the ground truth. Using 6 modes per window, as in (I), leads to overfitting at 2000 ms, which may be expected due to
the similarity of the constructed 30 Hz modes. The reconstructed error for each number of modes per window is shown in (J), where the error is on the
order of the Gaussian noise. NS-DMD obtains the best performance with either 4 or 6 modes per window.

to D, construct the data shown in Fig. 3A. Assemblies A and
B operate with a constant amplitude for 1700 ms, assembly
C turns on with a constant amplitude at t = 1300 ms, and
assembly D’s amplitude follows the shape of a Gaussian
distribution starting at t = 1300 ms. All assemblies initiate
and decay with a fixed timescale. The exact shape of F is
shown in Fig. 3D.
The frequency ωk/(2π ) is 4 Hz, 30 Hz, 17 Hz, and 30 Hz

for modes A-D respectively. Assemblies B and D have the
same frequency, but with different spatial distributions. For
A and B, the spatial amplitude is φ1−50

A,{k=A,B}
= 1/N and

φ51−100
A,{k=A,B}

= 2/N , where the superscript labels the channel
number and N is a normalization such that |φA,k | = 1.
The amplitudes of assemblies C and D are reversed such
that φ1−50

A,{k=C,D}
= 2/N and φ51−100

A,{k=C,D}
= 1/N . The exact

amplitudes are shown in Fig. 3E. The spatial phases φP,k
for every assembly form ten groups of ten channels. The
phases are constant within each group of channels. Assembly
A has a temporal delay φP,k/ωk from 0 ms to 30 ms across
all groups; Assembly B has a delay from -20 ms to 30 ms;
Assembly C from 50ms to 0ms; and Assembly D from 30ms
to -10 ms. The phases are shown in Fig. 3F. Each channel
receives independent white noise with a standard deviation
of 0.1.

For the majority of windows, there are two assemblies
that follow a cosine function or two exponential functions.
Thus, the minimal complete number of OPT-DMDmodes per
window is 4. We run NS-DMD with 4 modes per window,
and the reconstruction of the data is shown in Fig. 3B. The
reconstruction error is

√
MSE ≈ 0.1 (Fig. 3J), the same as
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the added noise. Comparing the true and fitted f in Fig. 3D,
NS-DMD recovers the correct mode amplitudes, including
the non-stationary amplitude in assembly D. The spatial
amplitudes and phases in Figs. 3E and 3F show recovery of
the correct underlying modes. The inaccuracy in the 30 Hz
(green) mode in (F) occurs because the phase is compared at
t = 0 ms; the phase is most accurate at t ≈ 2000 ms when
the mode is active, and any small inaccuracy in frequency
will grow when analyzing the phase at a large time difference
away. Overall, this simulation shows that NS-DMD can
capture the underlying modes and temporal variations of a
non-stationary linear dynamical system.

In practice one does not know the optimal number of
modes per window. If instead we run NS-DMDwith a smaller
number of modes than optimal, 2 per window, it will only
be able to capture half of the modes at any timestep. Due to
the switching of assemblies, we expect NS-DMD to recover
one early assembly (A or B) and one late assembly (C or D).
NS-DMD recovers the 4 Hz and 17 Hz mode, as shown
in Fig. 3G. This occurs due to the procedure; in the first
window after the 4 Hz mode ‘‘turns off,’’ the initial guess
with OPT-DMD is still 4 Hz. OPT-DMD then converges
to the closest solution, which happens to be 17 Hz.
The reconstruction error (Fig. 3J), is marginally worse,
as expected since only half of the modes are captured.

If the initial guess for the first window is forced to be 30Hz,
then NS-DMD finds the two 30 Hz modes (Fig. 3H)).
NS-DMD performs noticeably worse when finding F , but
it still finds the correct trend. The low amplitude bias of
the 30 Hz mode occurs due to a lack of an estimated 4 Hz
mode, which can bias X to more positive or negative values
for short (< 50 ms) windows. We verify this by rerunning
this model with only assemblies B and D, where F is found
correctly. The reconstruction error in Fig. 3J indicates a
preference for lower frequency modes.

If we run NS-DMD with 6 modes per window, NS-DMD
recovers 4 modes that reconstruct the data. The fitted and
recovered amplitudes F in Fig. 3I show that NS-DMD
performs well. Around t=2000 ms, both 30 Hz modes have a
non-zero f (t) which occurs due to their similar construction.
The reconstruction error is on par with the amount of noise
(Fig. 3J).

Lastly, we run OPT-DMD with ranks ranging from 2 to
10 and find the best performance with a rank of 4. The
reconstruction is shown in Fig. 3C, where the original
structure in the simulated data is blurred. Despite this, the
reconstruction error is fairly small (Fig. 3J). However, the
reconstruction error is worse than all NS-DMD models.

2) SMOOTHLY VARYING TIME DEPENDENT MODES
We now consider the case of smoothly varying time depen-
dent modes (Fig. 4A). Allowing a time-varying frequency
corresponds to the following simplification of Eq. 13:

x(ti) =

∑
k

fk (ti)φA,k cos(
i−1∑
j=0

ωk (tj)1t + φP,k ). (15)

We simulate three assemblies whose frequencies vary linearly
in time around 17 Hz, 27 Hz and 33 Hz, where the
true frequency ωk/(2π ) is shown in Fig. 4C. The 27 Hz
assembly occurs early in time while the 33 Hz assembly
occurs late. The 27 Hz assembly appears with a linearly
varying amplitude for the duration of the dataset. The exact
amplitudes f (t) are shown in Fig. 4B.

NS-DMD recovers the correct F (Fig. 4A), and time
dependent frequency (Fig. 4B). Note that the frequency is
undefined when f (t) = 0, indicated in Fig. 4B by ending the
dashed lines.

We next allow for the spatial amplitude to fluctuate instead,
corresponding to the following simplification of Eq. 13:

x(ti) =

∑
k

fk (ti)φA,k (ti) cos(ωk ti + φP,k ). (16)

The frequencies of two assemblies are fixed to 17 Hz
and 30 Hz. The spatial amplitude is shown in Figs. 5A and 5D
respectively, where channels 1-50 and 51-100 are grouped
together with the same change in φA,k over time.
NS-DMD recovers the correct spatial amplitudes, shown

in Figs. 5B and 5E with a step like variation due to discrete
windows. To aid visualization, we plot the average amplitude
for each mode and group of channels, 1-50 and 51-100 in
Figs. 5C and 5F respectively.

We run OPT-DMD as well for both simulations of
fluctuating frequency and spatial modes. The reconstruction
error for both cases is worse for OPT-DMD at about
0.12 compared to 0.1 for NS-DMD. Like in the example
in Fig. 3, the visual features are blurred with OPT-DMD
(not shown), indicating the need for NS-DMD to recover the
correct underlying modes.

B. APPLICATION TO ELECTROPHYSICAL BRAIN DATA
We apply NS-DMD to local field potentials (LFP) [39],
an invasive measurement technique in which electrodes
measure electric potentials deep inside the brain. In general,
the LFP power decays approximately as a power law, with
an exponent between −1 and −2 [40]. A wealth of literature
has found correlations between behavioral parameters and
time-varying power in various frequency bands of the
LFP [41], [42], [43]. Other research suggests the possibility of
cross-frequency coupling [44], [45], [46], [47] as a top-down
mechanism of control.

The LFP is typically analyzed using standard time-series
procedures, such as Hilbert or spectrogram analysis [48],
[49], coherence analysis [50], and Granger Causality [51],
[52]. While these methods are useful for understanding the
structure of the data, they do not lead to a dynamical systems
model of the brain. Others have argued for the use of a
Koopman operator approach [53]. A DMD approach has
been applied to sleep activity [35], revealing sleep spindle
networks. Given its non-stationary spectral properties and the
potential for the application of DMD in analysis of brain
activity, LFP data are a perfect candidate for NS-DMD.
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FIGURE 4. (A) Synthetic data for the smoothly varying time dependent mode simulation. (B) A comparison of the true (dotted lines) and fitted F (solid
lines) for three assemblies with time dependent frequencies. (C) Comparison of the true frequencies (dotted lines) with the fitted frequencies (solid
lines) for each drifting assembly. Note that the frequency is undefined when F = 0. NS-DMD recovers the true modulations and frequencies.

FIGURE 5. (A,D) True spatial amplitude distribution for time dependent spatial modes at 17 Hz and 30 Hz, where channels 1-50 and 51-100 are grouped
and vary the same way. (B,E) Fitted spatial amplitude distribution for the 17 Hz and 30 Hz assemblies. (C,F) Comparison of the true (dotted) and fitted
(solid) mean φ amplitude for channels 1-50 and 51-100. We find that NS-DMD recovers the correct spatial amplitudes φA,k , where the staircase pattern
occurs due to the 100 ms stride of NS-DMD.

We demonstrate that NS-DMD can find consistent,
repeatable spatial modes that co-activate intermittently in
correspondence with the task. Modes activate and deactivate
in correspondence with task events, and they cluster in
different areas of the brain. Further, some clusters show
consistent phase differences between brain areas, indicating
information flow. NS-DMD is also able to recover results
from standard time-series analysis.

1) DATASET
We apply our methods to LFP data collected in the Buffalo
lab from a macaque monkey performing a variant of the
Wisconsin Card Sorting Test [54]. Out of 4 non-human
primates performing the task, two have electrodes (FHC and

Alpha Omega) implanted for neural recordings. A single
subject is chosen for analysis and comparisons between
methods. The subject is an adult female rhesus (Macaca
Mulatta), aged 9 with a weight of 9.1 kg. The subject was
headfixed with a titanium rod in a dimly lit room. The subject
was positioned 60 cm away from a 19-inch CRT monitor,
with 33 degrees by 25 degrees of visual angle. Stimuli were
presented on the screen with software (NIMH Cortex). All
procedures were carried out in accordance with the National
Institutes of Health guidelines and were approved by the
University of Washington Institutional Animal Care and Use
Committee.

Trials are initialized when the animal fixates on a cross in
the middle of the screen. The monkey must then choose one
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correct image out of four simultaneously presented images
based on an uncued rule. The rule is discovered by trial and
error. Each image has one of four possible shapes, colors, and
patterns, and the rewarded rule is one of the 12 possible visual
features. Animals are rewarded with a juice/chow mixture
for 1400 ms if correct, and given a 5000 ms timeout period
if incorrect. The rule remains fixed across consecutive trials
while the monkey learns it; after 8/8 or 16/20 correct trials,
the rule spontaneously changes.

The LFP is recorded for ∼ 3 hours per session across
several months using 220 electrodes implanted in multiple
locations throughout the brain, including hippocampus and
prefrontal cortex; we focus here on data from a single
day. We ignore 17 electrodes that are dominated by noise,
determined based on an unusually large amount of 60 Hz
wall noise. We neglect trials where the remaining electrodes
experience random artifactual bursts, or LFP activity that
reaches the maximum or minimum possible recording limit
of the electrode. This leaves us with 896 trials recorded on
203 electrodes to analyze. NS-DMD is applied to the raw
data, normalized by z-scoring each electrode’s signal in the
1-40 Hz range independently for each trial.

2) NS-DMD ON A SINGLE TRIAL
We fit NS-DMD on a single trial of the LFP and analyze
the resulting modes. There are non-zero modes during every
section of the task. The amplitude f (t) of up to 10 modes
within the 2-7, 12-17, 22-27, and 32-37 Hz modes are plotted
in Fig. 6(A). Other modes exist, but are not shown for
concision. Some modes span very long stretches of the trial,
while others turn on or off relative to task events. The red
mode of the top plot and the purple mode of the bottom plot
of Fig. 6(A) are selected for further analysis. In Fig. 6(B)
and Fig. 6(C) the spatial amplitudes |φ| and phases ̸ φ are
shown for the red mode (top) and purple mode (bottom). The
spatial amplitude |φ| is plotted. The spatial modes showcase
widespread patterns across the brain. In Fig. 6(C), the phases
show significant differences across various areas of the brain,
indicating that some areas lead or lag behind other areas in
these particular modes. In particular, there is a consistent
phased difference between the red and green shaded regions
in the purple mode, indicating information flow between the
two areas.

3) COMMON NS-DMD MODES IN ALL TRIALS
We then apply NS-DMD on all trials for 1500 ms after feed-
back begins, focusing on the differences between correct and
incorrect trials in the 19-21 Hz frequency band. We perform
k-means clustering [55] on the mean spatial amplitude |φ|,
where each ‘‘point’’ in the k-means algorithm is the average
|φ| when f (t) > mean(f (t)). We choose 3 clusters for both
‘‘correct’’ and ‘‘incorrect’’ modes. We further separate the
data by performing k-means clustering with 3 modes using
the temporal amplitudes F for each previously found group.
This separates the modes into clusters that have distinct

spatial distributions and temporal distributions. We select
three groups out of the nine for both correct and incorrect
trials for plotting.

The average spatial amplitude for each cluster is shown
in Figs. 7A and 7B. Different clusters are associated with
activity in different channels; some clusters have large
amplitudes in single channels. The average globalmodulation
f (t) of each ‘‘correct’’/‘‘incorrect’’ cluster is shown in
Figs. 7C (correct) and D (incorrect). In the correct trials, F
separates into early and late modes. In the incorrect trials,
there is a cluster with a large amplitude 1s after feedback
is given. The overall amplitude of the ‘‘incorrect’’ modes is
much larger than the ‘‘correct’’ modes.

We are interested in the phase difference between each
channel pair, since this is indicative of information flow.
The phase difference is averaged separately across correct
and incorrect trials when f (t) > f (t). We represent the
phase difference θ as a complex vector on the unit circle and
average:

θ =

∑
i

eiθi . (17)

The amplitude of the average phase difference vector
indicates how consistently the two channels are related.
We focus on pairs of electrodes with large amplitudes where
|θ | > 0.4. Significance is calculated from the work of [56].
For 76 vectors, which is the minimum number of vectors
averaged in Fig. 7, a threshold of 0.4 corresponds to a p-value
of 3 × 10−6. The average thresholded phase differences
are shown in Figs. 7E and 7F. The ‘‘correct’’ clusters have
the largest phase differences, suggestive of information flow
between two groups of channels after correct feedback is
given. One incorrect cluster (red) has sparse consistent phase
differences, which occur during incorrect trials one second
after feedback. There are two clusters, green and dark-red,
which have very similar average patterns: they are similar
across space and time, and the phase differences are shared.
This shows that a common pattern emerges for both correct
and incorrect trials.

4) COMPARISON TO STANDARD ANALYSES
To demonstrate the ability for NS-DMD to recover results
from simpler methods, we compute analysis based on the
Power Spectral Density, Hilbert analysis, and coherence.

First, for each electrode, we calculate the Power Spectral
Density (PSD) to find the standard power law decay [39]
using the Welch algorithm [57]. This results in the standard
frequency power law in Fig. 8A. For NS-DMD, we average
f (t) across all trials and times within overlapping 3 Hz
frequency bands (Fig. 8B). The power law is recovered with
a similar slope.

Second, we compare NS-DMD to a traditional Hilbert
analysis, where one typically analyzes a frequency band
of interest. We bandpass the data to 27-37 Hz, Hilbert
transform every channel, and take the absolute value
of the resulting signal.We concatenate the trial and

117168 VOLUME 11, 2023



J. Ferré et al.: Non-Stationary Dynamic Mode Decomposition

FIGURE 6. Example NS-DMD modes for the LFP data. (A) shows the mode amplitudes f (t), separated by frequency ranges: 2-7, 12-17, 22-27, and
32-37 Hz. Modes persist for varying lengths of time. (B) shows the absolute value of the relevant spatial amplitudes |φ| for the red (top) and
purple (bottom) modes. There are large spatial spreads for each mode. (C) shows the relevant spatial phases ̸ φ for the red (top) and purple
(bottom) modes on a circular color scale. There are clear divides between the phases of different brain areas, indicating that some areas lead or
lag behind others. Shaded regions are the hippocampus (red) and prefrontal cortex (green), which are important for decision making and
memory.

FIGURE 7. We group all modes corresponding to correct or incorrect trials into 3 clusters with K-means on the spatial amplitude. We further separate
each cluster into 3 additional clusters based on f (t) for a total of 9 groups per correct and incorrect trials. 3 groups (consistent colors) are selected for
plotting, emphasizing consistent information flow during different periods after feedback. (A) and (B) show the average spatial amplitude of each
cluster for the correct and incorrect clusters. (C) and (D) show the mean global modulations f (t) for each correct/incorrect cluster. Note that f (t) is
averaged over many modes with independent f (t)’s. Thus, local maximums indicate when some, but not necessarily all, modes are large. (E) and (F)
show the average phase difference between every pair of electrodes for correct/incorrect clusters. The phase difference is set to 0 for every channel
pair where the average phase amplitude is less than 0.4, corresponding to a p-value less than 3 × 10−6. The color limits are from −π/4 to π/4. Large
amounts of widespread information flow occur immediately after feedback and late after feedback during correct trials.

time dimensions, and run Principal Component Analy-
sis (PCA) to reduce the dimensionality. By averaging
the projection of the data onto the first mode for

all correct/rewarded trials and all incorrect/unrewarded
trials, we find separate phenomena for each trial type
(Fig. 8C).
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FIGURE 8. Comparisons of NS-DMD results with traditional analyses. (A) shows the Power Spectral Density plots for every electrode along with their
mean power law decay. For the NS-DMD modes, (B) shows the average f (t) for every 3 Hz band along with the slope. NS-DMD finds a similar, but mildly
different, power law decay to (A). After bandpassing and Hilbert transforming the data between 27 and 37 Hz, (C) shows the first PCA mode after
feedback begins at t = 0 ms. For NS-DMD, (D) shows the mean f (t) for all modes between 27 and 37 Hz, averaged across correct and incorrect trials,
matching the trend in (C). The difference in scale is due to the normalization in the Hilbert method. (E) shows the normalized histogram of phases,
determined by the Hilbert transform between 2-4 Hz, across all trials for each time point. The normalized histogram of the NS-DMD phases between
2-4 Hz is computed across all trials for each time point in (F). To compare with standard coherence, we take the average phase difference between
every pair of channels for incorrect trials in (G). Coherence is calculated at 3.5 Hz for a window of 0-500 ms between every pair of channels, and the
phase difference is averaged with Eq. 17. All average phase values are set to 0 when the amplitude of the average phase vector is less than 0.1.
(H) shows the average phase difference between every pair of channels for incorrect trials, computed with NS-DMD. Modes are averaged, where the
modes are between 2-4 Hz and where f > f within 100-300 ms. NS-DMD finds a similar answer to (G) with a mean squared error of 0.17. The difference
is shown in (I).

For NS-DMD, we average f (t) across correct and incorrect
trials for all modes that occur within 27 and 37 Hz. We find
the same amplitude trends in Fig. 8D, where a large amplitude
occurs in incorrect trials one second after feedback. The
scale is different in Figs. 8C and 8D due to normalization.
The similarity between overall trends indicates that NS-DMD
recovers similar results to standard Hilbert analyses.

Next, we compare NS-DMD to the phase of the Hilbert
transform. Jutras et al. [58] showed that eye movements are
associated with phase resets. We explore whether feedback
events also cause a phase reset. We bandpass and Hilbert
transform every channel between 2 and 4 Hz. The angle of

the Hilbert transform finds the instantaneous phase for every
millisecond of every trial. We find a consistent phase shortly
after feedback begins. A phase histogram for an example
channel is shown in Fig. 8E. We compare the phase in the
NS-DMD modes, ̸ φ, for the same example channel. The
histogram of phases of all modes between 2 and 4Hz is shown
in Fig. 8F. The same phase reset can be seen in the NS-DMD
phases.

Lastly, we compare NS-DMD to an example coherence
analysis. We calculate the coherence between every pair of
electrodes with the Welch method at 3.5 Hz for 500 ms after
feedback begins. We then find the average phase difference

117170 VOLUME 11, 2023



J. Ferré et al.: Non-Stationary Dynamic Mode Decomposition

between all pairs of channels across correct and incorrect
trials, given by Eq. 17. We consider only phases for which the
magnitude of the average phase vector θ > 0.1. The resulting
spatial phase difference map for incorrect trials is shown in
Fig. 8G. For NS-DMD.We find the phase difference between
all pairs of electrodes formodes between 2 and 4Hz andwhen
f (t) > f (t) between 100 and 300 ms. We average the phase
differences with Eq. 17. The resulting spatial map in Fig. 8H
matches the coherence analysis. The difference is shown in
Fig. 8I, highlighting some small, local differences. The mean
squared error (MSE) is 0.17.

C. APPLICATION TO SEA SURFACE TEMPERATURE
We apply NS-DMD to sea surface temperature (SST) data,
where known global frequencies exist. SST data (NOAA
Optimum Interpolation (OI) Sea Surface Temperature (SST)
V2 [59]) is collected via satellite, and it is averaged weekly
from 1990 to 2016 on a 180 by 360 grid across all longitudes
and latitudes. After flattening and removing land locations,
we end with a length 44219 vector for 1455 weeks. The
data for each recording location are normalized by z-scoring
across weeks.

The power spectrum density (PSD) of a sample location in
the Pacific Ocean is shown in Fig. 9(A), where there appears
to be different frequencies: there is a high amount of power
once per year, a smaller amount of power twice per year, and
a fluctuating amount of small power less than once per year.

From the PSD, we estimate that 6 modes per window
are sufficient to reconstruct the data. We run NS-DMD with
6 modes per window, a window size of 150 weeks, a stride
of 25 weeks, and we guess the 6 modes have frequencies
of ± 1, ± 2, and ± 0.12 per year. We compute for the
first 1400 weeks. Specific parameters are labeled in App. B.
We find that 5 modes, that span the entire 1400 weeks,
reconstructs the data well. The cosine distance between the
reconstruction and original, z-scored data is about 0.92.

The amplitudes F are shown in Fig. 9(B) for the 5 modes.
There are two modes that exist with a constant amplitude at
once and twice per year. These modes correspond to seasonal
changes in the SST. The once a year mode is present across
the entire ocean (Fig. 9(C)). Examining the phase in Fig. 9(H)
shows a π offset in the phase from the Northern and Southern
hemispheres, occurring due to the tilt of the Earth. The twice
a year mode occurs in equilateral locations with an emphasise
in the Indian Ocean (Fig. 9(D)). This also occurs due to
the seasonal tilt of the Earth, where equilateral locations
undergo a twice a year heating event when the Sun shines
most directly on it. The phase of the twice a year mode is
shown in Fig. 9(I), where we see a π offset between the
equilateral and non-equilateral locations around the Tropics
of Cancer and Capricorn.

The other three modes in Fig. 9(B) are El Niño and La Niña
modes, and occur with frequencies of 0.12, 0.13, and 0.18 per
year. El Niño and La Niña are typically referenced to occur
about once every 6 years, or with a frequency of 0.167. These

three modes span the 1400 weeks, where when one mode
turns off, another turns on. The spatial amplitude is shown
in Figs. 9(E)-(G), where one can see the characterizing large
amplitude in the equilateral latitudes in the Pacific ocean.
To confirm, we analyze the orange, 0.18 times a year mode
in 1998 and 1999, which were known as exceptionally strong
El Niño year and La Niña years. By looking at the orange
mode during a week in January of 1998 and January of 1999,
we see a relative increase and decrease in the temperature near
the equator in the Pacific Ocean (Figs. 9)(J) and (K).
We highlight that NS-DMD is applicable to sea surface

temperature data, and it can find modes of particular interest.
It is appropriate for this problem due to the combined
stationary and non-stationary modes. The seasonal changes
in temperature are stationary, but the El Niño and La Niña
effects are non-stationary.

Other groups have approached SST data with DMD
like methods: [8] uses multi-resolution DMD, [7] uses
Time-varying Autoregression with Low Rank Tensors
(TVART), and [31] uses BOP-DMD to analyze SST data.
They have all shown success in finding modes correlating
with El Niño and La Niña in the Pacific Ocean. Our approach,
however, allows us to find differences in the spatial amplitude
during different years. The modes attributed with El Niño and
La Niña turn on and off during two specific years, indicating
that the structure may be changing slightly.

IV. DISCUSSION
We introduce a novel method for analyzing time-series data:
Non-Stationary Dynamic Mode Decomposition. NS-DMD
builds on previous DMD methods by including global
modulation and time dependent modes. Thus, any improve-
ment to standard DMD algorithms can be easily integrated
into NS-DMD. NS-DMD accurately discovers modes that
well explain data across a range of simulated settings
(Sec. III-A). Naturally, this method is best suited for data
that includes low-rank spectral features. It is possible to
run DMD on any time-series data, since any signal can
be decomposed into a Fourier series basis set of sines and
cosines.

NS-DMD can be useful in many empirical settings. This
is because many systems elicit non-stationary behavior. For
such systems, NS-DMD is better suited than previously
proposed methods that assume stationary properties. In the
present work we demonstrated this in data from large-scale
neural recordings and from recordings of SST. In the
neural data, NS-DMD recovers a plethora of modes that
capture both short and long time-scale dynamics. Further,
it captures widespread activity and information flow between
different brain areas. In the SST data, NS-DMD is able to
capture consistent global temperature phenomena, as well as
subtle differences in the El Niño effects across the years.
For these empirical data, NS-DMD extends and subsumes
standard methods, such as spectrograms, wavelet transforms,
or coherence. However, while these methods work on
individual recording locations or can be combinedwith global
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FIGURE 9. Application of NS-DMD on Sea Surface Temperature data ranging from 1990 to 2016. (A) shows the power spectrum density for a random
location in the Pacific Ocean. (B) shows the amplitudes of the 5 resulting NS-DMD modes F . The legend highlights the average frequencies for each
mode in units of cycles per year. The two stationary modes occur due to seasonal effects. The other three modes tile the duration of the dataset and are
most likely El Niño and La Niña modes. For (C) through (K), the horizontal bar showcases which mode it comes from, in terms of the colors in (B).
(C) shows the spatial amplitude |φ| for the once a year mode. The relative phase ̸ φ is shown in (H), where the Northern and Southern hemispheres are
a π phase apart. The spatial amplitude for the twice a year mode is shown in (D) and the relative phase is shown in (I). The phase is π offset across the
tropic of Cancer and Capricorn latitudes. (E-G) show the spatial amplitudes for the El Niño and La Niña modes, where the strength is particularly strong
in the Pacific ocean. The data is reconstructed from the orange mode for a week in January in 1998 (J) and 1999 (K), which reconstruct the very strong El
Niño event in 1998 and the very strong La Niña event in 1999.

dimensionality reduction techniques, the main benefit of
NS-DMD is to simultaneously gather spatial information,
spectral information, and growth and decay of all modes.

NS-DMD can capture drifting components since it allows
for modes to modulate slightly over time. It is then useful
to combine modes into one single drifting mode instead of
defining multiple new processes. Among its limitations is
the fact that NS-DMD requires careful choice of the correct
values of hyperparameters. If the similarity threshold is too
tight, a single mode will be parsed into many chunks at
different short intervals of time. If the similarity threshold is
too broad, we lose the ability to distinguish between mode
switching and time dependent modes. Expert knowledge can
help with hyperparameter choice. Alternatively, to decide on
hyperparameters, we recommend directly analyzing modes
from consecutive windows. E.g., if the modes gradually
change, the similarity hyperparameters should allow these
modes to be defined as similar. Or if the modes turn on
or off rapidly, a tighter similarity hyperparameter can be

used. To decide on the OPT-DMD rank per window, one
can observe the number of power spectral density (PSD)
peaks, where each peak will likely be associated with two
OPT-DMDmodes. The PSD can also be used to initialize the
modes. See Sec. III-C for an example of this approach.

A. RELATED WORK
Many previous approaches exist to fit non-stationary systems
that are closely related to NS-DMD. In this section,
we describe some of this previous related work, and
draw distinctions between these previous approaches and
the NS-DMD approach developed in the present paper.
These include hidden Markov models [16], [17], [18], and
time-varying autoregressive models [23]. Generally, these
methods contrast with our approach in assuming discrete state
transitions and do not fully capture the dynamics in terms of
identifying spatiotemporal modes of the system. Piece-wise
Locally Stationary Oscillation models [24] and state-space
multi-taper methods [25] focus on non-stationary estimates
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for univariate time-series recordings. However, while these
approaches independently model individual variables in a
multi-variate time-series, they do not find low dimensional
spatial modes combining rows/variables.

Variations of DMD [11] seek to address the full spatiotem-
poral dynamics, including finding reduced dimensionality
spatial modes of oscillatory dynamics, across large, multi-
variate systems [8], [9]. While powerful in principle, DMD
is highly sensitive to noise [26], [30], thus generating biased
and inaccurate estimates of the dynamics. Optimized DMD
provides the most stable and biased estimate of a DMD
model [30], with the bagging, optimized DMD (BOD-DMD)
method [31] improving the method even further by providing
uncertainty estimates of the DMD fit. But these DMD meth-
ods still fail when the generating dynamical system switches
between different approximately linear regimes [27]. Within
the Koopman framework, Macesic et al. [9] introduce two
methods for dealing with rapid switches in the underlying
system aswell as continuously varying time-series. Although,
expert knowledge of the system is needed to introduce
observables that linearize the dynamical system. One vari-
ation of particular interest, Multi-Resolution DMD [8],
specifically accounts for non-stationary time-frequency data.
In this approach, one seeks DMD modes at different fre-
quency scales, and with smaller and smaller windows, which
increases the temporal resolution. The method successfully
identifies non-stationarities, e.g., the El Niño effect in ocean
temperature data. One downside, however, is that expert
knowledge of the appropriate window size at different scales
is required. This also assumes that lower frequencymodes are
more stable in time. While this may be appropriate for some
systems, such as ocean temperature, this is not generally true
for all non-stationary systems.

Switching Linear Dynamical Systems (SLDS) [19], [20],
[22], [60], assumes a Markov process that switches between
discrete, linear systems. A recurrent version was developed
for neuroscience applications in [21]. These types of models
find discrete states and transitions between them. NS-DMD
can improve on this by allowing the states themselves to
modulate over time, i.e. with a continuously variable ampli-
tude or frequency. It also allows for independent transitions
in individual modes or spatiotemporal components of the
dynamics, without requiring an entire state to transition.

Another recent addition to the toolbox of methods
for time varying systems is Latent Factor Analysis via
Dynamical Systems (LFADS) [61], [62], in which smooth,
low-dimensional dynamics are inferred using deep learning
based on initial conditions and inferred inputs. While LFADS
was first developed for neuronal spike counts, modeled as
point processes driven by underlying latent dynamics, recent
work [63] has extended LFADS to continuously varying
signals. This method does not assume linear dynamics
and instead uses recurrent neural networks to find low
dimensional factors. Since NS-DMD uncovers linear approx-
imations, some representations may be easier to interpret,
such as the leading and lagging of individual spatial areas.

Lastly, a recent approach to non-stationary time-frequency
data is Time-Varying Autoregression with Low-Rank Ten-
sors [7], which successfully identified low rank modes
and crossover points for constantly evolving data. This
method is extremely similar to NS-DMD, even finding global
modulations of individualmodes. However, instead of finding
dynamics in the form of Eq. 2, they find the global modulation
of two spatial components; there is a lack of frequency and
phase of each spatial mode. E.g., if one is interested in the
global modulations of modes at a particular frequency or
if one is interested in the phases of the spatial distribution,
NS-DMD can be more informative.

B. FUTURE DIRECTIONS
There are a number of potential additions for improving the
effectiveness of NS-DMD. First, we implemented Optimized
Dynamic Mode Decomposition [30], which is known to
be more robust to noise than the standard DMD method.
In the future, we plan on adding Bagging Optimized DMD
(BOP-DMD) [31] to NS-DMD. In BOP-DMD, one runs
OPT-DMD many times for each window to find statistics of
each mode. BOP-DMD also can provide a metric to quantify
uncertainty as it automatically produces probability density
estimates for the modes, eigenvalues and loadings of the
DMD approximation. This could aid with some cases where
excess, poorly estimated modes are removed.

In the gradient descent method, we have imposed
non-negativity and continuity by manually setting negative
values to zero and smoothing across time. Given advances
in Non-Negative Matrix Factorization (e.g. [64]), we believe
it possible to further optimize the gradient descent method
to implicitly restrict the values. We also believe we can
implicitly add averaging into the methods.

Another assumption of NS-DMD is that the data are real.
If the data are instead complex, one can easily transform it
by squaring the magnitude. In the future, however, we plan
on generalizing the gradient descent method to allow for
complex inputs.

In allowing modes to disappear for extended periods of
time, one expects in general that they can reappear with
a phase unrelated to the previous appearance. However,
NS-DMD retains phase information about modes. As we
explore in the supplementary simulations (Sec. S2-C), under
these conditions NS-DMD will either add an entirely new
mode or mix modes. Ideally, phase should reset anytime that
F reaches 0. In the future, we plan on implementing this
by checking similarity in non-consecutive windows, allowing
for merging of modes differing only by phase when delayed
by large time intervals. This should remove any mode mixing
and help with interpretability.

Lastly, we have implemented relatively simple feature
selection algorithms. Given the large body of work in this
area, we plan on adding other methods, as implemented and
reviewed in [37] and [65].

These additions should help with both speed and accuracy
of NS-DMD. In the meantime, the current rendition of
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TABLE 1. Table of similarity parameters (L), which describes the thresholds for different windows to be considered ‘‘similar’’. Similar modes are grouped
together. We omit the φ angle similarity threshold, which we set to 10 for all cases. This threshold is compared to the mean squared error. (R) describes
the hyperparameters for gradient descent. For the β term and averaging between iterations, we use N consecutive time points.

NS-DMD works very well in many simulations and on a
range of different empirical data, and the method already
has the power to elucidate systems that were previously
intractable.

APPENDIX A
CODE AVAILABILITY
Python code implementing NS-DMD and worked examples
can be found at https://github.com/learning-2-learn/nsdmd.
All simulations, including supplementary ones, are included
here.

APPENDIX B
HYPER-PARAMETERS
All hyperparameters are listed for the simulations, LFP data,
and SST data. The parameters are listed in the order they
appear in NS-DMD, and we reference the steps listed in
Sec. II-B4.

• Step 1 (optional) we bandpass the data for the frequency
decay simulation (Sup. Sec. S2-A) and trim 1500ms off
the ends.We bandpass the LFP data (Sec. III-B) and trim
500ms off the ends.

• Step 2: all simulations use a window size of 500ms
and a stride of 100ms except for the frequency drift
simulation (Sec. III-A2), where we use a window size
of 200ms and a stride of 50ms. All simulations use
an OPT-DMD rank of 4 except for the four assembly
simulation (Sec. III-A1), where we use 2, 4, and 6.

• Step 3:, the similarity thresholds are listed in Table 1.
• Step 4 (optional): when using an OPT-DMD rank of
6 in the four assembly simulation, we require two or
more consecutive similar modes in a row. In the LFP and
SST data, we require three or more consecutive similar
windows in a row.

• Step 5: for all simulations, we smooth the frequency in
S with a moving average of size 51ms.

• Step 5 (optional): we include a channel specific temporal
lag in for the simulation in Sup. Sec. S2-B.

• Step 6 (optional): for the frequency decay simulation
(Sup. Sec. S2-A), we remove all individual modes where
the reconstruction error is less than 0.2.

• Step 7 (optional): In all simulations except those listed
below, we feature select using the exact method (Sup.
Sec. SA-1), and we use a variance threshold of 0.01.
In the cases of using a large rank in Sec. III-A1 or in the
frequency die off simulation (Sup. Sec. S2-A), we use
gradient descent with a maximum number of iterations
of 5. In all simulations, we run the SBS feature selection
algorithm and terminate at 1 mode. In the frequency
decay simulation, (Sup. Sec. S2-A), we use the SFS
algorithm and terminate at 30 modes.

• Step 8: the parameters for gradient descent are described
Table 1. In all simulations, we use a maximum iteration
of 100, a learning rate of 0.01, a momentum of 0.9, and
a low pass filter of the initial guess at 2Hz.
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