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ABSTRACT Biomedical image analysis has played a pivotal role in modern healthcare by facilitating
automated analysis and interpretation of medical images. Biomedical image classification is the process
of automatically labelling or categorizing medical images based on their content. In recent years, this
field has received considerable attention because of the abundance of bio-medical image data and the
potential for deep learning (DL) algorithms to assist medical staff in identifying diseases and making
treatment decisions. DLmethods aremostly convolutional neural networks (CNN) has illustrated outstanding
performance in analyzing and classifying biomedical images. Therefore, this study presents a new Hybrid
Metaheuristics with Deep Learning based Fusion Model Biomedical Image Analysis (HMDL-MFMBIA)
technique. The HMDL-MFMBIA technique initially performs image pre-processing and Swin-UNet-based
segmentation. Besides, a fusion of multiple DL-based feature extractors takes place using Xception and
Residual Network (ResNet) model. Moreover, a hybrid salp swarm algorithm (HSSA) was employed for
the optimal hyperparameter selection of the DL models. Finally, the gated recurrent unit (GRU) algorithm
can be exploited for the detection and classification of bio-medical images. A widespread of simulated is
conducted to establish the enhanced biomedical image classification results of theHMDL-MFMBIAmethod.
The simulation outcomes inferred the greater outcome of the HMDL-MFMBIA algorithm over other DL
models.

INDEX TERMS Biomedical image analysis, image classification, computer vision, fusion model, deep
learning.

I. INTRODUCTION
Biomedical image analysis is an extensive field, which
comprises a broad range of approaches and techniques for
extracting, processing, and interpreting relevant data from
biomedical images [1]. It acts an essential role in medical
research, clinical practice, and healthcare management [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ines Domingues .

Biomedical image classification is referred to the tasks of
automatically labelling or classifying medical images based
on their content [3]. In recent times, the field has received
considerable interest due to a bunch ofmedical imaging infor-
mation and the possibility of Deep Learning (DL) methods
to support medical specialists in making treatment decisions
and diagnosing diseases [4]. Medical image analysis aims to
give tools for effective diagnostic and treatment processes
for physicians and radiologists [5]. Medical imaging devices
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like CT, MRI, and X-ray can deliver functional and anatom-
ical data about abnormalities and diseases inside the body
non-destructively [6]. Since various medical images have
artefacts, confounding details (in the absence of them), and
imperfections, it is required to process them for extract-
ing useful data from them [7]. Image processing techniques
have done several contributions to medical applications; for
instance, image-guided surgery, image segmentation, and
image registration are extensively utilized in medical treat-
ment and diagnoses [8]. In specific fields, like medical
imaging, DL techniques outperform human specialists con-
siderably. The DL methods utilize huge amounts of datasets
for predicting complex tasks.

In Computer Vision (CV) tasks where interpreting the
images, the DL technique has attained a remarkably higher
level of accuracy [9]. Convolutional Neural Networks
(CNNs) can be a special kind of NNs which is the most
effective to analyze information in a grid-form topology [10].
Recently, the DL model, especially Deep CNN (DCNN) is
the most efficient practice of medical imaging analysis [11].
In contrast to other Artificial Intelligence (AI) technologies,
Deep Neural Networks (DNNs) provides highly improved
outcomes in image classification tasks and can frequently
exceed the human domain specialists. There has been a
growing concern about the applications of AI technology
for imaging segmentation and classification for bio-medical
applications [12]. CNN is a recent model for image classifi-
cation and segmentation, though encoder-decoder converter
models are recommended [13].

This study presents a new Hybrid Metaheuristics with
Deep Learning based Fusion Model Biomedical Image Anal-
ysis (HMDL-MFMBIA) technique. The HMDL-MFMBIA
technique initially preprocesses the images and segments it
using Swin-UNet model. Followed by, fusion of multiple
DL-based feature extractors are carried out by Xception and
Residual Network (ResNet) model. Besides, a hybrid salp
swarm algorithm (HSSA) was employed for the optimal
hyperparameter selection of the DLmodels. At last, the gated
recurrent unit (GRU) algorithm was exploited for the detec-
tion and classification of bio-medical images. To highlight
the better performance of the HMDL-MFMBIA algorithm,
a widespread simulation analysis is made.

II. RELATED WORKS
Pradhan et al. [14] examine an intelligent approach for classi-
fying CXR and MRI images as abnormal and normal classes
for initial diagnosis of HD, COVID19, and AD dependent
upon ensemble DNN. During the presented approach, CNN
was utilized for automatic feature extraction in images, and
LSTM was utilized for the last classifier. Furthermore, the
Hill-Climbing Algorithm (HCA) was executed to determine
an optimum feasible value for hyperparameters of CNN
and LSTM like the dimensional of filters of CNN and
the unit counts of LSTM but fitting the other parameters.
Ahmed et al. [15] examine a new encoded-decoded structure
termed as DOLG-NeXt, integrating 3 main improvements on

the UNet-based variations. Primarily, the authors combine
SE-Net-driven ConvNeXt phases as an encoded backbone to
effectual extraction features. Secondarily, the authors utilize
DOLG feature components from the decoded for retriev-
ing fine-grained contextual feature representation. Barzekar
and Yu [16] examine a new CNN structure comprised of
the Concatenation of multiple Networks called as C-Net
for classifying bio-medical images. The first 2 parts of the
infrastructure comprise 6 networks, which assist as feature
extractions to provide an Inner network for classifying the
images with respect to benign and malignant. Mansour [17]
introduces a new AI-based fusion method for CRC clas-
sification and analysis, termed AIFM-CRC. Moreover, the
WOA-tuned deep SVM technique was utilized as a classifi-
cation method for determining the presence of CRC.

A unique deep CNN approach for brain tumour clas-
sification was presented in [18]. A novel CNN technique
could not need to be trained from scratch wasting days
or weeks, but somewhat utilizing TL for data distillation.
Besides, to improve the trained acceleration other optimizer
approaches are employed, weights were initialized by the
Gaussian initialization approach and then the ReLu activa-
tion function. Assad and Kiczales [19] develop a new deep
feature extraction and classification system for bio-medical
images termed Diagonal Bilinear Interpolated Deep Residual
Network (DBI-DRSN). The DBI-DRSN approach integrates
a balancing of information or feature using the DBI pre-
processing approach and classifications the features using
fine-tuned by the DRSN approach.

Pang et al. [20] introduce a novel fused CNN for devel-
oping a further correct and extremely effectual classification
for biomedical images that integrates shallow and deep layer
features in the presented DNN structure. Alanazi et al. [21]
examine an intelligent DL-allowed oral squamous cell car-
cinoma detection and classification (IDL-OSCDC) approach
utilizing bio-medical images. The projected IDL-OSCDC
approach utilizes GF as the pre-processed stage for elim-
inating noise content. Additionally, an enhanced GOA
(EGOA)-based DBN approach was utilized for OC recog-
nition and classification. The hyper-parameter tuning of the
DBN algorithm was carried out utilizing the EGOA approach
that in turn increases the classifier outcomes.

Jaszcz et al. [22] the usage of heuristic red fox heuristic
optimization algorithm (RFOA) for diagnostic image seg-
mentation is proposed. The heuristics’ operation was adapted
to the analysis of 2D images, with the novel fitness func-
tion and the focus on equation modification. In [23], the
Harris Hawks optimized convolution network (HHOCNN)
is used for resolving these challenges. The brain magnetic
resonance (MR) image was preprocessed, and the noisy pix-
els are eliminated to minimize the false tumor recognition
rate. Then, the candidate region process is applied for iden-
tifying the cancerous area. Khan et al. [24] a lightweight
deep learningmethod is presented for human gait recognition.
Initially, two lightweight pretrained models are considered
and finetuned with respect to additional layers and freezing
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some middle layers. The fusion process can be done by the
discriminating correlation analysis, which is enhanced by the
moth-flame optimization algorithm.

In the realm of medical image classification, a notable
research gap exists in the realm of hyperparameter tuning
and feature extraction approaches.While DL algorithms have
achieved great results in this domain, there remains room
for development in enhancing feature extraction methods
tailored to medical image features. Fusion-based feature
extraction, which fuses data from different DL approaches
presents an underlying potential for improving the dis-
criminatory power of classification model. In addition, the
systematic tuning of hyperparameters, involving those related
to optimization algorithms and network architecture, holds
the potential to further improve model performance for medi-
cal image classification task. Most of the existing works does
not focus on the hyperparameter tuning using metaheuris-
tics. Bridging this research gap may results in more robust
and accurate classification techniques, ultimately benefiting
clinical diagnoses and treatment planning in the medical
field. Therefore, in this work, we have focused on the design
and development of the fusion based feature extraction pro-
cess comprising Xception and ResNet models. In addition,
the hyperparameter tuning process can be carried out using
the HSSA.

III. THE PROPOSED MODEL
In this article, we have presented the design of the auto-
mated biomedical image classification approach, named
the HMDL-MFMBIA method. The main objective of
the HMDL-MFMBIA method is to investigate biomedical
images for the existence of diseases. To achieve this, the
HMDL-MFMBIA technique comprises several phases of
functions like pre-processing, Swin-UNet-based segmenta-
tion, fusion-based feature extraction, HSSA-based parameter
tuning, and GRU-based classification. Fig. 1 depicts the
workflow of the HMDL-MFMBIA approach.

A. IMAGE PRE-PROCESSING AND SEGMENTATION
Initially, the pre-processing of the biomedical images takes
place. During the experimentation phase, Image process-
ing methods including Morphological Operators, Histogram
equalization, and Thresholding were explored [25]. In this
work, Histogram Equalization was recognized as the most
effective method to enhance the performance of DL tech-
niques in feature extraction. The enhancement can be accom-
plished by the histogram equalization observed in sample
images from normal and pneumonia data, where it efficiently
enhances the overall quality and image contrast. Histogram
equalization has a critical role to play in areas of lower con-
trast within an image. It can be done by rescaling the intensity
level based on the frequency whereupon they occur. The
crucial features are highlighted by expanding the intensity
values, which makes it a good choice for pre-processing. The
method efficiently increases the overall contrast of the image,

allowing for better analysis and visualization of fundamental
features.

Then, the Swin-UNet model can perform the segmenta-
tion of pre-processed images. Medical images often come
with variations in terms of lighting, orientation, and quality.
Swin-UNet’s capability to learn and adapt to the variation
can make it versatile and more robust in handling different
medical image dataset. Swin-UNet integrates self-attention
mechanism, which allows to focus on applicable area within
the input images. In medical image segmentation, capturing
fine details and subtle patterns can be crucial, and atten-
tion mechanism helps the model prioritize significant areas,
resulting in more accurate segmentation. Swin-UNet exploits
a hierarchical model to process image data at different scales.
In medical images, structure of interest might differ in scale
and size, and the ability to analyze the structure at dis-
similar levels of granularity can be crucial for the accurate
segmentation.

FIGURE 1. Workflow of HMDL-MFMBIA methodology.

The proposed method comprises a skip connection, bottle-
neck, encoder, and decoder. The building block of Swin-Unet
is the Swin Transformer block. In the case of the encoded,
the bio-medical image was divided as to non-overlapping
patches with 4 × 4 patch size for transforming the
input into sequence embedding. Using this partitioning
method, the feature dimension of all the patches becomes
4 × 4 × 3 = 48. Moreover, a linear embedded layer
can be exploited to give the size of features as a random
dimension. The transformed patch token passed over the
patch merging layer and Swin Transformer block for gen-
erating the hierarchical feature representation. The study
developed a symmetric transformer-based decoder based on
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U -Net architecture. The decoder is made up of a
patch-expanding layer and a Swin Transformer block.
Finally, the patch expanding layer implemented 4×up-
sampling for restoring the resolve of the mapping feature
into the input (W × H ), and later the linear projection layer
was performed on this up-sampled feature to the outcome of
pixel-level segmentation prediction.

B. FUSION-BASED FEATURE EXTRACTION
In this phase, the fusion of two feature extractors takes
place to derive feature vectors from the segmented images.
Separable Convolution was replaced by the depthwise Sep-
arable Convolution in the Xception model [26]. Xception
is an ‘‘extreme’’ variant of Inception architecture which
outperform InceptionV3 on the ImageNet data and consid-
erably surpasses it on large datasets with 17,000 classes.
Compared to separable convolution, Depthwise Separable
convolution need lesser computation. Therefore, Xception
needs a lesser amount of parameters than other CNN variants.
The depthwise 2D convolutions were slower than typical
2D convolutions while employing lesser memory. Notably,
it takes a similar amount of model parameters as Inception,
resulting in great computation performance. After the initial
function, the absence or existence of nonlinearity. Nonlinear-
ity was proposed in the Inception architecture by compressing
and filtering input space, but Xception doesn’t.

The ResNet18 version was used in this study for deep
feature extraction. It has 18 layers. The ResNet18 archi-
tecture was initially pre-trained on the thousand classes of
the ImageNet datasets, comprising the ResNet18 architecture
with 11,511,784 trainable parameters. The main objective
is to enable a massive amount of convolutional layers. Due
to the presence of vanishing issues, the performance of the
network becomes degraded or saturated. When there are mul-
tiple layers, a vanishing gradient arises, and the continuous
multiplication leads to an even small gradient than the prior
one; this situation results in the degradation of the network
performance. In this work, a new concept was introduced for
addressing the gradient vanishing problems that is ‘‘skip con-
nection’’. The skip connection resolves the gradient vanishing
problems by using the prior layer activation. Skip connection
compresses the network, and the network begins to learn
faster than before.

C. HYPERPARAMETER TUNING
The HSSA is used for adjusting the hyperparameter values
of the DL models. The SSA is a method, which efficiently
mimics the swimming and foraging procedures of a salp
swarm (SS) from the ocean [27]. The SSA provide a valuable
reference for the understanding and study of the group forag-
ing behaviors of the salp swarm and simulates the movement
and behavior of the salp swarm. In HSSA, the fusion of the
parameter of SSA and the Levy flight (LF) reinforces the
global search ability of the SSA and ensures the optimum
value in time. This technique increases the diversity of the

algorithm and enhances the search intensity of SSA. The
optimization algorithm ensures that the algorithm can find
the optimum value and prevent getting trapped in the local
optima, and the algorithm has optimum global search capa-
bilities due to its enhanced diversity.

Salp individual moves the same as jellyfish, the SSA is
developed as an important device for researcher workers to
search for its performance and movement. The most stimulat-
ing feature is the group-feeding performance of the tarantula.
But, the major details of bioinformatics for this performance
are not clear, many researchers are considered and initiated
that this performance is optimum exploit quick co-ordination
alters for achieving optimum movement trajectories for opti-
mizing foraging performance. Finally, the SSA could not
only mimic the movement and performance of SS and offer
a valued reference for case and recognition of the group
foraging performance of SS.

For modelling the movement trajectories of the SS pop-
ulation under the foraging, it is initially separated the SS
population into 2 types such as leader and follower. The
leader was placed at the top of the SS chain, but the other
salps can be assumed followers. While the name recom-
mends, the leaders of SS can be responsible to guide the
group movement, and the followers follow. Related to other
population intelligence optimizer methods, it is determined
the positions of SS from the n-dimensional searching space
as a model, but n is defined as dependent upon a provided
problem. Therefore, the positions of every salp are saved in a
2D matrix.

During the search space, it can be utilized F as the food
source (the FF that resolved) as the target to SS for searching
for food.

Themathematical process of foragingmovement trajectory
of the SS chain is as:

x1j =

{
Fj + c1 ×

((
ubj − lbj

)
× c2 + lbj

)
, c3 ≥ 0

Fj + c1 ×
((
ubj − lbj

)
× c2 + lbj

)
, c3< 0

x ij =
1
2

(
x ij − x i−1

j

)
, i ≥ 2

(1)

whereas X1
j represents the location of 1st bottle sea squirt in

j dimensional, i≥ 2,X ij signifies the location of ith Nara sea
squirt follower in j dimensional, Fj stand for the position of
the food source from j dimensional, ubj implies the maximal
vector from the searching space, lbj defines the minimal
vector from the searching space, and c1, c2, and c3 represents
the arbitrary numbers.

Eq. (1) displays that the leader only upgrades their place
to a food source. Most of the parameters c1 refer to the very
essential parameter in this method and are demonstrated as:

c1 = 2e−( 4Ll )
2

(2)

whereas l denotes the present iteration of the method and
L represents the entire iteration counts of the method.
c2 and c3 indicate the arbitrary numbers from the range of
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zero and one. Actually, c2 and c3 define if the next position of
SSs from the jth dimensional can be positive/negative infinity
and the step length of SSs.

The HSSA is designed by the combination of the SSAwith
the LF. It is a technique for representing the Levy distribution
in arbitrary steps. Several analyses demonstrated that several
insects and animals behave in a method which is typically a
feature of LF. LF is a process of arbitrary step size, an inspired
image of LF trajectory that continuously takes place with
smaller step sizes but sometimes takes place with huge jumps.
The formula for LF is as follows:

Levy ∼ µ = t−λ, 1 <λ≤ 3 (3)

The step s of LF are provided as:

s =
µ

|v|
1
β

(4)

whereas the parameters β= 1.5,µ = N (0,σ 2
µ) and

v = N (0,σ 2
v ) every refers to the gamma functions. The

variance σµ of parameters are defined by the subsequent
formula:

σµ =

0(1+β) × (sinπ ×
β
2 )

0
[

(1+β)
2

]
× β×2

(β−1)
2


1
β

′σv = 1 (5)

While LF takes the property of enhancing the population
diversity and growing the searching range, Eq. (1) is optimum
whole the upgrade of leader position and create it simpler to
jump of local optimal issue. Thus, an enhanced mathematical
approach to the SSA technique was formulated by relating
Eqs. (44) and (42) as follows:

x1j =

{
Fj + c1×((ubj − lbj) + lbj)×Levy, c3 ≥ 0
Fj − c1×((ubj − lbj) + lbj)×Levy, c3< 0

(6)

The parameter c1 in Eq. (6) was attained in Eq. (2) which
allows the optimizer method to tighten the optimum value of
the fitness function (FF) with enhancement from the iteration
counts. The group of parameter c1 and the LF supports the
global searching ability of SSA and makes sure of the opti-
mum value in time. This approach could not only enhances
the searching SSA intensity and enhances the variety of
method.

The HSSA method derives a FF to accomplish higher
efficiency of classification. It described a positive integer to
describe the greater outcomes of the candidate solution. The
decay of the classification error rate is represented as FF.

fitness (xi) = ClassifierErrorRate (xi)

=
No .of misclassified samples

Total No .of samples
∗100 (7)

D. GRU-BASED CLASSIFICATION
Finally, the GRU approach is applied to the classification of
images. The GRU network reconstructs the LSTM modules
while retaining their quality [28]. All the GRU cells have two

different gates namely the reset gate jt and update gate bt .
Fig. 2 illustrates the infrastructure of GRU. Due to the GRU
network being different from the LSTM network, it is utilized
to resolve the problem of a long-dependency standard RNN
network. The fundamental steps of GRU are given below:

Firstly, the hidden input xt is the latest state determined by
the prior cell ht−1 reset gate jt afterwards describe gate vt at
current state (time t):

jt = σ
(
wj [ht−1, xt ] + bj

)
(8)

vt = σ
(
wv [ht−1, xt ] + bZ

)
(9)

where wj and wv denote the proper matrix of weight coef-
ficient, bj and bZ refer to bias vectors, and σ () shows the
sigmoid function:

h̃t= tanh
(
wh [(ht−1 ∗ jt) , xt ] + bh

)
(10)

In Eq. (10), tanh tangent hyperbolic function wh denotes the
matrix weighted coefficient for the buried layer, bh is the
related bias vector, and ∗ denotes the matrix of dot progress
among pairs.

At last, assume the existing latent state ht output is linearly
defined by integrating ht and ht−1 existing and prior hidden
state, total with the adjusted coefficient of 1:

ht= (1−vt )∗ht + v∗t ht−1 (11)

FIGURE 2. GRU structure.

IV. EXPERIMENTAL VALIDATION
In this section, the biomedical image classifier outcomes
of the HMDL-MFMBIA technique are validated on two
datasets: ISIC 2017 and ISIC 2020 dataset, available at
https://challenge.isic-archive.com/data/. The ISIC (Interna-
tional Skin Imaging Collaboration) 2017 and ISIC 2020 are
two skin lesion datasets utilized in the fields of dermatology
and computer vision for the task of skin lesion classification
and analysis. The ISIC 2017 dataset was created with the
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aim of the ISIC 2017 Skin Lesion Classification Challenge.
It aimed to advance the fields of automated skin lesion
diagnoses through ML and CV techniques. The dataset has
dermoscopy images of skin lesions, which are classified into
several classes, involving nevus, melanoma, and seborrheic
keratosis. All the images are obtained by ground truth anno-
tations, which provide data about the type and features of
the skin lesion. The ISIC 2020 dataset was created as part of
the ISIC 2020 Challenge on Skin Lesion Analysis Towards
Melanoma Detection. The challenge aimed to advance the
state of the art in skin lesion analysis and melanoma recog-
nition. ISIC 2020 comprises of a more diverse and larger
collection of skin lesion images with different kinds of
skin lesions, and they are available in different data splits,
involving validation, training, and testing sets. These datasets
comprise two classes such as benign and melanoma as
depicted in Table 1.

TABLE 1. Description of two datasets.

FIGURE 3. Performance on ISIC2017 database (a-b) 70:30 of TR set/TS
set, (c) PR curve, and (d) ROC curve.

Fig. 3 establishes the classifier outcome of the HMDL-
MFMBIA technique under the ISIC2017 dataset. Fig. 3a
represents the confusion matrix offered by the HMDL-
MFMBIA algorithm on 70% of the TR set. The outcome
implied that the HMDL-MFMBIA approach has identified
965 instances of benign and 1020 instances of melanoma.
Moreover, Fig. 3b exemplifies the confusion matrix offered

by the HMDL-MFMBIA algorithm on 30% of the TS set.
The outcome stated that the HMDL-MFMBIA methodology
has recognized 432 instances of benign and 414 instances
of melanoma. Also, Fig. 3c exhibits the PR curve of
the HMDL-MFMBIA system. The result referred that the
HMDL-MFMBIA system has acquired a higher PR curve on
2 classes. Likewise, Fig. 3d displays the ROC outcome of
the HMDL-MFMBIA algorithm. The outcome demonstrated
that the HMDL-MFMBIA methodology has managed to able
outcomes with greater ROC values on 2 class labels.

In Table 2 and Fig. 4, the classifier outcome of
the HMDL-MFMBIA technique is highlighted on the
ISIC2017 dataset are given. The outcome implied that the
HMDL-MFMBIA technique properly categorized benign and
melanoma samples.

TABLE 2. Classifier outcome of HMDL-MFMBIA algorithm on ISIC2017
database.

FIGURE 4. Average outcome of HMDL-MFMBIA methodology on ISIC2017
database.

On 70% of TR set, the HMDL-MFMBIA system provide
average accuy of 94.51%, precn of 94.55%, recal of 94.51%,
Fscore of 94.52%, and AUCscore of 94.51%. Besides, on 30%
of TS set, the HMDL-MFMBIA system provide average
accuy of 94.08%, precn of 94%, recal of 94.08%, Fscore of
94%, and AUCscore of 94.08%.

Fig. 5 demonstrates the training accuracy TR_accuy
and VL_accuy of the HMDL-MFMBIA technique on the
ISIC2017 dataset. The TL_accuy is defined by the evaluation
of theHMDL-MFMBIA algorithm on the TR dataset whereas
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FIGURE 5. Accuy curve of HMDL-MFMBIA methodology on ISIC2017
database.

the VL_accuy is computed by estimating the performance on
a separate testing dataset. The outcomes reveal that TR_accuy
and VL_accuy are higher with an increase in epochs. Con-
sequently, the outcome of the HMDL-MFMBIA technique
gets enhanced on the TR and TS dataset with a rise in several
epochs.

In Fig. 6, the T_loss and VR_loss results of the
HMDL-MFMBIA algorithm on the ISIC2017 dataset are
exposed. The TR_loss defines the error among the pre-
dictive performance and original values on the TR data.
The VR_loss represents the measure of the outcome of the
HMDL-MFMBIA technique on individual validation data.
The results indicate that the TR_loss and VR_loss tend to
reduce with increasing epochs. It portrayed the improved
performance of the HMDL-MFMBIA method and its ability
to create an accurate classification. The reduced value of
TR_loss and VR_loss establishes the greater performance
of the HMDL-MFMBIA method in capturing patterns and
relationships.

FIGURE 6. Loss curve of HMDL-MFMBIA methodology on ISIC2017
database.

The comparison results of the HMDL-MFMBIA algorithm
on the ISIC2017 database are provided in Table 3 and Fig. 7.
The results show that the ResNet18, Inceptionv3, AlexNet,

FIGURE 7. Comparative outcome of HMDL-MFMBIA algorithm on
ISIC2017 database.

TABLE 3. Comparative outcome of the HMDL-MFMBIA method with
other approaches on the ISIC2017 database.

SVM Model, and Ensemble Model have reported least clas-
sification results. At the same time, the MCUN-DCNN
technique has accomplished considerable performance with
accuy, precn, and recal of 88.20%, 78.50%, and 87.80%
respectively. Nevertheless, the HMDL-MFMBIA technique
exhibited improved performance with accuy, precn, and recal
of 94.51%, 94.55%, and 94.51% correspondingly

Fig. 8 shows the classifier outcomes of the HMDL-
MFMBIA methodology under the ISIC2020 database.
Fig. 8a illustrates the confusion matrix gained by the
HMDL-MFMBIA approach on 70% of the TR set. The
outcome pointed out that the HMDL-MFMBIA method
has detected 999 instances of benign and 1004 instances
of melanoma. Moreover, Fig. 8b portrays the confusion
matrix accomplished by the HMDL-MFMBIA algorithm
on 30% of the TS set. The outcome inferred that the
HMDL-MFMBIA method has recognized 432 instances of
benign and 423 instances of melanoma. Likewise, Fig. 8c
shows the PR curve of the HMDL-MFMBIA methodology.
The outcome stated that the HMDL-MFMBIA approach
has attained enhanced PR outcomes in 2 class labels.
At last, Fig. 8d displays the ROC analysis of the HMDL-
MFMBIA methodology. The outcome depicted that the
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FIGURE 8. Performance on ISIC2020 database (a-b) 70:30 of TR set/TS
set, (c) PR_curve, and (d) ROC_curve.

TABLE 4. Classifier outcome of HMDL-MFMBIA system on ISIC2020
database.

HMDL-MFMBIA approach has led to capable outcomeswith
higher ROC values on 2 classes.

In Table 4 and Fig. 9, the classifier outcomes of
the HMDL-MFMBIA algorithm are highlighted on the
ISIC2020 dataset are given. The outcome implied that the
HMDL-MFMBIA algorithm properly categorized benign and
melanoma samples. On 70% of TR set, the HMDL-MFMBIA
system offered average accuy of 95.38%, precn of 95.38%,
recal of 95.38%, Fscore of 95.38%, and AUCscore of 95.38%.
In addition, on 30% of TS set, the HMDL-MFMBIA method
provided average accuy of 95.01%, precn of 95%, recal of
95.01%, Fscore of 95%, and AUCscore of 95.01%.
Fig. 10 illustrates the training accuracy TR_accuy

and VL_accuy of the HMDL-MFMBIA approach on the
ISIC2020 dataset. The TL_accuy is defined by the estimate
of the HMDL-MFMBIA system on the TR dataset whereas
the VL_accuy is computed by evaluating the outcome on a
separate testing dataset. The results exhibit that TR_accuy and
VL_accuy are higher with a rising in epochs. Accordingly,
the performance of the HMDL-MFMBIA technique gets

FIGURE 9. Average outcome of HMDL-MFMBIA system on ISIC2020
database.

FIGURE 10. Accuy curve of HMDL-MFMBIA methodology on ISIC2020
database.

enhanced on the TR and TS dataset with an increase in the
count of epochs.

In Fig. 11, the TR_loss and VR_loss outcomes of the
HMDL-MFMBIA approach on the ISIC2020 dataset are

FIGURE 11. Loss curve of HMDL-MFMBIA methodology on ISIC2020
database.
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shown. The TR_loss demonstrates the error among the pre-
dictive performance and original values on the TR data.
The VR_loss signifies the measure of the outcome of the
HMDL-MFMBIA approach on individual validation data.
The outcomes implied that the TR_loss and VR_loss tend to
be lesser with increasing epochs. It portrayed the enhanced
result of the HMDL-MFMBIA method and its ability to gen-
erate accurate classification. The reduced value of TR_loss
and VR_loss demonstrates the higher performance of the
HMDL-MFMBIA methodology in capturing patterns and
relationships.

The comparison outcomes of the HMDL-MFMBIA
system on the ISIC2020 dataset are provided in Table 5
and Fig. 12. The outcome depicted that the ResNet18,
Inceptionv3, AlexNet, SVM, and Ensemble approaches
have reported minimal classifier outcomes. Likewise, the
MCUN-DCNN algorithm has accomplished considerable
performance with accuy, precn, and recal of 90.40%, 90.40%,
and 90.30% correspondingly. But, the HMDL-MFMBIA
method displayed better performance with accuy, precn, and
recal of 95.38%, 95.38%, and 95.38% correspondingly.

TABLE 5. Comparative outcome of the HMDL-MFMBIA system with other
methodologies on the ISIC2020 database.

FIGURE 12. Comparative outcome of HMDL-MFMBIA algorithm on the
ISIC2020 dataset.

These outcomes illustrated the enhanced classification
outcome of the HMDL-MFMBIA method on biomedical

images. The enhanced performance of the HMDL-MFMBIA
method is due to the integration of the feature fusion
and hyperparameter tuning processes. Fusion-based feature
extraction enables the model to capture intricate relationships
and patterns within medical images, leveraging complemen-
tary information from different DL techniques. Moreover,
the systematic hyperparameter tuning ensures that the model
works at its optimum configuration, efficiently balancing
tradeoffs between various parameters and finetuning the
learning process. This comprehensive optimization process
collectively contributed to the model’s superior performance,
which makes it a valuable tool for reliable and accurate
medical image classification, ultimately aiding healthcare
professionals in making more informed decisions for patient
care.

V. CONCLUSION
In this study, we have focused on the design of the auto-
mated biomedical image classification approach, named
the HMDL-MFMBIA approach. The major drive of the
HMDL-MFMBIA algorithm is to investigate biomedical
images for the existence of diseases. To achieve this, the
HMDL-MFMBIA technique comprises several phases of
functions like pre-processing, Swin-UNet-based segmenta-
tion, fusion-based feature extraction, HSSA-based param-
eter tuning, and GRU-based classification. To demonstrate
the enhanced biomedical image classification results of
the HMDL-MFMBIA system, a widespread of simulated
outcomes are applied. The simulation outcomes inferred
the enhanced efficiency of the HMDL-MFMBIA method-
ology with DL approaches with maximum accuracy of
94.51% and 95.38% on ISIC 2017 and ISIC 2020 datasets,
respectively. In future, the computational complexity of the
HMDL-MFMBIA model can be examined on large scale
real time datasets. Besides, future work can focus on inte-
grating information from multiple imaging modalities (e.g.,
MRI, CT, X-ray) for classification tasks holds promise for
improved accuracy. Finally, future work can explore inter-
pretable DL models and techniques for generating saliency
maps or explanations can enhance trust and clinical adoption.
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