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ABSTRACT The SAS-CBRS framework is being tested to share the federally held spectrum with licensed
users and opportunistic users to maximize the underutilized spectrum’s utility and overcome spectrum
scarcity. In the SAS-CBRS framework, radio resources are assigned to the incumbent access (IA), primary
access licensees (PAL), and general authorized access (GAA) users according to the given priority. The
SAS-CBRS three-tier framework is different from the conventional cognitive radio networks (CRN) as it
involves a central entity that acts as a server called a spectrum access system (SAS). The methods to assign
the resources using the SAS are still in the research phase. Yet, no standard method is defined by the FCC
for resource allocation. The current CRN methods cannot be directly applied because of the addition of
the third tier and a central server. Moreover, strict rules are defined for using the 3.5 GHz spectrum band
for communication. In this paper, a novel DDRQ-SAS algorithm integrated with the double auction (DA)
algorithm is proposed that uses deep recurrent double Q-learning. The DDRQ-SAS is used by the SAS to
hold a spectrum auction and create a spectrum pool to get information on PAL channels. PAL operators
use the DA algorithm to generate the asking prices intelligently for their available idle channels and the
GAA users will use the DA algorithm to intelligently bid for their preferred channels. The DDRQ-SAS-
DA algorithm allows the GAA users to get the guaranteed QoS offered by the PAL operators in an auction.
GAA users maintain the preference list of the PAL reserved idle channels and bid intelligently based on the
available QoS. SAS completes the transaction by allocating the channels to the winning GAAs. The defined
problem is also modeled using the double auction multi-winner multi-channel technique and the TDSA-PS
algorithm. Numerical results show that the proposed DDRQ-SAS-DA algorithm provides up to 20% better
QoS at higher loads for GAA users, generates 24% more revenue for PAL operators, and is 1.6 times more
efficient in assigning 500 GAA users.

INDEX TERMS SAS-CBRS, double auction algorithm, deep learning, Q-learning, channel allocation.
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I. INTRODUCTION
The rapid increase in the wireless dynamic interactive
applications, services, and the astronomical growth of the
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internet of things IoT devices caused the enormous trans-
mission of data over conventional cellular networks, creating
severe spectrum scarcity [1]. Moreover, the current static
allocation techniques are unable to meet the overwhelming
bandwidth requirements of bandwidth-hungry applications
[2]. The radio frequency spectrum is a finite and strictly
bounded resource and most of the spectrum available for
commercial users is underutilized because of inefficient static
allocation techniques [3]. In response to the President’s
council of advisors on science and technology (PCAST)
report [4], the Federal communications commission (FCC)
identified 1473 MHz federally-held spectrum, which can be
shared with commercial users to cope with the challenge of
spectrum scarcity [5]. The 2.2 GHz spectrum band is used to
test 5G services in Europe, known as the licensed spectrum
access (LSA) system, while the 150 MHz federally held
spectrum band (3550 MHz-3700 MHz) called the citizens
broadband radio service (CBRS) band. This band is currently
used for the testing of 5G services in the United States
[6]. The CBRS radio spectrum band comprises a spectrum
access system (SAS) based centralized server to share the
available 150 MHz spectrum with commercial users in
presence of the federal military users including the Naval
radars and the Satellite earth stations [7].
The three-tier SAS-based CBRS system is a priority-based

system in which the highest priority is given to the federal
users known as the incumbent access (IA) users, the
second tier exists with the primary access licensees (PAL)
users. In the CBRS framework, opportunistic users are also
provided with a dedicated spectrum band to communicate.
These opportunistic users are the least priority users known
as general authorized access (GAA) users [8]. The 150 MHz
spectrum band is shared with commercial users and allocated
through competitive auction. 70 MHz radio frequency
spectrum band is reserved for the PAL operator’s use and the
rest of the 80MHz spectrum band is opened for opportunistic
use dedicated to the GAA users [9]. The IA users may use the
complete 150 MHz radio frequency band and the SAS will
provide free channels to the IA users with strict protection.
Moreover, the licensed PALs are kept safe from harmful
interference caused by opportunistic GAA users. The SAS
will provide the imperative quality of service (QoS) to high-
priority users. The SAS will not provide the GAA users with
the services as per their requirements. The GAA users have
been given the ability to access the PAL-reserved 70 MHz
channels opportunistically if a transmission opportunity is
available [10]. The 70 MHz frequency spectrum for PAL use
is split into seven fragments of 10MHz each. A PAL operator
can apply for up to four bands of 10MHz in a census tract i.e.,
a geographical location [6].

There are numerous challenges associated with the imple-
mentation of the recently proposed SAS-CBRS framework.
Some of the important challenges are the radio frequency
channel assignment, maintaining the priority of the users,
interference management, heterogeneous co-existence of

users, operational security of the IA users, and the protocols
for the FCC to standardize the framework [11]. In this paper,
we consider the centralized dynamic spectrum access (DSA)
architecture with different PAL operators providing services
to PAL users in presence of GAA users. The SAS can detect
the states of a channel, i.e., either the channel is busy or
unused at a given interval. This information is used by the
SAS to assign channels to the asking users. The PAL users
cannot perceive the channel states, so the chance of collisions
of PAL users transmission from the PAL users is not possible.
The GAA users have the cognitive ability and access the
PAL reserved channels opportunistically. The transmission
of the GAAs will be successful only if the net interference
remains under the threshold limit after the assignment. The
transmission of the GAAs will be failed if both users transmit
on the same channel. This scenario will be refrained by the
SAS and it will ensure that the transmission from the GAA
users will not get affected by the GAA users. The information
on PAL-reserved idle channels, that are to be auctioned is
accessed by the SAS by managing a pool of spectrum.

The Markov decision process (MDP) [12] is used in these
situations because of its efficient decision power that is
based on reinforcement learning (RL). The purpose of using
RL is to map the set of state spaces to the action spaces
in an environment where the environmental characteristics
are unexplored by the agent. However, in the scenarios
of the large state spaces, this method is not used because
most of the states remain unexplored due to which a
generalized solution is not achieved. Moreover, to solve
the shortcomings of the traditional reinforcement learning
based techniques, the deep learning method i.e., google
DeepMind combined with the reinforcement learning known
as the Deep Q-Networks (DQN) is used [13]. The DQN
solutions are based on the approximate value function to
choose an optimal policy. However, the DQN overestimates
the value function by utilizing the correlative value function
for selecting the particular action and estimating the value
function. The inadequacies of the DQN lead to the derivation
of the double DQN [14] to eliminate the overestimation of
the optimal learning policy. Along with the double DQN, the
deep recurrent DQN (DRQN) [15] also stabilizes the time
sequence problems.

In this article, we proposed the DDRQ-SAS algorithm that
uses both the double DQN for stabilizing the overestimation
and the DRQN for fetching particular sequential information.
We also proposed a novel double auction DA algorithm
based on reinforcement learning to efficiently bid for the
available radio frequency channels and then allocate the
channels to the GAA users using the proposed DDRQ-
SAS algorithm. We model the SAS-CBRS framework as
a network of intelligent agents i.e., PAL operators and
the GAAs that can sense the environment having multiple
states and choose actions according to the particular state
of the environment. By taking the benefits of reinforcement
learning, the objective is to find an efficient as well as a
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stable policy to assign the channels to SAS-CBRS users
by maximizing the reward function received after each
action. The DA algorithm helps to converge the channel
allocation of SAS-CBRS users efficiently by discovering the
actions that result in getting a maximum reward. The DA
algorithm allows the PAL operators to auction the available
idle spectrum dynamically according to the demand of the
GAA users. Moreover, it enhances the GAA’s ability to bid
efficiently by exploring the environment states. The scenario
of the SAS-CBRS framework is categorized into licensed and
unlicensed portions in which a licensed portion is accessible
by the opportunistic users but the unlicensed portion can only
be accessed by the unlicensed users. Hence, the on-off policy
of GAA users in the PAL reserved portionmakes it difficult to
increase the capacity of the system as well as the management
of the spectrum to protect the QoS requirements of PAL users.
The DA algorithm will ensure that only GAA users that need
to get guaranteed QoS will be engaged in the auction process
which will also automate the tasks of SAS to authenticate
the users. Hence, the DDQR-SAS-DA algorithm maximizes
the spectrum utilization of the CBRS band as per the rules
proposed by the FCC.

Above all, the key objectives achieved in this paper are
listed below.

1) We proposed the DDRQ-SAS model based on the dou-
ble deep Q-network and the deep recurrent Q-network
to evade the conflicts between the GAA users while
considering the probability of every channel unoccu-
pied channel and available environment states.

2) Double auction DA algorithm based on reinforcement
learning is proposed to improve the spectral efficiency
and the channel capacity while considering the optimal
bidding strategy.

3) The proposed DDRQ-SAS-DA algorithm uses long
short-term memory (LSTM) network instead of eval-
uating the lookup table of value function to enhance
the temporal channel allocation policies. LSTM in
the DDRQ-SAS-DA algorithm enhances the capacity
to handle temporal dependencies and its potential
to enhance policy learning and decision-making in
the context of temporal channel allocation problems.
By using LSTM instead of a lookup table, we achieve
more efficient, adaptive, and effective channel alloca-
tion policies, leading to improved overall performance.

4) The scenario is also modeled using the double auction
framework and the TSDA-PS algorithm to assign
channels.

5) Comprehensive simulation analysis and investigations
are represented to show the performance of the
proposed DDRQ-SAS-DA algorithm compared with
the double auction framework and the TSDA-PS
algorithm.

The rest of this paper is organized as follows: The related
work is summarized in Section II. The SAS architecture
and the detailed problem formulation of the DDRQ-SAS

algorithm and the DA algorithm are discussed in Section III.
In Section IV, the proposed solution DDRQ-SAS is discussed
in detail with the DA algorithm, Double auction multi-
winning-framework, and the TSDA-PS algorithm. Section V
presents a detailed comparison of the proposed DDRQ-SAS
and DA algorithm with the competing algorithms and shows
that it outperforms other algorithms. Finally, the conclusion
of our findings is discussed in Section VI

II. RELATED WORK
In recent years, the problem of channel assignment to
opportunistic users in presence of the licensed commercial
users and federally administered users has been the subject of
intensive investigations. Machine learning (ML) based solu-
tions for dynamic spectrum access are massively recognized
in wireless communications because of their decision power
for unknown environments. The main emphasis of using ML
techniques is to derive the adaptive mechanisms to fairly
distribute the radio resources. Moreover, significant work
is being done in the domains of interference management,
admission control, the coexistence of heterogeneous radio
access technologies, spectrum pricing, the privacy of the
incumbents, and the protocols for the 5G and beyond
communications [16].
The authors in [17] and [18] used the ML-based MDP

process to model the coexistence of radar communications
with commercial users to investigate the channel allocation
problem by applying the policy iteration method. The policy
iteration methods exploit the transition probabilities with the
reward functions. On the contrary, the Q-learning algorithm
is a model-free algorithm that learns from trial and error
without depending on the environment model. The authors
in [19], [20], [21], and [22] use the off-policy algorithms
to achieve the optimal solutions using the state-action pairs
by maintaining the Q-table. There are numerous advantages
of using the off-policy methods i.e., reduced computational
complexity and the convergence to an optimal policy
without prior knowledge. However, in the scenario of large
state spaces, the computational complexity to manage the
Q-table is directly proportional to the scale of state spaces.
To eliminate the issues of Q-learning based on reinforcement
learning, the DQN method based on the neural networks was
used to improve the approximation of the value table.

Authors in [23] used the concept of deep reinforcement
learning for the power allocation problem in the D2D domain
to tackle the non-cooperative problem scenario. We used a
double deep recurrent Q- network based on reinforcement
learning techniques to model the non-cooperative problem.
Authors in [24], [25], and [26] considered the auction
scenarios in which the network operators auctioned the idle
channels to generate revenue. However, the common practice
in realistic scenarios considers both the auctioneer and bidder
in an auction. Consequently, a double auction is required
to enable a complete auction process in which a network
operator specifies its cost preference at a particular time
while the bidders take the QoS requirements offered by the
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network operators. The McAfee auction proposed in [27] is
an example of a double auction method that sells similar
items generating profits for the sellers. However, it does not
allow spectrum reuse. In [28] the authors proposed decoupled
auction for the operators and the bidders for spectrum
allocation. The graph-theory-based solution is used on the
bidder’s side and calculates the price for each subgraph.
The traditional auction mechanism to sell the items is used
on the seller’s side. The purpose of using this technique
is to achieve truthfulness and high profits. However, the
solution is not viable in heterogeneous items like in the
SAS-CBRS constrained environment in which the GAA
users are of different types and directly competing with
each other in the absence of IA and PAL users. Moreover,
authors in [28], [29], [30], and [31] considered the double
auction scenarios where only a single channel was to be
auctioned by the PAL operators but if there will be multiple
idle channels available then PAL operators need to lease
all the available idle channels. Furthermore, the throughput
of the conventional cognitive networks was improved using
multi-channel allocation techniques. In the scenarios where
a PAL user wants to take the assigned channel back and
SU has to vacate the channel, then the communication of
SUs gets terminated. To evade this severe switching overhead
at the operator’s end, the availability time of channels to
the SUs for the lease must be taken into account. However,
there is no distinguished work published that considered
the double auction algorithm while taking these constraints
into an account. Thus, the network performance is degraded
remorselessly.

Deep reinforcement learning-based mechanisms are uti-
lized by the authors in [32] and [33] to assign the channel to
the single opportunistic user in multiple correlated licensed
channels. However, the states’ information is not completely
available to the opportunistic users instead they learn through
the deep Q-network tomap the action space with the available
environment states. It is not feasible in the scenario of the
SAS-based CBRS architectures with very large state space.
Authors in [34] proposed the concept of the Recurrent neural
network (RNN) to solve the computational games for partial
observations based on MDPs called (POMDP). The authors
in [35], [36], and [37] integrated the LSTM with RNN
to solve allocation problems in the DSA to maintain the
sequence information along with the internal states. The
authors investigated the proposed DSA scenario in absence
of the primary users and developed the DRQN for the
opportunistic users to learn only good policies which is not
a practical approach adopted by the DSA in 5G and beyond
communications. In this work, we considered a scenario with
many GAA users in presence of the multiple PAL users.
Moreover, the information is not exchanged between GAA
and PAL users. However, the SAS has been equipped with
the cognitive capability to sense the information from the
PAL operators. Furthermore, the SAS-CBRS framework is
considered the POMDP in which every GAA is capable of

sensing state information but in real scenarios, the GAA users
can sense the states ofmultiple channels in each time slot. The
POMDP scenarios were discussed in detail in [38] and [39].

Moreover, significant research has been done in recent
years to assign the channels in a heterogeneous environment
where the coexistence of PAL and GAA users is considered.
The authors in [40] proposed the concept of game theory with
RL to develop the hybrid MAC to reduce collisions between
secondary users. However, the proposed techniques cannot
be implemented in the SAS-CBRS-based system because of
its inefficiency in a real dynamic environment. The authors
published a survey [41] that investigates the use of the double
deep recurrent Q-network in the domain of 5G and beyond
5G. The authors evaluated the ML techniques in the context
of RAN slicing. This work can be further extended to be used
in the 3.5 GHz CBRS-SAS framework and LSA 2.2 GHz
framework.

The authors in [42] proposed the concepts of graph theory
integrated with reinforcement learning but the solutions are
only acceptable for simple static allocation scenarios with
no PAL users. In [43] multi-slot sensing mechanism based
on Bayesian fusion integrated with RL is investigated. The
proposed method achieves higher detection probability with
decreased error probability. Thompson sampling is used to
find the state information efficiently by integrating reinforce-
ment learning for all channels. Furthermore, we modeled the
channel allocation problem as a multi-objective optimization
problem in [44] and proposed the SAS-QLA algorithm in
[45] based on reinforcement learning to assign the channels
to the GAA users through a competitive auction process
where the SAS acts as auctioneer. The field trials and
the hardware experiments are investigated in [46] and [47]
without considering the collision scenarios of GAA-to-GAA
users and GAA-to-PAL users. The concept of decentralized
SAS using blockchain technology is proposed in [11].
However, the computational complexity of separating the
entities of the SASwill make it difficult to scale the networks.
Authors [48] allocated the radio resources to heterogeneous
technologies i.e., cellular networks, the WiMax, and Wi-Fi.
The authors in [28], [29], [30], and [49] proposed the concept
of radio resource allocation to secondary users through
spectrum trading using the concepts of spectrum auction.
However, the operators offer a single licensed channel to be
part of the auction process. In more realistic scenarios the
GAA users can access more than one PAL channel based on
their QoS requirements. Neural networks are considered in
many studies of SAS-CBRS. The authors in [10] proposed
the concept of getting extra information about the PAL users
apart from the sensing information of the GAA users. The
authors modeled the PAL user’s features as the multivariable
unordered time series to predict the spectrum information.
The authors in [50] proposed to detect the spectrum resources
using ML-based clustering techniques. The authors also
investigated the use of Q-learning, deep learning, kernel-
based learning, and transfer-based learning.
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The use of double-deep recurrent reinforcement learning
is preferred over non-learning methods including dynamic
programming, approximation algorithms, divide and conquer
algorithms, and the integer linear programming algorithm
because of its ability to handle large state spaces, and learning
algorithms easily deal with continuous state and action
space. The adaptability to give better results in complex
environments like the scenario of the CBRS-SAS system
that includes three tiers. The choice of using the double
deep learning algorithm also depends on the requirements
of the scenario where it is to be implemented and to get
the user-centric results or to improve the system for network
operators, learning algorithms will be the first choice to be
used because of the adaptability to the complex environment.
The time complexity of non-learning algorithms in a
scenario of dynamic environments is not very impressive
and computational time grows exponentially as the size of
the input increases. Hence, to get adapted to the complex
dynamic environments, it will be always preferred to use the
learning mechanisms.

As mentioned above, significant research has been pub-
lished in the domain of spectrum allocation and management
for three-tier SAS-CBRS systems.Moreover, the DQN-based
solutions were widely accepted for spectrum allocation but
the overestimation of value tables does not make it a perfect
choice for three-tier spectrum allocation. So we proposed
the double deep recurrent reinforcement learning for the
spectrum allocation to users in the three-tier SAS-CBRS
framework which stabilizes the overestimation of the value
table obtained for optimal policy.

III. SYSTEM MODEL
A. NETWORK SCENARIO
The CBRS SAS architecture protects current users while
ensuring quick and safe access to the shared spectrum. The
dynamic management of spectrum allocation, enforcement of
operational parameters, and continuous monitoring and coor-
dination mechanisms contribute to maximizing the utilization
of the CBRS band for various wireless communication appli-
cations. To ensure efficient and interference-free utilization
of the spectrum, the CBRS utilizes a SAS architecture. The
SAS serves as a central entity responsible for managing and
coordinating access to the CBRS spectrum. The detailed
SAS architecture is presented in Figure 1. The CBRS radio
spectrum 3.5 GHz band is governed by the centralized
SAS, which is responsible for authorizing the allocation
of radio frequency channels. GAA users are given an
opportunity to use the licensed channels, and the SAS
has cognitive abilities to sense transmission opportunities
in these channels. Environmental sensing capability (ESC)
sensors detect incumbent users, and if IA user activity is
detected, the SAS is notified and will free up channels from
low-priority users. Every user in the CBRS band transmits
and receives data through citizen broadband radio service
devices (CBSD) known as enodeBs, which are capable of

transmitting and receiving data in the 3.5 GHz frequency
band. The SAS registers CBSDs and maintains information
for registered CBSDs, PAL users, and GAA users in external
databases. To manage large networks, the SAS can utilize
either the network management system NMS or the element
management system in conjunction with domain proxies.

The SAS maintains a comprehensive record of all users in
FCC-supported databases. Of the 150 MHz radio spectrum
band, 70 MHz is reserved for PAL users who are responsible
for operating this spectrum band. The activity of the licensed
users in the licensed band is very limited, this makes
an opportunity for the network operators to improve the
spectrum utilization and increase revenue. Moreover, the
reserved band for the GAA user is overcrowded due to
the provisioning of free services by operators. If the GAA
users want to get guaranteed QoS for the required services,
they need to get access to the licensed channels. To ensure
a successful transaction, the interference caused by GAA
users to PAL users and other GAA users should be within
the defined threshold limits. The PAL reserved channel is
modeled using a two-state Markov chain where the channel
is either occupied or idle. The state of the GAA users taking
part in an auction process is taken as active as they have data
to transmit.

B. PROBLEM FORMULATION
SAS-based CBRS environment is considered in which z PAL-
reserved channels represented by

p = {1, 2, . . . ..z},

are available. There are µ PAL users in the system are
represented by

u = {1, 2, . . . ..µ},

The idle channels are considered non-overlapping. There are
ν GAA users given by

g = {1, 2, . . . .., ν},

and the GAA users always have some data to transmit. The
system model is depicted in Figure 2. The data transmission
of the GAA users will be considered successful if the νth

GAA user will send the data using the PAL reserved channel
allocated to it and the particular channel is idle i.e., it is not
occupied by the PAL user. The factor ψghg represents the
signal strength received by the GAA users and the factor
ψchc represents the interference experienced by the PAL
users caused by the addition of GAA users. Where the factors
ψg and psic show the transmit power of GAA users and the
GAA CBSDs respectively. The factors hg and hc represent
the particular channel gains. The transmission rate received
by the PAL users is modeled as given in Equation 1.

Tp = βνp log2(1+
ψphp

ψchc + σ 2 ) (1)

The noise in the system is considered the additive white
Gaussian noise (AWGN) with zero mean and variance σ 2.
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FIGURE 1. CBRS-SAS architecture.

The factor ψchc represents the interference to the PAL users
and the factor ψphp shows the signal strength received by the
PAL users. If there are fewer channels and more GAA users
then the chance of the collisions of the GAA user’s packet
will be increased so the condition 1 ≤ ν ≤ z. The SAS will
collect the information of all z PAL channels at the beginning
of each time slot. The SAS will randomly allocate the ν out
of z channels to the GAA users so that each user is assigned
a channel. After each transmission at the end of every time
slot τ , the acknowledgment signal α is sent to the SAS to see
whether the transmission of the GAA users is successful or
not. SAS records the observations o(τ ) for each GAA user
which is a binary response represented as.

o(τ ) =

{
1 if the channel is idle,
0 otherwise.

(2)

The scenario of the SAS-CBRS framework is based on the
MDPmodel to achieve the maximum transmission of packets
in each time slot. To define the MDP model, the states
of the given environment, actions related to the particular
states, rewards associated with the concerned actions, and the
discount factor for the dependence of the optimal policy on
immediate or future reward should be defined.

1) States: The state of each channel at the given time slot τ
can be defined asψτ . The states for each channel can be
either idle state or busy state. The states for all channels

are represented as:

ψτ = {ψτ1, ψτ2, ψτ3 . . . .., ψτ z},

where ψτ z ∈ {0, 1}. The SAS is aware of all the states
of PAL-reserved channels i.e., how many channels are
idle. The actions γ defined for each state ψ at time slot
τ is represented as.

γτ (ψ) = {γτ1, γτ2, γτ3 . . . .., γτ z},

where the γτ z shows that whether the channel zth is
selected or not. The SAS selects ν number of channels
from z channels. Accordingly, the action for ν GAA
users is given by.

A(ν, z) =
z!

ν!(z− ν)!
(3)

2) Actions: The number of actions for allocating the z
channels will be much greater than z in some scenarios
that degrade the performance while making decisions
for each action. The action space must be within limits
to get stable and optimal rewards. Hence, we assume
a condition that the action space must be equal to or
less than z. Every GAA user must occupy the channel
from the vector p. The SAS will choose the ν number
of actions using our proposed technique. For each
time slot, the SAS will assign the channels to ν GAA
users. Our proposed algorithm assigns the channels
very efficiently in case of multiple GAA users. If there
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are enough idle channels available then each GAA user
can get a slot to transmit data.

3) Reward Function: The purpose of the reward function
in reinforcement learning is to give directions to the
agent to get a reward while exploring the states of an
environment. Every action has associated rewards so
we need to define the rewards for the action space. Let
ωg(τ ) be the reward of the GAA user in time slot τ . The
reward of the system is defined as the total number of
accessible channels to the GAA users. Mathematically

it is represented as ωg(τ ) =
ν∑

g=1

ωg(τ ) =
ν∑

g=1

og(τ ).

Where og(τ ) is the observations of getting the idle PAL
channels defined in Equation. 2.

4) Optimal Learning Policy: The optimal policy in
reinforcement learning is to get the maximum reward.
In this scenario, SAS will find the optimal policy π∗

of the GAA users for which the maximum sum of the
rewards is discounted by a factor σ i.e.,

π∗ = argmaxπ0 (4)

where 0 is the accumulated sum of rewards discounted
by factor σ . The optimal policy must satisfy the
following constraint.

0 = E

[
T∑
τ=1

σ τ .ω(τ )

]
(5)

The σ is the discount factor that varies within 0 to 1,
0 < σ < 1. The average reward for optimal policy
during the finite time duration T is calculated as.

0 =
1
T

T∑
τ=1

σ (τ ) =
1
T

T∑
τ=1

ν∑
g=1

σg(τ ) (6)

Hence, the optimal policy for the defined problem
scenario is represented as.

π∗ = argmax

 1
T

T∑
τ=1

ν∑
g=1

σg(τ )

 (7)

In this paper, we considered the SAS-CBRS spectrum
access framework in which there are multiple PAL operators
having idle channels and there are numerous GAA users.
The channel is only considered idle if the noise power of
the idle channel is less than the defined threshold limits.
we proposed amodel-free solution for this allocation problem
that is adaptable to the available environment to solve the
dynamic problems.

C. THE REINFORCEMENT LEARNING MODEL FOR
AUCTION PROCESS
Q-learning is an off-policy RL-based algorithm that works
without prior knowledge. The agent in this scenario takes
actions for the defined states of the environment to explore the
rewards. The optimal policy defined relies on the maximized

rewards, the dependence on the immediate or future reward,
and the speed of learning. The agent explores the new states of
the environment by taking the defined actions and receiving
the associated rewards. The received maximized reward
shows how well the action it took to improve the situation.
The agent uses this reward signal to update its policy and
improve its future decision-making. Reinforcement learning
methods are broadly categorized into policy-based methods
and value-based methods. The Value-based methods learn a
state-value function that estimates the expected reward for
being in a given state, while policy-based methods learn a
policy that maps states directly to actions.

Q-Learning is a popular RL-based method that is based
on the idea of using a Q-table to store the maximum
expected reward for executing a particular action for a defined
state. The Q-table is initialized with arbitrary values, and
over time it is updated with more accurate estimates of
the expected reward based on the agent’s experiences in
the environment. In Q-Learning, the agent selects actions
based on an exploration-exploitation trade-off. At first, the
agent selects actions randomly to explore the environment
and gather information about the rewards associated with
different actions. Over time, as the estimates in the Q-table
become more accurate, the agent becomes more confident in
its estimates and begins to select actions based on the highest
expected reward. The Q-Learning algorithm is summarized
as follows:

• First of all, initialize the Q-table with arbitrary values.
• Repeat each step of the episode and observe the states of
the environment.

• Select an action based on the exploration-exploitation
trade-off.

• Collect the reward.
• Update the Q-table using the observed reward and the
maximum expected reward.

• Iterate the algorithm until convergence.

The detailed Q-learning formulation is discussed in the
following Section III-D.

D. DOUBLE AUCTION (DA) ALGORITHM FORMULATION
The GAA users in a competitive environment looking for
guaranteed QoS will take part in an auction managed by
SAS. The GAAs evaluate their requirements and available
QoS offered by PAL operators to bid accordingly. The bid
value may vary based on the traffic classification based on
differentiated services. Moreover, the DA algorithm enables
the GAA users to learn from its moves without having prior
knowledge of an environment. A bidding vector is also stored
at the GAA user’s end in which the cost factor for each
available channel in an auction pool is calculated. To get
an optimal solution a function F∗π is defined, which returns
the optimal policy while observing the actions related to
particular states. The Fπ∗ is defined as

Fπ∗ = Qτ+1g,p (ψg,p(τ ), γg,p(τ )) (8)
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FIGURE 2. System model.

The Qτ+1g,p (ψg,p(τ ), γg,p(τ )) is the Q-function that shows the
optimal policy for the GAA user g accessing the channel p at
time t . The function observes the state ψg,p(τ ) for the GAA
user g accessing the channel p at time t and performs the
action γg,p(τ ). The agent gets the reward Rτg,p in the next
iteration at time τ + 1. In our proposed scenario, the optimal
policy for every user may variate because of the real-time
traffic dynamics. To formulate the optimal policy for GAA
users the states, actions, reward, and learning policy plays
an important role in the convergence of the Q-learning
algorithm. The detailed formulation is presented in the
following sections.

1) STATES
The channel is either occupied by licensed PAL operators or
available to be auctioned. So, the states of the environment
can be defined by the stochastic events whether the transmis-
sion opportunity is available for the channel or not. The state
of an environment can be defined as

ψu,p(τ ) = {ζu,p(τ )} ∈ ψ

where ζu,p(τ ) = γu,p(τ ) × au,p(τ ). The γu,p(τ ) ∈ {0, 1}.
If u = p then the γu,p(τ ) = 1 means that the PAL users want
to occupy the channel and are not available for the auction
and γu,p(τ ) = 0 shows that the PAL users have no data to
send. The factor au,p(τ ) shows the transition from a state of
transmission opportunity available or not. If the transmission
opportunity is available then the state will shift from the

ψu,p(τ ) toψτ+1u,p is considered to be a two-state Markov chain
model defined in Section III-A as

ζu,p(τ ) = ζ τ−1u,p .(1− xu,p)+ (1− ζ τ−1u,p ).yu,p (9)

Similarly, for the scenario of GAA users the environment
states will be defined accordingly, whether the transmission
opportunity available or not along with the case of GAA users
have data to send or there is no data which is defined as

ψg,p(τ ) = {γg,p(τ )× ag,p(τ )} (10)

In the scenario of GAA users γg,p(τ ) = yg,p × ag,p(τ )
where yg,p ∈ {0, 1}.

2) ACTIONS
The agent selects the environment states defined in section
III-D1. Based on each state, an action is performed both on
the PAL operator’s end and the GAA user’s side. The action
defined in our scenario for PAL operators is to select the GAA
users at the PAL operators asking price given by

ap(τ ) = ψu,p(τ ), γu,p(τ ).Bu,p(τ ) (11)

whereψu,p(τ ) is the selection of bidder at asking price and the
γu,p(τ ).Bu,p(τ ) shows the asking price. In case of the GAA
user’s action, it is given by.

ag(τ ) = ψg,p(τ ), γg,p(τ ).Bg,p(τ ) (12)

where ψg,p(τ ) is to choose a bidder at the offered price and
the γg,p(τ ).Bg,p(τ ) is the offered bidding price. In each cycle,
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the PAL operators and the GAA users select the action based
on the environment state ψu,p(τ ), u ∈ {p, g}. Right after
taking an action an immediate rewardωu,p(τ ) will be released
and the current state moves from ψu,p(τ ) to ψτ+1u,p with some
transition probability.

3) REWARD FUNCTION
The purpose of the reward function in reinforcement learning
is to get either an immediate advantage or long-term
advantage by choosing a particular action defined in Section
III-D2 according to the available environment states defined
in Section III-D1. Hence, the reward of the system is based
on the actions and the states represented by a function
ωu,p(τ )(ψu,p(τ ), au,p(τ )). In the SAS-CBRS framework the
PAL operators are looking to lease the idle channels to
generate surplus revenue and the GAA users will try to get the
PAL channels at the minimum cost that meets their required
QoS. In this scenario, the reward for both PAL operators,
and the GAA users will be defined separately. The reward
function for the PAL operators is defined as.

ωu,p(τ ) =
z∑

p=1

ψu,p(τ )γu,p(τ ).Bu,p(τ ) (13)

The reward function for the GAA users is defined as.

ωg,p(τ ) =
z∑

p=1

ψg,p(τ )γg,p(τ ).Bg,p(τ ) (14)

To meet the requirements of the reward functions, the
following constraints are considered.

ψu,p(τ ) ∈ {0, 1}, ψg,p(τ ) ∈ {0, 1} (15)∑
p

ψu,p(τ ) ≤
z∑

p=1

p,
∑
g

ψg,p(τ ) ≤
z∑

p=1

p (16)

Here, z represents the PAL reserved channels assigned to PAL
and GAA users p and g respectively. The equations 15 and 16
are the constraints that show the user’s action space. It is also
assumed that the payoff by the GAA users is transferred to the
PAL operator as it is without any bargain factor or deduction.
Hence the reward for the PAL operators is actually the payoff
by the GAA users

4) LEARNING POLICY
The learning policy in reinforcement learning based models
depends on the choice of actions it takes while explor-
ing the environment states to update the Q-table. Thus,
the probability of selected actions aψ,p(τ ) and aψ,g(τ )
against particular states ψp(τ ) and ψg(τ ) respectively with
received utilities received for both PAL and GAA users i.e.,
Qτ+1g,p (ψu,p(τ ), γu,p(τ )) and Qτ+1g,p (ψg,p(τ ), γg,p(τ )) are taken
into account to map the learning policy with the current
choice of action. The learning policy for PAL operators
and the GAA users differ from each other because of their
different service requirements and for each state they will
receive different reward utilities. Hence the learning policy

for both the PAL operators and the GAA users will be defined
separately. The learning policies are defined as.

Qτ+1u,p (ψτu,p, γ
τ
u,p) = (1− ηp)Qτu,p(ψ

τ
u,p, γ

τ
u,p)

+ ηp(ωpσp.maxζ τp (ψ
τ+1
p , γ τ+1p )) (17)

Qτ+1g,p (ψτg,p, γ
τ
g,p) = (1− ηg)Qτg,p(ψ

τ
g,p, γ

τ
g,p)

+ ηg(ωg + σg.maxζ τg (ψ
τ+1
g , γ τ+1g ))

(18)

The optimal policies for the PAL operators and the GAA
users (γ τ+1u,p )∗, (γ τ+1g,p )∗ respectively are the probabilistic sum
of the collective rewards i.e., ωp and ωg discounted by factors
σp and σg respectively. The DA function updates the Q-table
and approaches to the true values defined as:

(γ τ+1u,p )∗←− argmax(Qτ+1u,p (ψτu,p, γ
τ
u,p)) (19)

(γ τ+1g,p )∗←− argmax(Qτ+1g,p (ψτg,p, γ
τ
g,p)) (20)

Learning rate factor η and the discount rate factor σ play an
important role in the convergence of the DA algorithm. The
values of η and σ remain in between 0 and 1 given by 0 ≤ η ≤
1 and 0 ≤ η ≤ 1. The learning rate η is a hyper-parameter that
decides the speed of learning, if the value is close to 0 then it
shows the Q values are not updated. While if the value of η is
close to 1, that shows the DA will update the Q-values with
the updated values. Usually, the value of η is set in between
0.1 - 0.5. The optimal value depends on the type of problem
and the detailed investigations. So, this is a regulatory factor
between exploitation and exploration. η with higher values
makes the DA converge quickly as it exploits the agent to
depend on its current knowledge instead of exploring the new
information. The major risk involved with this is getting non-
optimal solutions.
The discount factor σ is also a hyper-parameter that helps

the agent to decide how much importance is given to the
future reward. The value of σ remainswithin 0 to 1. The factor
σ is typically set to the maximum value so that the maximum
reward should be taken into account to get the maximum sum
of rewards for the entire session. Moreover, it also helps the
agent to depend on the long-term future reward or short-term
immediate reward. The DA multiplies the discount factor
with next state’s highest Q-value. If the discount factor is
too less or approaches 0, then it shows that the Q-value after
multiplication with the discount factor σ will be negligible
and the DA will depend only on the immediate reward.
Hence, the DA algorithm needs two values to update the Q-
table i.e, the projected maximum Q-value of the next state
maxζ τ (Sτ+1, γ τ+1) and the instantaneous reward valueω(τ ).

IV. PROPOSED SOLUTIONS
A. DOUBLE DEEP RECURRENT Q-NETWORK FOR SAS
DDRQ-SAS
The DDRQ-SAS algorithm complexity depends on the
number of available PAL-reserved idle channels. If there
are a huge number of idle channels detected by SAS then
the states defined for the available channels and the actions
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Algorithm 1 Double Deep Q-Network (DDQN) Algorithm
1: Initialize parameters
2: state_dim← Dimensionality of the state space
3: action_dim← Dimensionality of the action space
4: learning_rate← Learning rate for the Q-network
5: discount_factor ←Discount factor (gamma) for future rewards

6: epsilon← Exploration probability for epsilon-greedy
7: max_memory_size←Maximum size of the replay memory
8: batch_size← Batch size for training
9: C ← Target network update frequency

Function QNetwork(state_dim, action_dim, learning_rate):
10: Define neural network architecture with input size state_dim

and output size action_dim
11: Define optimizer using learning rate learning_rate
12: return Q-network and optimizer end function Function

epsilon_greedy(q_values, epsilon):
13: With probability ϵ, select a random action
14: Otherwise, select the action with the highest Q-value from

q_values
15: return selected action end function
16: Initialize Q-networks
17: online_network, online_optimizer ←

QNetwork(state_dim, action_dim, learning_rate)
18: target_network, target_optimizer ←

QNetwork(state_dim, action_dim, learning_rate)
19: Initialize replay memory
20: replay_memory← Empty deque
21: for t ← 1toT do
22: state← Observe current state from the environment
23: q_values← online_network.predict(state)
24: action← Perform epsilon-greedy action selection with ϵ
25: next_state, reward, done ←

Take action action and observe the reward and next state
26: replay_memory.append

((state, action, reward, next_state, done))
27: if length of replay_memory > max_memory_size then
28: Remove the oldest entry from replay_memory
29: end if
30: if length of replay_memory > batch_size then
31: minibatch← random sample from replay_memory of

batch_size
32: for (x, a, r, x_next, d) in minibatch do
33: target_q_values← target_network.predict(x_next)
34: target_q_value ← r if d is True else r +

discount_factor ·max(target_q_values)
35: q_values← online_network.predict(x)
36: q_values[a]← target_q_value
37: online_network.update(x, a, q_values)
38: end for
39: end if
40: if t mod C = 0 then
41: Update the target network parameters
42: target_network_parameters ← τ ×

online_network_parameters + (1 − τ ) ×

target_network_parameters
43: end if
44: end for

associated with the states make a larger state, actions space.
This will lead to increased computational complexity i.e.,
the computational complexity is affected by the number
of available idle channels. So, it is difficult to devise an
optimal policy for large-scale networks. We proposed the

double deep recurrent Q network (DDRQ-SAS) to solve
the resource allocation problem for numerous GAA users
in the SAS-CBRS framework without any prior knowledge
of the environment. The architecture of the proposed
DDRQ-SAS algorithm is discussed in detail in the following
section.

B. DDRQ-SAS ARCHITECTURE
The DDRQ-SAS architecture is shown in the Figure 3.
In the first step, we use the states of the available channels
detected by the SAS to process it in form of sequential
information. Long short-term memory (LSTM) is then used
to compute the sequential information from the previous step
over time to predict the right scenario for the network. Then
the value of each state-action pair is estimated to decrease
the computational complexity of fetching and retrieving
information from the value table. The sub-optimal policies
are estimated and combined to get an optimal output for
the given input of idle channels and the users. The double
Q-learning algorithm is used to stabilize the overestimation
of the value table to get an optimal solution. The detailed
architecture is discussed below.

1) DDRQ-SAS INPUT LAYER
The input layer in the DDRQ-SAS architecture is depicted
in the Figure 3. depends on the values of the previous two
time slots for the given state. The input layer is defined as
ψ(τ ) = {p(τ−1)1, . . . p(τ−1)n, p(τ )1, . . . p(τ )n}. The value p(τ )n
∈ 0, 1 shows the state of the nth channel in time slot τ . The
purpose of getting the previous state information is to get
larger and dense data in sequence form. It will eventually help
us to optimize the value table more accurately. The accurate
estimation of the value function of the system depends on the
number of input states’ information.

2) LSTM LAYER
A long short-termmemory is used in deep learning to process
sequential data i.e., time-series data obtained using the input
layer. The LSTM layer has a memory cell to store or forget
the information over time using the previous state information
and the input value. The memory cell consists of three gates
input gate, the output gate, and the forget gate. These gates
are interlinked. The input gate process the sequential input
information to the memory cell and the output gate controls
the flow of the output information from the memory cell. The
forget memory cell is designed to decide whether the old data
need to be kept or discarded. The backpropagation method
is used to train the LSTM layer over time. The gradient is
calculated over the entire sequence of input data, allowing
the network to learn to process and remember long-term
dependencies.

3) HIDDEN LAYERS
Two hidden layers are proposed to be added after LSTM
layers which are fully connected with each other and
integrated with the LSTM to estimate the true value function
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FIGURE 3. DDRQ-SAS-DA architecture.

of the state-action pairs. The hidden layer uses the RNN
to decrease the time complexity. The hidden layer does not
consider the look-up table instead it uses the RNN. It will
also help the DDRQ-SAS algorithm to leverage the prior
knowledge to derive the sub-optimal policies rather than
generating the random policies.

4) BLOCK OUTPUT LAYER
The output of the DDRQ-SAS is an estimated Q-value
generated for time slot tau for the transmission of data over
the channel z. The out is generated in a form of a vector of
size equal to the number of GAA users asking for the PAL
reserved idle channel.

5) DOUBLE Q-LEARNING
To alleviate overestimation, we implemented double
Q-learning to refrain the SAS from the selection of actions
from Q-value evaluation. This is achieved by exploiting
two neural networks, the target networks, and the online
networks with matching structures for the estimation of
value functions and action selection, respectively. Double Q-
learning is a reinforcement learning algorithm that extends
the standard Q-learning algorithm by addressing the issue
of overestimation of action values. In standard Q-learning,
the action-value function is updated using the maximum
estimated action value over all possible actions in the next
state. However, this approach can lead to over-optimistic
estimates, especially when the estimates are noisy or
inaccurate. Double Q-learning addresses this issue by using
two separate Q-functions, often referred to asQ1 andQ2. The
idea is to use one Q-function for action selection and the other
for action evaluation.

C. DDRQ-SAS ONLINE LEARNING
We assume that the SAS operates in an autonomous
environment in the CBRS band without any prior knowledge
of the environment’s characteristics. The SAS uses the neural

network to devise an optimal policy that makes independent
decisions that are centralized and as well as online by using
the ACK signal. To begin each time slot (τ ), the agent
retrieves the latest channel state data from the previous
two-time slots (ψτ ). The SAS uses the epsilon-greedy
approach to select the n channels with the highest values
based on the target network output. The epsilon-greedy
strategy typically favors selecting actions that have the
highest estimated reward. However, it also aims to strike a
balance between exploration and exploitation. Exploration is
crucial because it enables us to experiment with new ideas,
even if they contradict what we have already learned.

The value of ϵ in the epsilon-greedy approach ranges
between 0 and 1 i.e., 0 < ϵ < 1, and it determines the
trade-off between exploration and exploitation. When ϵ is
high, the algorithm tends to explore more, whereas when
ϵ is low, it focuses more on exploiting existing knowledge.
Thus, the larger the value of ϵ, the more the algorithm
emphasizes exploration and vice versa. The SAS will assign
one of n channels to each GAA using a random allocation
method. The reward for each channel will be obtained from
the ACK signals. A tuple consisting of the current state ψ(τ ),
the next state ψ(τ + 1), the highest-scoring action, and its
corresponding reward will be stored in the replay buffer.
Later, a random tuple will be selected from the replay buffer
to update the neural network based on the mean squared error.

D. DOUBLE AUCTION (DA) ALGORITHM
The double auction DA algorithm works on the principle of
a trade market, where an auctioneer arranges an auction in
which a seller asks a price for a product to sell and purchasers
submit a bid to the auctioneer to purchase a product. In our
scenario, SAS is an auctioneer who manages a pool of radio
spectrum, each PAL operator acts as seller and adds their idle
available channels in the pool with the asking price γ tu,p.B

τ
g,p.

The GAA users act as potential bidders to buy the available
channels for a particular time at a bidding priceBτg,p. The SAS
will complete the auction trading by assigning the required
PAL reserved idle channels to the GAA users and releasing
the cost to the PAL operators.

The cost reserved by the PAL operatorsmay vary according
to the environment or market fluctuations, while the Pay
off price by the GAA users depends on the available QoS.
The double auction DA algorithm maintains the competitive
environment by helping the PAL operators to set the reserved
cost or base price dynamically to maximize their earnings and
also it helps the GAA users to bid according to the available
QoS requirement. Thus, it is important aspect to explore the
cost setup by the PAL operators and the GAA users in detail.

1) RESERVED COST FOR PAL OPERATORS
The PAL operators paid the license to get dedicated access
to the 70 MHz spectrum band. They take advantage of PAL
users’ absence to generate additional revenue to increase their
profit revenue by leasing the unused spectrum to the GAA
users. So, to ensure profitability, it is important to devise
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a pricing strategy that maximizes the profit margins in an
auction market. Therefore a reserved cost rτp is set for the
idle channel that is to be auctioned by an auctioneer i.e.,
SAS. The SAS will ensure that no channel will be auctioned
to GAA users below the reserved cost. This lucrative offer
will create interest in the PAL operators to join the SAS
auction framework. The reserve cost rτp for the PAL users
by the DA algorithm is defined as the possible future reward
with Qτ+1u,p (S tp, γ

τ
p ), where Q

τ+1
u,p (Sτp , γ

τ
p ) ∈ Q

τ+1
p (Sτp , γ

τ
p ), u

∈ {1, 2, . . . .., µ}.

rτu,p = Qτ+1u,p (Sτp , γ
τ
p ) (21)

Moreover, the PAL operators can set the reserve price using
the Q-learning algorithm derived from the equation. 17.
Using this Q-learning process the PAL operators can set the
price while considering the future reward and the history of
states visited.

2) GAA BIDDING STRATEGY
The SAS as auctioneer maintains a spectrum pool and ensures
fairness by giving equal opportunity to both PAL operators
and GAA users. The information on the available channels
is made available to all purchasers taking part in an auction.
The GAA users as a purchaser generate a list lτg,p of preferred
channels according to the QoS available, and the related cost
for each channel p at time τ . The preference list lτg,p is defined
as

lτg,p = 9β
τ
g,p + Q

τ+1
g,p (Sτg , γ

τ
g ) (22)

where Qτ+1g,p (Sτg , γ
τ
g ) is the future reward, 9 is the trade-off

regulatory factor between the current packet and future
market expectations, and the βτg,p is the number of total
packets in the buffer.

A random variable κτg,p independent of time is defined to
store the number of packets following the Poisson distribution
with the arrival rate of κ packets per second. The buffer
capacity is said to be λg,p. Hence, the buffer state for the GAA
user will be calculated as.

βτψ,g = min{(βτ−1ψ,g − K
τ−1
ψ,g )+ + κτg ,λg} (23)

The factor (βτ−1ψ,g − K
τ−1
ψ,g )+ = max(0, (βτ−1ψ,g −K

τ−1
s,g )) is the

immediate gain received.
Thus, the bid offered by the GAA users is according to the

learning process and the accumulated packets to ensure the
successful bid compilation that meets the dynamic practical
requirements.

3) DA ALGORITHM IMPLEMENTATION
The DA algorithm allocates the primary channels for a time
period T . The cost offered by the GAA users after acceptance
from the SAS will remain the same for this time period T .
The resources will be released to GAA users once the SAS
received the rτp reserve price, it will complete the transaction
after the λg constraint is satisfied. Once the transaction is

completed, the SAS calculates the reward defined as.

rτg,p = 9.β
τ
g,p (24)

The objective of the SAS is to maximize the profit for PAL
operators by leasing the idle channels to GAA users at a
minimum of the defined reserved price. Accordingly, it will
be defined as an optimization problem with the objective to
maximize the profit defined as:

ϒ(ψg,p, rτg ) = argmax(rτu,p) (25)

subject to:

rτp > λτu,p (26)

and

rτu,p = rτg,p (27)

4) DA ALGORITHM CONVERGENCE
Following are the conditions for the convergence of the DA
dual auction algorithm based on the time-varying learning
factors ηp and ηg that utilize the results obtained from
the Robbins-Monro theory [51] must meet the following
conditions for convergence of equations 17 and 18. The DA
method learning policies defined in equations 17 and 18
converges to its optimal point defined (Qτ+1g,p (ψτg , γ

τ
g ))
∗. The

values for (Qτ+1g,p (ψτg , γ
τ
g ))
∗ must be uniformly distributed for

all the states sg,p, and the actions γg,p with the probability of 1,
if the following conditions are satisfied.
• All the states and actions defined for both PAL operators
and the GAA users i.e.,ψp,ψg,γp, and γg must be finite.

• The reward factor for both PAL operators and the GAA
users ωp(ψp, γp), and ωg(ψg, γg) must be finite.

• The factor
+∞∑
τ=0

ηp, ηg = ∞,
+∞∑
t=0

(ηp)2, (ηg)2 = ∞

• If the factors σp, and σg approach 1, then it shows that
the policies will converge to a cost-free terminal with
probability 1.

These conditions are satisfied in our defined scenario and
the DA algorithm fulfills the convergence requirements.
In Section III-D, the states and the actions for the environment
and agents respectively are defined and there is a finite set of
states and actions that proves the first condition. The reward
functions defined in equations 13 and 14, we defined that the
ωminp,g ≤ ωp,g ≤ ωmaxp,g . Hence the factor ω2

p,g will also be
a finite value that shows that the Var{ωp,g} = E(ωp,g)2 −
(E(ωp,g))2 is also finite, This shows that the second condition
is also satisfied.

The factor η is defined in Section. III-D4 i.e.,

ηg,p =


1
T
, τ>0

0, τ = 0
(28)

It is proved from equation 28 that the value of η never
approaches 1. Thus, the third condition is also satisfied. The
DA double auction algorithmsmaximize the reward functions
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instead of achieving maximum gains. If the discount factor σp
or σg approaches 1, it violates the DA algorithm objective.
Therefore, the last condition also holds in our defined
scenario.

Consequently, the convergence of the DA double auction
algorithm is guaranteed in the defined scenario as it
maximizes the rewards for the PAL operators and the GAA
users.

E. DOUBLE AUCTION FRAMEWORK FOR MULTI-CHANNEL
MULTI-WINNER ALLOCATION
The double auction algorithm for multi-channel multi-winner
allocation with heterogeneous channel conditions is proposed
in [52]. This algorithm implements the dual auction and
allows to collect the bids from the purchaser by an auctioneer
and pay off to the seller after completing the transactions.
The algorithms considered the dynamic channel spectrum
opportunities and channel variations. The authors proposed
the concept of grouping the users to get the group bids. The
channel allocation pattern depends on the group bids from
each group. The algorithm maintains a preference list at a
secondary users end. The SUs are grouped and each group is
individually considered. The proposed work focused on the
profits for both sellers and auctioneer. The double auction
algorithm is an iterative algorithm that assigns the channel
to SUs in each round. If any SU remains unassigned then it
will be assigned a channel in next round. The working of the
algorithm is given below:

There are n primary channels available for an auction.
The channels are considered heterogeneous in nature and are
stored in a vector K . The channels available from each PAL
operators are grouped individually i.e., if there are n primary
operators then there will n groups given by.

K = {K1,K2, . . . ..,Kn}

The channel variations and the interference between the PAL
and GAA users are also considered. The capacity of the
channel is calculated using the Shannon capacity theorem
defined in [52]:

9i,j = Wlog2

(
1+ λj

PL(i)
Ii + σ 2

)
(29)

The authors maintained the preference list at the SU end by
calculating the difference between the availability time and
the requirement time for the channel. The bid will only be
calculated if the available time is greater than the required
time for channel given by Tr > Ta. Once the bidders and
the channel preference lists are finalized then the problem is
formulated as a linear assignment algorithmwithNxN Matrix
and defined an objective function for channel assignment to
SU as:

SU =
Y∑
j=1

N∑
i=1

b(b)ji .aij (30)

The auction method proposed consists of three main steps.

• Winner determination
• Payment method
• New auction round

In winner determination, the auctioneer finds the strat-
egy to find the winning bidder. Groups are formed for
non-interfering SUs for each channel considering the hetero-
geneous constraints. Accordingly a group bid is calculated
using the individual bids offered by SUs. After this step the
channel allocation strategy is applied to assign the channels
to the winning bidders. The group bid is calculated from the
following equation.

µjz = min{b(b)jh |h ∈ g
j
z}.|g

j
z| (31)

where gjz is the group made for channel j, andmujz is a a group
bid. h is a secondary user with a lowest bid and b(b)jh is the bid
value offered by user h for channel j.

In the payment section, price payoff is calculated for all
winner SUs who are assigned the channels. The price cal-
culated is payable to auctioneer after successful assignment.
The auctioneer in this scenario earns profit in terms of the
group valuation denoted by δjz defined as.

δjz = min{ν(b)jh |h ∈ g
j
z}.|g

j
z| (32)

where ν(b)jh is equal to the bid value b(b)jh . Once the profit
and bid value is calculated then the revenue for the licensed
operator is calculated as:

rqj = δjz − ν
s
qj (33)

The factor rqj shows the revenue of the licensed operator q
for selling the channel j. If the auctioneer is unable to sell the
channel then the value of rqj will remain 0.

Final step of the this algorithm is the new auction round.
In this step auctioneer looks for the unassigned channels
during the last iteration in which the channels were auctioned
altogether. The unassigned SUs are allowed to resubmit the
bids for the new available channels in the current iteration.
Similarly, if any channel remains unassigned in the previous
iteration the licensed operators will decrease the asking price
of the channel.

F. TRUTHFUL DOUBLE AUCTION FOR CRN:
TRANSMITTING AND SHARING
The truthful double auction for cognitive radio networks:
transmitting and sharing (TDSA-PS) proposed in [30]. The
authors proposed the TDSA-PS algorithm to auction the
channels occupied by the primary users and proved that their
proposed algorithm is budget balanced, truthful, efficient
and individually rational. the authors in formulated the CRN
model with auction model. In the CRN model PUm primary
users are considered and each PU holds a single channelCHm.
n secondary users are considered denoted by SUn, while each
SU is equipped with a transmitter Tj and a receiver 0j. The
secondary users is provided with an indicator signal to check
whether the SU is allowed to transmit at CHi or not. The
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interference temperature limit (ITL) is calculated to see, if the
transmission is successful or not i.e.,∑

yji=1

ϵj

E(Tj,L li )
α
≤ γi (34)

where α is the path loss exponent, L li is the location of user
i at location l. For each SU the authors calculated the SINR
[newrc] defined as:

SINRji =

ϵj

E(Tj,Lli )
α

ρi
E(Ti,0j)α

+ N0 +
∑

j′ ̸=j,yj
′

i =1

ϵj′

E(Tj,L li )
α

(35)

In the proposed scenario, FCC acts as an auctioneer to
conduct the double auction in which the primary licensed
users sell their channel to the SUs at a minimum cost defined
as ci. The secondary users may submit a different bid that may
not necessarily be equal to or greater than the primary users
asking price. When the auctioneer received the complete
information of the seller’s asking price and the buyer’s bid,
then the auctioneer calculates the winning and allocation
indicators represented by x and y respectively. Let’s the
payment paid to the primary users is P and the payment
received by the secondary users is represented by q. Then the
profit utility of an auctioneer is calculated as the difference
in payment received by the secondary users and submitted to
the primary users.

u =
n∑
j=1

qj −
m∑
i=1

pi (36)

In implementing the TDSA-PS, the auctioneer sorts the
asking price from the primary users in non-decreasing order
and sorts the bids received from the secondary users against
the primary channels in non-increasing order. The author
proposed the concept to find the smallest index k PU
channel to be assigned to the largest index l secondary user.
Truthfulness is guaranteed in this scenario. In the second step,
the channels are assigned to the secondary users and in the
last step the TDSA-PS is applied which gives the winning
vector, allocation vector, and payment vectors as an output.
The auctioneer implemented a double-auction algorithm for
both the primary user’s and the secondary user’s side. One of
the objectives of TDSA-PS is to yield a good profit ratio for
an auctioneer too. The algorithm was proved to be efficient
good and the budget is balanced for the primary as well as
secondary users.

V. NUMERICAL RESULTS
A. SIMULATION SETUP
The performance of the DDRQ-SAS algorithm with the
DA algorithm is evaluated for four PAL operators offering
different numbers of channels in the presence of 10-500 GAA
users. The SAS as auctioneer holds an auction where up to a
maximum of four PAL operators from a particular region can
take part as proposed by the FCC. The PAL operators send

the information including the asking price of available idle
channels to the SAS to take part in the auction. SAS manages
the spectrum pool where all the channels’ information is
listed and shared with the competing GAA users. The least
priority GAA users take advantage of this service to get
guaranteed QoS as per their requirements at a competing cost.
The SAS monitors the activity of IA users using the ESc
sensor to pull out the channels from the PAL and GAA users.
In our proposed scenario, the PAL users as sellers and the
GAA users as purchasers use the proposed DA algorithm to
compute the asking price and the bidding price respectively
and the SAS uses the DDRQ-SAS algorithm to allocate the
resources. The Shannon capacity theorem is used to model
the transmission rate of GAA users defined as

Tg = βpg log2(1+
Spg
N p
g
) (37)

where β shows the accessible secondary user’s g bandwidth

for the available PAL reserved channel p. Spg
N p
g
is the SNR

received at GAA’s boundary by the other GAA users
accessing the PAL reserved channel p at a distance d is
defined as:

SNRg =
max(ρp)
σ 2

(
d
d0

)α
(38)

The ρp represents the transmission power of PAL operators
which is defined as 30 dB. The value α is adjusted at 4 and
d0 to 1. The urban propagation model for macro-cells is
used for simulation along with Rayleigh multi-path fading
model. The simulation parameters defined in our scenario
are presented in Table 1. The simulations are performed
to 100 times to reduce the randomness to achieve steady
outcomes.

The SAS is the central entity that is considered an
intelligent agent that uses the DDRQ-SAS algorithm. The
SAS comprises two neural networks i.e., the target neural
network and the online neural network. Both neural networks
have three layers, with the first layer being an LSTM layer
of the same size as the state size. The second layer has
100 neurons with ReLU activation, and the last layer has p
neurons, where p represents the total number of channels.
To ensure adequate training of the proposed algorithm,
the target network’s parameters are updated every hundred
timeslots by the online network, and the memory size is set
to 1,000. During each time slot, a minibatch of 32 samples is
randomly selected from memory to train the neural network
using the mean squared error function as the loss function,
with the Adam algorithm optimizing the neural network’s
parameters by minimizing the loss function.

The Deep Q-Learning (DQN) algorithm includes two
hidden layers and a memory of size 1,000. During each
time slot, a random minibatch of 32 samples is extracted
from memory to update the neural network’s parameters.
When compared to the DDRQN, the DQN has the same
fully connected hidden layer structure. Specifically, in our
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TABLE 1. Simulation parameters.

implementation, theDQN also comprises two fully connected
hidden layers of the same size.

B. PERFORMANCE EVALUATION
In this section, we compared and evaluated our proposed
DA algorithm based on reinforcement learning with the
double auction multi-channel multi-winner algorithm and the
TDSA-PS algorithm for channel assignment to the GAA
users.

The cumulative distribution function (CDF) for channel
allocation to 500 GAA users by four PAL operators is
depicted in Figure 4. The CDF is calculated for one and
more PAL operators. when there is a single PAL operator, the
probability to assign channels to GAA users is 0.34, which
is 47% higher than its competing algorithm. If a single PAL
operator is taking part in the auction it means that less number
of channels are available to be auctioned that is the reason
that, the number of users getting access to PAL channels is
less as compared to the results when there are more than
one PAL operator. This is the reason that out of 500 GAA
users, only 170 users get access to the PAL reserved channels.
Meanwhile, when there are all four PAL operators are taking
part in an auction, then the CDF approaches 1. which is 7%
better than the double auction multi-winning algorithm and
10% better than the TDSA-PS algorithm. The reinforcement
learning-based double auction algorithm is more efficient as
compared to the available static double auction algorithms
without learning capabilities.

In the defined DDRQ-SAS and DA algorithms, the speed
of the convergence of an algorithm depends on the step size or
the learning factor ηp and ηg defined in equations 17 and 18
respectively. The Figure. 5 depicts the effect of the learning
rate on the asking price for the PAL operators and on the
bidding price for the GAA users. It is evident from the results
that the GAA user’s bidding price is always greater than the
PAL operator’s reserved price for all the values of η between
0 and 1. Hence, we can say that the factor η is not helpful
in the convergence of the DDRQ-SAS-DA algorithm but it
controls the speed of convergence of the DA algorithm that
is shown in Figure. 7. So, we can use any values of η for the
learning policies defined for both PAL operators and theGAA
users.

The impact of the discount factor is very much interesting
in the study of reinforcement learning as it shows the
dependence of the optimal Q-learning policy on the reward

FIGURE 4. CDF of channels allocated to 500 users.

FIGURE 5. Learning rate in DA algorithm.

values i.e., whether to get the immediate reward or give
weight to the future reward. Figure. 6 shows the comparison
of discount factor σ defined in equations 17 and 18. The
GAA bidding price remains higher than the PAL operators
reserved price for the values between 0.02-0.5. The bidding
price and the reserved price grow much faster when the value
of σ is set to 0.6 or greater values. This pattern shows that
when the value of σ approaches 1, it considers both the future
reward and the immediate reward equally. For a successful
trade, the bidding price of the GAA users must be greater
than the PAL operator’s reserved price. From the graph, it is
clear that the proposed optimal learning policy is considering
immediate rewards, and less weightage is assigned to future
rewards. If the GAA user’s optimal policy is more dependent
on future rewards then they will always predict a lesser price
than the reserved price which is not a feasible solution for an
auction problem. Therefore, we considered the default value
for discount factor σ in our simulations which assures that
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FIGURE 6. Effect of a discount factor in DA algorithm.

difference between the bidding price and the reserved price
is less enough to be acceptable by both seller and purchaser.

In Figure 7, the convergence of the DDRQ-SAS and DA
algorithm for the bidding price of GAA users is shown for
numerous values of learning rate η and discount factor the
σ . It is clear from the graph that the algorithm converges
in almost 20 iterations. It can be seen from the graph that,
for the values of η greater than 0.5, the algorithm converges
very fast i.e., 95% of the results are achieved in just less
than 10 iterations. so this factor controls the speed of the
convergence of the proposed algorithm. While the discount
factor σ decides the dependence of DA on the immediate and
future reward. It is also obvious from the Figure. 6 that for
a successful trade, the value of the discount factor should be
in the range of 0.02 - 0.5. We can see the effects of discount
factor σ for the values of 0.1, 0.3, and 0.5 in Figure. 7. The
less value shows that the dependence on the future reward is
less. That is the reason that a value should be selected that
helps the DA algorithm to converge at a price acceptable to
the seller and purchaser. If the value of the σ is 0.1, then
more weightage is given to the immediate reward and the
price converges at 9$. It is also evident from the convergence
of DA verifies the effects of learning rate η and the discount
factor σ .
The Figure. 8 depicts the GAA users received data rate

per unit cost. When there are fewer GAA users, the overall
competition to get the channel is decreased. This makes the
GAA users to get the best QoS at minimum cost. While
in the scenarios, where the number of GAA users taking
part in an auction is high, then the competing users will
get the compromised QoS to fulfill their requirement, that
is why the average data rate per unit cost is decreased as
the number of GAA users increased. The DA algorithm in
comparison with the double auction multi-winning algorithm
and the TDSA-PS algorithm performs quite well. When the
overall load is less, the DA is performing 10% better than the
double auction winning algorithm and 30% better than the

FIGURE 7. DA convergence of GAA bidding price.

FIGURE 8. Received data rate per unit cost.

TDSA-PS algorithm. In higher loads, the proposed algorithm
outperforms the other two algorithms and performs 7% better
than the double auction winning algorithm and achieves 53%
better results in comparison with the TDSA-PS algorithm.

The Figure. 9 shows the revenue achieved by the PAL
operators by auctioning the available idle PAL reserved
channels. It is evident from the graph that the PAL revenue
using the DA algorithm is better in comparison with the other
algorithms. When there are fewer PAL reserved channels
available the net revenue collected by the operators is almost
the same. when there is a high number of channels available,
the DA algorithm performs almost 12% better than the double
auction winning algorithm and 24% better than the TDSA-PS
algorithm.

The execution efficiency of the three algorithms is shown
in Figure. 10. The DA algorithm outperforms the double
auction multi-winning algorithm and TDSA-PS algorithm.
The total time taken by DA to assign idle PAL reserved
channels to 500 GAA users is 15mswhich is almost 1.6 times
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FIGURE 9. Average PAL revenue.

FIGURE 10. Comparison of execution efficiency.

better than the double auction multi-winning algorithm that
assigns the channels to 500 GAA users in 25 ms and almost
2 times better than the TDSA-PS algorithm which assigns the
channels to 500 GAA users in 31ms. When to load of GAA
users is less than 100 users the difference between the three
algorithms is minimal but at a higher load, the computational
complexity of engaging a higher number of users increases
which causes a delay in assigning the channels. Hence, the
execution efficiency of the DA algorithm shows that the DA
algorithm is much more efficient in comparison to the double
auction multi-winning algorithm and TDSA-PS algorithm.

Jain’s fairness index (JFI) is shown in Figure. 11. The JFI
is a parameter used to measure the fairness of competition in
a game. The JFI is defined in the equation.

J = 1−

∑
(Ri − Ravg)2

n ∗ R2avg
(39)

FIGURE 11. Jain’s fairness index.

where J is Jain’s fairness index, Ri is the reward earned by
the ith participant and the Ravg is the average reward of all the
participants who took part in the game. The value of the JFI
is varied from 0 to 1. The value 0 shows complete unfairness
and 1 shows complete fairness. It is evident from the Figure.
11 that when there is less number of GAA users, the JFI
approaches to 1 for DA algorithm and 0.94 and.0.92 for
the double auction multi-winning algorithm and TDSA-PS
algorithm respectively. when the number of users varied
from 50 to 500 the JFI value decreased to 0.86 for DA.
The JFI value for the dual auction multi-winning algorithm
for 500 GAA users is 0.75 and for the TDSA-PS algorithm,
the value shows a downtrend with a value of 0.63. The
fairness index of the DA algorithm is almost 17% better than
other competing algorithms.

The simulation results for the algorithm show that it is an
efficient algorithm for assigning the PAL reserved channels
to the GAA users. The DDRQ-SAS algorithm integrated
with the DA algorithm automates the GAA user’s bidding
and the PAL operator’s asking price. The DDRQ-SAS with
DA algorithm is efficient in comparison with its competing
algorithms. It also ensures providing the required QoS to the
GAA users at the maximum available data rate at a rational
cost while generating handsome revenue for PAL operators.
Maximum GAA users are accommodated with the proposed
DA algorithm without degrading the overall performance.

VI. CONCLUSION AND FUTURE WORK
To cope with the challenges of spectrum scarcity and meet
the requirements of 5G, FCC allowed sharing of the 3.5 GHz
federally held spectrum with commercial users for both
licensed and opportunistic use. The PAL-licensed operators
can share the unused spectrum with opportunistic users to
generate additional revenue. In this paper, we proposed a
DDRQ-SAS algorithm integrated with the double auction
DA algorithm to assign the unused channels held by PAL
operators to the GAA opportunistic users. The SAS as a
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central entity acts as an auctioneer to conduct an auction and
manages a spectrum pool. The GAA users who need to get
guaranteed services will take part in an auction.

The DDRQ-SAS algorithm uses the double deep
Q-network integrated with the deep recurrent network while
the DA algorithm uses the Q-learning algorithm that is
based on the reinforcement learning method. The Sellers and
purchasers are defined agents and the states for both actors
are defined according to their environment, i.e., whether there
is an opportunity to transmit the data or not, and whether
there is data to send or not. The actions are defined for each
environment state. The reward is defined for each action.
Finally, the optimal learning policy is defined based on the
learning rate factor, discount factor, and reward factor. The
DDRQ-SAS algorithm is an off-policy model-free algorithm
in which the SAS learns by exploring the new environment
states. The DA algorithm allows the PAL operators and GAA
users to intelligently select the asking price and the bidding
price respectively. For a successful trade, the bidding price
must be greater than the PAL operators asking reserved price.
Finally, the problem is also solved using the double auction
multi-winning algorithm and the TDSA-PS algorithm and the
results are compared.

The DDRQ-SAS-DA algorithm is validated through an
extensive set of simulations. The simulation results proved
the practicality of the DDRQ-SAS-DA algorithm. It is
evident from the results that the DDRQ-SAS-DA algorithm
is much more efficient in comparison with the double auction
algorithm and the TDSA-PS algorithm. The numerical results
show that the DA algorithm achieves up to 20% higher data
rate per unit cost at a higher user load. The DDRQ-SAS-
DA algorithm is up to 1.6 times more efficient in assigning
the PAL reserved idle channels to the 500 GAA users. The
Proposed algorithm also ensures that a handsome profit is
generated which makes it a lucrative offer to take part in
an auction process by the SAS. The fairness index is proved
using Jain’s fairness index which shows that, even at a higher
load of users, the GAA user’s satisfaction level is higher in
comparison with the double auction multi-winning algorithm
and the TDSA-PS algorithm.

REFERENCES
[1] D. Gomez-Barquero, J. J. Gimenez, G.-M. Muntean, Y. Xu, and Y. Wu,

‘‘IEEE transactions on broadcasting special issue on: 5Gmedia production,
contribution, and distribution,’’ IEEE Trans. Broadcast., vol. 68, no. 2,
pp. 415–421, Jun. 2022.

[2] A. Chakraborty, M. Kumar, N. Chaurasia, and S. S. Gill, ‘‘Journey
from cloud of things to fog of things: Survey, new trends, and
research directions,’’ Softw., Pract. Exp., vol. 53, no. 2, pp. 496–551,
Feb. 2023.

[3] B. T. Maharaj, B. S. Awoyemi, B. T. Maharaj, and B. S. Awoyemi,
‘‘Introduction to cognitive radio networks,’’ in Developments in Cognitive
Radio Networks: Future Directions for Beyond 5G, 1st ed. Cham,
Switzerland: Springer, 2022, pp. 3–12.

[4] Report to the President Realizing the Full Potential of Government-Held
Spectrum to Spur Economic Growth, PCAST Spectrum Policy Invited
Experts, Office Sci. Technol. Policy, Washington, DC, USA, 2012.

[5] R. Frieden, ‘‘The evolving 5G case study in United States unilateral
spectrum planning and policy,’’ Telecommun. Policy, vol. 44, no. 9,
Oct. 2020, Art. no. 102011.

[6] M. D. Mueck, S. Srikanteswara, and B. Badic, ‘‘Spectrum sharing:
Licensed shared access (LSA) and spectrum access system (SAS),’’ Intel,
Santa Clara, CA, USA, White Paper, 2015, pp. 1–26.

[7] K. Mun, ‘‘CBRS: New shared spectrum enables flexible indoor and
outdoor mobile solutions and new business models,’’ CBRS Alliance,
OnGo Alliance, Beaverton, OR, USA, White Paper, Mar. 2017, p. 25.

[8] M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, ‘‘Spectrum access system
for the citizen broadband radio service,’’ IEEE Commun. Mag., vol. 53,
no. 7, pp. 18–25, Jul. 2015.

[9] C. W. Kim, J. Ryoo, and M. M. Buddhikot, ‘‘Design and implementation
of an end-to-end architecture for 3.5 GHz shared spectrum,’’ in Proc. IEEE
Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), Sep. 2015, pp. 23–34.

[10] X. Ying, M. M. Buddhikot, and S. Roy, ‘‘SAS-assisted coexistence-
aware dynamic channel assignment in CBRS band,’’ IEEE Trans. Wireless
Commun., vol. 17, no. 9, pp. 6307–6320, Sep. 2018.

[11] Y. Xiao, S. Shi, W. Lou, C. Wang, X. Li, N. Zhang, Y. T. Hou, and
J. H. Reed, ‘‘Decentralized spectrum access system: Vision, challenges,
and a blockchain solution,’’ IEEE Wireless Commun., vol. 29, no. 1,
pp. 220–228, Feb. 2022.

[12] M. Van Otterlo and M. Wiering, ‘‘Reinforcement learning and Markov
decision processes,’’ in Reinforcement learning: State-of-the-Art. Berlin,
Germany: Springer, 2012, pp. 3–42.

[13] Y. Huang, ‘‘Deep Q-networks,’’ in Deep Reinforcement Learning:
Fundamentals, Research and Applications. Singapore: Springer, 2020,
pp. 135–160.

[14] M. Sewak and M. Sewak, ‘‘Deep Q network (DQN), double DQN, and
dueling DQN: A step towards general artificial intelligence,’’ in Deep
Reinforcement Learning: Frontiers of Artificial Intelligence. Singapore:
Springer, 2019, pp. 95–108.

[15] J. Baek and G. Kaddoum, ‘‘Heterogeneous task offloading and resource
allocations via deep recurrent reinforcement learning in partial observable
multifog networks,’’ IEEE Internet Things J., vol. 8, no. 2, pp. 1041–1056,
Jan. 2021.

[16] B. Tezergil and E. Onur, ‘‘Wireless backhaul in 5G and beyond: Issues,
challenges and opportunities,’’ IEEECommun. Surveys Tuts., vol. 24, no. 4,
pp. 2579–2632, 4th Quart., 2022.

[17] E. Selvi, R. M. Buehrer, A. Martone, and K. Sherbondy, ‘‘On the
use of Markov decision processes in cognitive radar: An application to
target tracking,’’ in Proc. IEEE Radar Conf. (RadarConf), Apr. 2018,
pp. 537–542.

[18] E. Selvi, R. M. Buehrer, A. Martone, and K. Sherbondy, ‘‘Reinforcement
learning for adaptable bandwidth tracking radars,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 56, no. 5, pp. 3904–3921, Oct. 2020.

[19] Y. Yao and Z. Feng, ‘‘Centralized channel and power allocation for
cognitive radio networks: A Q-learning solution,’’ in Proc. Future Netw.
Mobile Summit, Jun. 2010, pp. 1–8.

[20] J. Lundén, S. R. Kulkarni, V. Koivunen, and H. V. Poor, ‘‘Multiagent
reinforcement learning based spectrum sensing policies for cognitive radio
networks,’’ IEEE J. Sel. Topics Signal Process., vol. 7, no. 5, pp. 858–868,
Oct. 2013.

[21] Y. Li, H. Ji, X. Li, and V. C. M. Leung, ‘‘Dynamic channel selection with
reinforcement learning for cognitive WLAN over fiber,’’ Int. J. Commun.
Syst., vol. 25, no. 8, pp. 1077–1090, Aug. 2012.

[22] J. Oksanen, J. Lundén, and V. Koivunen, ‘‘Reinforcement learning based
sensing policy optimization for energy efficient cognitive radio networks,’’
Neurocomputing, vol. 80, pp. 102–110, Mar. 2012.

[23] K. K. Nguyen, T. Q. Duong, N. A. Vien, N.-A. Le-Khac, and
M.-N. Nguyen, ‘‘Non-cooperative energy efficient power allocation game
in D2D communication: A multi-agent deep reinforcement learning
approach,’’ IEEE Access, vol. 7, pp. 100480–100490, 2019.

[24] Z. Shi and G. Luo, ‘‘Multi-band spectrum allocation algorithm based
on first-price sealed auction,’’ Cybern. Inf. Technol., vol. 17, no. 1,
pp. 104–112, Mar. 2017.

[25] M. Devi, N. Sarma, and S. K. Deka, ‘‘Multi-winner heterogeneous
spectrum auction mechanism for channel allocation in cognitive radio net-
works,’’ inDistributed Computing and Internet Technology. Bhubaneswar,
India: Springer, Jan. 2020, pp. 251–265.

[26] I. A. Kash, R. Murty, and D. C. Parkes, ‘‘Enabling spectrum sharing in
secondary market auctions,’’ IEEE Trans. Mobile Comput., vol. 13, no. 3,
pp. 556–568, Mar. 2014.

[27] R. P. McAfee, ‘‘A dominant strategy double auction,’’ J. Econ. Theory,
vol. 56, no. 2, pp. 434–450, Apr. 1992.

117338 VOLUME 11, 2023



W. Abbass et al.: Channel Allocation to GAA Users Using Double Deep Recurrent Q-Learning

[28] W. Dong, S. Rallapalli, L. Qiu, K. K. Ramakrishnan, and Y. Zhang,
‘‘Double auctions for dynamic spectrum allocation,’’ IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2485–2497, Aug. 2016.

[29] X. Zhou and H. Zheng, ‘‘TRUST: A general framework for truthful double
spectrum auctions,’’ in Proc. IEEE INFOCOM, Apr. 2009, pp. 999–1007.

[30] X. Zhang, D. Yang, G. Xue, R. Yu, and J. Tang, ‘‘Transmitting and sharing:
A truthful double auction for cognitive radio networks,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), May 2018, pp. 1–6.

[31] X. Feng, Y. Chen, J. Zhang, Q. Zhang, and B. Li, ‘‘TAHES: A truthful
double auction mechanism for heterogeneous spectrums,’’ IEEE Trans.
Wireless Commun., vol. 11, no. 11, pp. 4038–4047, Nov. 2012.

[32] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, ‘‘Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,’’
IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265, Jun. 2018.

[33] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, ‘‘A deep actor-critic
reinforcement learning framework for dynamic multichannel access,’’
IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1125–1139,
Dec. 2019.

[34] C. Schulze and M. Schulze, ‘‘ViZDoom: DRQN with prioritized
experience replay, double-Q learning, & snapshot ensembling,’’ 2018,
arXiv:1801.01000.

[35] O. Naparstek and K. Cohen, ‘‘Deep multi-user reinforcement learning for
distributed dynamic spectrum access,’’ IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[36] Y. Xu, J. Yu, and R. M. Buehrer, ‘‘The application of deep reinforcement
learning to distributed spectrum access in dynamic heterogeneous
environments with partial observations,’’ IEEE Trans. Wireless Commun.,
vol. 19, no. 7, pp. 4494–4506, Jul. 2020.

[37] A. Wang, L. Zhang, D. Chen, and J. Chen, ‘‘Deep reinforcement learning
for dynamic multichannel access in multi-cognitive radio networks,’’
J. Phys., Conf. Ser., vol. 1550, no. 3, May 2020, Art. no. 032135.

[38] Y. Xu, J. Yu, W. C. Headley, and R. M. Buehrer, ‘‘Deep reinforcement
learning for dynamic spectrum access in wireless networks,’’ inProc. IEEE
Mil. Commun. Conf. (MILCOM), Oct. 2018, pp. 207–212.

[39] H. Q. Nguyen, B. T. Nguyen, T. Q. Dong, D. T. Ngo, and T. A. Nguyen,
‘‘Deep Q-learning with multiband sensing for dynamic spectrum access,’’
in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), Oct. 2018,
pp. 1–5.

[40] Z. Youssef, E. Majeed, M. D. Mueck, I. Karls, C. Drewes, G. Bruck,
and P. Jung, ‘‘Concept design of medium access control for spectrum
access systems in 3.5 GHz,’’ in Proc. Int. Conf. Wireless Commun., Signal
Process. Netw. (WiSPNET), Mar. 2018, pp. 1–8.

[41] Y. Azimi, S. Yousefi, H. Kalbkhani, and T. Kunz, ‘‘Applications ofmachine
learning in resource management for RAN-slicing in 5G and beyond
networks: A survey,’’ IEEE Access, vol. 10, pp. 106581–106612, 2022.

[42] Ł. Kułacz, P. Kryszkiewicz, A. Kliks, H. Bogucka, J. Ojaniemi, J. Paavola,
J. Kalliovaara, and H. Kokkinen, ‘‘Coordinated spectrum allocation and
coexistence management in CBRS-SAS wireless networks,’’ IEEE Access,
vol. 7, pp. 139294–139316, 2019.

[43] X. Liu, C. Sun, M. Zhou, C. Wu, B. Peng, and P. Li, ‘‘Reinforcement
learning-based multislot double-threshold spectrum sensing with Bayesian
fusion for industrial big spectrum data,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 5, pp. 3391–3400, May 2021.

[44] W. Abbass, R. Hussain, J. Frnda, N. Abbas, M. A. Javed, and S. A. Malik,
‘‘Resource allocation in spectrum access system using multi-objective
optimization methods,’’ Sensors, vol. 22, no. 4, p. 1318, Feb. 2022.

[45] W. Abbass, R. Hussain, J. Frnda, I. L. Khan, M. A. Javed, and S. A. Malik,
‘‘Optimal resource allocation for GAA users in spectrum access system
using Q-learning algorithm,’’ IEEE Access, vol. 10, pp. 60790–60804,
2022.

[46] N. N. Krishnan, N. Mandayam, I. Seskar, and S. Kompella, ‘‘Experiment:
Investigating feasibility of coexistence of LTE-U with a rotating radar
in CBRS bands,’’ in Proc. IEEE 5G World Forum (5GWF), Jul. 2018,
pp. 65–70.

[47] A. Kliks, P. Kryszkiewicz, Ł. Kułacz, K. Kowalik, M. Kołodziejski,
H. Kokkinen, J. Ojaniemi, and A. Kivinen, ‘‘Application of the CBRS
model for wireless systems coexistence in 3.6–3.8GHz band,’’ inCognitive
Radio Oriented Wireless Networks. Lisbon, Portugal: Springer, 2018,
pp. 100–111.

[48] X.Dong, L. Cheng, G. Zheng, and T.Wang, ‘‘Network access and spectrum
allocation in next-generation multi-heterogeneous networks,’’ Int. J.
Distrib. Sensor Netw., vol. 15, no. 8, 2019, Art. no. 1550147719866140.

[49] P. Lin, X. Feng, Q. Zhang, P. Lin, X. Feng, and Q. Zhang, ‘‘Truthful double
auction mechanism for heterogeneous spectrums,’’ in Auction Design
for the Wireless Spectrum Market. Cham, Switzerland: Springer, 2014,
pp. 19–38.

[50] M. Flammini, M. Mauro, M. Tonelli, and C. Vinci, ‘‘Inequity aversion
pricing in multi-unit markets,’’ in Frontiers in Artificial Intelligence and
Applications, vol. 325. Amsterdam, The Netherlands: IOS Press, 2020,
pp. 91–98.

[51] D. B. Rokhlin, ‘‘Robbins–Monro conditions for persistent explo-
ration learning strategies,’’ in Modern Methods in Operator Theory
and Harmonic Analysis. Rostov-on-Don, Russia: Springer, Apr. 2019,
pp. 237–247.

[52] M. Devi, N. Sarma, and S. K. Deka, ‘‘A double auction framework
for multi-channel multi-winner heterogeneous spectrum allocation in
cognitive radio networks,’’ IEEE Access, vol. 9, pp. 72239–72258, 2021.

WASEEM ABBASS received the B.Sc. degree
in computer engineering from COMSATS Uni-
versity Islamabad (CUI), in 2011, the Master
of Science degree in computer engineering from
the University of Engineering and Technology
(UET) Taxila, in 2014, and the Ph.D. degree
in electrical engineering from CUI, in 2023.
He is currently an accomplished scholar. He is
also an Assistant Professor with the Department
of Electrical and Computer Engineering, Capital

University of Science and Technology (CUST), Islamabad. His research
interests include wireless communication, cognitive radio networks, wireless
sensor networks, and the Internet of Things.

RIAZ HUSSAIN received the B.S. degree (Hons.)
in electrical engineering from the University of
Engineering and Technology, Peshawar, Pakistan,
the master’s degree in networks from North
Carolina State University, Raleigh, NS, USA, and
the Ph.D. degree from the COMSATS Institute
of Information Technology, Islamabad, Pakistan,
in 2013. His dissertation was titled ‘‘Modeling,
Analysis and Optimization of Vertical Handover
Schemes in Heterogeneous Wireless Networks.’’

He is currently an Assistant Professor with the Department of Electrical
Engineering, COMSATS University Islamabad. His current research inter-
ests include cognitive radio networks, device-to-device communication, and
the Internet of Things.

NASIM ABBAS received the B.Sc. degree in
electrical engineering from COMSATS University
Islamabad, Pakistan, in 2009, the M.S. degree
in electronic engineering from Muhammad Ali
Jinnah University, Islamabad, in 2013, and the
Ph.D. degree in electrical engineering from the
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, China, in 2019. His
research interests include wireless communication
and multimedia wireless sensor networks.

VOLUME 11, 2023 117339



W. Abbass et al.: Channel Allocation to GAA Users Using Double Deep Recurrent Q-Learning

SHAHZAD A. MALIK received the B.S. degree
in electrical engineering from the University
of Engineering and Technology Lahore, Lahore,
Pakistan, in 1991, and the M.S. degree in com-
munication systems and networks and the M.Phil.
degree in digital telecommunication systems from
Ecole National e Suprieur d’Electrotechnique,
Toulouse, France, in 1997 and 1998, respectively.
He was a Postdoctoral Research Fellow/Student
Project Advisor with the Department of Electrical

and Computer Engineering, Ryerson University, Toronto, ON, Canada,
from 2003 to 2004. He was an Assistant Professor with the College of
Electrical Engineering and Mechanical Engineering, National University of
Sciences and Technology, Rawalpindi, Pakistan, from 2004 to 2007. Since
2007, he has beenwith theDepartment of Electrical Engineering, COMSATS
University Islamabad, Pakistan, where he is currently a Full Professor and
the Chairperson of Electrical Engineering. His current research interests
include wireless multimedia information systems, mobile computing, QoS
provisioning and radio resource management in heterogeneous wireless
networks (mobile cellular-2.5/3G/4G, HSPA, LTE, WLANs, WiMAX,
MANETs, and WSN), modeling, simulation, performance analysis, network
protocols, architecture and security, wireless application development,
embedded system design, and the Internet of Things.

MUHAMMAD AWAIS JAVED (Senior Member,
IEEE) received the B.Sc. degree in electrical
engineering from the University of Engineering
and Technology Lahore, Pakistan, in August 2008,
and the Ph.D. degree in electrical engineering
from The University of Newcastle, Australia,
in February 2015. He is currently an Assistant
Professor with COMSATS University Islamabad,
Pakistan. From July 2015 to June 2016, he was
a Postdoctoral Research Scientist with the Qatar

Mobility Innovations Center (QMIC) on SafeITS Project. His research
interests include intelligent transport systems, vehicular networks, protocol
design for emerging wireless technologies, and the Internet of Things.

MUHAMMAD ZUBAIR KHAN received the
M.Tech. degree in computer science and engi-
neering from Uttar Pradesh Technical University,
Lucknow, India, and the Ph.D. degree in computer
science and information technology from the
Faculty of Engineering, M. J. P. Rohilkhand
University, Bareilly, India. He was the Head
and an Associate Professor with the Department
of Computer Science and Engineering, Invertis
University, Bareilly. He is currently an Associate

Professor with the Department of Computer Science, College of Computer
Science and Engineering, Taibah University. He has more than 15 years of
teaching and research experience. He has published more than 60 journal
articles and conference papers. His current research interests include the
IoT, machine learning, parallel and distributed computing, and computer
networks. He has been a member of the Computer Society of India, since
2004.

RAYAN HAMZA ALSISI received the Ph.D.
degree in electrical and computer engineering
from the University of Western Ontario, London,
ON, Canada, in 2018. He is currently the Vice
Dean of Development andQuality with the Faculty
of Engineering, Islamic University of Madinah,
Saudi Arabia, where he is also an Assistance
Professor. He is also a Consultant with the
Saudi Council of Engineers. He has more than
15 years teaching and research experience. He has

authored many technical articles in journals and international conferences.
His current research interests include wireless communications, digital
communications, communication and information systems, information
theory, signal processing, optical communications, the Internet of Things,
and communication networks.

ABDULFATTAH NOORWALI (Senior Member,
IEEE) received the Ph.D. degree in electrical
and computer engineering from the University of
Western Ontario, London, ON, Canada, in 2017.
His thesis titled ‘‘Modeling and Analysis of Smart
Grids for Critical Data Communication.’’ He is
currently the Chairperson of the Electrical and
Computer Engineering Department, Faculty of
Engineering and Islamic Architecture, Umm Al-
Qura University, where he is also an Assistant

Professor. He is also a Senior Consultant with Umm Al-Qura Consultancy
Oasis, Institute of Consulting Research and Studies (ICRS), Umm Al-Qura
University, where he is also the Chairperson of Vision Office of Consultancy.
He has authored many technical articles in journals and international
conferences. His research interests include smart grid communications,
cooperative communications, wireless networks, the Internet of Things,
crowd management applications, and smart city solutions.

PRIYADARSHINI PATTANAIK is currently a
Senior Researcher with the Faculty of Com-
puter Science and Informatics, Berlin School of
Business and Innovation (BSBI), Berlin, presents
her area of expertise on medical image analysis
and visualization, machine learning (deep learn-
ing), computer vision, applied mathematics, and
robotics. Her recent project is dedicated to the
idea of developing concepts and tools to address
one of the great challenges of the musculoskeletal

(MSK) field: Understanding and exploiting the link between the shape and
the function of a joint. She has many publications at high-impact research
journals and conferences. Her Ph.D. thesis was on machine-learning-based
classification of microscopic blood smear images for early detection of
malaria. During this period, she was partially supported through a research
grant from Intel and developed image processing algorithms for deep
learning-based digital microscopy and ultrasound imaging reference designs
and systems. She was a Postdoctoral Scientist with collaboration with a
range of academic, institutional, and industrial partners, such as Télécom
SudParis, University of Saclay, a team from the Center for Mathematical
Morphology of Mines ParisTech and the company TRIBVN. Her research
interests include developing machine learning algorithms with deep neural
networks and graphical models for visual computing including medical
image analysis and disease detection.

117340 VOLUME 11, 2023


