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ABSTRACT Bearing faults are critical in machinery; their early detection is vital to prevent costly
breakdowns and ensure operational safety. This study presents a pioneering take on addressing the challenges
of imbalanced datasets in bearing fault diagnosis. By mitigating issues such as mode collapse and vanishing
gradients, our novel method employs Conditional Generative Adversarial Networks (CGANs) with spectral
normalization and adaptive adversarial noise injection to generate high-quality bearing fault samples.
This enhances generalization and robustness against noisy data, significantly improving the stability of
CGAN training. To extract meaningful features from grayscale bearing fault images, we introduce a novel
combination of involution and convolution feature extraction method named I-C FFN. This innovative
feature extraction method captures both local and global information, making it capable of handling
various types of features, including channel-agnostic, spatial-specific, spatial-agnostic, and channel-specific
characteristics. Our proposed oversampling methodology helped enhance the performance of proposed
classification scheme as well as of benchmark transfer learning models. Having accuracy values between
99.40% to 99.61% for 0 and 1 HP imbalanced dataset respectively, our models outperformed standard
transfer learning methodologies. Furthermore, by the inclusion of our proposed Adaptive Adversarial Class-
Conditional GAN (AAC-cGAN), the samples quality and the robustness to noise was significantly increased
as demonstrated by the quantitative assessment through various Evaluation Metrics employed in this paper.
Lastly, the performance of each combination of both the up-sampled and under-sampled methodologies were
assessed throughmultiplemetrics to determine the effectiveness of our proposed approach in addressing class
imbalance in bearing fault diagnosis.

INDEX TERMS Conditional generative adversarial networks, involutional neural networks, convolutional
neural networks, mode collapse, vanishing gradients, channel-agnostic, spatial-specific, feature extraction,
deep learning.
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I. INTRODUCTION
An essential component of the manufacturing sector, ‘‘Rotat-
ing machinery,’’ is rapidly evolving in the direction of
automation and intelligence amidst the backdrop of intel-
ligent manufacturing. With the ever-expanding industrial
needs, structures are becoming increasingly advanced and
intricate [1], [8], [9], [10]. However, this progress also brings
challenges. The bearing, a critical component in rotating
machinery, often experiences wear and aging because of
continuous high-paced operation during production. This
wear and aging contribute to safety mishaps and can disrupt
the entire production, leading to equipment damage and
even injuries [2], [23], [24]. Consequently, manufacturing
productivity can suffer. Thus, reliable system functioning
depends on effective defect diagnostics.

The analysis of temperature, vibration, ultrasound, elec-
trical discharge, and other variables is currently a part
of bearing problem diagnosis technology [3], [5], [27],
[28], [29]. The vibration signal is the one that is most
frequently employed because data collection and processing
are simple. Additionally, when a bearing’s surface is partially
damaged,periodic broadband pulse excitation signal will
be produced, making it highly effective in analyzing the
rolling bearing’s vibrations. The essential steps of data-driven
intelligent fault diagnostic approaches are the fault features
extraction and classification of fault states. The existing
approaches for extracting characteristics from vibration
signals in rolling bearings encompass the combinations
of time,frequency and time-frequency domain analyses.
The time-frequency analysis among the three vibration
signals is commonly employed, with methods like wavelet-
transform(WT) [4], empirical mode decomposition(EMD)
[5], [27], [28], [29], local mean decomposition(LMD) [6],
and others being prevalent. These extracted characteristics
serve the purpose of discerning fault conditions through
basic machine learning techniques like random forests [7].
Nevertheless, these techniques are dependent on domain-
specific knowledge, are unable to learn intricate features, and
lack the necessary adaptability to handle situations involving
substantial integration and intricate operational conditions.

The Deep Learning(DL) algorithms such as CNN learn
features adaptively and extract features directly from raw
vibration signals. – Eliminating the need for manual fea-
ture extraction with more efficient, significantly accurate
and highly generalizable fault diagnosis. In this regard,
researchers have used deep neural networks to evaluate the
deterioration degree of rolling bearings based on the extracted
fault feature information from vibration signals. Hence
using a bottle-neck optimised convolutional neural network
(MB-CNN) and multi-sensor data fusion, Wang et al. [1]
suggested a unique fault recognition approach for rotating
equipment. In order to prevent information loss, the created
network executes the bottleneck layers with a larger input
features. The innovative CNN achieves improved recognition
and fast convergence. Similarly, Guo et al. [2] introduced an

approach involving a multi-task CNN with integrated detail
and employed dynamic training. This method allows for the
concurrent execution of both fault diagnosis and localization
tasks [3], [30], [31], [32], [33], [34].

CNNs possess the ability to extract intricate feature details
without any manual labor from the high-dimensional input.
If we can represent 1-D vibration signals from bearings in
a matrix or spectral image format, effectively transforming
these vibrational signals into two-dimensional representa-
tions, we can harness the feature extraction capabilities of
CNNs to obtain more precise features. Huang et al. [3]
introduced an innovative approach known as the ‘‘deep
decoupling CNN’’ for a smart compound fault diagnosis.
Initially, a 1-d deep CNN is used to learn distinctive
characteristics from vibration signal. Subsequently, a multi-
stack designed capsule is applied to separate the classifier,
allowing for accurate identification and decoupling of faults
that are composite. At the end, using the protocol routing
algorithm and cost function the proposed model is optimized.
Qiao et. al. [4] improved the CNN’s sensitivity to fault
characteristics by introducing an adaptable weight vector.

Where two dimensional transformations have large influ-
enced the diagnosis of vibrational signals, Gray scale repre-
sentation by reshaping the signals have been employed for
feature extraction by deep learning methodologies. Adapting
this methodology, Peng et. al. reshaped the fault signals into
grayscale image, utilized this grayscale image for extracting
fault features, and obtained an improved fault diagnosis
outcome [5]. In the same manner, Wen et al. [6] transformed
the vibrational signal into a two-dimensional image and
fed a CNN for classification and diagnosis. This approach
has garnered significant interest from numerous researches
including the following paper.

Despite the automated feature extraction capabilities from
2-d images, some researchers have involved their endeavors
in preprocessing the signals to amplify the hidden patterns
for a much more robust and reliable diagnosis. One such
strive by Li et al., [7] converted vibrational signals into
an image by amalgamating vibrational acceleration with
integrated displacement signal. Dual-stage Attention RNN
(DA-RNN) and a convolutional attention module (CABM)
into the training process. Ultimately, they classified the faults
using a CNN embedded within the CBAM structure.

Considering a deficiency of fault classes, most datasets
have a significant imbalance ratio of normal and fault
classes. This imbalance presents a fundamental challenge
in effectively training machine learning models. To address
this issue, the usual methods for extracting features from
imbalanced data is diversified into two main groups.
First of which focuses on enhancing the effectiveness of
cost-sensitive algorithms to enhance the accuracy of fault
diagnosis when dealt with scarcity of samples. However,
these cost-sensitive methods encounter two primary chal-
lenges: (1) fault classification costs are often problematic, and
(2) performance evaluation of cost-sensitive algorithms are
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often densely complex [11], [40], [41], [42], [43], [44], [45],
[46], [47], [48].

The second category centers around data augmentation
techniques, including up and under-sampling in order to
address class imbalance. The basic approach used for over-
sampling involves duplicating samples in underrepresented
classes to balance the count. However, this has a potential
to lead the model towards overfitting issues since no new
knowledge is introduced. On the other side, reduces samples
count in the majority classes to match the class with minority
samples inevitably results in information loss [7], [8], [9],
[10], [11], [40], [49], [50], [51], [53].
In the domain of fault diagnosis, the challenge of

effectively extracting meaningful fault-related features from
unbalanced single dimensional fault data to develop robust
fault diagnosis methods has emerged as an intriguing
and demanding problem. Reed et al. [8] used GAN to
automatically generate real images from text descriptions.
Radford et al. proposed the Deep cGAN, which generates
high resolution images [9].
Tang et al. utilized a Wasserstein GAN (WGAN) to

reduce discrepancies in the distribution of fault data [11].
Similarly, Wang et al. used GAN for the synthesis of new
samples and performed fault diagnosis using superposition
denoising auto-encoders (SDAE) [12]. Mao et al. used
GAN to create minority class samples on a Fast-Fourier
Transform (FFT) processed data [13]. Xuan et al. proposed
a Multi-view GAN (MV-GAN) to automatically expand the
image dataset [14]. Lee et al. harnessed GAN to generate
empirical mode decomposition (EMD) energy spectrum
data, achieving superior fault diagnosis results compared to
traditional oversampling techniques [15]. Han et al. combined
adversarial learning with CNN to enhance robustness [16].
Akhenia et al. applied multiple time-frequency feature
extraction methods to create 2-d time spectrum images fault
signals, subsequently using single image GAN (SinGAN) to
generate data [17]. Tong et al. [18] employed an auxiliary
GAN with spectral norm (ACGAN-SN) for bearing fault
detection. Although GAN based oversampling methods have
potentially alleviated the problems associated with the under-
represented classes, their training process is difficult and
challenging. Some of the complications associated with GAN
Networks are i. Model Collapse due to small training sizes
ii. Vanishing and Exploding gradients in deep networks. iii.
Adversarial susceptibility, as small perturbation in input data
can deceive the generator or discriminator resulting in faulty
samples generation.

Keeping under consideration the above shortcomings,
a novel conditional GAN based oversampling algorithm
is proposed with the spectral normalization and adaptive
adversarial noise injection approach to generate high quality
bearing fault samples for the minority classes. Moreover,
the proposed GAN based method effectively counters the
mode collapse and vanishing gradients. Additionally, a novel
combination of involution and convolution based feature
extraction is used to capture the channel- agnostic, spatial

FIGURE 1. Generative Adversarial Network (GAN) architecture.

specific and spatial agnostic and channel specific features
from the faulty bearings. This holistic approach provides a
well-rounded understanding of the data, yielding both local
and global insights crucial for accurate and reliable rolling
bearing diagnosis. The contributions of this paper are enlisted
below:

1) A novel GAN based up-sampling method is proposed
to generate quality bearing fault samples with a
stabilized training using spectral normalization and
an adaptive adversarial noise injection mechanism for
improved generalization and enhanced robustness to
noisy data.

2) A novel involution and convolution based feature
extraction method is proposed to capture the local and
global details of bearing faults gray-scaled images. The
use of channel-agnostic and spatial specific involution
kernel compliments the single channeled nature of the
transformed data and provide attention maps for each
spatial window.

The remaining paper portion is structured as follow: The
second section provides a brief Background of the techniques
used. The Third Section explains the Methodology while the
Fourth Section is for the discussion of results. The last section
Concludes the paper.

II. MATERIALS AND METHODOLOGY
A. GENERATIVE ADVERSARIAL NETWORK—GAN
An adversarial trained generator (G) and discriminator (D)
neural network pair make up a Generative Adversarial
network (GAN) [11], [12], a deep learning framework
that generates realistic data samples. The generator G in
the mathematical implementation of a GAN aims to learn
mapping from noise to data samples that mimic D., where
is taken from a straightforward distribution like Gaussian
noise, is how it is denoted. The discriminator is simultane-
ously attempting to discriminate between genuine samples
produced by and fraudulent ones created by. This adversarial
process is formalized as a min-max game in which seeks
to reduce and seeks to increase the likelihood that correctly
labels its generated samples as false. Mathematically, this can
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FIGURE 2. Class conditional- GAN architecture.

be expressed as:

minG,maxDEx∼D[log(D(x))] + Ez∼Noise[log(1 − D(G(z)))

(1)

In this case, the probability reflects the probability assigns to
a real sample, while the probability represents the probability
assigns to a created sample. The GAN training procedure
is carried out repeatedly until generates samples that are
identical to real data, rendering incapable of efficiently
discriminating between them. Due to this equilibrium, the
generator generates data whose distribution roughly mimics
that of the initial dataset.

B. CLASS CONDITIONAL GAN—cGAN
Conditional Generative Adversarial Networks (cGANs) [11],
[12], [13], [14] are an extension of traditional GANs
designed for controlled image generation. Unlike standard
GANs, cGANs take additional information, often class labels,
as input during the training process. In a cGAN, the generator
takes both random noise and a conditional label as inputs. The
discriminator also receives the same label along with real or
generated images.

min
G

max
D

Ex∼pdata(x|y)[logD(x | y)]

+ Ez∼pz(z),y[log(1 − D(G(z | y) | y))] (2)

where,

x = real image
G(z | y) = generates a fake image with label y
D(x | y) = The probability value of Discriminator

that the input image real.

The objective function for cGANs combines the standard
GAN objective with an additional conditioning term, Mathe-
matically given as:

Bearing fault diagnosis is a critical task in various
industrial domains, ensuring the operational reliability and

safety of machinery. Accurate detection and classification of
bearing faults are paramount to prevent costly breakdowns
and minimize downtime. However, this endeavor is marked
by a fundamental challenge: the scarcity of labeled fault
data compared to healthy data samples, leading to an imbal-
anced dataset problem. As Generative Adversarial Networks
(GANs) are prone to challenges such as sub-optimal sample
generation, mode collapse, and gradient disappearance.
Researchers have proposed various techniques to address
these issues and enhance GAN performance. Additionally,
deep learning models, including GANs, are susceptible
to adversarial attacks due to their dependence on learned
parameters. Adversarial attacks can cause misclassification,
which can prove critical in applications like machinery
monitoring, where misclassifications can result in safety
risks. Most current research studies in the domain of bearing
fault diagnosis haven’t addressed these shortcomings for
GAN related oversampling in a single setting, according to
our knowledge.

Therefore, in response to this challenge, we introduce
AAC-cGAN (Adaptive Adversarial Class - Conditional
GAN), a novel generative framework tailored for the
synthesis of bearing fault signals. AAC-cGAN effectively
counters two crucial issues that have a substantial effect
on the training and the generation of quality samples
i.e., Spectral Stability and Adversarial Robustness. Spectral
Stability ensures the model’s smooth training and resistance
to exploding and vanishing gradients, whereas the adversarial
robustness equips the model to generate good quality samples
while also dealing with discrete noise patterns that can
interfere with classification. Below is a thorough explanation
of the proposed oversampling method.

C. ADAPTIVE ADVERSARIAL CLASS CONDITIONAL
GAN—(AAC-cGAN)
In a Conditional GAN (cGAN), the generator (G) and the
respective discriminator (D) are conditioned on particular
class labels. These class labels help us generate data that
belongs to specific classes. The generator takes random noise
Z and a class label y as input and generates samples G(z, y).
The proposed method Adaptive Adversarial Class Condi-
tional GAN (AAC-cGAN), makes use of the foundational
principles of cGAN, and adds to the knowledge by introduc-
ing a spectral normalization layer in the discriminator section
and an adaptive noise generation network that controls the
amount of adversarial noise injected within the generator
as part of the robust training regimen. The adaptive noise
generation network is trained separately on the generator
loss accumulated by a baseline GAN network, it is then
integrated into the AAC-cGAN training loop to generate the
controlling parameters (α and β) by passing GAN Loss as
input to trained Adaptive Noise Generation Network (ANG).
The general implementation of the method is given within
Figure 3. While further elaboration of the ANG network and
the related concepts is given in succeeding sections.
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FIGURE 3. Proposed AAC-cGAN architecture.

FIGURE 4. Adaptive Noise Generation (ANG) network.

1) ADAPTIVE NOISE GENERATION NETWORK
The Adaptive Noise Generation (ANG) network proposed
in this paper is designed to dynamically generate noise
adjustment factors (α and β) based on the current value of
the Generator Loss (GLoss) during training. This technique
enables AAC-cGAN to adaptively control the magnitude and
type of adversarial noise introduced into the generator’s input.

The ANG network consists of feed-forward NN with one
or more dense layers. GLoss is given as input and the model
outputs the noise adjustment factors α and β. TheGLoss fed to
ANG network is extracted each epoch from a baseline GAN
trained on respective experimental data. A suitable threshold
LTh value is manually selected from the acquired GLoss stack
as depicted in Figure 4.

Based on the threshold, α and β target variables are
generated using a conditioning that will later be used as
a guiding mechanism for adaptive noise generation. The
generation of α and β target variables are done using the
following constraints:

GLoss ≥ LTh (3)

Increase the magnitude of adversarial noise.

Znoisy = Z + z · α | α > 1 (4)

If,

GLoss ≤ LTh (5)

Decrease the magnitude to avoid over-regularization.

Znoisy = Z + n · β | 0 < β < 1 (6)

After the generation of target labels and creating a training
set, the corresponding features and target variables are fed to
the feed-forward network given as under.

InputLayer ⇒ [GLoss] (7)

Hidden Layer ⇒ Hi = σ (Wi · Hi−1 + bi) (8)

Output Layerα ⇒ σ (Wα ∗ Hn + bα) (9)

Output Layerβ ⇒ σ (Wβ ∗ Hn + bβ ) (10)

where,

GLoss = Generator Loss
i = layer number
σ = activation function (e.g., ReLU or

Sigmoid)
Wi and bi = weight and bias for ith layer
Wα , Wβ , bα , and bβ are weight matrices and bias for the

output layer

2) NOISE INJECTION INTO GENERATOR
We introduced controlled noise Znoisy generated by the
ANG-Network into generator’s input.

Ho = Dense(Znoisy) (11)

Here,
Ho = output of the dense layer that takes the noisy

input Znoisy.
The generator processes the noisy inputZnoisy and produces

a synthetic sample Xfake such that,

Xfake = f θG(Znoisy, y) (12)

Xfake = generated synthetic sample.
f θG = generator function.
Znoisy = noisy input.
y = class label.

3) DISCRIMINATION
The discriminator evaluates the authenticity of Xfake by
considering both the class label y and the presence of added
noise. Its output Doutput indicates the prediction of the input
resembling a real sample.

Doutput = f θD(Xfake, y) (13)

where,

Doutput = discriminator’s output.
f θD = discriminator function.
Xfake = generated synthetic sample.
y = class label.
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FIGURE 5. Illustration of adversarial noise injection.

FIGURE 6. Working of discriminator.

4) SPECTRAL NORMALIZATION
Spectral normalization is a technique used to constrain
the Lipschitz constant of neural networks in order to
enhance training stability. In AAC-cGAN, weight matrices
W of discriminator are stabilized by applying spectral
normalization, further ensuring that the Lipschitz constant of
these networks does not exceed a specified threshold.

W̃ =
σ (W )
W

(14)

here,

W̃ = spectrally normalized weight matrix.
W = original weight matrix.
σ (W ) = largest singular value of W.

D. CONVOLUTIONAL NEURAL NETWORK—(CNN)
In traditional convolutional neural networks (CNNs), convo-
lution is performed on data tensor D of shape (n,C,H ,W ),
where n represents number of samples, C is the number
of channels, and H and W are the spatial dimensions.
Convolutional filters (also known as kernels) are applied to
the input data while each filter has weights shared across all

FIGURE 7. Spectral normalization.

FIGURE 8. CNN architecture.

FIGURE 9. i-NN architecture.

spatial positions. Mathematically, the output K for a single
filter can be represented as:

Ci =

N∑
j=1

(F · Ki)j (15)

where,

Ci = Output features of ith convolutional layer.
N = Filter count
F = Feature map obtained from involutions.
Ki = ith convolutional kernel.

E. INVOLUTIONAL NEURAL NETWORK—(i-NN)
Involutional Neural Networks (i-NNs) [19] are a novel
neural network architecture for computer vision tasks.
They introduce ‘‘involution,’’ an operation that adaptively
combines input values using learned parameters associated
with specific positions in the input, enhancing spatial
sensitivity. i-NNs challenge traditional convolutional design
principles, achieving improved performance in tasks like
image classification and object detection while often reduc-
ing computational costs. This innovative approach bridges
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FIGURE 10. Block diagram of proposed bearing fault classification scheme.

convolution and self-attention mechanisms, making it a
promising tool for efficient and effective deep learning
in visual recognition. Involution aims to invert the design
principles of convolution, making it more location-sensitive
and channel-agnostic.

In an involutional layer, instead of using shared weights
for all spatial positions, distinct weights are used for different
spatial positions. Mathematically, the output P for a single
position (i, j) can be represented as:

pval = xi + m−

⌊
Ksize

2

⌋
, j+ n−

⌊
Ksize

2

⌋
, c (16)

Pi,j =

K∑
m=1

K∑
n=1

Km,n · pval (17)

Pi,j is the output at position (i,j) in the feature map for channel
c. Km,n is the input value at position m. pval is pixel values
from the input image at shifted positions based on kernel size
for channel c. K is the size of the filter.

F. PROPOSED FEATURE EXTRACTION METHOD
Involutions is a new concept that hasn’t been much explored.
Involutions offer a new take towards feature extraction,
by effectively inverting the working of convolutional neural
networks, Involutional networks provide an attention based
mechanism through a spatially-specific and channel-agnostic
approach. Involutions capture non-local dependencies and
global context, enabling the understanding of intricate
relationships within data. Convolutions, on the other hand,
excel at learning hierarchical and abstract features, essential
for recognizing patterns and objects within localized regions.

FIGURE 11. Channel agnostic and spatial specific feature extraction by
involution kernel.

When used in synergy within neural network architectures,
involutions and convolutions create powerful feature extrac-
tion pipelines. Their combination allows networks to capture
both local and global information, resulting in representations
that are not only informative but also discriminative. Herein,
we propose such synergy of the aforementioned feature
extraction techniques named Involution-Convolution Feature
Fusion Network (I-C FFN) for feature extraction of bearing
fault gray-scaled 2-dimensional representations, that will
not only benefit from a channel-agnostic approach and
a spatially inclined involution network but also a global
context extracting CNN network, all in a computationally
inexpensive and reliable manner.

1) INVOLUTION BASED FEATURE EXTRACTION
For each element x(i, j) in the input matrix X, our pro-
posed involution network compute a weighted sum of the
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TABLE 1. Layer description for proposed I-C FNN feature extraction methodology.

surrounding elements, allowing for the incorporation of local
information. The involution kernels move around each spatial
location (xi + k, j + l) with different weights, capturing the
local context and extracting the most informative region by
utilizing self-attention. While doing so the same weights in
a kernel are applied to each channel within the receptive
field. Resulting in a low computation matrix operation and
a channel agnostic approach. This method proves effective in
dealing with single channeled images, where color channels
hold very little information like the bearing fault gray-scaled
images used in this study. This operation is given as:

y(i, j) =

K∑
k=1

wk · xi+k,j+l (18)

y(i, j) is the output at position (i, j) and K is the ker-
nel size, which defines the size of the local receptive
field.wk represents the weights applied to the neighboring
elements while xi+k,j+l represents the neighboring elements
around (i, j).

Involutions are performed across the entire input matrix,
resulting in a feature map F that retains important local
patterns. The architecture begins with input images of
size 32 × 32 with 3 channels, typical for color images.
It employs a series of Involution Layers, each with dis-
tinct configurations. The Involution Layers capture spatial
dependencies effectively. The first Involution Layer (‘‘inv1’’)
applies a 5 × 5 kernel with a group number of 3, reducing
the spatial dimensions slightly. Next is the ReLU activation
and max-pool to down-sample the feature maps. Subsequent
Involution Layers (‘‘inv2’’, ‘‘inv5’’, ‘‘inv6’’, and ‘‘inv7’’)
follow similar patterns, further refining spatial relationships
and features. These layers utilize different kernel sizes,
striving to capture patterns at various scales. Finally, a max-
pool layer is applied to down-size the feature map.

2) CONVOLUTION BASED FEATURE EXTRACTION
The convolution section of our proposed feature extraction
pipeline is based on multi-layered feature extraction. With
multiple kernels that slide over the feature map F, computing
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FIGURE 12. Channel specific and spatial agnostic feature extraction by
convolution kernel.

a weighted sum of local patches, global details are extracted.
While the channel specific approach, applied computation-
ally expensive matrix operation of varying weighted kernel
with each channel to acquire color details. These global
details were made available to the classification network for
fault diagnosis. Mathematically, a convolution operation can
be represented as:

Ci =

N∑
j=1

(F · Ki)j (19)

where:

Ci = output feature map of the ith convolutional layer.
N = number of filters.

The Convolution Layers in proposed I-C FFN architecture
are fundamental for extracting global features from input
images. These layers are meticulously configured with
specific parameters to effectively capture channel specific
and global aspects of the data. In the first Convolution Layer,
a filter size of 3 ×5 is employed with ‘same’ padding,
while the second layer uses a 3 ×7 filter with the same
padding option. Both of these layers consist of 36 filters.
A 2 ×2 max-pooling operation follows to down-sample the
feature maps. The third Convolution Layer utilizes a 1 ×5
filter with ‘same’ padding, and the fourth layer employs
a 3 ×5 filter with the same padding. These layers also
consist of 36 filters each. Another 2 ×2 max-pooling layer
follows these Convolution Layers. Additionally, the fifth and
sixth Convolution Layers apply filters with sizes 3 ×7 and
3 ×9, both using ‘same’ padding and consisting of 36 filters
each. These layers collectively contribute to a rich feature
representation, crucial for the architecture’s success in tasks
such as multi-class classification and feature extraction from
bearing fault signals.

3) FEATURE CONCATENATION
The feature fusion of convolution and involution layers allows
the network to benefit from the unique advantages of each
operation. As discussed above, the Involution captures spatial
dependencies effectively and operates in a channel-agnostic
manner, rendering it adept at recognizing complex patterns.
On the other hand, Convolution is proficient at detecting
basic features and structures in a global feature extraction
approach. The features of both these layers were concatenated

FIGURE 13. Bearing fault acquisition setup.

to form a final feature vector, arming the model with holistic
understanding of the input data, combining fine-grained
details captured by Involution with broader context revealed
by Convolution. This synergy enhanced the network’s ability
to extract discriminative features, making it a powerful tool
for our required gray-scaled images.

The feature concatenation operation between the output
of the Involution Layers (denoted as Yinv) and the output of
Convolutional Layers (denoted as Yconv) can be represented
mathematically as follows: Yinv is of shape H × W × Cinv,
where Cinv is the number of channels after the Involution
Layer. Yconv is of shape H × W × Cconv, where Cconv is
the number of channels after the Convolutional Layer. The
feature concatenation operation can be represented as:

Yconcat = concat(Yinv,Yconv) (20)

where,

Yconcat = Concatenated feature map.
Concat = Concatenation two feature maps along the

channel dimension.

III. EXPERIMENTAL RESULTS
A. CWRU DATASET
The dataset used herein for empirical analysis is CWRU
(Case-Western-ReserveUniversity)rolling bearing dataset[31],
a vastly used, recognized, and open-source dataset that
serves as a benchmark in diagnosing bearing faults. CWRU
is developed by the Center-For-Intelligent Maintenance
Systems (IMS) at Case Western Reserve University, aims
to provide researchers and practitioners with standardized
dataset for effective evaluation and comparison of different
fault diagnosis methods and algorithms.

The dataset was meticulously designed to simulate the
real-world conditions of various bearing faults and incorpo-
rating signals associated with various fault types. It comprises
vibration signals recorded using an accelerometer from four
sets of rolling element bearings operating under diverse
conditions, including normal and faulty scenarios. These
bearings are deep groove type, specifically (6205/6203- 2RS
JEM SKF). The Data extraction procedure involved a set
of equipment, including a 2-horsepower motor, transducer,
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FIGURE 14. Segmentation of signals.

and dynamometer, as illustrated in Figure 13 [52]. Different
fault conditions were intentionally introduced to individual
bearings, encompassing inner-race, outer-race, and ball-
faults, as well as combinations thereof. In order to ensure
realism and consistency, fault sizes were precisely controlled.
The Faults were integrated at specific points in order to create
fault sizes on bearing races and balls. The respective faults
were introduced in the test bearings supporting the motor
shaft using electro-discharge machining, with fault diameters
ranging from 7mils to 40mils, where 1 inch equals 1000mils.
NTN and SKF(Bearing Types), were employed for different
fault diameters, such as 28 and 40 mils for NTN bearings
and 7, 14, and 21 mils for SKF bearings.

Accelerometers were affixed to the housing with magnetic
bases to extract vibrational data. The data acquisition process
also involved rotating the bearings at distinct speeds and
conditions to capture signals details under varying operating
conditions. Acceleration data was collected from the sensors
which were placed at different locations. These positions
include, perpendicular to fan and drive ends of the motor
housing. The acquisition sampling rates were 12,000 samples
per second and 48,000 samples per second for drive end
bearing faults. Additionally, the torque transducer was used
to extract speed and horsepower data. For comprehensive
analysis, the response to outer raceway faults, faults were
strategically positioned relative to the load zones. For both
the fan and drive-end bearings, the impact quantification was
conducted via a series of experiments involving the placement
of outer raceway faults at different orientations.

B. EVALUATION
In the following study, the fault dataset for 48K samples was
used. The fault diameter of 0.007, 0.014 and 0.021 inches
were also taken at zero and one horse-power (0HP,1HP)
for classification. Additionally, the normal baseline data
was merged with the prior mentioned data to be classified
alongside. The empirical procedures to evaluate the proposed
model’s efficiency were based on and 14 classes respectively.
The raw-signals were segmented using a window size of
1024 with a stride size of 500.

The stride of 500 ensured that the correlation and patterns
between successive segments are captured. The segments
are then reshaped into the corresponding 2-dimensional
gray scale image representation allowing us to harness the
spatial feature extraction capabilities of convolutional and
attention based feature extraction. This further allowed the

FIGURE 15. Class distribution of imbalance fault data (a) N-L condition
(b) S-L condition.

FIGURE 16. 1-D time domain signal conversion to 2-D gray scaled images.

feature extraction without any explicit noise reduction or
preprocessing because of the deep learning based feature
extraction framework and simplicity in synthetic sample
generation.

AAC-cGAN was implemented on the imbalanced dataset
as seen in the figure, for effective oversampling. The dataset
with N-L and S-L conditions contain 13 fault classes and a
healthy class in each, as shown in the figure. The numbers
before the underscore represent the fault diameters in inches
while the OR, IR and BA represent the Outer Race, Inner
Race and Ball Faults. The number with the OR class
represents the orientation at which the faults were induced.
The class imbalance can be clearly seen in the figure
which we will mitigate using the proposed up-sampling
methodology.

The gray-scale image dataset of dimensions 32 × 32 was
subjected to a baseline GAN model for generative loss
extraction by training for 300 epochs and then a secondary
model ANG was trained on the acquired generative loss.
The ANG network took generative loss as input and outputs
adjustment parameters α and β. This feature of ANG network
is leveraged in the AAC-cGAN network for tuning the value
of injected noise by placing it between theGenerator Loss and
the injected noise generator. The entire AAC-cGAN model
was trained for 100 epochs and evaluated on multiple metrics
providing a quantitative assessment of the generated samples
epoch by epoch as shown in Figure.

To ensure the quality of samples generated and the
performance of our proposed AAC-cGAN model with a
baseline cGAN, we employed multiple evaluation metrics
used for quantitative assessment of the model. Although
these metrics provide a general overview of the model’s
performance, there is no one-fits all values contrary to our

118262 VOLUME 11, 2023



M. Irfan et al.: Improving Bearing Fault Identification

FIGURE 17. Upsampling ratio of imbalanced classes (a) N-L condition
(b) S-L condition.

FIGURE 18. Evaluation metrics for cGAN and AAC-cGAN (a) Inception
score (b) Frechet inception distance (c) Learned perceptual image patch
similarity (d) Mean squared error.

general classification models. The figure above provides an
epoch wise assessment for the duration of 100 epochs. As we
approached theNash equilibrium during the training regimen,
the generated samples were quantitatively compared to the
respective original counterparts. The first of the which is
the inception score I-S, the I-S metric uses a pre-trained
Inception-Net algorithm to evaluate the sample in terms of
their quality and diversity. The above training curve for
100 epochs showed an increasing value for both c-GAN
and our proposed AAC-cGAN model. As higher values of
inception scores depict a better image quality, the baseline
cGAN landed at a 3.8 while our proposed model had a
score of 6.1. Similarly, the second curve shows the Frechet
Inception Distance (FID), this distance metric quantifies the
similarity of samples in the feature space. A lower distance
value is a sign of a stable sample generation which can be
seen in the training curve. The FID value for the cGAN stood
at 103 while the proposed method landed at 67.5. Similarly,
another metric Learned Perceptual Similarity Patch (LPIP)
metric is employed to evaluate the perceptual similarity
levels. This metric holds great significance as it quantifies
the similarity levels similar to human vision. The curve in
the figure shows a stable fall towards an improved LPIP
score for both the cGAN and AAC-cGAN. The last metric
is the MSE which although is not a direct evaluation of the

FIGURE 19. Accuracy assessment for imbalanced dataset on custom and
pre-trained networks.

FIGURE 20. Accuracy assessment for cGAN based upsampling on custom
and pre-trained networks.

generative models, but provides an insight into the fidelity
of the model. Being a full reference metric, the lower values
are considered better. Hence the above metrics allude to a
quantitative estimation of improved image generation by our
proposed model. It can be seen that the proposed technique
clearly outpaces the baseline cGAN network in all quality
metrics. Proving the effectiveness of our model in handling
the under-study problem.

In order to get a more comprehensive evaluation of our pro-
posed scheme, the experimental procedures were procured
on different combinations. The initial experimentations were
performed on the dataset with no-load (N-L) and single load
(S-L) conditions (0-HP and 1-HP) without any oversampling.
In this regard, multiple pre-trained and custom networks were
used. The accuracy values were not optimal, as the highest
accuracy reached at 85.94% and 83.46% by the proposed I-C
FFN network for the respective 0 and 1 HP load conditions.
The pre-trained networks that reached the highest accuracy
for N-L condition was VGG-19 with 82.33% and for S-L
condition VGG-16 reached 81.75%. The acquired accuracy
values for under-sampled experimentations are given in
Table 3. The above results indicate the significant room for
improvement on the baseline results. The lower accuracy
owes to the fact that the pre-trained networks haven’t been
acclimatized to the respective domain resulting in a mediocre
result. With the additional under-sampled representations
some classes are difficult to classify because of the sample
scarcity. Hence rendering the overall performance compro-
mised. Furthermore, these baseline results effectively guide
to a better understanding of the models suitable for the task.

VOLUME 11, 2023 118263



M. Irfan et al.: Improving Bearing Fault Identification

TABLE 2. Comparison of our model with existing works.

FIGURE 21. Accuracy assessment for proposed AAC-cGAN based
upsampling on custom and pre-trained networks.

Following which, multiple experimentations were performed
with the oversampled dataset using proposed and already
established techniques for a thorough evaluation.

The results after the oversampling using baseline GAN
provided some improvements albeit not quite significant, but
sufficient to nudge us in the right direction. The highest
accuracy attained was 86.09% on S-L and 85.13% on
NL condition by our proposed classification model in this
evaluation test, getting an increase of approx. 1.5% for
N-L and 1% for S-L as shown in the Table 4. The rest
of the pre-trained and custom models lagged just a little
behind yet got an improvement in their results against the
under-sampled outcomes. The reason our proposed model
aced both the evaluation was its global and local feature
extraction capability. Making it adept to tasks involving both
channel agnostic and specific data. Although the GAN based
oversampling was procured, however the sample quality
was not optimal making feature extraction difficult and
consequently affecting the potential of reaching higher. This
drawback was overcome by introducing some changes within
the baseline GAN’s architecture to cater to the needs of our
under-study problem.

After the evaluation through the baseline GAN, AAC-
cGAN based oversampling is employed to integrate essential
improvements by analyzing the shortcomings of baseline
GAN. The training curves were more stable and the different
quantitative assessments provided a much more compre-
hensive overview. The highest accuracy values achieved
after applying AAC-cGAN on the synthetically oversampled

FIGURE 22. Accuracy curves of proposed and pre-trained models
(a) Accuracy value for N-L condition (b) Accuracy value for S-L condition.

TABLE 3. Evaluation of models without oversampling.

dataset as per the Table 5 were 99.40% and 99.61% for
the proposed method I-C FFN shortly followed by VGG-19
with the accuracy value of 97.72% and 98.26% for N-L
and S-L conditions. The rest of the transfer learning models
also achieved a significant increase after the proposed over-
sampling methodology.

C. COMPARISON WITH EXISTING WORKS
The comparison of our method with the existing works
reveal some scintillating insights into the advantages of our
proposedmethod. The combination of cGAN andAdversarial
Noise not only increases the quantity of training data but
also bolsters the model’s resilience against noisy data and
potential adversarial attacks, a significant facet that is often
overlooked in other studies such as [55], [56], and [57] where
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TABLE 4. Evaluation of models with cGAN based over-sampling.

TABLE 5. Evaluation of models with AAC-cGAN for N-L and S-L.

authors used a normalization based imbalance handling,
traditional generative techniques and a noise injection based
approach. However, some of these studies did not regard
the both the stability and adversarial robustness. Those that
integrated noise injection did not emphasis the adaptive
nature of injection which could control the extent of injected
noise and maintain overall stability.

Secondly, our proposed Involution and Convolution based
feature extraction scheme is the first of its kind within
the domain of bearing fault classification. The proposed
technique is chosen as feature extractor for its significant edge
in effectively capturing spatial dependencies in a channel-
agnostic manner, enabling it to recognize intricate pat-
terns. Meanwhile, the complimentary Convolution is adept
at detecting fundamental features and structures globally.
The harmony of these two approaches achieves a more
comprehensive understanding of the data and patterns
compared to studies relying solely on convolutions or tedious
hand-crafted details [20], [21], [22], [23], [24].

IV. CONCLUSION
In conclusion, this study introduced novel approach towards
tackling critical issue of bearing fault detection. The

vital importance of early detection in machinery to avoid
expensive breakdowns and ensure operational safety cannot
be overstated. The novel method proposed in this study
combines Conditional Generative Adversarial Networks
(CGANs) with spectral normalization and adaptive adversar-
ial noise injection. The proposed method has demonstrated
remarkable effectiveness in generating high-quality bearing
fault samples. By reducing the risk of mode collapse and
vanishing gradients, the proposed approach enhances the
generalization and robustness of CGAN training, leading to
more stable and reliable results.

Additionally, the first of its kind introduction of the I-C
FFN feature extraction method, combining involution and
convolution techniques for bearing fault classification, has
further enriched the diagnostic capabilities by capturing both
the local and global information, proving its versatility in
handling various feature types, including channel-agnostic,
spatial-specific, spatial-agnostic, and channel-specific char-
acteristics. The gray-scaled converted bearing fault samples
served as a perfect utility for channel agnostic and specific
capabilities of our proposed involution-convolution synergy,
yielding significant improvement in classification.

Our oversampling methodology has not only boosted the
performance of the classification scheme but has also outper-
formed state-of-the-art transfer learning models, achieving
impressive accuracy for both balanced and imbalanced
schemes. The inclusion of the proposed oversamplingmethod
i.e., Adaptive Adversarial Class-Conditional GAN (AAC-
cGAN) has significantly improved sample quality and
robustness to noise, as demonstrated by various evaluation
metrics employed in this study.

In the future, further research can explore the applicability
of this approach in other domains beyond bearing fault
diagnosis, potentially revolutionizing imbalanced dataset
challenges in various fields. Additionally, refining the
AAC-cGAN and feature extraction techniques can continue
to push the boundaries of accuracy and reliability in fault
detection.
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