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ABSTRACT Given the exploding interest in generative AI and the concern that a few companies like
Microsoft will monopolize access to such models, we address this centralization risk in the context of a
DApp that matches buyers and sellers of various AI services. A key question for a decentralized marketplace
is where and how to store the metadata that specifies the services’ properties in human and machine-readable
formats. Having one or a few actors controlling access to that data constitutes undesirable centralization.
We explore data storage alternatives to ensure decentralization, equitable match-making, and efficiency.
Classifying decentralized storage alternatives as simple peer-to-peer replication, replication governed by a
permissionless consensus, and replication governed by a private consensus, we select an exemplar for each
category: IPFS, Tendermint Cosmos and Hyperledger Fabric. We conduct experiments on performance and
find that read and write speeds are fastest for IPFS, about two times slower for Tendermint and slowest
for Hyperledger. Writing using IPFS and Tendermint takes significantly longer than reading, and finally,
specifically with IPFS, write speeds strongly depend on configuration. Given these results and the properties
of the storage technologies, we conclude that simple peer-to-peer storage is the best option for the proposed
AI marketplace.

INDEX TERMS Blockchain, decentralized AI decentralized storage, distributed ontology, semantic models.

I. INTRODUCTION
Artificial Intelligence (AI) has been one of the key research
themes in Computer Science since its early days. Researchers
made most of the major theoretical breakthroughs over
the last six-seven decennia and developed the mathematics
and algorithms [1], [2], [3], architectures [4], [5], and data
systems that power AI today [6], [7], [8], [9]. However, the
data sets and hardware were lagging, leaving the potential of
these systems unrealized for an extended ‘‘AI Winter’’ [10].
In the last decade, with the upgrade of computing power,

the associated lowering of cost and power consumption, and
the massive amounts of data available through the internet,
AI has witnessed explosive growth and increased attention
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from the scientific community, data scientists, and software
engineers and industry at large. This remarkable progress
has promised to reshape our society in ways never imagined
before by delivering a technological revolution that could
positively impact all aspects of our lives [11]. Practical
applications of AI, and especially machine learning, have
permeated most aspects of our society in applications like
autonomous driving [12], [13], [14], intelligent assistants
[15], industrial robots [16], infrastructure systems control
[17], [18], and supply chain management.

Despite the recent advancements, the promise of AI risks
being stifled due to the massive resources needed for state-of-
the-art AI concentrating in the hands of a few organizations
[19], [20], [21]. Over the past few years, the dominating trend
in deep learning has been the expansion of models in terms
of parameter count and volume of training data [22], [23].

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 116919

https://orcid.org/0000-0002-1230-842X
https://orcid.org/0000-0002-8971-5349
https://orcid.org/0000-0002-7010-6455
https://orcid.org/0000-0002-8887-4321


A. Tara et al.: Evaluation of Storage Alternatives

According to [19], the number of calculations required for
cutting-edge performance in AI tasks like natural language
understanding, game playing, and common-sense reasoning
rose an estimated 300,000 times between 2014 and 2020.
With increasing resource requirements, control of AI is being
concentrated in fewer and fewer hands.

Furthermore, the fragmentation and complexity of infor-
mation and data standards and inter-organizational differ-
ences make effective collaboration difficult [24]. Many
organizations construct moats around their technology by
utilizing heavy, monolithic, and rigid data formats [25], [26].
Thus, there is an increasing demand for cross-organizational
integration and data exchange protocols that communicate in
regulated yet decentralized contexts [27].

Only by rethinking the AI ecosystem – where models
are currently hard to combine, closely tied to particular
use cases, and difficult for software engineers to apply in
real-world applications – can further improvements be made.
The existing monolithic data models need to be replaced
with a comprehensive strategy capable of connectingmultiple
simple, specialized and reusable AI modules to achieve the
desired results while having a smaller environmental impact
and fewer computing and integration requirements.

In smart manufacturing and the Internet of Things,
machine-to-machine communication is made possible by a
semantic standard – an ontology – providing classification
and unambiguous descriptions of products and services [28],
[29], [30]. A similar standard for AI could enable a rich
ecosystem of cross-organizational, interacting AI agents [31].
This paper explores a novel communication paradigm

utilizing a multilayered ontology model designed [31], [32]
to stimulate the communication between AI modules in a
decentralized multi-organizational context. An ontology is
a formal conceptualization of the knowledge representation
that provides definitions for concepts and relationships,
encapsulating the knowledge of a domain [33]. Ontologies
aim to make domain knowledge explicit and remove ambigu-
ities, enabling machines to reason and facilitate knowledge
sharing between distributed entities, thus allowing interop-
erability [34], [35]. The proposed architecture encapsulates
data by dividing a monolithic ontology model into separate
semantic layers, enabling more flexibility and effective data
manipulation [31], [32].

The proposed ontology model facilitates modular
machine-to-machine communication, enabling effortless data
exchange and discovery between AI modules, but also
provides core mechanics for simplifying the human-to-
machine interaction and configuration. Recent instances of
this kind ofmachine-to-machine chaining of tools andmodels
(i.e. modules) are Auto-GPT, an AI system that uses a variety
of tools together with GPT-4 in an autonomous loop to
complete a task [36], HuggingGPT that, similarly to Auto-
GPT, relies on GPT-4 to parse a question and generate a plan,
then delegates sub-tasks to different specialized models, and
finally combines their outputs into a response to the user [37],
or ChatLLM a network of language models proposed by [38].

In the presented architecture, ontology concepts provide
semantic definitions for the AI modules’ input and output
communication boundaries. Ontology definition rules enable
the modules to detect communication requirements and
create dynamic processing pipelines that allow them to
process data in an emergent manner that is, to our knowledge,
currently not supported in existing implementations. This
approach provides a novel perspective on building heteroge-
neous AI agents by enabling high-level manipulation where
the individual modules cooperate as interconnected black
boxes to achieve the overall task.

Critical for this decentralized ecosystem of AI services
is that the ontology concepts are persisted and replicated
on a decentralized storage medium and not stored by
a single entity. This system has to allow the effortless
composition of AI modules into heterogeneous agents and
thus maintain the binaries specifying the composition of the
agents and the blueprints of inter-module messages. Thus,
we benchmark and evaluate various decentralized storage
technologies to uncover their strengths and trade-offs by
exploring diverse topologies, parameters and configuration
profiles. The experiments explore how the mediums behave
on average and at the extreme boundaries of definition.

While decentralized technologies and blockchain proto-
cols offer great diversity, the underlying mechanisms can be
classified into threemajor categories, depending on the nature
of replication and the complexity of the consensus mech-
anism. We have simple peer-to-peer replication, replication
governed by a public consensus mechanism, and replication
governed by a private consensus mechanism [39], [40].

Based on this general classification, the current paper
selected exponents for each category:

• Interplanetary Filesystem (IPFS) for Peer-To-Peer (P2P)
Replication [41];

• Tendermint Cosmos for Public Blockchain Consen-
sus [42];

• Hyperledger Fabric for Private Blockchain Consen-
sus [43].

These technologies are evaluated to assess their suitability
for storing and replicating data in a decentralized manner.
We evaluate and fine-tune their available parameters to detect
configurations and profiles that achieve superior results
over the baseline configurations for persisting ontology
concepts. Furthermore, this work aims to detect bottlenecks in
communication and resource utilization, should they appear
in the benchmarking process. This is a critical part of a wider
effort, namely enabling AI modules to communicate in a
decentralized environment by using instances of ontology
concepts, thus facilitating the widespread usage of AI.

II. RELATED WORK
Storing ontology concepts or related resource descrip-
tion framework (RDF) data for knowledge graphs on
distributed systems (distributed hash tables (DHT) and
blockchains) have attracted significant interest from the
research community [44], [45], [46], [47], [48], [49], [50],
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[51], [52], [53], [54], [55], [56], [57], [58], [59], but most of
the existing work has focused on theoretical aspects without
providing quantitative experimental results [44], [45], [47],
[49], [51], [52], [53], [54], [55]. To our knowledge, only five
papers [46], [56], [57], [58], [59] report on any experimental
benchmarking results for storage of these data types. One
additional paper compares compression algorithms for RDF
triplets [48], but this is not relevant here.
Ruta et al. [46] proposed a blockchain-based archi-

tecture for storing and discovering IoT resources where
meta-descriptions were stored on a blockchain in RDF triples.
The system was implemented on Hyperledger Iroha using
10, 50 and 150 nodes. They reported processing times for
discovery and selection, but the results do not reveal the
reading time of the RDF, nor are any comparisons with other
storage alternatives provided.

Cano-Benito et al. [56] present experimental results from
a case study exploring the viability of storing a knowledge
graph on Ethereum-based blockchains. They analyze the cost
of storing RDF compared to JSON, both in terms of gas and
time, and whether a virtualization approach, where JSON
is transformed on the fly to RDF, is a better alternative to
directly storing RDF. They find that while storing RDF has
a clear advantage in that the data can be directly queried,
reading and writing JSON are significantly faster. Thus, the
proposed virtualization approach captures both advantages.
However, they do not compare multiple storage alternatives,
only locally run Ethereum blockchains. Beyond the limited
scope, the particular choice of blockchain makes this study
less relevant as a storage alternative due to Ethereum’s
unpredictable and sometimes high fees and congestion [60],
[61], [62].

Wang et al. [57] investigate knowledge graph storage on
IPFS with the file index hashes stored and made accessible
on Hyperledger Fabric. They present experimental results
of write times using Hyperledge Fabric with four peer
nodes running on a single machine. While this is a relevant
study, IPFS hashes are small, and they consequently only
explore data sizes between one and 64 KB. The reported
write speeds of the hashes are between less than one and
10 ms, with a steep increase of around 16 KB. The upper
limit of the tested range, 64 KB, corresponds roughly to
concepts with 15 properties [58]. This is below the practical
range of concept sizes for the type of ontology investigated
in the current study [28] making these findings partially
complementary to the current study. However, several other
questions have not been addressed such as the speeds for
reading and writing the actual knowledge base to IPFS or how
read and write speeds depend on network size (i.e. number of
nodes).

Djeddai and Khemaissia [59] explore a knowledge graph
storage solution where the knowledge graph itself is stored
on an off-chain (not decentralized storage) database (Mon-
goDB), and JSON descriptions of entities and relations are
stored on a blockchain, Hyperledger Fabric. Hyperledger
Fabric was configured with two organizations, each with a

single node and CouchDB as a storage engine. A critical
shortcoming for current purposes is that they don’t report
the write time for individual entries but only for entire data
sets (22.5 to 64 MB and 24 KB to 3 MB for entity and
relation entries, respectively), making a comparison difficult.
However, the reported write durations range from 5.32 s
(24 KB entities) to 740.196 s (64 MB relations). Another
limitation is that they do not explore how the configuration
of Hyperledger Fabric affects read and write speeds.

Finally, [58] compares the read-write performance across
three different systems for decentralized storage of ontology
concepts in JSON format. Specifically, IPFS, Hyperledger
Fabric and Tendermint Cosmos are compared while varying
the number of peers (or nodes) and concept size. They
conclude that IPFS provides the best performance, both for
reading and writing speeds, especially as the number of peers
increases. However, a shortcoming of the study is that each
decentralized storage technology comes with a plethora of
possible configurations, all influencing the read and write
times differently. This makes drawing firm conclusions about
the optimal technology and parameter set distributed storage
and data propagation difficult. Thus, a systematic comparison
exploring a comprehensive set of parameters is needed.

This paper aims to compare storage performance on three
distributed systems comprehensively. It furthers the research
presented in [58] by exploring a broader set of variables
relevant to decentralized storage, like the datastore engine,
block size, transaction pool and memory pool. Furthermore,
the current body of work is expanded by studying the
influence of block sizes on storage latency when persisting
ontology concepts on blockchain implementations.

III. BACKGROUND
In order to achieve AI communication, three preconditions
must be met. First, the message structure for the agents must
be declared so that modules can interface with each other.
Second, there should be an intuitive method for allowing
software engineers to link modules via their inputs and
outputs. Third, the environment in which they operatemust be
defined; that is, there should be a medium where agents can
be deployed along with their definition of inputs and outputs.
The three aspects of the matter are depicted in Figures 1, 2,
and 3 respectively, and their complexities will be described in
the following sections.

A. ONTOLOGY DATA-MODEL ARCHITECTURE
Fig. 1 depicts the modular architecture of the messages that
can be passed between AI modules. The design criteria for
the ontology are described in [32]. Data passed between the
modules follow a flexible structure that enables the modules
to declare their inputs and outputs. The blueprint for the
messages is declared in ontology concepts that conform to
the layers presented in Fig. 1, and the data is an actual
instance of an ontology concept. In ontology-based systems,
one crucial challenge represents naming conventions. The
current architecture addresses this issue by introducing a
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FIGURE 1. Ontology Data-Model Architecture.

dedicated naming layer. This naming layer tags schema,
properties, concepts, and relations in a standardized, human-
readable format. Organized in contextual profiles, these
ensure compatibility across multiple languages and locale
formats. An algorithm for describing the naming layer is
available in [31]. The model’s versatility lies in the layered
architecture, which enables multiple modules to operate on
different levels of the data without having to fetch it in its
entirety. The purpose of each layer is as follows:

• The Structural Layer holds the definition of a message’s
fields, including their name and data type. The data type
can be a primitive (e.g., string, number) or a complex
type (e.g., another concept)

• The Connection Layer holds the addresses of the
complex concepts declared in the previous layer. These
addresses are used for fetching the definitions of the
complex data types (concepts) from the decentralized
storage.

• The Encoding Layer describes how the concept’s
fields are encoded. This layer specifies how an AI
module should parse or encode the data upon send or
receive.

• The Defaults Layer contains implicit values. This layer
specifies sensible default values for the concept’s fields.

• The Validation Layer stores the rules that define whether
or not a given value can be stored in a given field of a
concept.

• The Restriction Layer contains cross-field validation
rules for a given concept.

• The Naming Layer provides user-friendly labels for the
concept’s fields.

• The Restriction Layer provides information on the
concept’s purpose and usage.

• The Versioning Layer holds all the requests suggested
for evolving the concept’s structure.

• The Template Layer provides partial views over the
concept’s fields. This allows the concept to be used
for multiple purposes when only subsets of a concept’s
fields are required.

FIGURE 2. Agent Composition.

B. AGENT COMPOSITION
Fig. 2 depicts the process of connecting AI modules from a
logical and structural perspective. At a logical level, modules
are connected in code through sequences of stubs, thus
creating a composite AI agent. These stubs (modules) have
known inputs and outputs (ontology concepts) so that a
software engineer can instantiate concepts and interconnect
modules (bottom layer of the figure). At a structural level,
the ontology concepts are stored in a decentralized medium
(middle layer of Fig. 2) from where they can be imported
either in the logical definition of AIs (bottom layer) or in the
actual, running instances of the modules, which are deployed
in execution environments (upper layer).

C. EXECUTION ENVIRONMENT ARCHITECTURE
Execution environments for the AI agents are but a part of
the infrastructure necessary for successful deployment. Fig. 3
paints a comprehensive picture of the components that must
be communicated to ensure the execution of composite AI
agents.

• The Clients upload data and AI definitions onto the
platform. They are also responsible for extracting and
reporting results to the end user. Furthermore, an end-
user can issue the execution of agents using the Client.

• The Coordinator Nodes form the backbone of the
decentralized network and serve multiple purposes.
Primarily, they translate the Client’s commands into
actionable instructions for the underlying components.
This means that they have to inform Execution Environ-
ment Managers about their tasks, and they must listen
for results and update the application state by gen-
erating and validating transactions for the Blockchain
State Machines.

• The Blockchain State Machines hold the application
state. Information about algorithms, data, and ontology
concepts is written to the blockchain ledger. Further-
more, the transactions should attest to events such
as execution starts, data and algorithm uploads, and
successful or unsuccessful executions.
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FIGURE 3. Execution Environment Architecture.

• The Execution Environment Managers act as super-
visors for the execution of agents. As such, they
must inspect the responsiveness of the agent execution
environments and report the execution results.

• The execution environments act as containers that house
the AI agents. Managers instantiate them, and they must
be given the AI executable.

D. DECENTRALIZED STORAGE TECHNOLOGIES
The practical part of this study tackles evaluating the perfor-
mance of implementations of the Decentralized Storage in
Fig. 3. There is a wide range of decentralization technologies,
but this paper focuses on a suite that is representative of
the major directions in which these technologies are headed.
In this sense, the chosen technologies are IPFS, Tendermint
Cosmos, and Hyperledger Fabric networks.

IPFS is a decentralized storage technology specifically
designed to store files on nodes in the network and generate
their addresses by hashing over their content [41]. This
behavior also ensures immutability, as a file’s address would
change if the content changes. One of the advantages
of this network is that it does not require reaching an
agreement across all the nodes in the network. IPFS’s
throughput depends on the data size requested, where greater
size results in greater throughput up to around 16 MB.
Specifically, for 16 KB request size, the throughput is
approximately 50 KB/s; for 16 MB, it’s close to one MB/s
[63], [64].

Tendermint Cosmos is a blockchain technology which
ensures that every node in the network writes the transactions
in the same order and the network agrees on the transaction
order by using a PBFT-based consensus algorithm [42].
Proof-of-stake protects against Sybil attacks by requiring
validating nodes to hold a stake to participate in the
consensus. Tendermint provides Byzantine Fault Tolerance
(BFT) guarantees [65], [66], that is, it can reach consensus
in the face of up to N/3 node failures, including adversarial
(Byzantine) nodes. The throughput for a 128-node network
is around 400 transactions per second [66]. Reference
[66] investigated Tendermint’s scalability by measuring how

throughput and transaction latency depends on the number
of nodes. Testing 16, 32, 64 and 128 nodes, they found
gracefully decreasing performance with latencies increasing
from 2.72 to 3.45 s and the throughput dropping from
535 transactions per second (tps) to 438 tps. A performance
decrease with an increasing number of nodes is expected
due to the message passing required by the PBFT-based
consensus algorithm [67].
Hyperledger Fabric is a permissioned blockchain technol-

ogy where the nodes present cryptographic certificates to
confirm identities, and these identities allow them to take
part in the network [43]. The nodes have specialized roles
in the network, such as transaction orderers, transaction
validators and certificate generators. This approach is often
taken in enterprise environments. Hyperledger Fabric has
Crash Fault Tolerance (CFT) guarantees [68], meaning it
can withstand up to N/2 node failures (crashes). However,
it does not guarantee fault tolerance in the face of adversarial
(Byzantine) nodes, which makes sense given that it’s a
permissioned blockchain. Hyperledger Fabric has sub-second
transaction latency under throughput up to 200 tps [69].
However, the blockchain doesn’t scale well as the number of
nodes increases above 12 with the result that the latency and
throughput drop sharply [70].

IV. EXPERIMENTAL METHODOLOGY
A series of experiments were devised to study the efficiency
of the various decentralized storage back-ends for persisting
ontology concepts. They were designed to persist and retrieve
concepts from the underlying decentralized environment.
Four orthogonal parameters were varied to assess the environ-
ment’s performance: concept sizes, infrastructure topology
configurations and storage engines for each decentralization
technology.

A. CONCEPT SIZES
Each concept comprises ten files - one for each layer -
plus a metafile that identifies the concept and its author
(see Fig. 1). These files are the ones that persist on the
decentralized storage. Out of the ten layers, we varied the
number of properties in the structural layer from ten to 10,000
in exponential steps, and, since each property at the structural
layer is given a new name, also the naming layer. The upper
limit is of the same magnitude as the 30,000 properties listed
in ECLASS [28]. The final concept sizes in bytes were
approximately 41.4 KB, 54.5 KB, 186.1 KB, 1.5 MB and
14.6 MB.

B. INFRASTRUCTURE TOPOLOGY CONFIGURATIONS
1) P2P ENVIRONMENT
The IPFS topology was tested in two modes. The first
topology only includes a network of IPFS daemons (regular
peers), which transmit information among themselves only
when requested. The second topology includes a Cluster
network alongside the Daemon network, and each peer in
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the Daemon network has one correspondent in the Clustering
network. Having a clustering network brings the benefit
of disseminating the files received by one member of the
Daemon network to all the peers in the same network by
emitting signals in the Clustering network and thus improving
replication and fault-tolerance. We tested three different
storage engines for IPFS: FlatFs, BadgerDs and Lowpower,
see Table 1.

2) PUBLIC BLOCKCHAIN ENVIRONMENT
The Tendermint network comprises only one type of node,
which is instantiated the appropriate number of times
according to the network size. However, the nodes operated in
twomodes: Commit and Sync. Further details about themwill
be given in the Results section. For Tendermint, we tested five
different storage engines: ClevelDb/GoLevelDb, BadgerDb,
BoldDb, RocksDb and MemDb, see Table 2.

3) PERMISSIONED BLOCKCHAIN ENVIRONMENT
Hyperledger Fabric, being a permissioned blockchain,
requires multiple types of nodes to form an operational
network. Every configuration contains one orderer node
that receives signed transactions from the peers, packages
them into blocks, and appends them to the blockchain.
The components varied in this topology are the peer
nodes, responsible for validating, executing and signing the
transactions. They were grouped into two organizations, and
each organization contains one Certificate Authority node
that is responsible for generating certificates that attest to the
identity and trustworthiness of the nodes in the organization.
The Hyperledger framework was tested with two different
configurations: LevelDb and CouchDb, see Table 3.

C. HARDWARE CONFIGURATION
The suite of experiments was implemented using the Java
Microbenchmark Harness Tool. The experiments adhere
to the guidelines presented in [71], and each experiment
consisted of five warm-up iterations of 10 seconds each,
followed by ten 30-second measurement iterations. The
experiments were run on a machine leveraging an Intel
7700HQ CPU, 24 GB of RAM and one TB of SSD.

V. EXPERIMENTAL RESULTS
Here we report the results of the experiments conducted
to evaluate the replication environments with regard to
optimal parameter configurations and feasibility in the
context of the proposed model. The experiments measured
how the latencies for persisting and retrieving concepts from
the underlying environments depended on four types of
parameters mentioned in the previous section.

We report the results for 660 individual experiment
configurations averaged over multiple runs. The results were
obtained by averaging the values obtained in 64 hours of
continuous simulation, each experiment composed of five
warm-ups and ten execution iterations where each iteration
was limited to ten and 30 seconds, respectively.

TABLE 1. IPFS Simulation Parameters.

A. PEER-TO-PEER NETWORK RESULTS
In this section, we report the impact of various configurable
parameters listed in Table 1 on the performance of the
proposed model by utilizing IPFS as the underlying envi-
ronment. The results presented in this section were averaged
over multiple runs. In total, 2700 iterations were conducted,
demanding 19.5 hours of continuous simulations.

Fig. 4 and Fig. 5 show the experimental results for reading
and writing operations providing various observations and
insights into the different elements and their operational
impact.
Observation 1: The measurements depicted in Fig. 4a,

Fig. 4c, Fig. 4e, Fig. 5a, Fig. 5c, and Fig. 5e suggest that
the network size has a limited influence on the read time.
This effect can be explained by the fact that the network
configuration is stable; all nodes are active all the time, and
no node is joining or leaving the network. By eliminating
hazardous circumstances and downtime, if the information
cannot be discovered on the target node, it can be efficiently
resolved by one of the neighbouring peers.
Observation 2: With IPFS Default network topology

and the same datastore engine context, the network size
has a minor influence on the writing operations laten-
cies, as shown in Fig. 4b, Fig. 4d, and Fig. 4f. While
the network arrangement is stable, the data replication
mechanism utilized by peer-to-peer networks relies on an
uncomplicated propagation protocol where the information
propagates progressively and only when a peer requests it.
Therefore is no need for multiple rounds of synchronization
and messages exchanged between nodes, as in the case of
consent-driven networks.
Observation 3: The measurements depicted in Fig. 4d,

Fig. 4e, and Fig. 4f indicate that BadgerDS performs better
than FlatFS and Lowpower when writing with smaller
concepts. The difference is mainly explained by BadgerDS
use of LSM tree structures, which provide an optimized
indexing mechanism leading to better operation throughput
[72]. However, as expected, the gap diminishes as the concept
size increases since network communication becomes the
dominant operation.
Observation 4: Fig. 5 depicts the results for the IPFS

Cluster network topology; this delivers data orchestration
across a swarm of IPFS instances by automatically allocating,
replicating, and tracking stored information across all peers
on the network. When comparing the results from Fig. 4
with Fig. 5, we notice a significant difference in both read
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FIGURE 4. IPFS Default Setup Results.

and write operations. Generally, read operations are slightly
faster, as the data is already replicated on all peers and,
therefore, available locally. On the other hand, compared
to the Default topology, the Cluster write operations are
considerably slower, even though we are still writing to a
single peer because each node in the cluster is informed that
it should replicate the newly published data.
Observation 5: As expected, at the level of individual con-

figurations, the Cluster network has slower write latencies,
see Figs. 5b, 5d, and 5f. The latency increase is a consequence
of the number of nodes on the network. A final observation is
that the Cluster network setup will require significantly more
space since all the information is replicated on all nodes.
Observation 6: The measurements shown in Fig. 5b and

Fig. 5d indicate that when writing small concepts, BadgerDS
performs better than FlatFS and Lowpower, but the gap
closes as the size of the concepts increases, and FlatFS even
surpasses BadgerDS for concepts of a large enough size.
Observation 7: The Lowpower profile is a modemodifying

IPFS node configurations to reduce resource utilization by
lowering communications and discovery capabilities. Fig. 4e,
Fig. 4f, Fig. 5e and Fig. 5f show the result of running the
IPFS nodes with the Lowpower profile for read and write
configurations. The Lowpower profile results are comparable
to the FlatFs configuration, particularly for the small-size
concepts. However, as anticipated, for the big-size concepts,

FIGURE 5. IPFS Cluster Setup Results.

TABLE 2. Tendermint Simulation Parameters.

the performance decreases since the network and memory
throttling of Lowpower are starting to materialize.

B. PUBLIC CONSENSUS BLOCKCHAIN RESULTS
In this section, we report on the impact of various con-
figurable parameters listed in Table 2 on the performance
of the proposed model by utilizing Tendermint Cosmos
as the underlying environment; the results presented in
this section were averaged over multiple runs. In total,
1800 iterations were conducted, demanding 12 hours of
continuous simulations for the transaction and memory
pool variation experiments and 2700 iterations demanding
18 hours of continuous simulations for the datastore engine
variation experiments.

Fig. 6 and Fig. 7 illustrate the results for writing and
reading concepts by adjusting transaction and memory pool
size. Fig. 8 portrays the results for writing and reading
concepts by adjusting various datastore engines. These results
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FIGURE 6. Tendermint Transaction Pool Variation Results.

FIGURE 7. Tendermint Memory Pool Variation Results.

provide observations and insights into different elements and
their impact described below.
Observation 8: As can be observed in Figs. 6a, 6c, 7a,

and 7c, the time required to perform the reading of concepts
is only slightly impacted by the size of the transaction and
memory pools. As expected, the read operation does not
require accumulating transactions into the transaction pool or
allocating extra memory.
Observation 9: Figs. 6b, 6d, 7b, and 7d depict the results

for writing concepts. The time required to write small con-
cepts is consistent between different topologies, suggesting
that the layered design of the current proposed ontology
model successfully exploits the blockchain fragmentation
structure. Notably, for big concepts and extensive network
configuration, the latency increases first when the memory

or transaction pool doubles. At first glance, it may look
counter-intuitive, but this can be explained by the fact that
big concepts are not mapping very well on the blockchain
structure, and bigger pools require more management,
especially in more extensive networks; thus, they require
multiple rounds of synchronization and messages exchanged
between nodes.
Observation 10:When analyzing Fig. 8a, Fig. 8c, Fig. 8e,

Fig. 8g, Fig. 8i and Fig. 8k, one can see that the network
sizes have a weak influence on the read latency for all
datastore engines. Especially for small-size concepts, the
points on the graph are almost overlapping, emphasizing
how the current ontology model successfully exploits the
blockchain fragmentation structure. However, the simulation
results show a nearly exponential increase for the big-size
concepts. This behavior is expected since big concepts are
split before being persisted into blockchain structure, and
the read operation implies reassembling them together. This
pattern is consistent and independent of the storage engine,
depicting the stability and versatility of the proposed ontology
model.
Observation 11: Fig. 8b, Fig. 8d, Fig. 8f, Fig. 8h, Fig. 8j

and Fig. 8l show the results of persisting data to the
Tendermint blockchain. The combinations of the number
of peers and the database back-end show no noticeable
differences for the small concept sizes. All the values are
constantly above one second, representing the consensus
time; this is explained by the fact that all concepts are
persisted in one consensus round. The differences appear
only for the big-size concepts, where the concepts must be
fragmented across multiple transactions and possible blocks,
requiring multiple rounds of consensus. Like the read case,
the pattern is consistent and independent of the storage
engine.

C. PRIVATE CONSENSUS BLOCKCHAIN RESULTS
In this section, we report the impact of the various
configurable parameters listed in Table 3 on the performance
of the proposed model by utilizing Hyperledger Fabric
as the underlying environment. The results presented in
this section were averaged over multiple runs. In total,
1800 iterations were conducted for a total of 12 hours of
continuous simulations for the transaction and block size
variation experiments. Furthermore, the datastore engine
variation experiments required 900 iterations and six hours
of continuous simulations.

Fig. 9 and Fig. 10 present the results for writing and reading
concepts by adjusting the sizes of the transaction pool and the
blocks while varying the rest of the parameters. Fig. 11 shows
the results for writing and reading concepts by adjusting the
size and topology for various datastore engines.
Observation 12: As can be observed in Fig. 9a, Fig. 9c,

Fig. 10a, and Fig. 10c, the time required to read concepts
is impacted by the size of the transaction pool for big-size
concept sizes when reading data from the eight-peer network.
As expected, the read operation does not require accumulat-
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FIGURE 8. Tendermint Datastore Variation Results.

ing transactions into the transaction pool or allocating extra
memory.

TABLE 3. Hyperledger Fabric Simulation Parameters.

FIGURE 9. Hyperledger Transaction Pool Variation Results.

Observation 13: As can be observed in Fig. 9b, Fig. 9d,
Fig. 10b, and Fig. 10d, the time required to write concepts
shows a similar pattern for all configurations in the case
of small-size concepts. For big-size concept configurations,
the effect of varying the transaction pool size is not visible
because the transaction pool limit is never reached. However,
when doubling the block size, we experience an increase
in latency for big-size concepts on the eight-peer network.
This effect is explained by the fact that the Hyperledger
consensus mechanism is not well-optimized for big-size
blocks, especially for extensive networks.
Observation 14: The measurements depicted in Fig. 11

suggest that the network size has a noticeable impact on both
read and write operations. The throughput decreases as the
network size increases.
Observation 15: The results in Fig. 11 show that the

type of database has a noticeable impact on both read and
write operations. GoLevelDB, has a faster response time,
compared to CouchDB for both read and write operations.
The performance difference could be because GolevelDb is
integrated locally, while CouchDB is available through a
different process. However, as the number of peers increases,
the benefit disappears, and CouchDB seems better suited
whenwriting on a bigger network that manages concepts with
many properties.
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FIGURE 10. Hyperledger Block Size Variation Results.

FIGURE 11. Hyperledger Datastore Variation Results.

D. AVERAGED RESULTS
In this section, we present the results obtained by averaging
each configuration’s time by eliminating the extreme use
cases for concepts with ten and 105 properties. The aim
is to give the reader a better overview of the high-level
behavior or the proposed model related to each architecture
and configuration parameter.
Observation 16: Fig. 12 shows the results for the IPFS

configuration. On average, persisting the proposed model
information is twice as expensive as reading it. However,
compared to Fig. 14 and Fig. 13, the IPFS setup provides the
best throughput for both reading and writing.
Observation 17: In the case of Tendermint Cosmos,

as depicted in Fig. 13, the proposed model behaves pre-
dictably and stably for both reads and write use cases in all

FIGURE 12. IPFS Averaged Results.

FIGURE 13. Tendermint Averaged Results.

FIGURE 14. Hyperledger Averaged Results.

configurations. As expected, once persisted on the network,
retrieving the information is, on average, three times faster
than persisting.
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Observation 18: Fig. 14 summarises the results for the
Hyperledger Fabric configuration parameters. The proposed
model is stable and behaves predictably for all the measured
configurations, with a slight improvement for the Couch
DB storage configuration. Also, the measured latencies
for reading and writing concepts are in the same range,
suggesting that a component responsible for transporting
the information in Hyperledger heavily impacts the overall
system performance (since there is no difference between
reading and writing times).

VI. CONCLUSION
Elaborating practical solutions where AI modules can
interoperate and connect dynamically requires an efficient
mechanism for resolving the concept model describing each
module’s outer boundaries. From an AI module’s perspec-
tive, retrieving concept models is the immediate priority,
so selecting a configuration that reduces the read latencies is
mandatory. Low latency in resolving the concepts will ensure
a prompt response when configuring and deploying multiple
agents for the composition case relevant to a complex setup.

For the edge use cases requiring the usage of large concepts
containing more than 105 properties, IPFS provides sub-
second latency, which is sufficiently fast for the use cases
where AI Agents need to perform intensive and time-critical
tasks. In contrast, Hyperledger Fabric requires more than
ten seconds for both read and write operations, making it
unsuitable for similar use cases.

The proposed ontology model provides a stable and
consistent behavior on all exported profiles, topologies and
configurations for the average size concepts. Selecting the
suitable replication medium is a decision based on the
multi-organizational structure, policies and constraints on
managing the data:

• IPFS has high read and write speeds, but lacks a
consensus algorithm [41], thus it is the most suitable
option when few actors are involved in defining and
maintaining the ontology model or when decisions
regarding the model are simple.

• Cosmos Tendermint - a public blockchain [42] - is
the best option when decisions regarding the ontol-
ogy model are more complex, and consensus has to
be reached among multiple actors while maintaining
unrestricted access to the content.

• Hyperledger Fabric, being a permissioned blockchain
[43] is most suitable when a small set of private
organizations has to take, possibly, complex decisions
about the ontology model and where access to it must
be restricted.

To conclude, this paper contributes by presenting a flexible
AI-to-AI communication paradigm based on ontology con-
cepts stored using decentralized technologies. Three different
storage technologies were evaluated on read andwrite speeds,
and a design space exploration was performed for each. The
study explored topology parameters, infrastructure variables,

concept sizes and database engines. Furthermore, in the
case of blockchain technologies (Tendermint Cosmos and
Hyperledger Fabric), additional parameters were varied to
study the impact of transaction pool and block sizes. While
these results are of great interest in the context of an AI
marketplace, distributed data storage has attracted much
broader interest [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56], [57], [58], [59]. Reading and
writing data to decentralized storage is relevant to, for
example, the semantic web [44], supply chains [46], and
knowledge graphs [57]. To our knowledge, this is the most
comprehensive evaluation of multiple storage technologies
with results relevant beyond AI-to-AI communication.

Experimental results, obtained under controlled condi-
tions, can exhibit bias and discrepancies when applied to
real-world scenarios, where uncontrolled variables come into
play. Real-world systems frequently encounter downtime,
delays, and errors in underlying protocols, which are
generally not accounted for in experimental settings. These
unforeseen factors can impose additional penalties, leading to
a difference in actual performance compared to experimental
data.

The dynamic interconnection and deployment of AI
modules will be evaluated quantitatively and qualitatively in
future research.
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