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ABSTRACT A subject’s head position in magnetic resonance imaging (MRI) scanners can vary significantly
with the imaging environment and disease status. This variation is known to influence the accuracy of skull
stripping (SS), a method to extract the brain region from the whole head image, which is an essential initial
step to attain high performance in various neuroimaging applications. However, existing SS methods have
failed to accommodate this wide range of variation. To achieve accurate, consistent, and fast SS, we introduce
a novel two-stage methodology that we call posture correction skull stripping (PCSS): the first involves
adjusting the subject’s head angle and position, and the second involves the actual SS to generate the
brain mask. PCSS also incorporates various machine learning techniques, such as a weighted loss function,
adversarial training from generative adversarial networks, and ensemble methods. Thorough evaluations
conducted on five publicly accessible datasets show that the PCSS method outperforms current state-of-
the-art techniques in SS performance, achieving an average increase of 1.38 points on the Dice score and
demonstrating the contributions of each PCSS component technique.

INDEX TERMS Skull stripping, brain extraction, MRI, U-Net, GAN, ADNI, CC-12, LPBA40, NFBS,
OASIS.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is commonly used to
diagnose various neurological diseases due to its superior
ability to provide detailed images of the brain’s anatomy.
It offers excellent spatial and contrast resolution without
exposing the patient to radiation. In daily clinical settings,
radiologists interpretMRIs qualitatively, providing reports on
disease-related findings visible in the images. On the other
hand, numerous efforts have been made to derive quantitative
measures from brainMRIs to characterize any disease-related
changes in the brain and to understand its physiological status
in relation to development, aging, and sex differences. Deep
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learning methodologies are frequently used in this regard,
offering diagnostic labels for various conditions, including
Alzheimer’s disease [1], [2], [3], detecting tumors [4], [5],
[6], and facilitating image-based searches for similar cases
[7], [8], [9].

Such studies using MRI often require a preprocessing
step known as skull stripping (SS). This process involves
isolating the brain parenchyma from the whole head MRI
by eliminating non-brain tissues such as the skull, skin, fat,
and eyeballs. Manually extracting brain parenchyma from
3D MRIs is an extremely labor-intensive task. As a result,
a variety of automated SS methods have been proposed to
simplify this process.

The classical SS methods proposed in the first decade of
this century [10], [11], [12] are expected to perform well
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for parameter-optimized datasets. However, they have been
reported to be less robust to changes in local anatomy and
the type of disease under study and to perform significantly
less accurately for different datasets [13]. Since the beginning
of the 2010s, parameter-robust and versatile methods [14],
[15], [16], [17], [18] and several open source software
packages [19], [20] that can provide different kinds of image
analysis, such as SS and anatomical segmentation, have been
proposed. While these approaches achieve relatively high SS
performance, they are often associated with long processing
times.

On the other hand, several high-performance, rapid SS
have recently been proposed as deep learning technology
advances. U-Net [21], a symmetric arrangement of convo-
lutional neural networks (CNNs) with a bypass structure
corresponding to the same resolution, achieves accurate
SS without requiring prior anatomical expertise of region
extraction [22], [23], [24], [25], [26], [27], [28], [29],
[30]. These methods can be categorized into two groups:
vertically stack 2D SS results in each slice of the brain
MR image [22], [23], [24], [25], and extend the U-Net
architecture to three dimensions [26], [27], [28], [29], [30].
Although these SS methods based on deep learning show
excellent performance, there are still significant concerns
regarding their robustness across datasets. In many previous
studies, the images used for training and evaluation were
obtained from the same facility or datasets [22], [25],
[26], [29]. Images taken within the same dataset or facility
generally share common characteristics such as scanner,
imaging protocol, subject posture, and other conditions.
Therefore, training and evaluating a model using a single
dataset is easier than evaluation using completely unknown
cases. Robust performance for unknown environments is
important in analyzing large-scale data that are collected
across multiple sites or from multiple datasets. However,
few studies have systematically investigated the influence
of implicit differences in characteristics between datasets,
which can be caused by variations in imaging environments,
on SS performance.

One of the significant challenges in achieving robust SS
is dealing with variability of the subject posture, which
can differ significantly depending on different imaging
environments and disease status between datasets. This
variability can lead to geometric differences between the
training and test data, making accurate extraction of brain
structure more difficult, even with deep learning-based
SS methods [23], [24]. Despite this known issue, no SS
methodologies have been proposed that adequately account
for the diversity of subject postures.

In this paper, we propose posture correction skull stripping
(PCSS), a highly accurate and robust SS method that takes
into account the diversity in subject postures. PCSS is a
framework based on U-Net with the following four exten-
sions: (i) preprocessing to estimate and correct the angle and
position of the subject’s head to suppress posture variation;
(ii) weighted loss function, which considers the imbalance

between the brain region and other tissues [22]; (iii) a
discriminator network for adversarial training introduced in
generative adversarial networks (GANs) [31] and used in an
SS study [24]; and (iv) ensemble of three-way segmentation
for the brain [29]. For a rigorous evaluation across multiple
datasets, we use five T1-weighted brain MRI public datasets
(ADNI, CC-12, LPBA40, NFBS, and OASIS) and discuss
the impact of different datasets on SS performance, which
has not been addressed previously. In addition to the effects
of (i) posture correction, which is the main proposal in this
paper, each of the technical elements introduced in (ii), (iii),
and (iv) are also evaluated to discuss the key techniques
involved in achieving a robust SS.

The main contributions in this paper are as follows:
• Proposal for posture estimation of subjects (head angle
and position) and a connected correction method for
constructing highly robust SS.

• Clarification of the elemental techniques required to
realize accurate and robust SS based on appropriate
evaluations.

• Proposal of a practical SS method with high speed
(8.07 sec/case) and high accuracy (Dice score = 96.95)
based on these effective elemental technologies.

The code and results are published at URL: https://github.
com/IyatomiLab/Posture-Correction-Skull-Stripping.

II. RELATED WORK
Among the open source software employed for automated
processing of MRIs, 3dSkullStrip is provided as a component
of the Analysis of Functional NeuroImages (AFNI) [32]1

package. It uses a modified version of the Brain Extraction
Tool (BET) [11]. FreeSurfer [19]2 is an open source software
package employed for automated processing of MRIs, and
includes SS among its functionalities. Within this package,
the Hybrid Watershed Approach (HWA) [12] is used for
SS; its efficacy has been evaluated with extensive datasets
[33]. However, the process typically takes several hours to
complete on a standard desktop computer. MRICloud [20],3

which is currently recognized as one of the most efficient SS
methods, generates the segmentation mask using a technique
known as multi-atlas label fusion and arbitration algorithms.
However, the segmentation and SS process for a single case
typically requires approximately one hour to execute.

Salehi et al. [22] proposed a network architecture called
Auto-Net, which introduced an auto-context CNN for SS
of 3D brain MRIs. Their proposed method employs an
auto-context CNN for this task. Auto-Net, based on the U-Net
[21] framework, incorporates 26 convolutional layers. Their
proposed method can implicitly train 3D images without
using computationally expensive 3D convolution. It performs
SS on each cross section and stacks them vertically to
achieve SS for the entire brain MRI. The auto-context
CNN in Auto-Net uses the auto-context algorithm [34].

1https://afni.nimh.nih.gov/
2https://surfer.nmr.mgh.harvard.edu/
3https://mricloud.org/
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In this approach, the posterior probabilities obtained from the
first training’s segmentation are incorporated as contextual
information through concatenation in the channel direction of
the second training. The same thing occurs during evaluation.
Salehi et al. achieved good results using Auto-Net with
Dice scores of 97.73 and 97.62 on the LPBA40 and OASIS
datasets, respectively. However, there is a possibility of
overfitting due to the use of the same dataset for both training
and evaluation. In addition, those authors did not separately
evaluate the impact of the weighted loss function (cross
entropy) on the ratio of non-brain region to brain region that
they are introducing.

Jiang et al. [24] proposed SS using Wasserstein GAN
(WGAN) [35] in conjunction with O-Net, which incorporates
an attention module into the U-Net, establishing a new
shortcut for the corresponding mapping between encoders
and decoders. This approach effectively preserves detailed
image features while leveraging deep semantic information to
emphasize target regions for each channel. WGAN improves
SS performance based on GAN by introducing the discrim-
ination of SS results generated by O-Net. WGAN+O-Net,
trained on the LPBA40 dataset, achieved a Dice score of
95.51 on the IBSR18 dataset. However, it was acknowledged
that the IBSR18 dataset was of low quality and heavy artifact,
and the evaluation was not performed on a variety of high-
quality datasets. In addition, only 18 images were evaluated.

Fatima et al. [25] proposed MVU-Net, which performs
separate SS on the coronal, sagittal, and transverse sections
of input 3DMRIs and generates an ensemble probability map
of the brain region. This approach reduces the ambiguity of
SS that uses only single section. The architectural design
of MVU-Net was inspired by U-Net and SCU-Net [36]. Its
structure enables efficient training with a relatively small
number of parameters (1.4 million). MVU-Net performed
well on the NFBS and IBSR datasets, achieving Dice scores
of 96.81 and 91.84, respectively. However, as in Salehi et al.
there exists a potential risk of overfitting due to the use of the
same datasets for both training and evaluation.

Fabian et al. [28] proposed nnU-Net, a deep learning-
based segmentation method that automatically performs
preprocessing, network architecture, training, and post-
processing. nnU-Net extracts three types of parameters:
—fixed, rule-based, and empirical— to construct model
training. Fixed parameters include network architecture and
training plan, rule-based parameters include normalization
and resampling, and empirical parameters include ensem-
ble and post-processing. Given a new segmentation task,
nnU-Net determines these parameters and builds a pipeline
connecting them, allowing users to generate segmentation
models easily without domain knowledge. Theirs is one of the
few papers to conduct a rigorous evaluation using 23 datasets
of biomedical image segmentation and show robust and high
performance. Therefore, we apply nnU-Net to SS and use it
as a comparison in this paper.

The SS method that Isensee et al. [28] proposed has
shown a certain effectiveness under specific circumstances.

However, for the practical assessment in SS performance,
it is important to replicate and evaluate diverse imaging
environments using multiple datasets, just as those authors
did. The impacts of the weighted loss function in Salehi et al.
[22], training introducing a discriminator in Jiang et al. [24],
and ensembling techniques in Fatima et al. [25] must be
evaluated equally under practical conditions. In this paper,
we also evaluate the effects of these techniques on SS
performance.

Isensee et al. [27] developed HD-BET, an accurate skull
stripping technique, using a large EORTC-26101 dataset col-
lected from 37 institutions. HD-BET performs skull stripping
on a U-Net using detailed GTs obtained by manual correction
based on the BET [11]. HD-BET outperforms the previous
six SS methods in a rigorous evaluation where the evaluation
data (3, 419 images from 12 locations) are obtained from
different locations than the training data (6, 586 images
from 25 locations) and on untrained CC359, LPBA40,
and NFBS datasets. In addition, HD-BET outperformed
the competition not only on T1-weighted images but also
on processing different scan sequences such as contrast-
enhanced T1-weighted, T2-weighted, and FLAIR. In our
experiments, HD-BET was compared to our proposal and
other comparative methods as a reference, although the
number of data used for training is more than ten times
different.

III. POSTURE CORRECTION SKULL STRIPPING
In this paper, we propose posture correction skull stripping
(PCSS), a SS method that is designed to be robust to
variations in the position and angle of the subject’s head
across different datasets. Figure 1 shows the overview of
PCSS, which consists of two phases: (1) posture correction
phase and (2) skull stripping (SS) phase. In the posture
correction phase, a posture estimation network (PENet)
consisting of CNNs is used to estimate and correct the head
posture in MRIs. In the SS phase, the skull stripping network
(SSNet), based on UNet, which has been widely used for
segmentation tasks involving deep learning in recent years,
is used to extract actual brain regions from original images.

The main contribution of this paper is to propose a robust
and accurate SS method that includes posture correction.
In addition, we compare and evaluate several technical
elements used in the construction of SSNet using various
datasets to provide guidance on the effective model structure
for SS.

A. POSTURE CORRECTION PHASE
MRIs may also vary due to differences in the subject’s head
position at the time of imaging, which can significantly
reduce SS performance. Therefore, in the posture correction
phase, the position and angle of the head are estimated and
corrected to prevent SS performance degradation. Figure 2
shows an overview of the process in this phase.

The variation in head position is pronounced in the pitch
direction (θ̃ in the sagittal cross section figure). Therefore,
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FIGURE 1. Overview of the posture correction skull stripping (PCSS).

we introduced a reference neck line (red line in Figure 2) in
the sagittal cross section from the base of the nose, called the
nasion, through the lowest point of the brain region, called
the basion, and an alignment neck line (light blue line in
Figure 2) as a horizontal line 24% of the way up from the
bottom of the image. The nasion and basion were selected as
references due to their clear visibility in the sagittal sections
of the MRIs. Therefore, annotation of the reference neck
line has high reproducibility. Since the reference neck line
effectively works as a boundary between the soft tissues of
the head and the neck, it provides a standard for correction for
various head angles and positions. In the posture correction
phase, the reference neck line of all cases is aligned with
the alignment neck line to correct for variations in head
position.

The reference neck line is represented by y = ax + b in
the Cartesian coordinate system (x, y) with the y coordinate
at the top of the head. The tilt a corresponds to the angle θ̃

of the subject’s head, and the intercept b is the point at which
this line intersects with the vertical axis of the images after
passing through the neck area, which serves as the reference
value for position adjustment.

First, the posture correction phase estimates the tilt a and
the intercept b of the reference neck line in the central slice
with the largest head cross sectional area in the sagittal cross
section in two dimensions using a PENet consisting of a CNN
and fully connected layers. Next, the original brain MRIs are
rotated in three dimensions so that the reference neck line is
horizontal (parallel to the transverse section) using the head
angle θ̃ calculated from the tilt a. Then, the images are shifted
up or down so that the value of the intercept b̃, as modified
by the rotation, is equal to the position of the alignment line
b∗ (i.e., 24% of the way up from the bottom of the image).
These processes result in a similar posture of the subject’s
head across all cases.

B. SKULL STRIPPING PHASE
The 3D brain MRIs corrected by the posture correction phase
are extracted by SSNet in the SS phase. Figure 3 shows an
overview of the SS phase, including SSNet, which is based
on U-Net and introduces weighted cross entropy as a loss
function to account for the volume ratio between brain and
non-brain regions [22] (weighted loss function), improves
SS results by introducing the discriminator networks used
in GANs [24] (adversarial training), and an ensemble of
three-sections segmentation of the brain [25] (ensemble). The
details of this technical component are described in III-C.

Medical images such as brain MRIs are difficult to collect
large amounts of data due to privacy issues and acquisition
costs. Moreover, the cost of annotating these images is very
high, making it challenging to prepare a sufficient amount
of 3D training data. In addition, SSNet, like many other SS
methods, performs 2D SS on any cross section of a 3D brain
MRI and vertically stacks them (and, if necessary, ensembles
the SS results for each section) to achieve the final SS.

In the case of general T1-weighted brain MRIs of 256 ×

256 × 256, the 2D SS model can use 256 images per case
in one section and a total of 768 images in three sections
for training. In addition, the 2D model has fewer model
parameters than the 3D model, which can be expected to
reduce the risk of overfitting.

SSNet takes a 2D cross sectional image xi obtained from
any section from the original 3D MRIs x as input for training
and estimates the probability map p(xi) that each pixel in xi is
a brain region. The probability map p(xi) is stacked vertically
to generate a probability map for entire brain regions, and
regions with 50% or more are output as the final SS result.
The training of SSNet updates the parameters to reduce the
binary cross entropy, which is the reconstruction error with
the mask image m(yi) of the gold standard corresponding
to xi.
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FIGURE 2. Overview of the posture correction phase.

C. ASSESSMENT OF EFFECTIVE TECHNIQUES FOR SKULL
STRIPPING
In addition to posture correction, the proposed PCSS intro-
duces three techniques (weighted loss function, adversarial
training, and ensemble) used with U-Net in recent years to
achieve accurate, robust, and practical SS. PCSS is available
in two architectures, PCSS-1 and PCSS-3, depending on
the objective. PCSS-1 is an SS model that includes two
machine learning technical elements (weighted loss function
and adversarial training) in addition to posture correction, and
high-speed inference is expected because SS can obtained
by estimating only one section. PCSS-3 is a SS model
that includes all elements (posture correction, weighted loss
function, adversarial training, and ensemble), and since it
provides an ensemble of SS results in three directions during
SS execution, higher accuracy can be expected, but that
occurs at the expense of longer execution time. Each of
the machine learning technical elements used in PCSS is
described in detail below. In this paper, we evaluate and
discuss the effectiveness of these techniques.

1) WEIGHTED LOSS FUNCTION
Since brain regions account for only about 10% of the volume
of many original brain MRIs, the segmentation task can be
viewed as an imbalanced classification problem. However,
no paper has focused on this imbalance and discussed and
evaluated it. Therefore, the SS performance in training using
weighted cross entropy, which is a loss function commonly
used for imbalanced data, and ordinary binary cross entropy
was compared.
Lss is the loss function of the reconstruction error based on

weighted cross entropy (binary cross entropy), and α is the
hyperparameter that addresses imbalance:

Lss = −Exi∼x[α · m(yi) · log p(xi)

+ (1 − m(yi)) · log(1 − p(xi))]. (1)

The first and second terms in the expectation clause indicate
the reconstruction loss (i.e., the difference between the
predicted SS result and its GT) for the brain region and non-
brain region, respectively. The more correct the prediction
probability p(xi) for a brain region, the smaller its value.
The value of α in normal binary cross entropy is 1. When

the weighted cross entropy was used, the value of α was

defined as the ratio of the volume of non-brain regions to the
volume of brain regions in the entire dataset of all brain MRIs
used for training, according to the general weighting method;
α is determined by a unique value at the start of the training.
We understand that there may be more optimal values for α,
but our evaluation focuses solely on the impact of addressing
imbalance on SS performance. Tuning the hyperparameter is
outside the scope of this paper.

2) ADVERSARIAL TRAINING
Recently, models such as pix2pix [37], which applies the
adversarial training introduced by GAN [31], have been
proposed and reported to improve the performance of
U-network-based segmentation techniques. This approach
improves the performance of the original model (generator;
G) by adding another model (discriminator; D) that deter-
mines the validity of the results generated by G and by
training G and D in an adversarial manner. Specifically,
in the SS task using U-Net, the U-Net becomes G, and the
CNN model added to verify its validity becomes D. In this
paper, the improvement in SS performance by introducing
this adversarial learning into the SS task is evaluated; that is,
by adding a discriminator network.

The loss function for the model due to the addition of
the discriminator is obtained by a reconstruction error Lss
from the original U-Net plus the adversarial loss LAdv of the
generator and discriminator

L = Lss + λLAdv, (2)

where λ is a hyperparameter, and LAdv is the adversarial loss
used in a general GAN and is expressed by the following
equation:

LAdv = Exi∼x,yi∼y[log(D(xi, yi)

+ log(1 − D(xi,G(xi)))]. (3)

The first term is defined as the cost for the identification
of the GT image, and the second term is the cost for the
identification of the generated image. The G is a U-Net
that performs SS from the input image xi, and the D
discriminates between the segmented G(xi) and the true
segmentation result yi given as the GT, and updates D and
G parameters. By repeating this process, it is possible to
generate a probability map that is accurate enough to deceive

VOLUME 11, 2023 116907



K. Nishimaki et al.: PCSS: SS With Posture Correction From 3D Brain MRI

FIGURE 3. Overview of the skull stripping phase.

the trained D inside the trained G and to generate an image
from which only brain regions are extracted.

3) ENSEMBLE OF EACH SECTION
Ensemble is a fundamental element of machine learning
technology that improves performance by using multiple
independent weak learners. The SSNet in this experiment
obtained final SS results by stacking 2D SS results. We inves-
tigate the effect of the ensemble of SS results from different
2D sections on the final SS capability. Specifically, SS results
were compared between stacks of only transverse sections
and ensemble of three sections (i.e., the average of the brain
probability maps). In the brain probability maps obtained for
both approaches, regions with a probability of 50% or greater
were extracted as the brain.

The ensemble typically combines the prediction results
of separately trained models. However, preliminary experi-
mental results showed no significant difference between the
ensemble model trained with cross sections separately and
the model trained with all three cross sections together. The
ensemble adopted the latter implementation because it is
undesirable in terms of computational resources and execu-
tion speed to invoke the three different models individually at
runtime.

IV. DATASET
Table 1 shows an overview of the datasets used in this paper.
The five public 3D brain MRI datasets used in this study are
the Alzheimer’s disease neuroimaging initiative 2 (ADNI2)
dataset [38], the Calgary-campinas-12 (CC-12) dataset [39],
the LONI probabilistic brain atlas (LPBA40) dataset [40], the

Neurofeedback skull-stripped (NFBS) dataset [41], and the
Disc-1 and Disk-2 of Open access series of imaging studies
(OASIS) dataset [42]. Each image was acquired in NIfTI
format.

For the training of the proposed PCSS (PENet and SSNet),
images from ADNI2, which has the largest amount of
recorded data and is a practical dataset with a wide range
of head tilt, size, intensity, and other factors, were used. For
the evaluation of SS performance, images from ADNI2 (data
folded out in the 5-fold cross validation) were used. The
remaining four datasets were used for evaluation.

In addition, only one case per patient was used for all
datasets. Data from the same patient often have similar char-
acteristics, and their inclusion may introduce bias in training
and evaluation, affecting the validity and generalizability of
the results. Moreover, if they are included in both the training
and evaluation data, the model will overfit, resulting in higher
values than the actual performance and incorrect evaluations.
Therefore, in this experiment, they were eliminated to ensure
rigorous evaluation.

Because ADNI2 does not have a ground truth (GT) of the
SSed brain regions, the SS results were used fromMRICloud
[20], currently considered one of the most accurate SS
methods, recognizing that it may not always be accurate
in some cases. The evaluation of the proposed method is
described below, but we have ensured the validity of the
proposal by evaluating it with the CC-12, LPBA40, and
NFBS datasets, which were assigned a GT of manual.

The GTs provided in the LPBA40 and NFBS datasets
consist of manually edited masks based on automatic SS
results from the BET [11] and brain extraction using nonlocal
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TABLE 1. Dataset used in our study.

segmentation technique (BEaST) [16], respectively. The GT
provided in the OASIS dataset is obtained by FreeSurfer
(HWA) [19] rather than manual results. Although this result
may contain a certain percentage of inaccuracies, it was used
as a reference result since it has been used in many other
studies for performance evaluation.

V. EXPERIMENT
In this experiment, we quantitatively evaluated the perfor-
mance of the posture correction proposed to achieve an
accurate and robust SS. To verify the effectiveness of the
proposed PCSS and various SS techniques, we compared SS
performancewith previously reportedmethods using publicly
available datasets (ADNI [38], CC-12 [39], LPBA40 [40],
NFBS [41], and OASIS [42]).

A. PREPROCESSING
The datasets with a resolution of approximately 1 mm ×

1 mm × 1 mm (ADNI2, CC-12, NFBS, and OASIS) were
preprocessed by zero-padding and standardizing the image
size to 256 × 256 × 256. For the LPBA40 dataset, 38 of the
40 images are 0.86 mm × 1.5 mm × 0.86 mm, and 2 are
0.78 mm× 1.5 mm× 0.78 mm. The resolution in the coronal
section is lower than in the other two directions. Therefore,
spline interpolation was used to align the 38 images with
a resolution of 0.86 mm and the remaining 2 images with
a resolution of 0.78 mm in the higher resolution direction.
Then, the size was changed to 256 × 256 × 256 by zero
padding. Outliers in each image were considered, and pixels
with pixel values less than 0 or greater than four times the
standard deviation were excluded as outliers and linearly
normalized to a range of −1 to 1. The removed pixels
were replaced with the minimum and maximum values after
normalization.

B. DETAILS OF PENet AND ITS EVALUATION
The PENet that performs the posture correction consists of
three convolution layers and two fully connected layers. The
details of the PENet configuration are described in Figure 4.

FIGURE 4. Architecture of PENet.

Note that the network models presented in this paper are not
limited to the configuration shown. The PENet took as input
the slice of the sagittal section with the largest number of
pixels in the non-zero brightness (non-background). These
slices were also extracted from the center of the matrix (i.e.,
the 128th slice) to 15% on each side (i.e., 38 slices each)
to eliminate the possibility that the detected slices would be
outside the brain region. The selected slices were reduced to
128 × 128 by bi-cubic interpolation, and the reference neck
line was predicted. The PENet outputs two variables (a, b),
the tilt and position values of the reference neck line, which
is the reference for the posture correction.

To evaluate the performance of PENet, the mean absolute
error (MAE) was calculated between the estimated angle θ̃

obtained by tilt a and its GT θ∗ and intercept b̃ after rotation
and intercept b̃∗ of the alignment line. The performance of
PENet in estimating head angle and position was evaluated
by 5-fold cross validation from the ADNI2 dataset. Note that
10% of the training data was used as validation data.

In some MRIs, the facial region may be blacked out
for patient privacy reasons, or the additional regions below
the head may have already been removed. In order to
achieve robust posture correction even for such images
as data augmentation, the cutOut approach [43] was used
between 0.6% and 25% of the whole image, and images
that had already had the skull stripped by MRICloud with
a probability of 20% (i.e., 60% were normal images).
In addition, a random rotation of−30 degrees to+30 degrees
and a random shift of −20 pixels to +20 pixels were added
as data augmentation with a probability of 70% to account
for the imaging environment. The early stopping was used to
avoid overfitting of the PENet. It ends training when the loss
of validation data can be considered as virtually no updates
for 100 epochs. The PENet was trained on an RTX3090 with
the Adam optimizer, using a learning rate of 5 × 10−4 and a
batch size of 32.

To evaluate the robustness of PENet, evaluations were also
performed when the amount of training data was reduced to
1/2, 1/4, 1/8, and 1/16. In this case, the remaining images
not used for training were evaluated as test data for the
ADNI2 evaluation.

C. DETAILS OF SSNet AND ITS EVALUATION
The U-Net based on SSNet consists of 16 layers of encoder
and decoder CNNs; the detailed structure of the U-Net is
shown in Figure 5. Only the ADNI2 dataset was evaluated
for SS by 5-fold cross validation, while all images from the
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FIGURE 5. Architecture of the baseline of SSNet (U-Net).

ADNI2 dataset were used as training data for the evaluation
of the other datasets (CC-12, LPBA40, NFBS, and OASIS).

When training the model (i.e., training on the transverse
cross sections), online data augmentation was added by ran-
domly rotating the image from −20 degrees to +20 degrees
and shifting it by −20 pixels to +20 pixels to mimic the
variation in the subject’s posture during actual imaging.
The same augmentation was applied in each cross section
when training the ensemble model. For the sagittal cross
sections, however, a wider range of random rotation of−30 to
+30 degrees was applied, as it was assumed that the range of
motion for the posture at the time of imaging was wider.

A five-layer fully convolutional network (FCN) was used
as the discriminator to introduce GANs training in SS. The
detailed structure of the discriminator is shown in Figure 6.

D. EVALUATION OF SKULL STRIPPING PERFORMANCE
In order to discuss the effectiveness of the proposed PCSS
(PCSS-1 and PCSS-3), we compared and evaluated the
SS performance for the five datasets described above with
Auto-Net [22], MVU-Net [25], and HD-BET [27], the three
state-of-the-art studies that have reported the best SS perfor-
mance. In addition, to compare with 3D U-Net, nnU-Net [28]
architecture was created by 3DU-Net. Auto-Net and nnU-Net
were reproduced using the author’s public implementation,
and MVU-Net was reproduced to the best of our ability
based on the original paper. In addition, HD-BET, which uses
6, 586 training images (about ten times more than PCSS)
from 25 sites as a publicly trained model, was included
in the comparison. The GT of this model was manually
modified based on BET [11] and is not publicly available.
Therefore, we cannot compare its performance under fair
conditions using the same training images, but we included
it for reference. Note that the ADNI2 result from HD-BET is
not 5-fold cross validation.

Table 2 shows the technical elements summary of the
PCSS. To evaluate the technical components of the proposed
PCSS, U-Net+ posture correction (+PC), U-Net+weighted

FIGURE 6. Architecture of the discriminator.

TABLE 2. Technical component of skull-stripping.

loss function (+W), U-Net + discriminator (+Adv), and
U-Net + ensemble (+Ens) were evaluated (i.e., using an
ablation study.). In order to fix the experimental conditions,
U-Net,+PC,+W,+Adv, and+Ens were given the same data
augmentation as PCSS.

Recall, precision, and their harmonic score (the Dice score)
were used as evaluation metrics. To quantitatively evaluate
the number of SS failures, the number of cases with a Dice
score less than 0.95 was tabulated.

VI. RESULTS
A. RESULT OF POSTURE CORRECTION
Figure 7 shows four examples of posture correction results
for the ADNI2 test case. The top row compares the predicted
reference neckline for the input image (red dashed line) with
the GT displayed as a reference (yellow line), and the bottom
row shows the results with the image rotated and shifted to
the position of the alignment neck line (light blue line) from
the predicted reference neck line; that is, the final posture
correction result.

In the ADNI2 dataset, the GT measurements of the
reference neck line had a standard deviation of 7.81 degrees in
angle and 14.69 pixels (equivalent to 29 mm in physical size)
in vertical position. These findings indicate the presence of
such variations in head posture in the ADNI2 datasets.

The proposed PENet had an accurate estimation for the ref-
erence neck line, with an average error of 3.61 ± 2.72 degrees
in the head angle and 6.42 ± 5.17 pixels (equivalent to
13 ± 10 mm in physical size) in the vertical direction, based
on the average of 5-fold cross validation. As a result,
the variation in the angle and position of the head was
significantly reduced. The rightmost image in Figure 7 shows
an example of large estimation error compared with three
other examples.
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FIGURE 7. Example of posture correction for ADNI2.

Figure 8 shows the example result of a posture correction
for the CC-12, LPBA40, NFBS, andOASIS datasets in panels
(a) to (d), respectively. Although a quantitative evaluation is
not available for these datasets, it was visually confirmed that
the posture correction was performed appropriately, even for
the datasets that were not used for training. In addition, this
posture correction improved the SS performance in the later
stages for all datasets, indirectly suggesting that this posture
correction was also successful. Details are discussed below.

Figure 9 shows the relationship between the amount of
training data for the PENet (612 cases in total) and the posture
correction error (red, angle error; blue, misalignment). This
result shows that PENet can accurately estimate posture even
when trained with only about 150 cases (i.e., 1/4 in Figure 9)
and that its performance gradually deteriorates with further
reductions.

B. RESULT OF SKULL STRIPPING
Table 3 shows the score for all methods compared. In the
evaluation of the ADNI2 dataset, where the training and

evaluation data are from the same source, there was not
much difference in the scores for each method. Only the
proposed PCSS resulted in a lower precision than the other
methods, resulting in slightly lower Dice scores. This is not
due to inherently low SS performance, as discussed below,
but rather because it was determined to be overdetected in
the evaluation based on the GT defined by MRICloud. This
overdetection is the fact that a GT for the determination of
the cerebral sickle, which is very difficult to identify, was
not determined to be a brain region. See discussion below for
details.

On the other hand, the results of LPBA40, CC-12,
NFBS, and OASIS show that the proposed PCSS achieves
significantly higher SS performance than existing methods,
including the state-of-the-art Auto-Net, MVU-Net, and
nnU-Net. In particular, PCSS has a very small number of
cases that could be considered SS failures (#Dice < 0.95).
In addition, PCSS performs almost as well as HD-BET, which
is trained on about ten times more data and outperforms
HD-BET for CC-12 and NFBS with manual labels.
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FIGURE 8. Posture correction for other datasets.

FIGURE 9. Relationship of posture correction error to the amount of
training data.

The performance difference between PCSS-1 and PCSS-3
was only 0.36 points on average in terms of Dice score, while
the time required for SS was 8.07 and 20.24 seconds for
PCSS-1 and PCSS-3, respectively. Of these, the time required
for posture correction of one section was 1.96 seconds
(approximately 24.2% and 9.6% of the total SS processing,
respectively).

Figure 10 compares examples of SS results using the
baseline Auto-Net [22] and the proposed PCSS-3 observed
from the sagittal plane. Note that Auto-Net offered the best
performance of the three state-of-the-art methods that were
used for comparison and were reproduced in the authors’
implementation. The red line shows the predicted mask by

PCSS-3, and the yellow line shows the mask by GT. The
proposed PCSS effectively performed SS for the images in
all datasets. In particular, recall is significantly improved
compared to the existing methods, and the reproducibility of
brain regions in PCSS-3 is confirmed to be very high. The
relatively low numerical results in OASIS for all methods are
due to incomplete GT by FreeSurfer, as mentioned above;
PCSS actually detects the appropriate regions.

Table 4 summarizes the effect of each technical element
introduced in this paper on final SS performance. These
are the averages of the differences in SS performance,
as measured by Dice score, between the baseline (U-Net)
and the case where each element X is implemented
alone (i.e., +X). The average is the macro average of
the scores of the datasets, excluding ADNI2 (used for
training) and OASIS (which has GT reliability concerns).
We could confirm that our posture correction proposal
contributed to the improvement of SS performance for all
datasets. In addition, we confirmed that the other three
techniques also contributed to the improvement of SS
performance.

VII. DISCUSSION
A. EFFECTS OF POSTURE CORRECTION
The proposed posture correction method is a simple and
robust method that requires only a small amount of training
data (Figure 9). Our postural correction reduced head angle
variability (i.e., standard deviation) by 4.2 degrees, from
7.81 degrees to 3.61 degrees, and vertical deviation by
16 mm, from 29 mm to 13 mm, each less than 50% of their
pre-correctionmagnitude. In other words, correcting for pitch
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TABLE 3. Summaries of SS performance.

TABLE 4. Summary of the impact of each elemental tequniques on SS
performance in Dice score.

direction, which varied widely across the datasets, standard-
ized the appearance across slices. As a result, this process
improves SS performance for datasets that are not used for

training and shows that our posture correction contributed to
the improvement in SS performance. In addition, this process
is computationally efficient (1.96 sec/case; approximately
24.2% of the entire SS process in PCSS-1).

B. PERFORMANCE OF SKULL STRIPPING
1) DISCUSSION ON GT AND PERFORMANCE EVALUATION
The proposed PCSS (PCSS-1 and PCSS-3) generally
achieved the best SS performance (96.95 and 97.31 in Dice
score, excepting OASIS) but was numerically lower than the
other methods when evaluated on the test cases of the ADNI2
dataset used for training.

Firstly, we discuss why PCSS has lower SS (precision)
scores only on ADNI2 test cases. Figure 11 shows images
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FIGURE 10. Example of SS results by PCSS; from top to bottom, SS results for U-Net, Auto-U-Net, and PCSS-3.

of the worst five Dice scores (as well as precision) in one
fold on the PCSS-3, from left to right. The red line shows
the region predicted by PCSS-3, and the yellow line shows
that by MRICloud used as GT. In case (a), which has the
lowest Dice score, MRICloud failed to detect a portion
of the medulla oblongata and the cerebellum’s tonsil (1).
In contrast, PCSS-3 accurately extracted this region. Hence,
the lower Dice score was attributed to an error in the GT, not
a failure in PCSS-3. In cases (b)-(e), the disparities between
the brain masks generated by PCSS-3 and MRICloud were
primarily concerned with the inclusion or exclusion of the
cerebral longitudinal fissure, the space is occupied by the
cerebrospinal fluid and the falx cerebri, a membrane that
separates the left and right cerebral hemispheres. While
MRICloud generally excluded this space and membrane
from the brain mask, PCSS-3 was inclined to include
them. Delineation of this space, which has a complex

boundary, can be a challenging task even for neuroimaging
experts. Considering that the GT of other databases includes
this area in their brain masks, we believe a Dice score
slightly lower than nnU-Net (97.04 vs. 98.88) is practically
acceptable. Even in the worst case (b), the Dice score is
96.44, which represents sufficient accuracy for the ADNI2
dataset.

2) COMPARISON AND DISCUSSION WITH OTHER METHODS
The proposed PCSS achieves the best SS performance,
including state-of-the-art 2D and 3Dmethods, in two datasets
not used for training. In addition, excluding HD-BET, which
is about ten times more training data than PCSS from
the comparison, PCSS shows the best performance on all
four datasets. This is evidence of its inherently high SS
performance. The PCSS shows robust and accurate SS results
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FIGURE 11. Worst five SS results (red) on ADNI2 test cases using PCSS-3; yellow is the GT provided by MRICloud [20].

for these unknown datasets, indicating that it does not overfit
with the GT given by MRICloud, which is also confirmed by
the results in Figure 10.

Especially for LPBA40 with manual GT, most of the cases
(31 of 40) in the baseline U-Net have a Dice score of less
than 0.95 due to under detection (low recall). By contrast,
PCSS achieved extremely accurate SS for almost all cases
despite using the same training data. In addition, LPBA40
has a resolution of 0.86 mm and 0.88 mm per pixel, which is
different from the resolution used in the training. This result
shows that PCSS is robust to data with different resolutions
than the training data. The same trend is observed for other
datasets, which confirms the excellent SS performance and
robustness of PCSS.

The advanced SS methods Auto-Net [22], MVU-net [25],
and nnU-Net [28] show good results for the ADNI2 dataset.
However, the results for the other datasets are lower than
PCSS, especially due to the lower recall (averaging 4.68,
5.94, and 4.39 points, respectively, with the exception of
OASIS). The reason for this is that Auto-Net is a method
that aims to improve accuracy by feeding back the trained
probability maps of brain regions to the input, which
may lead to overfitting. In addition, MVU-Net employs an
architecture with a small number of parameters to improve
efficiency, but this architecture may not have been expressive
enough to achieve accurate SS even for multiple datasets.
Meanwhile, nnU-Net uses 3D spatial information from 3D
U-Net. Therefore, it has the best Dice score on the training
data, ADNI2, but it is thought that overfitting prevents it
from corresponding images, such as NFBS, which are cut off
under the neck. HD-BET [27] shows themost robust SS result
among previous studies. The low Dice score of the ADNI2
dataset is due to the difference in GT between HD-BET
and MRICloud. The GT of MRICloud does not include the
cerebral longitudinal fissure, whereas HD-BET does. As a
result, the accuracy of HD-BET in ADNI2 is reduced. As we
described earlier, it is difficult even for experts to create
an accurate GT for this space. Therefore, the low score of
HD-BET in ADNI2 is not inherently a problem with its SS
performance, and the result shown in other datasets suggests

that HD-BET is capable of achieving highly accurate and
robust SS for diverse data. However, they used 6, 586 images
as training data and semi-manually created masks for 1, 568
T1-weighted images. It takes 15 minutes to create a mask,
which is very expensive to build a larger network in the future.
PCSS achieved almost the same performance as HD-BET
even though it only trained 612 images. This result shows
that PCSS can achieve highly robust SS with few training
data.

Although the original paper [22] and [25] showed better
performance than other comparison methods when SS
ability was evaluated by splitting within the same dataset,
we found concerns about the robustness to data from
different environments in this result. These differences in
datasets are thought to be due to the stronger effects
of overfitting caused by differences in subjects’ postures.
By contrast, the proposed PCSS, which introduces pos-
ture correction and other techniques, is able to achieve
robust and accurate SS results for a large number of
datasets.

C. DISCUSSION OF TECHNICAL ELEMENTS FOR SKULL
STRIPPING
The main proposal in this paper, posture correction, improves
SS performance on all five datasets and is an important factor
in achieving robust and accurate SS. The introduction of
weighted loss functions to address the imbalance between
brain and non-brain regions and the introduction of the
discriminator to further improve SS performance are of
significant importance in this achievement. In particular,
the three datasets labeled manual (i.e., excluding ADNI2
and OASIS) showed average improvements of 1.42 and
0.71 points, respectively. These results show that PCSS
suppresses overfitting for ADNI’s GT and contributes to
making SS robust to unknown data in different envi-
ronments. This suppression of overfitting is also true
for posture correction. In addition, The PCSS results in
Table 3 show that these elements perform better when
combined.
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The trained PCSS-3 using ensemble of three sections
improves the Dice score by only 0.36 points on average,
compared to PCSS-1. On the other hand, PCSS-3 takes
about 2.5 times longer than PCSS-1 per SS case. For
maximum performance, PCSS-3, which uses a three-section
ensemble, is preferred. However, PCSS-1 also outperforms
previous state-of-the-art SS methods through its proposed
posture correction. Therefore, PCSS-1 is generally preferable
for actual operations due to its combination of speed and
performance therefore suitable for high-throughput brain
MRI analysis.

VIII. LIMITATION
The evaluation of PCSS in this study was limited to
T1-weighted Images. However, MRIs have multiple types,
including contrast-enhanced T1-weighted, T2-weighted, and
FLAIR. There is also a process in MRI called fat saturation,
which reduces the fat signal to show other tissues and
structures more clearly. We plan to evaluate the performance
and usefulness of PCSS for these different image types and
processing.

IX. CONCLUSION
In this paper, we proposed and published posture correction
skull stripping, a highly accurate and robust skull stripping
method for T1-weighted brain magnetic resonance imaging
that accounts for the diversity of subjects’ postures. Using
five publicly available datasets, we confirmed that PCSS
outperforms existing state-of-the-art methods and the effec-
tiveness of each of its technical components. This paper
discusses and evaluates the use of larger and more diverse
data than previous SS papers, thus setting the standard for
future SS papers. We hope that our published PCSS will
contribute to future research on brain MRI.
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