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ABSTRACT Unmanned Aerial Vehicles (UAVs) play an important role in many applications, including
health, transport, telecommunications and safe and rescue operations. Their adoption can improve the speed
and precision of applications when compared to traditional solutions based on handwork. The use of UAVs
brings scientific and technological challenges. In this context, Machine Learning (ML) techniques provide
solutions to several problems concerning the use of UAVs in civil and military applications. An increasing
number of scientific papers on the use of ML in UAVs context have been published in academic journals.
In this work, we present a literature review on the use ofML techniques in UAVs, outlining the most recurrent
areas and the most commonly used ML techniques in UAV applications. The results reveal that applications
in the areas of environment, communication and security are among the main research topics.

INDEX TERMS Unmanned aerial vehicle, machine learning, literature review, UAV applications, neural
networks.

LIST OF ACRONYMS
3D Three Dimensional.
4G Fourth Generation.
5G Fifth Generation.
6G Sixth Generation.
A3C Asynchronous Advantage Actor Critic.
ACRL Actor-Critic Reinforcement Learning.
AI Artificial Intelligence.
AMD Acid Mine Drainage.
ANN Artificial Neural Network.
AoI Age of Information.
BATS Blockchain and AI-empowered Drone-

assisted Telesurgery System.
BS Base Station.
CCTV Closed Circuit Television.
CNN Convolutional Neural Network.
COVID-19 Coronavirus 2019.
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CUAV Cognitive UAV.
DCNN Deep Convolutional Neural Network.
DDPG Deep Deterministic Policy Gradient.
DifFAR Differentiable Frequency-based Disentan-

glement for Aerial Video Action
Recognition.

DL Deep Learning.
DLA Deep Learning based Optimal Auction.
DML Distributed Machine Learning.
DNN Deep Neural Networks.
DQN Deep Q-Learning.
DRL Deep Reinforcement Learning.
DT Decision Tree.
FANET Flying Ad-hoc Network.
FCOS Fully Convolutional One-Stage.
FSL Few-Shot Learning.
FTFC Fault-Tolerant Formation Control.
GB Gradient Boosting.
GBS Ground Base Stations.
GSDRL Guided Search Deep Reinforcement

Learning.
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GPU Graphics Processing Unit.
GUs Ground Users.
ICIs Inter-Cell Interferences.
IoT Internet of Things.
IoTDs Internet-of-Things Devices.
IoV Internet of Vehicles.
IRSs Intelligent Reflecting Surfaces.
InSAR Interferometric Synthetic Aperture Radar.
KNN K-Nearest Neighbour.
LIDAR Light Detection and Ranging.
LR Linear Regression.
LSVM Linear Kernel SVM.
LSTM Long Short-Term Memory.
MAPPO Multi-Agent Proximal Policy Optimization.
MCS Mobile Crowd Sensing.
MDP Markov Decision Process.
MEC Mobile Edge Computing.
ML Machine Learning.
MUs Mobile Users.
NB Naïve Bayes.
NNI Nitrogen Nutrition Index.
PEDS-AI Pest Early Detection and Identification

System.
PLSR Partial Least Squares Regression.
QMACN Quantum Multi-Agent Actor-Critic

Networks.
QoS Quality of Service.
R-CNN Recurrent Convolutional Neural Network.
RBFN Radial Basis Function Network.
RF Random Forest.
RGB Reed, Blue and Green.
RIS Reconfigurable Intelligent Surface.
RL Reinforcement Learning.
RQs Research Questions.
RPN Region Proposal Network.
RSRP Received Signal Reference Power.
RSRQ Reference Signal Received Quality.
SAR Safety and Rescue.
SARD Search and Rescue Image Dataset.
SCP Semi-Automatic Classification Plugin.
SEI Spectral Evidence of Ice.
SVM Support Vector Machine.
SSD Single-Shot Detector.
TA3C Transfer Asynchronous Advantage Actor-

Critic.
TWS Trainable Weka Segmentation.
UMA UAV-assisted Multi-task Allocation.
UEs User Equipments.
UxV Unmanned any Vehicle.
UTM Unmanned Aircraft Traffic Management.
USV Unmanned Surface Vehicle.
UAVs Unnamed Aerial Vehicles.
WCN Wireless Communication Network.
YOLO You Only Look Once.

I. INTRODUCTION
The use of drones has gained prominence in the last decade
for civil and military applications. Included in this category,
one can cite the Unnamed Aerial Vehicles (UAVs), which
are capable of flying remotely controlled or autonomously,
without any type of manual intervention by the human
operator, and capable of carrying loads, whether lethal or not.
In addition, these vehicles can be classified in terms of size,
load capacity, flight ceiling and design [1], [2].

Countries around the world have registered an increasing
number of these aircrafts, in their territories. According to
Brazilian open data, the National Civil Aviation Agency
(ANAC, from Portuguese, Agência Nacional de Aviação
Civil)1 recorded a total of 119,155 official drone registrations
in october 2022, of which 62,272 were registered for recre-
ational use and 56,883 for use in professional activities. The
North American Federal Aviation Administration (FAA)2

shows on its website that there are 871,984 of these vehicles
in activity, and the Civil Aviation Administration of China
(CAAC)3 shows a total of 120,000 commercial drones
registered in 2020.

Machine Learning (ML) techniques play an important role
in solving many complex problems related to tasks that
have the potential to be automated in areas such as control
engineering, knowledge acquisition, decision making, and
also localization [3]. Advantages associated with the use of
UAVs in different scenarios have led to the emergence of
several studies in recent years on the use of ML techniques
to assist in solving UAV-related problems in a wide variety
of applications, such as networked data transmission, mobile
platform landing, precision agriculture, surveillance, network
access, trajectory planning, and power optimization [4], [5],
[6], [7].
Due to the rapid growth in the number of publications in

scientific bases, a literature review on a particular domain of
knowledge is both a necessity and a challenge. Recent studies
have presented literature reviews on ML applications with
UAVs focused on a specific area.

In the area of environment, Ecke et al. [8] conducted a
systematic literature review on the detection of biotic and
abiotic stressors in forests, including tree mortality, with
UAVs. Another systematic review in the area was provided
by Duarte et al. [9], addressing monitoring insect-borne pests
and diseases using data collected by UAVs. Rakesh et al. [10]
conducted a review on the applicability of UAVs in the field
of agriculture. Other studies have addressed plant counting,
crop monitoring and pesticide spraying [11], [12], [13].

Bithas et al. [14] conducted a survey on studies using
ML techniques in UAV-based communication to improve
functional aspects such as channel modeling, resource
management, positioning, and security. In the tutorial by

1https://www.anac.gov.br/acesso-a-informacao/dados-abertos/areas-de-
atuacao/aeronaves/drones-cadastrados/painel-de-drones-cadastrados

2https://www.faa.gov/uas
3http://www.caac.gov.cn/en/SY/
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FIGURE 1. Organization of the paper.

Mozaffari et al. [15] the fundamentals, benefits and chal-
lenges of UAV-enabled wireless networks are presented.
Other important topics such as 5G networks, mobile edge
computing and the Internet of Things (IoT) have also been
the focus in some reviews [16], [17].
In the literature, we find reviews covering more than one

specific topic. Mukhamediev et al. [18] conducted a review
of UAV applications and benefits in countries that have
an abundance of natural resources, such as, for example,
Kazakhstan. The authors have divided the selected studies
into seven fields, namely: precision agriculture, monitoring
hazardous geophysical processes, environmental pollution
monitoring, mineral exploration, wildlife monitoring, mon-
itoring technical and engineering structures, and traffic
monitoring.

Sharma [1] presented a comparative analysis of studies,
published between 2019 and 2020, on the use of ML
techniques with UAVs. Research from different application
domains of UAVs were presented, such as routing method
for Flying Ad-hoc Network (FANET), precision agriculture,
disaster response operations, crop production forecast-
ing, tree species identification, and power allocation in
drones.

Our study provides a comprehensive review of the
literature on the use of ML techniques in UAVs applications
to solving real-world problems. Research Questions were
defined to guide the current review, and inclusion and
exclusion criteria were established for the articles to be
considered in the study. Steps of the review process were
performed in an automated way (e.g. the selection of primary
studies with FAST2, by Yu and Menzies [19]), using tools to
reduce time and manual work. In addition, a prospection of
areas in which UAVs are used, a prospection is presented of
subareas and applications of ML in UAVs for each area under
consideration, a prospection of databases used, a prospection
is presented of the most commonly used ML algorithms
and techniques in UAVs, existing gaps and promising future
research directions are cited.

The remainder of this article is organized as shown in
Figure 1: Related works are presented in Section II. The
methodology is presented in Section III. The findings are
presented in Section IV. Future research directions and

limitations are presented in Sections V and VI, respectively.
Section VII is dedicated to the conclusions.

II. RELATED WORKS
Many reviews provide valuable insights into the current state
of research and developments in the application of UAVs
and Deep Learning (DL) algorithms for various aspects of
agriculture, precision farming, and forestry management.

Zhou et al. [20] discuss the use of infrared thermal
sensors and UAVs for assessing crop water stress in precision
agriculture. The work addresses technological aspects such as
thermal imaging acquisition, canopy segmentation, and crop
water stress index calculation, and explores the potential of
DL applications for future advancements. Morais et al. [21]
present a review focused on the use of DL techniques with
UAV-acquired Reed, Blue and Green (RGB) data in forestry
research. The paper covers applications such as individual
tree detection, tree species classification, and forest anomaly
detection, and provides a critical assessment of the strengths
and methodological challenges in the field.

Advances on UAV and DL for crop diseases are discussed
per Bouguettaya et al. [22]. Their review paper emphasizes
the importance of effective monitoring techniques to ensure
stable and reliable crop productivity and food security.
Rakesh et al. [10] explore the effective applicability of various
types of UAVs in agriculture, their classification, and diverse
applications. The authors discuss the potential for future
advancements and improvements in UAV technology for
different agricultural purposes.

Bouguettaya et al. [23] review the use of UAVs equipped
with DL-based computer vision algorithms for early wildfire
detection in forest and wildland areas. The focus is on
preventing and reducing disastrous losses in terms of
human lives and forest resources caused by wildfires.
Amarasingam et al. [12] summarize the use of UAVs and
various advanced sensors, including RGB, multispectral,
hyperspectral, Light Detection and Ranging (LIDAR), and
thermal cameras, for monitoring sugarcane crops. They
discuss the benefits and limitations of UAV-based crop
remote sensing applications in sugarcane cultivation.

Duarte et al. [9] focused on the use of UAVs and DL-
based computer vision algorithms for monitoring forest
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insect pests and diseases. The authors identified research
gaps and challenges in UAV-based monitoring of forests
threatened by biotic and abiotic stressors. Ecke et al. [8]
provide a systematic analysis of the use of UAVs for forest
health monitoring and discuss advances in drone technology,
sensors, and data processing methods for forest monitoring,
also addressing limitations and research gaps in the field.

Hussain et al. [24] analyze various research studies on
UAV-based imagery and ML techniques for crop yield
forecasting. Hafeez et al. [13] present an analysis of drone
technologies and their applications in the agricultural sector,
particularly in crop monitoring and pesticide spraying for
precision agriculture.

Many studies provide an overview of the field of
UAV-based communications and ML-oriented applications.
These studies explore the potential of UAVs, with the use
of ML techniques, for improving Wireless Communication
Network (WCN), IoT applications and other areas.

Bithas et al. [14] present a detailed survey of research
works that utilize ML techniques for UAV-based com-
munications. The review covers various aspects such as
channel modeling, resource management, positioning and
security, and challenges are presented in using UAVs for
communication purposes. Kim et al. [25] focus on the
application of Artificial Intelligence (AI)-driven systems
in Fifth Generation (5G) networks, particularly in smart
cities, discussing their potential applications in autonomous
vehicles and UAVs, as well as security threats and challenges
in 5G-enabled environments. Cheng et al. [26] present a
comprehensive review of AI for UAV-assisted IoT applica-
tions. They explore how AI-based methods can optimize
and orchestrate UAV-assisted IoT networks, enabling the
provision of high-quality services to a large number of IoT
devices.

For the infrastructure area, some studies have focused
on issues such as analysis of power lines and damage
to civil structures. Kerle et al. [27] perform a review on
the evolution of how UAV-based structural disaster damage
mapping is done. In their work, they analyze both simpler and
DL-based approaches, and review improvements related to
drones and ML on the topic at hand. Liu et al. [28] present
a review focused on DL techniques for power line inspection
data analysis. The authors categorize works into component
detection and fault diagnosis and identify challenges for
future research.

In the Transport area, reviews address DL techniques for
vehicle detection from UAV imagery, showing their potential
in various surveillance applications.

Srivastava et al. [29] explore DL techniques for on-ground
vehicle detection from UAV images, addressing applications
such as traffic management and rescue operations in disaster
zones. Their review focuses on accuracy improvements,
computation overhead reduction, and optimization objec-
tives, offering valuable insights for AI researchers and
traffic surveillance experts. Bouguettaya et al. [30] provide a

detailed review on vehicle detection fromUAV imagery using
DL. The authors report the challenges related to aerial images
and hardware. The paper highlights the effectiveness of DL
algorithms over traditional methods and summarizes various
vehicle detection approaches and datasets, aiding researchers
and developers in selecting suitable methods for their needs.

Bisio et al. [41] present a systematic review on drone-based
traffic monitoring systems, particularly in the context of
DL. The papers addresses vehicle detection, tracking, and
counting. The authors highlight the challenges faced due
to object scales, angles, and occlusion. The paper by
Iftikhar et al. [34] focuses on target detection in traffic
congestion using UAVs and DL. The review analyzes the
challenges posed by small objects in UAV images.

Shakhatreh et al. [43] explores a wide range of civil
applications of UAVs, including real-timemonitoring, remote
sensing, precision agriculture, and security. The paper high-
lights key research challenges, such as charging, collision
avoidance, networking, and security, providing valuable
insights into future UAV uses and approaches to tackle
these challenges. Osco et al. [32] address UAV remote
sensing applications with DL. They present a comprehensive
overview of classification and regression techniques.

Sharma [1] presents a survey and comparative analysis
of works on UAV development with ML techniques. The
survey highlights the importance of ML for developing
solutions based on real-time data and covers various domains
of UAV systems, reflecting the diversity of the topic.
Mukhamediev et al. [18] discuss the potential of UAVs in
resource-rich countries, focusing on various applications,
such as precision agriculture, wildlife monitoring, and traffic
monitoring. The authors analyze the technical, legal, and
software challenges of UAV use and estimate the economic
potential for Kazakhstan.

Gohari et al. [40] address surveillance drones in smart
cities. Their systematic review examines application status,
areas, models, and drone characteristics. Frattolillo et al. [35]
present a systematic review on the use of Deep Rein-
forcement Learning (DRL) in cooperative and scalable
multi-UAV systems. The paper categorizes multi-UAV appli-
cations into distinct classes and discusses works employing
DRL techniques, providing valuable insights and future
research directions to enhance UAV systems’ safety and
responsiveness.

Another important area is related to Distributed Machine
Learning (DML). The topic was addressed by Ding et al. [48]
in their review on UAV swarms. The authors report the
importance of using DML for drone swarms and present
and discuss the advantages and disadvantages of four of
these state-of-the-art methods. In addition, they discuss
several optimization problems in UAV swarms using DML
algorithms.

Swarms of drones have a wide Variety of civil and
military application areas, such as [49]: surveillance,
leisure pursuit, search and rescue, disaster management and
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TABLE 1. Surveys covering ML applications in UAV.
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environmental mapping. Important aspects must be taken
into consideration in the scenario of swarms of drones:
battery swapping/recharging, collision avoidance, robust-
ness against Collisions, hovering performance and Com-
munication reliability. Paper in the literature have been
devoted do one of many of the aforementioned aspects.
The paper by Yasin et al. [50] addresses collision avoid-
ance in swarms of drones. The work of [51] presents a
channel model for the air-to-air links between pairs of
drones.

Despite being a topic widely explored in the literature,
a comprehensive review of the applications arising from the
use of ML in UAVs has not yet been fully developed. So far,
no studies have been found that present in a complete and
detailed way the different areas and their applications, the
datasets used, the algorithms employed, the challenges faced,
as well as the improvements achieved and future directions
for the use of ML in UAVs.

This paper provides a comprehensive and up-to-date
review of ML applications in UAVs, highlighting the main
contributions and advances in the field, as well as possible
limitations and opportunities for future improvements.

III. METHODOLOGY
The present review is based on a systematic processes that
assist in identifying, evaluating, and synthesizing relevant
information on a particular topic of interest [52], [53].
As this is a laborious task, the use of techniques and tools
that facilitate this process is recommended. Recent studies
have proposed automated solutions to collect data and even
synthesize information from the articles found [19], [53],
[54], [55], [56], [57].

Electronic databases are the main source of scientific
publications and are usually the first alternative for searching
scientific articles. ACM Digital Library, IEEE Xplore,
Science Direct and MDPI are the databases chosen for this
study. As for the publication period, articles from January
2010 to July 2023 were included. In addition, literature
reviews have an investigative bias and, as such, can be guided
by Research Questions (RQs) [58]. The RQs addressed in this
study are:

• RQ1 - What are the main application areas of UAVs?
• RQ2 - What are the most recurrent applications of ML
in UAVs?

• RQ3 - How drones are incorporated into the systems of
these applications?

• RQ4 -What are the most used datasets for ML in UAVs?
• RQ5 - What are the most used ML algorithms and
techniques applied to UAVs in the selected studies?

• RQ6 - What are the challenges to be overcome and
improvements to be achieved in theML applied to UAVs
scenario?

Several pilot tests for the purpose of optimizing search
results were conducted, resulting in the search string:
(UAV OR ‘‘unmanned aerial vehicle’’) AND (‘‘machine
learning’’ OR ‘‘deep learning’’ OR ‘‘neural networks’’

FIGURE 2. The flowchart process of the review.

TABLE 2. Inclusion and exclusion criteria.

OR ‘‘reinforcement learning’’). The search method used
was based on conducting an automated search in each
of the databases using the available tools and filters.
The applied filters took into consideration the publica-
tion period mentioned, from January 2010 to July 2023,
as well as led to selection of journal and conference
publications.

Figure 2 presents the number of studies obtained in each
step of the selection of works. First, 4,864 articles were
returned as a result of applying the search string to the
scientific databases. To select the studies in the second step,
the inclusion and exclusion criteria described in Table 2
were applied by reading the titles, abstracts, and keywords.
To this step, FAST2 [19] was used. FAST2 is an active
learning-based tool that assists researchers in the process of
selecting relevant articles. At the end of the selection process
there were 1,781 studies left. Subsequently, another manual
selection was performed on the relevant studies resulting
from the FAST2. This selection was made by reading the full
text of the selected articles, which resulted in 1,630 studies at
the end.
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FIGURE 3. Number of published articles by database and year.

FIGURE 4. Journals and conferences that published the most articles
concerning ML techniques in UAVs.

IV. FINDINGS
Figure 3 presents the number of articles published by each
database over the years. Regarding the MDPI, Science Direct
and IEEE databases, an upward trend is observed over the
years, reaching a peak in 2023, with 214 articles published
in the IEEE and 155 in Science Direct. On the other
hand, ACM has the lowest number of articles published
over the years, when compared to the other databases,
reaching its highest number of publications in 2022, with nine
studies.

In addition to collecting data regarding the number of
works published per year, data were also collected about the
journals that published the most. These results are shown
in Figure 4, where the journal with the largest number of
publications is Remote Sensing, an MDPI’s open access
journal, with 237 publications, followed by Sensors, also
from MDPI, with 83 articles.

A. MAIN APPLICATION AREAS
Regarding RQ1, Figure 5 presents the main areas and
applications of UAVs in the selected studies. Environment
is the area with most publications, 746 in total, and within
this area, Agriculture is the most common subarea, with
490 articles, followed by Forest Ecosystem, with 118 studies,
and Environmental Preservation, with 44.

The second largest number of publications is in Commu-
nication area, with 421 studies, which have as main topics:
Mobile Edge Computing (MEC), IoT andWCN. Focusing on
Electrical and Civil Construction, Infrastructure is the third
largest area, with 177 articles.

With 155 studies, the Safety and Rescue (SAR) area has
the following main themes: Disaster and Search and Rescue
Operations. The area with the lowest number of publications
is Filming, with eigth studies covering applications in Sports,
Exploration, Journalism and Photogrammetry.

B. APPLICATIONS OF MACHINE LEARNING IN UAVs
To answer RQ2, applications are presented from the
eight subareas shown in Figure 5 - Environment, Com-
munication, SAR, Infrastructure, Smart Cities, Transport,
Healthcare, and Filming - which together sum up to
1630 studies.

1) ENVIRONMENT
Figure 6 shows the main UAV aplications in the Environment
area.

• Agriculture
Disease and weed detection is one of the most common
applications in the subarea of Agriculture. Beeharry
and Bassoo [59] performed a comparison between an
Artificial Neural Network (ANN) and the AlexNet
Convolutional Neural Network (CNN) for detecting
weeds in crops. Tetila et al. [60], also applying CNNs,
used UAVs for the automatic recognition of soybean leaf
diseases from images.
Crop yield estimation is another important application
of UAVs in Agriculture. Maimaitijiang et al. [61] used
RGB colors, multi-spectral and thermal sensors on a
drone to estimate soybean grain productivity. In the
context of plant phenotyping, Wang et al. [62] used
Partial Least Squares Regression (PLSR), ANN, Ran-
dom Forest (RF) and Support Vector Machine (SVM)
techniques to estimate different rice characteristics
through hyperspectral images collected by a UAV.
Osco et al. [63] proposed a method based on a CNN to
simultaneously detect and geo-locate crop rows while
also performing a plant count.
Sankararao et al. [64] proposed an early water
stress identification method in groundnut canopy
using UAV-based hyperspectral imaging and ML tech-
niques, achieving 96.46% accuracy in stress detection.
Gano et al. [65] developed ML-based prediction models
for sorghum biomass using UAV multispectral imagery.
Zhang [66] presented Pest Early Detection and Iden-
tification System (PEDS-AI), an innovative UAV-
based visual-acoustic pest detection system using DL,
enabling species identification in the field. Sugumar and
Suganya [67] exploredmulti-spectral image-based high-
level crop classification using a modified SVM with
enhanced PCA and a hybrid metaheuristic algorithm,
comparing it to methods like Naïve Bayes (NB),
K-Nearest Neighbour (KNN), K-Means, and RF.
Bergamo et al. [68] combined RGB images from a UAV
with multispectral PlanetScope images to accurately
map the extent of the invasive species Rosa rugosa along
the Estonian coastline, enabling effective monitoring
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FIGURE 5. Main areas and applications of UAVs.

and eradication programs. Pei et al. [69] evaluated
ML models for predicting canopy nitrogen weight and
Nitrogen Nutrition Index (NNI) of cotton using UAV
multispectral images.

• Forest Ecosystem
In the Forest Ecosystem subarea, Xia et al. [70]
used fixed-wing UAV to recognize diseases in pine
trees, such as pine wilt. High resolution drone images
combined with DL approaches also offer significant
advantages in accurately measuring forest ecosys-
tems. Zhang et al. [71] proposed a method for tree

segmentation and identification in forests based on
Recurrent Convolutional Neural Network (R-CNN).
Mangrove forests are critical to coastal ecosystems.
It helps protect against changes in water temperature
and salinity. Jiang et al. [72] use, firstly, an approach
based onMLwith the RF algorithm to select the spectral
features and vegetation texture variables. Then, they
implemented theRF and SVM algorithms to classify the
different mangrove species.
In the study presented by Sarkar and Kelley [73],
UAV and Deep Transfer Learning were utilized for
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FIGURE 6. Main UAV applications in the environment area.

environmental monitoring in horticultural research.
They focused on classifying invasive and native
plant species in the southern regions of the USA.
The MobileNetV2-Deep Convolutional Neural Net-
work (DCNN) model with data augmentation and
hyper-parameter optimization achieved a high accuracy
of 94%. Pinto et al. [74] proposed an exploratory
approach for Acacia dealbata classification from aerial
imagery using UAV-based RGB and multispectral
sensors. They trained four ML algorithms (KNN, RF,
AdaBoost, and Linear Kernel SVM (LSVM)) on differ-
ent datasets, with RF showing the best performance.
In the work conducted by La Salandra et al. [75],
an effective approach for automatic river features extrac-
tion was presented. They combined UAV imagery with
photogrammetric techniques and used Trainable Weka
Segmentation (TWS) for feature extraction, achieving
accuracy close to human interpretation. Mouta et al. [76]
proposed a novel approach for mapping the invasive
water-hyacinth (Eichhornia crassipes) in the Cávado
River, Portugal. They used UAV imagery synchronized
with Sentinel-2 data and classifier fusion techniques,
resulting in high accuracy for mapping invaded areas
throughout different seasons.

• Preservation
UAVs can provide great value in maritime operations
that require aerial surveillance, such as the detection of
objects on the water surface. In the study presented by
Arnegaard et al. [77], aerial surveillance was explored
for detection of marine debris. They evaluated different
CNN-based architectures, more specifically variations
of You Only Look Once (YOLO). Kraft et al. [78]
proposed a low-cost solution to locate discarded waste
in low-altitude images collected by UAVs during
autonomous patrol missions.
Hyper-spectral data collected by UAVs can help identify
features of water bodies, which can be used to monitor
water quality. Examples of this use can be seen in
the studies by Lu et al. [79], Zhang et al. [80] and
Sharma et al. [81], which applied ML techniques to
obtain water quality estimates based on hyper-spectral
data collected by UAVs.
In the study presented by Saad et al. [82], carbon
emissions after selective logging in Ulu Jelai, Malaysia,
were modeled. They employed remote sensing and
ML (SVM and Linear Regression (LR)) to accurately
quantify emissions, assisting in optimizing forest carbon
sequestration for climate change mitigation.

• Animals
UAVs can be used in biological research, such as
animal detection, for collecting information from hard-
to-reach areas, such as oceans, jungles, and remote
islands. Hong et al. [83] built models to detect wild
birds using Faster R-CNN, YOLO and other CNN-
based approaches. Kellenberger et al. [84], [85] and
Lee et al. [86] used CNN-based approaches to detect
terrestrial wildlife.
Poaching can be defined as the illegal capture of wild
animals for commercial purposes. It is a serious problem
that threatens the survival of animals of any species. One
possibility to combat this problem is the use of drones
to monitor protected forest areas. Paul et al. [87] aimed
to detect animal poaching in environmental preservation
areas using images collected by UAVs on patrol and the
YOLO method.

• Forest Fire
Forest fires are one of the main natural disasters
in the world, causing environmentals and economic
damage and even loss of life. Early detection and
prediction of fire spread can help reduce affected
areas and fight fires. Due to their high flexibility, low
cost and great capacity to cover an area, UAVs are
candidates to help solve this problem. Ghali et al. [88]
adopted and optimized DL methods, more specifically a
combination of EfficientNet-B5 and DenseNet-201, for
early detection of forest fires.
Another important issue is fire severity and compro-
mised area. Carvajal-Ramírez et al. [89] developed some
indices for estimating fire severity. They employed a
drone carrying a high-resolution multi-spectral sensor
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FIGURE 7. Main applications of UAVs in the Communications area.

that performed pre- and post-fire controlled flights
in a Mediterranean forest. Aiming at fighting fires,
Haksar and Schwager [90] proposed a strategy based on
Reinforcement Learning (RL) with a team of UAVs to
fight wildfires autonomously.
In the study presented by Xie and Huang [91],
a transfer learning and improved Faster RCNN-based
method achieved 93.7% accuracy for aerial forest fire
detection using UAV imagery, outperforming traditional
approaches. Namburu et al. [92] proposed the use
of X-MobileNet on a UAV for timely forest fire
classification and location sharing with state forest
departments. Shahid et al. [93] developed FFS-UNet,
a spatio-temporal architecture combining a temporal
vision transformer and UNet, achieving enhanced forest
fire segmentation performance in UAV-collected video
datasets.

2) COMMUNICATION
Figure 7 presents the main UAV applications in the Commu-
nications area.

• Wireless Communication Network
The use of UAVs as air base stations is a way to
assist in the infrastructure and coverage extension of

wireless networks. This application represents a flexible
and cost-effective approach that has great potential
to support new generations of wireless networks.
Chaalal et al. [94] proposed a framework for Three
Dimensional (3D) positioning of a swarm of UAVs that
operate as air base stations to extend the coverage of
Ground Base Stations (GBS).
Susarla et al. [95] presented a path planning for UAVs
based on connectivity restrictions. The goal of the study
was to use a UAV to learn a trajectory, starting from
a random location, to a destination within the GBS
coverage area, considering network connectivity. To do
this, they used Deep Q-Learning (DQN), wich is a DRL
method.
UAVs, due to their high mobility, can also be used
as mobile relays to assist in wireless communications.
Zhang et al. [96] considered drone-assisted data collec-
tion in wireless sensor networks using theAsynchronous
AdvantageActor Critic (A3C) algorithm.UAVnetworks
can also reinforce cellular networks when necessary,
redirecting traffic to available GBSs. Oliveira et al. [97]
used RF, Gradient Boosting (GB) and ANN algorithms
to predict overloaded traffic areas. Ozer et al. [98]
explored offloading computationally heavy DL tasks
from UAVs to a 5G edge server to improve battery
life and reduce resource requirements. However, they
also analyzed the negative effects of noise introduced
by the 5G wireless communication system on the DL
algorithms and proposed denoising solutions to mitigate
the impact. Wang and Zhang [99] proposed a novel
scheme using active Intelligent Reflecting Surfaces
(IRSs) to optimize energy consumption in UAV-
based Sixth Generation (6G) mobile wireless networks.
They employed multi-objective hierarchical DRL to
minimize both UAV and ground users’ energy con-
sumption by dynamically coordinating UAV trajectory
and Ground Users (GUs) scheduling strategies, as well
as optimizing IRSs phase shifts and amplification
factors.
Li and Aghvami [100] focused on the cellular-connected
UAV network, managing Inter-Cell Interferences (ICIs)
between UAVs and User Equipments (UEs). They
proposed a DRL-aided solution to jointly optimize
dynamic RB coordination and time-varying beamform-
ing design for UAVs’ wireless transmission quality
while protecting terrestrial UEs from interference.
Yu et al. [101] tackled the Fault-Tolerant Formation
Control (FTFC) problem for networked fixed-wing
UAVs. They developed a RL-based approach with
Actor-Critic Reinforcement Learning (ACRL) to learn
the unknown nonlinear terms and compensate for RL
errors, achieving finite-time convergent tracking of
leader UAV with predesigned offsets.
Park et al. [102] proposed the Quantum Multi-
Agent Actor-Critic Networks (QMACN) algorithm
for robust mobile access systems employing multiple
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UAVs. Leveraging quantum computing principles, their
approach aimed to boost the training and inference
capabilities of UAV systems, enhancing the overall
wireless service quality. Hu et al. [103] addressed
energy efficiency improvement in UAV-Base Station
(BS) access networks with renewable energy sources.
They employed ACRL with a Transfer Asynchronous
Advantage Actor-Critic (TA3C) algorithm, which facil-
itated knowledge transfer and enhanced the learning
process, reducing energy consumption of UAV-BSs.
Eskandari and Savkin [104] introduced a DRL-based
joint 3D navigation and phase shift control for mobile
Internet of Vehicles (IoV) assisted by Reconfig-
urable Intelligent Surface (RIS)-equipped UAVs. They
employed the RIS to enhance UAV-assisted communica-
tion in 5G and 6G networks, and intelligently automated
UAV navigation using DRL for efficient communication
in obstructed urban areas.

• Mobile Edge Computing
Users on wireless networks can generate large amount
of data that can be latency sensitive and computationally
intensive. Due to computational and energy limitations,
these users’ devices may not be able to process the
data in a timely manner. MEC is one of the options
to solve this problem. Specifically, user-generated
data can be transferred to MEC servers, which have
greater computing power, for processing. This process
is called computational offloading. Wang et al. [105]
presented a study on this topic, in which a UAV-assisted
computational offloading scheme in a MEC structure
is proposed. Li et al. [106] focused on the application
of UAVs as mobile edge servers providing compu-
tational offloading services to users of a wireless
network.
A UAV-assisted MEC structure was proposed by
Wang et al. [107], in which several UAVs with
different trajectories fly over the target area. This
structure aimed to optimize the geographic fairness
among the UEs, among the UAVs, and to optimize the
energy consumption of all the UEs. Due to relatively
small hardware and limited payload capacity, drones
have limitations in providing computing and energy
resources. Thus, instead of using all resources for each
task, Wang et al. [108] proposed a resource allocation
algorithm based on RL that allows drones to make task
allocation decisions taking into account their energy and
computational issues.
In the study presented by Liu et al. [109], they
proposed an UAV-assisted MEC network with multiple
movable UAVs and a digital twin-empowered GBS.
They formulated a resource scheduling problem as a
Markov Decision Process (MDP) with multiple types
of agents and employed DRL based on Multi-Agent
Proximal Policy Optimization (MAPPO) to minimize
energy consumption forMobile Users (MUs) and UAVs,
achieving efficient computation offloading.

Hoa et al. [110] proposed aUAV-assistedmulti-hop edge
computing system where a UEs can offload tasks to
multiple UAVs in a multi-hop fashion. They formulated
a stochastic optimization problem considering dynamics
and uncertainty and introduced a DRL algorithm to opti-
mize task size for offloading, minimizing cumulative
energy consumption and latency across nodes.

• Internet of Things
UAVs can be effectively used to perform data collec-
tion tasks in IoT networks. In the study of Khoda-
parast et al. [111], an IoT network assisted by several
UAVs is proposed. In this network, UAVs fly towards
terrestrial sensors and control the transmission power of
the sensors during the data collection stage. The main
objective of the study was to minimize the total energy
consumption of UAVs and sensors during data collection
missions. For this, the authors used the DQN and Deep
Deterministic Policy Gradient (DDPG) methods.
One of the challenges faced by UAVs is energy
consumption. Since drones are typically powered by
batteries, their energy capacity is limited, which makes
it difficult in scenarios where they are used as aerial base
stations in WCN. In order to minimize the total energy
consumption of a UAV-IoT system, Zhu et al. [112]
formulated a combinatorial optimization problem. For
this, the authors relied on DL and DRL approaches,
Deep Neural Networks (DNN) and DDPG. Another
study that addresses a drone-assisted IoT network
is presented by Yu et al. [113], in which the fly-
hover-communicate protocol [114] is deployed on a
rotary-wing drone responsible for making visits to IoT
devices on demand.
Li et al. [115] proposed a learning-based approach using
RL to optimize UAV flight trajectories for data col-
lection in IoT networks and minimize information age
under energy constraints. Hu et al. [116] presented the
Guided Search Deep Reinforcement Learning (GSDRL)
algorithm for UAVs to autonomously perform data
collection and forwarding tasks with different priorities.
Liang et al. [117] focused on multi-UAV-assisted mar-
itime IoT systems, optimizing UAV trajectories, mission
modes, transmit power, and association relationships to
minimize mission completion time for data collection
and offloading.

3) INFRASTRUCTURE
Figure 8 presents the main UAV applications in the Infras-
tructure area.

• Civil Construction
Civil infrastructure projects include building roads,
bridges, and other transportation infrastructure, as well
as providing clean water and sanitation for cities,
towns, and villages. These projects require periodic
inspection to ensure the safety of users using the
infrastructure. To help overcome the challenges and
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FIGURE 8. Main applications of UAVs in the Infrastructure area.

deficiencies associated with manual inspection of these
infrastructures, UAVs can be used.
Some examples of this application can be seen in the
studies by Silva and Lucena [118], who developed a
ML-based model to detect cracks on concrete surfaces;
Pan et al. [119], who made use of multi-spectral images
collected by UAVs to distinguish between normal and
damaged sidewalks using ML algorithms such as SVM,
ANN and RF; Bae et al. [120], who presented an
approach based on aerial images to inspect cracks and
deformations in buildings; and Yu et al. [121], who
proposed a DL-based model on the YOLOv4 method to
perform real-time detection of cracks in bridges.
Recognition of engineering vehicles in aerial images is
one of the significant tasks that can be assigned to UAVs.
They can serve as alerts for reducing accidents involving
those vehicles. Zheng et al. [122] proposed a Capsule
Networks-based [123] method to recognize engineering
vehicles in aerial images collected by UAVs. In order to
mitigate the low efficiency and high risks arising from
manual inspection of optical cables, Xian et al. [124]
proposed an engineering vehicle identification and
positioning method.
Another aspect of importance in this area is the mon-
itoring of work cycles of engineering vehicles. UAVs,
being flexible and mobile, stands out as a potential tool

to collect information. Wu et al. [125] used UAVs and
remote sensing to monitor earth-moving excavators at
construction sites where monitoring cameras are not
available for installation.
Gwon et al. [126] propose an image quality assess-
ment method using a CNN for UAV-based bridge
inspection considering various degradation factors.
Xing et al. [127] improve the YOLOv5 DL model
for UAV pavement crack detection, achieving real-time
pixel-level detection with higher accuracy and faster
speed. Tavasoli et al. [128] present an autonomous
indoor navigation and vision-based damage assessment
framework for low-cost nano aerial vehicles, achieving
accurate localization of damaged structural components.
Choi et al. [129] study the utilization and verification of
imaging technology in a smart bridge inspection system,
establishing a preliminary framework and applying it to
actual bridges.

• Electrical
Regular inspection of power grids is essential to ensure
both the efficiency and safety. This activity can be
considered a major challenge due to the extensive
geographical coverage of the grid. Wang et al. [130]
explored the automatic detection of transmission line
faults from images captured by drones. Their research
was divided into two parts, first collected a dataset
consisting of images of transmission lines that was
labeled manually. Then, they applied the DL, Faster
R-CNN, YOLOv4 and Fully Convolutional One-Stage
(FCOS) algorithms for transmission line fault detection.
Liu et al. [131], also focused on transmission line
fault detection, proposed a detection algorithm based
on RetinaNet. Yao et al. [132] were based on YOLOv4
for inspection of transmission lines with UAVs. In the
scenario of autonomous patrolling, Wu et al. [133]
used magnetic sensors on drones and the collected
magnetic field data were used to find the relative
position between the drone and the transmission lines.
Another component of the power grid that needs regular
inspection is the high-voltage insulator. Chen et al. [134]
proposed a modified Faster R-CNN model to improve
the precision of fault detection in insulators. Based on
the traditional Faster R-CNN detection framework, the
authors replaced VGGNet-16 with ResNet-50.
In the paper of Alexiou et al. [135] a visual guided nav-
igation method was proposed for UAVs during power
line inspections using DL-based image segmentation
to extract semantic masks of power lines and generate
velocity commands for navigation. Tang et al. [136]
present an Internet of Things-based cloud-edge com-
puting infrastructure for defect detection in photovoltaic
plants using UAVs with sensors and real-time detection
algorithms.
Kuo et al. [137] develop a system using UAVs with
thermal and RGB imaging for automatic detection,
classification, and localization of defects in large
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photovoltaic plants. Zou et al. [138] propose an
improved lightweight asymmetric CNN for surface
damage identification of wind turbine blades using
UAVs.

• Oil and Gas
An important application of UAVs in the Infrastructure
area is certainly the activemonitoring, which can be con-
sidered a key point to mitigate risks. Sonkar et al. [139]
presented an approach for modeling natural gas
pipeline leaks using ML algorithms, such as SVM
and ANN, and a drone with a gas sensor and LIDAR
sensors.

• Mining
Zhang et al. [140] propose a new method for identifying
surface cracks in coal mining areas using ML with
UAV images. The method achieves high precision crack
extraction with an overall accuracy of 88.99%.
Kou et al. [141] use UAV technology equipped with
an RGB camera to collect very high-resolution images
of a stone coal mining area and classify the images
using SVM, RF, and U-Net methods to detect Acid
Mine Drainage (AMD) distribution. The U-Net method
shows significantly better recognition accuracy for
AMD compared to traditional ML methods.
Yang et al. [142] conduct a case study using
drone-acquired RGB images for pit wall geological
mapping in surface mining operations. They use
unsupervised learning algorithms, including convo-
lutional autoencoders, to create cluster maps for
geological mapping. The results are promising for
simple geological settings, but further optimization is
needed for more complex geological conditions.

• Solar Panel
Sustainable practices are important goals for many
countries. Solar power generation is an example of
such practices and the maintenance of solar panels
is an essential task due to natural and mechanical
circumstances. Han et al. [143] proposed a DL approach
for fault detection in solar panels with YOLOv3-tiny
and Long Short-Term Memory (LSTM). For the task
of solar panel detection, Díaz et al. [144] compared
two methods: one based on classical techniques, such
as SVM, and another based on DL, with Mask R-CNN,
Fast R-CNN and YOLO, both with a common post-
processing step. They concluded that both methods are
effective.
Prakash and Vyas [145] use drone images and ML to
calculate rooftop solar energy potential. Through auto-
mated ML approaches, they identify suitable rooftops
for solar panel installation in a village setting. The
models created are compared with manually created
ground truth maps to assess their accuracy.

4) SAFETY AND RESCUE
Figure 9 shows the applications of UAVs in SAR.

FIGURE 9. Main applications of UAVs in the SAR area.

• Search and Rescue Operations
After a disaster, the first thing a Search and Rescue team
does is quickly locate victims in order to minimize the
number of lives lost. In these scenarios, UAVs can be
used to cover large affected and difficult-to-reach areas
to detect victims and assist in their rescue. Sambolek and
Ivasic-Kos [146] presented investigations in this area.
They compared the performance of DL detectors, such
as Faster R-CNN, YOLOv4, RetinaNet, and Cascade
R-CNN, on a benchmark called VisDrone and on a
custom dataset they created to simulate rescue scenes,
named Search and Rescue Image Dataset (SARD).
Notably, aerial videos hold promise for various applica-
tions. However, in a SAR operation, the task of correctly
identifying the points of interest, that is, points where
there are possibly victims, requires a high attention of
the individuals who are carrying out the aerial video
monitoring. Kashihara et al. [147] proposed a system to
provide a report which presents useful information, that
is, the amount of people at the scene, the elapsed time,
and the location of the victims. For this purpose, they
used a DL approach, YOLO.
The chance of survival of avalanche victims depends on
the time in which they are located and unearthed. With
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the advances in drone technology, especially cameras
and optical sensors, the location of these victims can be
accomplishedmore quickly and efficiently. A solution to
assist in such avalanche search operations was proposed
by Bejiga et al. [148], where UAVs equipped with
high-precision cameras would fly over the avalanche-hit
sites and, by using ML approaches, specifically CNN
and SVM, locate the buried victims.
Wang et al. [149] presents a study on visual navigation
and control of a cooperative Unmanned Surface Vehicle
(USV)-UAV system for marine search and rescue.
They develop a deep learning-based visual detection
architecture that enhances the accuracy and efficiency
of positional information extraction from UAV images.

• Disaster
A flood is a natural disaster that causes extensive loss
of property, life and income. It is the result of sudden
heavy rains causing severe overflowing of rivers and
lakes. It can be caused by natural disasters and by man,
through hurricanes and landslides. Munawar et al. [150]
employed drones in an automated system that identifies
flooded areas from aerial images. In a case study,
the authors used the Haar Cascade [151] and CNN
classifiers to detect landmarks, such as roads and
buildings, and also identify flooded areas. One of the
challenges that still persist in the use of UAVs in disaster
scenarios are adverse weather conditions that negatively
influence trajectories and data acquisition from the
environment.
A nuclear disaster is a very serious problem for a
country. Radioactive contamination can spread over
large areas if a malfunction occurs while the system is
in operation. This contamination can put both humans
and animals living nearby at risk - especially if they
eat contaminated food. An example is what happened
at the Chernobyl nuclear power plant in 1986, which
resulted in contamination of the surrounding territory.
Briechle et al. [152] presented a method to detect, using
an RF classifier, radioactive waste sites based on a set of
features generated from high-resolution remote sensing
data collected from drones.
Landslides are geological phenomena with destructive
and catastrophic consequences. Recent advances in the
field of geographic information allow for the registration
and inventory of landslides to be performed through
automated workflows using aerial platforms such as
UAVs. Karantanellis et al. [153] compared different
segmentation and classification approaches for landslide
mapping and presented an image analysis workflow
that incorporates ortho-photomosaics and digital surface
models. The KNN, Decision Tree (DT) and RF algo-
rithms were used to classification task.
Lee et al. [154] introduce WATT-EffNet, a lightweight
and accurate model for classifying aerial disaster
images using deep learning. The method outperforms

the baseline EfficientNet in terms of both accuracy
and computational efficiency, making it suitable for
resource-constrained UAVs in disaster management
scenarios.
Xie [155] explores the application of AI and DL
algorithms for target extraction in UAV remote sensing
images and compare the performance of Faster R-CNN
and YOLOv3 algorithms. Shi et al. [156] proposes
a UAV cluster-assisted task offloading model for
emergent disaster scenarios. By employing a DRL-
based algorithm, they optimize the energy efficiency of
UAVs and improve their performance in disaster rescue
missions.

• Surveillance and Patrol
One objective of autonomous surveillance systems is the
detection of anomalies, which alert to unusual situations
that may represent some danger. Bozcan and Kaya-
can [157] presented, using DNNs, an anomaly detection
system for surveillance of critical infrastructure (i.e.
airports, ports and warehouses) using UAVs.
One sector in which security is paramount is the
maritime, where the safe navigation of ships is of great
importance, especially in congested ports and lanes. The
focus of Sejersen et al. [158] was to help ships in their
navigation, mainly in ports. The authors used UAVs
and ML algorithms to estimate the distance between
an object of interest and potential obstacles. Zhao and
Li [159], aiming to improve the efficiency of sea surface
supervision, proposed a ship detection algorithm based
on aerial images using YOLO and R-CNN.
Another application of UAVs in the surveillance subarea
is crowd monitoring, which plays an important role in
ensuring security in public areas. Bisagno et al. [160]
presented a decentralized approach for reconfiguring a
network of cameras, where each camera dynamically
adapts its parameters and position based on UAVs and
DL. The purpose of this approach is to increase and
optimize the coverage of a scene where there is a crowd
of people.
In the paper of Kothandaraman et al. [161] a learn-
ing algorithm called Differentiable Frequency-based
Disentanglement for Aerial Video Action Recognition
(DifFAR) is presented for human activity recognition
in UAV videos. DifFAR simultaneously combines fre-
quency domain representations with data-driven neural
networks to model salient static and dynamic pixels in
the video, crucial for action recognition.

• Public Security and Terrorism
Gun violence is a big problem around the world. Gun
deaths are strongly present in most major cities. This
led Salla et al. [162] to develop an UAV piloting system
and bullet-stopping called EDNA, which is a drone
that features automated real-time analytics that help
teams make the right decisions in situations where gun
violence may occur.
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Video surveillance is an essential tool for keeping
people safe in public places. UAVs have advantages
in monitoring large areas and especially areas that are
difficult to access. In this context, Bouhlel et al. [163]
presented a DL based approach for identification of
suspicious persons using data collected by sensors
attached to a UAV.
Nguyen et al. [164] propose a novel real-time violence
detection system for drone surveillance in their paper.
They use DL techniques and achieve high accuracy with
fast processing speed, making it suitable for monitoring
systems that require rapid deployment and object
tracking. The paper by Wagner et al. [165] introduces
a data-driven ML algorithm for small target detection in
a radar surveillance system. The approach shows better
detection rates with low false alarm rates compared to
traditional background subtraction methods, especially
when applied to real data from drones and persons.
Huang et al. [166] present a railway intrusion detection
method for UAV surveillance scenes. Their proposed
network employs a Fused-ConvLSTM module, atten-
tion modules, and lightweight strategies to accurately
detect railway intrusion events in aerial videos without
pre-setting the intruding object type. In the paper
by Othman and Aydin [167], a novel lightweight
CNN model called HarNet is developed for human
action recognition in UAV-captured videos. The model
achieves a high success rate of 96.15% in classification
on the UCF-ARG dataset, outperforming other DL
models such as MobileNet, Xception, and VGG-19.

5) TRANSPORT
Figure 10 contains the main UAV applications in the
Transport area.

• Traffic
With the increasing traffic flow on highways, there is a
great need for traffic monitoring. The use of drones for
traffic monitoring has many advantages, such as a wider
field of view, greater mobility capability, and no impact
on the detected traffic. Akshatha et al. [168] proposed
a car detection system in aerial images collected from
UAVs based on DL techniques, specifically, YOLOv3
and FCOS. Benjdira et al. [169] investigated the perfor-
mance of two CNN approaches, namely, Faster R-CNN
and YOLOv3; Ammour et al. [170] presented an auto-
matic solution for vehicle detection and counting using
CNN and SVM. Based on YOLOv3, Luo et al. [171]
focused on developing a fast method for automatic
vehicle detection in UAV images. Another important
issue in traffic is pedestrian detection. Oliveira and
Wehrmeister [172] evaluated different implementations
of pattern recognition systems whose objective was
the automatic detection of pedestrians in aerial images
captured with a multirotor UAV. The main objective
was to evaluate the viability and suitability of differ-
ent implementations running on low-cost computing

FIGURE 10. Main UAV applications in the transport area.

platforms, for example, single board computers like
Raspberry Pi or ordinary laptops without Graphics
Processing Unit (GPU).
Population growth has caused an increase in road usage,
which in turn results in increased traffic congestion.
In this context, Utomo et al. [173] proposed a vehicle
detection and road density classification system using
video streaming with fixed-wing UAVs. Jian et al. [174]
examined how UAVs combined with CNNs could be
used to recognize traffic congestion.
In the study of Bala and Verma [175] a self-sufficient
drone tracking and identification system is proposed
using a stationary beam profile and a movable tur-
ret camera. The combined multi-frame ML detection
approach allows for cost-effective identification of
small-sized aerial invaders in both the main picture
plane and the magnified image plane. Li et al. [176]
introduce a Cognitive UAV (CUAV) assisted network
for offloading traffic under uncertain spectrum envi-
ronments via DRL. They jointly design the trajectory,
time allocation, band selection, and transmission power
control to maximize energy efficiency and propose a
model-free DRL solution to achieve the best decision
autonomously.
Alharbi et al. [177] present a DL architecture for UAV
traffic-density prediction, specifically for Unmanned
Aircraft Traffic Management (UTM). Their approach
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utilizes a one-dimensional CNN and encoder-decoder
LSTM framework with an adapted complexity metric
to account for dynamic flow structures and airspace
density in UTM operations. Naranjo et al. [178] develop
an object detection-based system for traffic signs on
drone-captured images to improve road element inven-
tories in civil infrastructures. They use DL methods,
specifically Faster R-CNN, to accurately detect and
geo-reference different traffic signs from RGB images
captured by a drone’s onboard camera.

• Highways, Runways and Railroads
The condition of road pavement is an important factor
in reducing road accidents. Road monitoring, often done
through visual and instrumental inspections, must occur
on a recurring basis to mitigate risks. Garilli et al. [179]
analyzed two supervised classification approaches,
Semi-Automatic Classification Plugin (SCP) and a
CNN, based on images collected by UAVs, to detect
the pavement pattern. Papadopoulos and Gonzalez [180]
presented a detection method to locate road debris using
a UAV flying at low altitude.
Railway track sleepers are the components responsible
for maintaining the distance between the rails, as well
as holding them together and serving as support.
Frequent monitoring of the ties ensures better condition
of the railroad, which in turn ensures the safety of
cargo and passengers. Singh et al. [181] explored a
YOLOv4-based object detection model for railroad ties
detection in low altitude images captured by UAVs.
Mammeri et al. [182] investigated the effectiveness of a
fully convolutional encoder-decoder type segmentation
network, U-Net, for the task of segmenting railroad track
regions.

• Aeronautics
Inspection of aircraft surfaces is critical for safe flight.
In order to improve the efficiency of inspections,
He et al. [183] designed a UAV system to collect aircraft
surface images and used DL based object detection
algorithms, RetinaNet and R-CNN, for aircraft surface
inspection. Another critical issue for aircraft flight
safety is ground deicing operations. In this context,
Musci et al. [184] proposed a project called Spectral
Evidence of Ice (SEI), whose goal was to provide tools
for identifying ice on aircraft surfaces to ensure faster
deicing fluid application operation.

6) HEALTHCARE
Figure 11 presents the main applications of UAVs in
Healthcare.

• Pandemic
Coronavirus 2019 (COVID-19) is an infectious disease
caused by the SARS-CoV-2 virus that can spread by
the mouth or nose of an infected person. Since it is
a disease with a high degree of spread, rapid testing
is important to support the assessment of the immune

FIGURE 11. Main applications of UAVs in Healthcare.

status of patients with symptoms and to prevent further
contagion. Naren et al. [185] presented a prototype that
integrates DNNs and UAVs to assist in the provision of
rapid tests and medical assistance. Barnawi et al. [186]
proposed a scheme based on IoT and UAVs to collect
data from thermal sensors. The captured thermal images
were used to determine people with high potential to be
contaminated with COVID-19.
UAVs can also be used to monitor public events to
ensure compliance with health policy and trigger alerts
when they notice anomalies. Masmoudi et al. [187]
presented a framework formonitoring outdoor activities.
They proposed a three-step approach: (1) analyzing the
images collected by the UAVs using ML to locate and
detect individuals; (2) mapping coordinates to assess
the distances between individuals and group them; and
(3) providing a trajectory for the UAV considering
energy efficiency to enable inspection of more areas for
health policy violations.

• Prevention
Mosquitos are one of the main vectors of virus transmis-
sion in developing and underdeveloped countries. UAVs
can be used as a technological tool by health surveillance
teams to combat mosquito breeding grounds where
vector-borne diseases such as dengue, zika, chikun-
gunya or malaria are endemic. Britez et al. [188]
presented the use of a UAV for image collection in
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an urban environment and a CNN (more specifically,
Single-Shot Detector (SSD) Mobile Network V2) for
tire image detection. Bravo et al. [189] also proposed
computational approaches for detecting objects and
scenarios suspected to be potential mosquito breeding
grounds from aerial images acquired by drones.

• People Assistance
The Seeing Eye Drone by Grewe and Stevenson [190] is
a drone whose goal is to assist people with low vision in
perceiving the environment by performing exploration
and obstacle detection. Iuga et al. [191] presented an
app that uses a UAV for monitoring and detecting falls
of people at risk. In it, the position and state of the
person are determined with computer vision based on
DL techniques.
For monitoring people with specific needs in their own
homes, Martínez et al. [192] presented a system capable
of detecting the current emotional state of the person
and triggering assistance if necessary. They presented a
virtual reality platform where an avatar (i.e. the virtual
representation of the individual) is monitored by an
autonomous rotary-wing UAV.

• Telesurgery
UAVs can provide flexible and mobile communication
networks, which can be considered a great potential for
telesurgery or robotic surgery applications. However,
some challenges are still present in these systems, such
as security and transparency. Motivated by these chal-
lenges, Gupta et al. [193] proposed a telesurgery system
called Blockchain and AI-empowered Drone-assisted
Telesurgery System (BATS), which is a self-managed,
secure, transparent and reliable blockchain and ML
enabled system with 6G UAV-assisted networks.

• Delivery
The delivery of small loads via UAVs can be used for
social distancing maintenance, one of the preventive
actions against the dissemination of transmissible dis-
ease, such as COVID-19. Cheema et al. [194] explored
the delivery of medical products via drones. They
used SVM as a ML approach to detect intrusions and
blockchain-based authentication aiming to increase the
security of the proposed system.

7) SMART CITIES
Figure 12 presents the main UAV applications in the Smart
Cities area.

• Delivery
Delivery increased in recent years, especially with
the COVID-19 pandemic, in which face-to-face social
interaction had to be reduced. UAVs, as aerial vehicles,
can deliver small cargo, such as food, medicine and
other supplies. For tasks where the delivery time
is short, UAVs need to have the ability to quickly
navigate between environments and keep the cargo
intact. Faust et al. [195] presented a RL approach for

FIGURE 12. Main UAV applications in the Smart Cities area.

air cargo delivery tasks in environments with static
obstacles. While the use of UAVs for deliveries can
help the increase of the speed and accuracy of this
activity, UAVs still suffer from capacity scaling issues
and limitations of their loads.
Yadav and Narasimhamurthy [196], on the other hand,
addressed the problem of computing an optimal delivery
schedule in a drone delivery system. The problem
consisted of a set of orders, composed of a list of
items, with the quantity to be delivered to customers
with known locations. Bacanli et al. [197] generated a
synthetic dataset for the scenario where drones are used
to send packages between two neighborhoods.
In the paper of Luo et al. [198], a framework called
KeepEdge is presented for visual information-assisted
positioning in UAV delivery services. They integrate
DNN into an edge computing framework to enable edge
intelligence and use knowledge distillation to produce a
lightweight model with high accuracy for onboard UAV
positioning.

• Data gathering
Data produced by aerial surveillance systems, such
as UAV networks, need to be transferred to ground
stations so that reliable analysis can be performed.
Based on this need, Lee et al. [199] proposed
a Deep Learning based Optimal Auction (DLA)
algorithm to collect aerial surveillance data considering
the high mobility and flexibility existing in UAV
networks.
Focusing on the UAV assisted Mobile Crowd Sensing
(MCS) scenario, Gao et al. [200] proposed a task
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allocation method called UAV-assisted Multi-task Allo-
cation (UMA). The goal was to jointly optimize sensing
coverage and data quality.
Fan et al. [201] propose an RIS-Assisted UAV system
for fresh data collection in 3D urban environments. They
utilize a RIS to mitigate signal propagation impairments
caused by building blockages and minimize the Age
of Information (AoI) of Internet-of-Things Devices
(IoTDs) collected by the UAV using a DRL approach
called ‘‘SAC-AO-RIS.’’
In the study byMondal et al. [202], the energy efficiency
maximization problem is addressed for UAV-assisted
wireless communications. DRL based on a DDPG
algorithm is used to optimize user associations, transmit
power allocations, and UAV trajectories, achieving a
15.63% improvement in total energy efficiency com-
pared to the benchmark approach.

• Monitoring
Closed Circuit Television (CCTV) is an image capture
and retention system consisting of digital or analog
cameras that enables video surveillance. Drones can
be considered as one of the key technologies to
increase the capacity of these systems in a smart city
environment. Yun et al. [203] analyzed a scenario in
which UAVs, with CCTV cameras attached, flew over
a city area collecting images to assist surveillance
services. Gevaert et al. [204] described a framework that
takes advantage of high-resolution images and UAVs to
detect changes in unplanned settlements.

• Cleaning
Graffiti makes up the urban landscape of contemporary
cities and can be considered as a pervasive problem in
many cities. Wang et al. [205] surveyed a ML approach,
with SSD and MobileNet, for graffiti detection and
removal with UAVs. Nahar et al. [206] presented
an intelligent graffiti cleaning system based on edge
detection and ML algorithms to perform real-time
detection of graffiti in images.
Masuduzzaman et al. [207] propose an automated and
secure garbage management scheme using Unmanned
any Vehicle (UxV) integrated with DL models for
garbage detection. They develop a lightweight DL
model using MISH and rectified linear unit activation
functions for garbage detection. Additionally, they
incorporate multiaccess edge computing for improved
Quality of Service (QoS) and a blockchain-based
technique for secure hazardous garbage tracking.

• Lighting
The beach is one of the most visited tourist attractions.
Most beaches are less crowded at night due to lack of
lighting. With the help of DL and wireless communi-
cation, UAVs can be used to overcome this problem.
Shirbhate and Das [208] present a proposal that uses
CNNs for obstacle detection with OpenCV, a library for
developing applications in the field of computer vision.
Thus, UAVs can be used for both static lighting, where

FIGURE 13. Main UAV applications in the Filming area.

they remain stationary, and dynamic lighting, where they
can move by dodging obstacles.

8) FILMING
Figure 13 presents the main UAV applications in the Filming
area.

• Exploration
Geological mapping is a type of investigation whose
purpose is to identify rocks, deformations, faults,
fractures, and other information about the surface of
the explored area. Geological mapping is an impor-
tant support for exploration missions. In this context,
Sang et al. [209] proposed a method for high-resolution
geological mapping using UAVs and DL algorithms.
AlOwais et al. [210] presented an automated meteorite
detection system that employs an autonomous UAV
programmed to recognize and locate meteorites using
CNN.

• Photogrammetry
Photogrammetry can be defined as the science of
extracting from photographs the shape, features, dimen-
sions, and position of objects contained therein. Pho-
togrammetric technologies in conjunction with ML
techniques can enable a better understanding of environ-
mental and atropic issues. Meng et al. [211] presented
an object-oriented classification ensemble algorithm to
extract information from aerial imagery, such as height
and texture, to improve landscape classification and
terrain estimation.
Zefri et al. [212] present a two-layer solution
for inspecting large-scale photovoltaic arrays using
aerial LWIR multiview photogrammetry and DL.
Layer 1 generates a georeferenced orthomosaic, and
Layer 2 performs tile-based deep semantic segmentation
to detect overheated regions on PV arrays. The
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FPN-DenseNet121 model achieves the best perfor-
mance with a mean mIoU of 93.44% and F1-score of
96.39%.
Fiorillo et al. [57] propose a fast UAV photogrammetry-
based methodology to quantify roof damage in historic
buildings after a light seismic event. The automated
mapping using supervised machine learning image clas-
sification and a combination of 3D survey techniques
provides comprehensive documentation and quantitative
data on historical buildings.

• Journalism
In the recent digital age, information and communica-
tion technologies are rapidly changing the media and
journalism industry. The media industry can use many
techniques to capture news or events, produce breaking
news clips and photos. Thus, the term aerojournalism
was born, which refers to the ability to create and
deliver media content in a timely and efficient manner
through aerial devices. Almalki et al. [213] integrated
a drone with ML to enable aerojournalism by training a
neural network using the Radial Basis FunctionNetwork
(RBFN) approach.

• Sports
An important problem in ML is training good quality
models using small datasets. One approach that can be
used in such cases is few-shot image learning, whose
goal is to use a small amount of training examples
to train a model capable of recognizing a certain
number of classes. In this context, Patsiouras et al. [214]
investigated the behavior of Few-Shot Learning (FSL)
methods in the cinematic scenario for filming sports
events with UAVs. More specifically, they applied FSL
methods to recognize the leader of a cycling race using
only a few images of him.

C. UAV-BASED APPLICATIONS
To answer RQ3, this section presents how UAVs are
incorporated into systems for real-world applications. Con-
textualized figures are provided for each of the seven
areas: Environment, Communication, Infrastructure, SAR,
Transport, Smart Cities, Healthcare and Filming. Each figure
presents a list of drone’s primary function within that specific
context.

Figure 14 presents examples of how UAVs are used within
environment applications.

Functions of UAVs in applications:

• Context 1: A human-operated drone is utilized to fly
over forested areas, capturing images that serve multiple
purposes. The captured images aid in fire detection,
helping firefighters to identify potential fire outbreaks
promptly.

• Context 2: UAVs are utilized for forest mapping,
providing valuable data that aids in the management and
control of forest ecosystems.

FIGURE 14. UAVs incorporated into systems of environment applications.

• Context 3: Monitoring the status of large plantations can
be efficiently conducted using UAVs, which can fly over
vast areas swiftly and without causing any damage.

• Context 4: A remotely controlled drone is deployed
for sea missions, conducting searches and counting
of marine debris. These operations are efficiently
performed usingML algorithms, which enable the drone
to autonomously identify and quantify the presence of
marine debris in the sea.

• Context 5: The UAV is remotely controlled to fly over
target agricultural areas. Equipped with high-resolution
sensors, it captures detailed images, which are processed
using DL algorithms. These algorithms analyze the
images to estimate crop yield, measure the size of plants
or fruits, and perform accurate counting.

• Context 6: The UAV conducts sea surveillance to
detect potential threats to bathers, specifically focusing
on sharks [215]. Upon identifying a potential threat,
it promptly alerts the bathers to ensure their safety.

Figure 15 presents examples of how UAVs are used within
communication applications.
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FIGURE 15. UAVs incorporated into systems of communication
applications.

Functions of UAVs in applications:

• Context 1: In the context of this application, the UAV
functions as a mobile access point, acting as a base
station to provide wireless network connectivity in
remote areas or emergency situations. Its ability to
fly and be easily relocated allows for more flexible
and adaptable coverage, particularly in regions where
terrestrial infrastructure is limited or non-existent.

• Context 2: The UAV is equipped with cellular commu-
nication technology and acts as an airborne base station,
providing network connectivity to mobile devices such
as smartphones and tablets in a specific geographic area.
Its strategic flight at selected altitudes and locations
expands network coverage and improves service quality
in hard-to-reach or dynamically changing areas. The
UAVs main function in this application is to optimize
the energy efficiency of cellular access points.

• Context 3: UAV serves as an aerial access point,
facilitating communication between mobile devices
and the Internet, particularly in environments with

terrestrial obstacles or limited communication infras-
tructure. Its main function in this application is to
enhance the reliability of aerial mobile communications.
Using prediction models of Received Signal Reference
Power (RSRP) and Reference Signal Received Quality
(RSRQ), the UAV can anticipate and optimize signal
conditions for connected devices, ensuring a stable and
high-quality connection.

• Context 4: The UAV acts as a flying access
point equipped with mmWave technology, providing
high-frequency communication to support high data
transfer rates. Using computer vision, the UAV detects
and tracks moving ground vehicles, allowing for the
adjustment of mmWave beamforming to direct the
communication signal straight to the vehicles.

Figure 16 presents examples of how UAVs are used within
infrastructure applications.

Functions of UAVs in applications:

• Context 1: The main function of the UAV in this
application is to provide an aerial platform for inspecting
power transmission lines. Flying close to the structures,
the UAV captures images that are analyzed by the
enhanced DL models, accurately detecting faults in the
insulators, such as cracks or wear. This application
is valuable for preventive maintenance and energy
efficiency.

• Context 2: The main function of the UAV in this
application is to provide a mobile platform for efficient
and accurate detection of dense construction vehicles.
By flying over urban areas, the UAV collects visual
data that are processed by DL algorithms, enabling the
identification of dense construction vehicles even in
complex and densely populated environments.

• Context 3: The function of the UAV in this application
is to provide an efficient aerial platform for the early
detection of faults in solar panels. Flying over solar
installations, the UAV can conduct comprehensive and
fast inspections, enabling maintenance teams to identify
and address issues such as hot spots, micro-cracks and
oxidation.

• Context 4: The UAV serves as an aerial platform capable
of conducting detailed inspections on different types of
infrastructure. It flies over the structures and collects
visual data to be processed by DL algorithms.

• Context 5: The UAV is equipped with cameras and
sensors that capture high-resolution images of the
transmission lines and surrounding areas. Through the
use of deep learning algorithms, the UAV can analyze
the images and identify patterns that indicate the
presence of bird nests on the transmission line structures.

• Context 6: The UAV provides a privileged aerial view
and secure access to hard-to-reach areas for humans.
This aerial inspection enables the early detection of
damages and corrosion, allowing infrastructure authori-
ties and maintenance teams to take corrective measures
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FIGURE 16. UAVs incorporated into systems of Infrastructure applications.

before problems worsen and compromise the safety and
functionality of the structures.

Figure 17 presents examples of how UAVs are used within
SAR applications.

Functions of UAVs in applications:

• Context 1: In this application, the refined analysis of
landslide susceptibility is carried out based on Interfer-
ometric Synthetic Aperture Radar (InSAR) technology
and data from multiple UAV sources. The UAVs act
as aerial platforms to collect detailed images and
geospatial data from different perspectives, enabling a
comprehensive view of the areas of interest.

• Context 2: The UAV, aided by the DL method, can
fly over urban areas and capture images that will be
analyzed to warn of possible anomalous situations,
such as suspicious activity, strange objects or unusual
behavior.

• Context 3: The drones perform quick and detailed
assessments of areas affected by climate change, using
AI to identify patterns and issues related to climate
change. This application is extremely valuable in climate

FIGURE 17. UAVs incorporated into systems of SAR applications.

crisis situations, such as natural disasters, droughts,
floods, and forest fires.

• Context 4: The main function of the UAV in this
application is to provide a privileged aerial view,
enabling early and rapid detection of individuals in
emergency or disaster situations. Through the use of AI
techniques, such as DL, the UAV processes the collected
images and identifies patterns that may indicate the
presence of human beings.

Figure 18 presents examples of how UAVs are used within
Transport applications.

Functions of UAVs in applications:
• Context 1: In this application, the function of the UAV is
to provide an aerial platform for capturing images at low
altitudes, enabling precise segmentation of instances of
railway track sleepers.

• Context 2: The UAV flies over the area of interest and
captures high-resolution images to enable the pedestrian
detection model to locate potential pedestrians. The
images are later stored and transmitted for processing on
the ground, where the model is executed. Compression
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FIGURE 18. UAVs incorporated into systems of Transport applications.

technology is used to reduce the size of image data,
facilitating efficient storage and transmission.

• Context 3: The UAV captures images that are processed
by a CNN specialized in detecting vehicles. As the
UAV flies, the images are transmitted in real-time to
a computer on the ground, where the CNN analyzes
and identifies the presence of vehicles, marking their
positions in the images.

• Context 4: In this application, the UAV has the function
of collecting hyperspectral and multispectral images of
the surface of aircraft. The images are processed using
ML techniques to detect the presence of ice on the
aircraft’s surface.

Figure 19 presents examples of how UAVs are used within
Smart Cities applications.

Functions of UAVs in applications:

• Context 1: With the assistance of the UAV, it is possible
to obtain a privileged and comprehensive aerial view
of the area, allowing for more efficient and accurate
detection of moving crowds. Multitask allocation refers
to the UAV’s ability to perform multiple detection

FIGURE 19. UAVs incorporated into systems of Smart Cities applications.

tasks simultaneously, enabling broader coverage and a
rapid response to events or situations involving mobile
crowds.

• Context 2: In this application, the UAV acts as an
autonomous system to detect and remove graffiti in
hard-to-reach areas. The UAV flies over the affected
surfaces, such as walls and facades, and captures images
of these areas.

• Context 3: In this application, the UAV is used in
conjunction with an edge intelligence framework to
perform visual-assisted positioning in item delivery. The
UAV is responsible for flying to the delivery locations,
while the edge intelligence framework provides support
for real-time data processing and analysis.

Figure 20 presents examples of how UAVs are used within
Healthcare applications.

Functions of UAVs in applications:
• Context 1: In this application, the function of the UAV is
to act as ameans of communication and transportation to
enable remote-assisted tele-surgery. The UAV is used to
transmit data, such as images and medical information,

VOLUME 11, 2023 117603



K. Teixeira et al.: Survey on Applications of Unmanned Aerial Vehicles Using Machine Learning

FIGURE 20. UAVs incorporated into systems of Healthcare applications.

between the medical team and the patient during the
surgical procedure.

• Context 2: In this application, the function of the UAV
is to provide an aerial platform for acquiring aerial
thermal images. The UAV is used to fly over areas
and collect thermal images of people and environments.
These images are subsequently processed by an IoT and
AI based system to perform COVID-19 screening.

• Context 3: The UAV flies over crowded areas and
collects images to detect and count crowds of people.
Through the use of DL algorithms, the UAV is capable
of recognizing and distinguishing people at different
distances, enabling accurate crowd detection in various
scenarios, such as public events, protests, or emergency
situations.

• Context 4: In this application, the function of the UAV
is to perform the secure delivery of medical supplies.
The UAV is used to transport medicines, medical
equipment, and other essential items quickly and
efficiently to hard-to-reach areas or during emergency
situations.

FIGURE 21. UAVs incorporated into systems of Filming applications.

• Context 5: The UAV flies over rural areas and collects
health data, such as thermal images and vital signs of
people. These data are transmitted to a medical center
where they are analyzed by the DNN-based system
to identify potential cases of Covid-19. This approach
allows for fast and remote screening in hard-to-reach
areas, contributing to early detection and control of the
virus spread in rural communities.

• Context 6: In this application, the function of the UAV
is to act as an assistant to visually impaired individuals
with mobility. The UAV is equipped with vision-based
technology and DL, enabling it to detect obstacles and
provide real-time information to help visually impaired
individuals navigate safely in outdoor environments.

Figure 21 presents examples of how UAVs are used within
Filming applications.

Functions of UAVs in applications:
• Context 1: In this application, few-shot image recog-
nition is used to enhance sports cinematography per-
formed by UAVs. The system can identify and track
athletes andmoving objects, enablingmore dynamic and
immersive cinematography during sports events.

• Context 2: In this application, the use of UAV in
conjunction with AI aims to empower smart journalism
through the optimization of an information dissemina-
tion model. The UAV is deployed to gather data from
hard-to-reach or journalistically significant locations.
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With the aid of AI, this data is processed and analyzed to
provide relevant and accurate information to journalists,
enabling more comprehensive and up-to-date news
coverage. This combination of technologies enhances
the capacity for news production, offering the public
more comprehensive and contextualized information.

• Context 3: In this application, the use of UAVs in con-
junction with ML systems aims to perform bathymetric
detection in river environments. The UAVs fly over the
river areas and collect remote sensing data, such as
images and depth data of the water bodies.

• Context 4: In this application, UAVs are used in
conjunction with DL to carry out meteorite hunting.
The UAVs fly over specific areas and capture detailed
images, which are analyzed byDL algorithms to identify
potential meteorites. This approach enables a more
efficient and accurate search for meteorites in remote
and hard-to-reach areas.

D. DATASETS OVERVIEW
To answer RQ4, a search was carried out among the selected
studies for dataset used and available. For some areas and
applications addressed in this paper, no avaliable datasets was
observed in our research. The most used datasets for ML
applications in Environment, Communication, Infrastructure,
SAR, Transport and Helthcare are presented in Table 3.

E. MACHINE LEARNING TECHNIQUES OVERVIEW
To answer RQ5, Figure 22 presents the five most com-
monly used ML techniques in the selected studies. Other
applications have used CNN-based techniques, but the
authors have not provided information on the specific
approach used, and for this reason they are not shown
in 22. In general, CNN-based ML techniques are the most
widely used in the aforementioned scenario. Some of these
CNN-based applications are: Classification of Agricultural
Crops [276], Classification of Constructions [277], [278],
Tree Count [279], Trees Detection [280], [281], [282],
[283], Victim Detection [284], [285], [286], [287], Cattle
Detection [288], [289], Plant Disease Detection [290], [291],
[292], Fault Detection [293], [294], [295], [296], Weed
Detection [297], [298], [299], Bridge Inspection [300], [301],
[302], [303], [304], Maturity Estimate of Plantations [305],
Vegetation Coverage Mapping [306], Vegetation Cover
Monitoring [307], Electrical Insulator Monitoring [308] and
Trajectory Planning [309].

1) YOU ONLY LOOK ONCE (YOLO)
YOLO is a single pass method that uses a CNN as
a feature extractor. Instead of selecting the interesting
part of an image, it predicts classes and bounding boxes
for the entire image in just one run of the algorithm.
Due to this feature, YOLO is able to achieve a higher
detection speed than techniques such as R-CNN or Faster
R-CNN [310]. As shown in Figure 22, Classification of

Maturity of Plantations [311], Fruit Count [312], [313],
Tree Counting [279], Land Vehicle Count [314], Aquatic
Animal Detection [215], Garbage Detection [315], [316],
[317], Plant Detection [318], [319], [320], Plant Disease
Detection [321], Vehicle Detection [322], [323], Victim
Detection [253], Yield Estimate [324], Inspection of Trans-
mission Lines [325], Traffic Monitoring [326], Recognition
Electrical Equipment Recognition [327] and Engineering
Vehicle Recognition [328] are some of the applications
related to the Detection, Recognition or Counting tasks.

2) FASTER R-CNN
Faster R-CNN is one of the methods that can be used for
object detection. It consists of two components: a fully
convolutional Region Proposal Network (RPN) to propose
candidate regions, followed by a Fast R-CNN classifier [329].
Some applications of Faster R-CNN, are shown in Table 22:
Classification of Maturity of Plantations [330], Bird Count-
ing [331], Plant Count [63], Plant Detection [332], [333],
Victim Detection [334], Plant Disease Detection [335],
[336], [337], Fire Detection [91], Weed Detection [337],
Marine Debris Detection [316], Vehicle Detection [169],
Landslide Detection [338], Estimated Amount of Woody
Debris [339], Road Traffic Monitoring [340], Estimated
Number of Trees [341] and Person Re-identification [342].

3) SUPPORT VECTOR MACHINE (SVM)
SVM was developed based on the idea of a hyperplane
that best separates two classes, dot-product convolution
operations to handle non-linear problems, and the notion of
soft margins to find the hyperplane with the fewest possible
errors in the training set. The data points of the classes
nearest to the hyperplane are called support vectors [343].
Some applications related to this technique can be seen
in Table 22, such as: Crack Detection [140], [344], Weed
Detection [345], Monitoring of Plantations [346], [347],
[348], Pest Monitoring [349], [350], Vegetation Classifica-
tion [351], [352], [353], Water Quality Classification [354],
Plantation Yield Estimation [355], [356], [357], [358] and
Estimation of Chlorophyll Content [359], [360], [361].
Detection, Monitoring, Classification and Estimate are the
main tasks related to this technique.

4) RANDOM FOREST (RF)
RF is one of the DT based ML techniques. It uses an
ensemble learning strategy called bagging, which allows each
DT to be able to handle different random samples of the
input data, resulting in a set of distinct trees. Furthermore,
RF is able to achieve better generalization of the model
by compensating the errors of the different elements of
the forest [362]. Table 22 shows applications found in the
selected studies for RF technique. Fruit Detection [363],
Garbage Detection [364], Plant Diseases Detection [365],
[366], Plant Detection [367], [368], [369], Tree Trunk
Detection [370], Monitoring of Plantations [371], [372],
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TABLE 3. Datasets overview in Environment, Communication, Infrastructure, SAR, Transport and Helthcare areas.

Trees Classification [373], [374], [375], Geographic Classifi-
cation [376], Plantation Yield Estimation [377], [378], [379],

[380] and Estimation of Foliar Water Indicators [381] are
some of these applications.
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FIGURE 22. Machine Learning techniques in the scenario of UAV applications.

5) K-NEAREST NEIGHBORS (KNN)
The KNN algorithm is a supervised ML algorithm used for
classification and regression tasks. In classification, the KNN
determines the class of a new example based on the classes of
the ‘‘k’’ nearest examples to it in a feature space. The value of
‘‘k’’ is a hyperparameter defined by the user. The algorithm
calculates the distances between the new example and the
known examples in the training set, selects the ‘‘k’’ closest
neighbors, and then assigns the most common class among
these neighbors to the new example [382]. Some applications
related to KNN can be seen in Table 22, such as: Vegetation
Classification [375], [383], Plant Count [384], Detection of
Disease in Plants [385], Detection of Invasive Plants [386],

Coastal Trash Detection [364], Estimation of Chlorophyll
Content [387], [388], Plantation Yield Estimate [378],
Monitoring of Invasive Plants [389].

F. CHALLENGES AND IMPROVEMENTS
To answer RQ6, this section presents the main challenges to
be overcome and improvements to be achieved in the use of
UAVs for real-world applications.

• Regulation
The use of UAVs in agriculture crops, in pandemics
scenarios or even on farms or for communication
purposes, in many countries, is limited by too few or
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too many government regulatory policies on UAVs.
Because regulations on UAVs are continuously created
and updated, these aspects must be considered [33].

• Security
Vulnerabilities in the operation of drones, such as
GPS jamming and hacking, make them attractive for
malicious users to have the possibility to carry out
cyber-terrorism and other illegal activities, which is
worrying when dealing with systems directly linked
to health, for example. Despite the promising applica-
tions of UAVs in wireless networks, there are several
concerns regarding public safety, crash prevention, data
protection, and especially privacy, due to the possibility
of attaching a camera or information-capturing device
to the UAV, which can occasionally violate people’s
privacy [115], [390], [391], [392].

• Energy Restrictions
UAVs face several battery life restrictions, which inhibit,
for example, their ability to cover large distances, make
multiple deliveries of medicines or vaccines, and serve
as a mobile base station for a long time [194], [393],
[394].

• Autonomous Navigation
One of the main uses of UAVs in Smart Cities is
for data collection and surveillance. In many cases,
an autonomous control capability of the drone is needed
so that it can maneuver in and out of enclosed locations
and avoid obstacles [395], [396], [397], [398], [399].

• Real-time Problems
For road trafficmanagement or parking lot management,
UAVs must detect and/or classify vehicles in real-time
in usually disordered environments. This becomes a
complex task as UAV platforms have limited hardware
resources [400], [401], [402].

• Datasets
One challenge for object detection, classification or
segmentation in aerial imagery is the availability of
pre-classified datasets. There are few labeled pub-
licly available datasets that contain large amounts
of instances representing different climate scenarios,
which makes detectors less accurate, especially DL-
based detectors, which rely on large amounts of images
for their training [403], [404], [405].

• Digital Image Processing
Computer vision-based approaches are susceptible to
visibility-related problems, such as the presence of
fog, rain, shadow and interference. Some of these
are amenable to normalization using digital image
processing techniques [406], [407], [408].

• Climate
UAVs are significantly affected by adverse climatic
conditions. Rainy, stormy and cloudy climate situations
can hinder their use in rescue operations. Such situations
can be present in emergencies with floods, storms, and
earthquakes, which are among the most frequent natural
disasters, with a high mortality rate [409], [410], [411].

• Drone Swarms
Drone swarms can cover larger areas in a shorter time
which is a positive point for their use in search and
rescue operations, whose main goal is to find missing
people in the shortest possible time to ensure better
assistance. However, the control and communication of
UAV swarms is still a challenge to be faced [412], [413],
[414].

• Communication Management
Adventure tourism, such as rafting, mountain biking,
paragliding, and hiking, are popular with diverse audi-
ences. These activities are often carried out in regions
far away from capital cities, in places where wireless
communication (e. g. Fourth Generation (4G) and 5G) is
scarce. This affects UAVs in their communication with
systems and/or other drones [415], [416], [417].

• Scalable Communication Network Designs
As the number of users of wireless communication
networks increases, the use of UAVs to support these
networks seems promising. However, scalable network
designs that meet current and future network demands
are still a challenge [418], [419], [420].

• Energy Management
The use of UAVs for communication demands that these
vehicles have a long operation time. This requires good
resource management that is mainly affected by the
interaction between flight time, power, and trajectory
planning of the UAVs. One issue to be explored is
the recharging of the UAVs battery through wireless
power transfer while they are still flying [421], [422],
[423].

• Trajectory Planning
Planning an optimal path for UAVs is an important
challenge in UAV-based communication systems. The
trajectory of a UAV is significantly affected by several
factors, among them: flight time, power constraints, end-
user demands, and collision avoidance [424], [425],
[426], [427].

• Technology Integration
Depending on the problem the integration of various
technologies, such as UAVs, Wireless Sensor Networks,
IoT, is necessary. But this integration increases the level
of complexity of the system.

• Load Limitation
UAVs have limitations regarding the size and weight
of the cargo carried. This can be a challenge when
using them for transporting relatively heavy objects and
performing activities such as spraying crops or using
water to fight fires [185], [195], [428].

• Selection of Hyperparameters Hyperparameter selec-
tion plays a fundamental role in machine learning
algorithms. A variety of methods can be applied, such
as grid search and computational intelligence optimiza-
tion algorithms, such as PSO and genetic algorithms.
Hyperparameter optimization has been addressed in the
literature, e.g., [429] and [430].
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V. FUTURE RESEARCH DIRECTIONS
The field of ML applied to UAVs has grown exponentially
over the years. Recently, researchers have investigated the
use of drones in new and important applications. In this
context, some open research topics in order to stimulate
further investigation in ML applied to drones in different
scenarios are presented below.

• UAV Swarms: UAV swarms constitutes a hot topic in
the literature, mainly in the context of ML algorithms
adopted for optimizations problems such as trajectory,
resource allocation and sensing. Researchers are also
focused on used UAV swarms in emerging applica-
tions, such as virtual reality in metaverse and UAV
swarm-enabled reconfigurable intelligent surfaces, that
are uses cases in the new wireless systems generations.

• Autonomous Drones: Autonomy is a relevant aspect
regarding individual drone or swarms of drones.
In this scenario, autonomous recharging is a relevant
issue [431]. Autonomy also concerns decisions, at the
light of legal and ethical issues. The paper of Konert and
Balcerzak [432] analyzes those issues on using drones as
weapons.

• Security of UAVs: Considering the presence of eaves-
droppers in UAV scenarios, AI algorithms have been
considered in order to enhance the secrecy performance.
Thus, the study of new algorithms that are robust
to eavesdroppers and capable of increasing the data
security constitutes a relevant research topic and are of
interest to researchers.

• Energy Harvesting Technologies: In the literature,
energy harvesting technologies applied to UAV has been
considered a relevant topic and has been researched
extensively in recent years. The aforementioned tech-
nology is proposed in different contexts, such as to
charge UAVs since the limited flight time is due to
its insufficient battery capacity; and in UAV-enabled
wireless communication system with energy harvesting.
The future research directions about energy harvesting
for UAVs mainly focuses on power allocation, path
planning and transmission ways, which are open issues
related to ML that need further investigation. UAV
aided wireless power transfer is also a promising future
direction.

• UAV Autopilot System: The trajectory of autonomous
UAVs is a very complex task. Thus, AI algorithms can be
used by drones to plan their flights autonomously. Cur-
rently, related research aims the use of ML to perform
UAV autopilot system. In such studies, new learning
techniques have been proposed for this task. However,
studies have to be carried out in order to investigate the
learning of the UAV in other environments and scenarios
with multi UAVs.

• Blockchain-Assisted UAV: Several papers have pointed
blockchain-assisted UAV network as a relevant topic to
be studied. This occur since the blockchain properties

have several benefits for UAVs, including better privacy
as it enables data security; and improving the quality
of services in terms of delay, throughput and reliability.
The existing literature suggests that there are critical
challenges in this topic concerning architectures able
to reduce computing and storage requirements while
dealing with security and privacy issues. In UAVs,
ML and blockchain are jointly combined to facilitate
their application in different fields.

• UAVs to Space Missions: The use of ML in drones
for space exploration is a new topic. The advantages
provided by UAVs have the potential to support space
missions, but still with several challenges to be solved,
mainly those related to efficiency, cost, design and flight
trajectories optimization issues. Thus, it is expected that
ML techniques applied to the mentioned aspects for the
UAVs can enable improvements in terms of efficiency
and robustness.

• Distributed Machine Learning (DML): DML may
be used for a variety of purposes, such as to optimize
communication, computation and resource distribution.
For this reason, DML may be seen as an interesting
research direction in the scenario of UAVs. Information
security plays an importante role in the framework of
DML.

• Multi-modal Sensor Data Fusion: The use of a
combination of sensors - such as visual cameras, infrared
sensors, radar, and sonar - can provide a more complete
perception of the environment for a UAV. Sensor data
fusion techniques can be employed to improve object
detection, navigation and other critical tasks.

• Ethical ML for UAVs: This area addresses the ethical
challenges associated with the use of ML in UAVs. This
can include issues such as algorithmic bias, autonomous
decision-making in complex ethical scenarios (such
as the use of drones in military operations), and the
protection of personal data collected by drones.

VI. LIMITATIONS
While this study is a comprehensive review of the literature on
the use ofML techniques inUAVs, it is important to recognize
some potential limitations that could affect the findings and
interpretations:

• Publication Bias: Can occur when certain studies or
findings are more likely to be published due to factors
like positive results or significance. This bias may lead
to an over-representation of certain applications of ML
in UAVs, while potentially neglecting less favorable
or non-significant findings. As a result, the review’s
conclusions may not fully reflect the entire landscape of
ML applications in UAVs, and important insights could
be missed.

• Data Source Selection: The selection of databases
or sources used to gather articles can influence the
comprehensiveness of the review. If certain relevant
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databases or gray literature are excluded, it could lead to
a limited scope of the study and potentially miss out on
valuable studies that are not indexed in major databases.
This limitation may result in an incomplete picture of
the state of research in the field.

• Limitations in Subarea Prospections: The identifi-
cation of subareas and applications of ML in UAVs
is dependent on the scope and categorization criteria
set for the review. If the categorization is too broad
or predefined subareas do not adequately capture the
diversity of applications, the review may overlook
emerging or niche use cases of ML in UAVs. This could
result in an incomplete representation of the potential
applications and benefits of ML techniques in specific
UAV domains.

• Generalization of Findings: The macro-level under-
standing provided by the review may lack detailed
insights into specific contexts or implementations.
ML applications in UAVs can vary significantly depend-
ing on factors like industry, geographical location,
or specific use cases. By aiming for a broader overview,
the reviewmight not address the nuances and challenges
faced by researchers and practitioners in different
domains. Consequently, the practical implications of the
review’s findings might be limited for those seeking
specific guidance or detailed understanding.

VII. CONCLUSION
Unmanned Aerial Vehicles (UAVs), combined with intelli-
gent data processing methods, have been widely used in civil
and military applications. From service delivery to victim
detection in environmental disasters, UAVs are useful in a
variety of tasks. In this paper, a review of the literature
on ML applications in UAVs is presented. The main areas
and subareas are listed, as well as the most recurrent ML
techniques in the selected studies.

Some recurring challenges have also been identified
regarding the use of drones in civil applications, such as
weather conditions that directly influence their trajectories
and acquisition of environmental data; power constraints,
as many UAV models are typically powered by batteries,
which makes it difficult to use them for missions with
long periods of time; limited cargo capacity due to the
small size of the UAV; and the risk of information security
attacks, where there is the possibility of UAVs being
controlled for illegal purposes such as invasion of privacy and
smuggling.

Throughout this review, emphasis is also given to the most
commonly used ML techniques in the selected studies, such
as Support Vector Machine, Random Forest and Artificial
Neural Network and Deep Learning approaches, namely You
Only Look Once, Faster R-CNN and Convolutional Neural
Network based algorithms. The main applications of each
aforementioned technique were also identified.

It must be considered as a possible limitation of this
study the task of gathering the largest amount of relevant

articles related to the use of UAVs and ML in the real-world
problems, especially considering works not indexed in the
databases used. Therefore, future research must be conducted
considering a larger number of academic databases. Also,
other fields of computing, such as swarm intelligence, can
be explored in the future.

The increasing number of existing studies in academic
databases for a large variety of different tasks and applications
shows the potential of UAVs. These existing scientific
contributions will make possible the massive and common
use of these vehicles in both domestic and industrial contexts
in the future.
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