
Received 1 October 2023, accepted 16 October 2023, date of publication 19 October 2023, date of current version 25 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325885

Precise Detection for Dense PCB Components
Based on Modified YOLOv8
QIN LING , NOR ASHIDI MAT ISA , AND MOHD SHAHRIMIE MOHD ASAARI
School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia

Corresponding author: Nor Ashidi Mat Isa (ashidi@usm.my)

This work was supported by Geran Penyelidikan Pemadanan Universiti Sains Malaysia (USM)-Industri titled ‘‘Defect Assessment of
Solder Joint Based on X-Ray Images Using Integration of Adaptive Image Processing and Fuzzy-Based Look-Up-Table (LUT)
Approaches’’ under Grant 1001.PELECT.8070024.

ABSTRACT Effective detection of dense printed circuit board (PCB) components contributes to the
optimization of automatic flow of production. In addition, PCB component recognition is also the essential
prerequisite for early defect detection. Current PCB component detection approaches are not adept in both
rapid and precise detection. YOLOv8 models have exhibited effective performances for detecting common
objects, such as person, car, chair, dog etc. However, it is still tricky for YOLOv8models to inspect dense and
disparate PCB components precisely. Thus, a novel convolution neural network (CNN)model is proposed for
dense PCB component detection by introducing several modifications onto YOLOv8. First, creative C2Focal
module is designed as the core element of the backbone, combining both fine-grained local and coarse-
grained global features concurrently. Then, the lightweight Ghost convolutions are inserted to effectively
reduce the computation cost, meanwhile maintaining the detection performance. Finally, a new bounding
box regression loss that is Sig-IoU loss, is proposed to facilitate the prediction regression and promote
the positioning accuracy. The experiments on our PCB component dataset demonstrate that our proposed
model performs the highest mean average precisions of 87.7% (mAP@0.5) and 75.3% (mAP@0.5:0.95)
respectively, exceeding other state-of-the-arts. Besides, the detection speed hits 110 frames per second using
RTX A4000, which is potential to realize the real-time inspection.

INDEX TERMS PCB component detection, high-precision, lightweight, Sig-IoU loss, ghost convolution.

I. INTRODUCTION
Printed circuit boards (PCBs) are the backbone in modern
electronic information industry, carrying integrated circuits,
resistors, capacitors, and other electronic components. The
rapid development of electronic techniques has led to the
miniaturization, integration, and diversification of PCBs [1].
This trend is expected to continue in the future, as PCBs
become increasingly smaller, more complex, and more
specialized. The surface mount technique realizes automatic
assembly of components at a high density and speed. During
the manufacturing and assembly process, the rapid and
precise recognition and positioning of PCB components is
increasingly important [2]. The effective detection of dense
components contributes to the optimization of automatic
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flow of production. In addition, component recognition is an
essential prerequisite for early PCB defect detection, which
has a profound impact on the cost of quality control in the
PCB industry.

PCB components are greatly diverse in types, appearances
and dimensions. This makes traditional inspection methods
based on human vision ineffective and prone to errors.
As a result, these methods cannot meet the practical
requirements for automated production [3]. In order to
mitigate the dependence on manual inspection, the automatic
optical inspection (AOI) technique integrated with machine
vision has been widely implemented, especially in modern
factories [4].

Researchers have proposed a variety of detection methods
for PCB components based on machine vision [5], [6], [7],
[8], [9], [10]. They modified and then applied traditional
machine learning algorithms such as genetic algorithm [5],
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hybrid genetic algorithm [6], random forest pixel classi-
fier [7], template matching [8], particle swarm optimiza-
tion algorithm [9], [10] to classify and recognize PCB
components. However, these methods have their intrinsic
drawbacks.

The detection results by aforesaid works are closely related
to manual designed features, which are normally extracted
using traditional image processing. During the process
of image pre-processing, templates are usually required
to execute image matching with inspected images. The
acquisition of perfect templates is cumbersome and costly.
Additionally, pixel-level alignment between the templates
and tested images must be always held to avoid extra
noise. To keep the good performance, complicated and stable
illumination environment is indispensable.

Moreover, most traditional machine learning approaches
for component detection are two-stage or multi-stage. The
combination of several image processing techniques has to be
done to position the targets, then different machine learning
algorithms are accordingly performed to make the classi-
fication. These image processing operations and machine
learning algorithms usually calculate intricate matrix with
high sapcetime complexity, resulting in huge computation
cost. The parameter preference and optimization for those
machine learning algorithms can be a burdensome task as
well. As a consequence, they definitely struggle to handle
high-resolution PCB images at a high speed.

In recent years, there was an explosive growth in
deep learning methods, especially convolution neural net-
works (CNNs) in the computer vision studies. They have
stronger feature extraction capability and outstanding anti-
interference ability. Deep CNNs are proficient at extracting
multi-level features even though objects are placed in nosy
surroundings. Many classical CNN models have achieved
significant performances in object detection and segmenta-
tion [11]. Therefore, researchers have applied various deep
learning models to work out target recognition or inspection
in the industry [12], [13].

In addtion, some researchers have also achieved significant
results in the segmentation of concrete crack or damage
[14], [15] and medical examination [16], by proposing and
introducing specific attention module into deep learning
networks. In [14], Faster RCNN [17] was used to detect
cracks, then amodified tubularity flowfield (TuFF) algorithm
was applied to these bounding boxes from Faster RCNN to
segment cracks on pixel-level. Finally, a modified distance
transform method was implemented to calculate crack
thickness and length from the segmented cracks. In [15],
to overcome the difficulty of preparing ground truth for
internal damage, an attention-based generative adversarial
network (AGAN) was proposed to produce synthetic internal
damage images for training the proposed segmentation
network. The attentionmodules implemented in the generator
and discriminator of the AGAN can improve the performance
of the generative adversarial network. The authors in [16]
proposed a dual encoder–decoder named Polyp Segmentation

Network (PSNet) to segment colorectal polyps. Several
novel modules for the polyp segmentation were proposed,
including PS encoder, PS decoder, the merge module, and
the relevant components, such as the local feature extraction
module and the dual complex convolutional module. The
newly proposed dual encoder combines both a CNN-based
encoder and a transformer encoder. The dual decoder contains
two synchronous decoders, PS decoder and the transformer
decoder, and a synchronous set of merge modules.

Several studies [18], [19], [20], [21], [22] have imple-
mented various deep learning models to detect PCB com-
ponents. For instance, Li et al. [18] modified YOLOv3
network [23] to get the detection mean average precision
(mAP) of 93.07% for 29 component categories. Inspired
by Faster R-CNN [17] and PeleeNet [24], Shen et al. [19]
built a novel lightweight CNN model for PCB component
inspection. This method boosted the detection precision to
85.8% for 12 different electronic components.

Although these CNN based works have made great
progress in PCB component detection than traditional image
processing and machine learning methods, there is still room
for improvement. All the CNN models they used have a
large number of parameters, which leads to slow detection
speed, especially for high-resolution inputs. Moreover, vast
parameter amount produces heavyweight trained models,
leading to the difficulty of embedding in real industrial
inspection devices. In addition, the detection precisions of
past published works still need to be promoted to fulfill the
industrial requirement. Therefore, proposing a novel end-
to-end lightweight CNN model for dense PCB component
inspection is urgent. Recently, YOLOv8-nano [25] has
been renowned in the object detection community due to
its real-time speed and excellent precision. Nevertheless,
because of the large scale variance of size, diverse appearance
and dense distribution of PCB components, YOLOv8-nano
needs to be further improved to accomplish fleet and precise
inspection for PCB components.

In light of the aforementioned concerns, we design a
novel lightweight deep learning model used to detect PCB
components on bounding box level, by introducing a couple
of improvements into YOLOv8-nano. A novel C2Focal
module integrating FocalNeXt [26] block is proposed to
constitute the backbone of the model. C2Focal module can
mitigate the adverse impact from the scale variance to achieve
preferable detection results, only introducing little additional
computation. Then, the common convolution is replaced by
a lighter Ghost convolution [27], that produces richer ghost
features from cheaper computation cost. Moreover, a novel
bounding box regression loss named Sig-IoU is proposed
to accelerate the convergence and promote the regression
accuracy. As a result, our method attains substantially rapid
and precise detection for dense PCB components. The
main contributions of this paper can be summarised as
follows:

• Instead of C2f module in YOLOv8, creative C2Focal
module integrating FocalNeXt block is proposed.
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FocalNeXt block involving dilated depthwise convolu-
tion [28] and two jump joins, can expand the receptive
field of neurons and combine both fine-grained local
and coarse-grained global features concurrently. Thus,
C2Focal module can handle the scale variance issue to
perform favorable detection performances.

• The lightweight Ghost convolution is introduced to
replace the common convolution so that the requirement
for computing resources is effectively reduced without
affecting the performance of the model.

• A new bounding box regression loss function that is
Sig-IoU loss is proposed, to replace the original Com-
plete IOU (CIoU) loss [29], facilitating the prediction
regression and promoting the positioning accuracy.

Benefiting by the stated contributions, our method can
attain outstandingly precise detection for 32 classes of
densely packed PCB components, while meet the need of
real-time inspection in industry. According to the experiment
results, our model outperforms classical state of the arts
(SOTAs) with the best detection mAP@0.5 of 87.7%, and
mAP@0.5:0.95 of 75.3%, respectively.

The remaining part of this paper is organized as follow: the
review of relevant works is presented in Section II. The details
and improvements of the proposed method are illustrated in
Section III, followed by the experiments and discussions in
Section IV. Finally, Section V summarises the paper.

II. LITERATURE REVIEW
A. MACHINE LEARNING BASED METHODS FOR PCB
INSPECTION
Machine learning algorithms for PCB component detection
are closely integrated with image processing, which usually
requires qualified templates. Crispin et al. [5] applied genetic
algorithm combinedwith normalised cross correlation (NCC)
template matching to locate and identify resistors in PCBs.
The mean inference time reached 39.5s per one small size
image. However, this method had large computation cost,
leading to a slow running. Moreover, both building the
qualified template and optimal parameter choice for genetic
algorithm are intricate and experiential, contributing to a low
detection efficiency. Mashohor et al. [6] proposed a hybrid
genetic algorithm to detect missing components and segment
solder joints. With the help of image processing techniques,
this method identified missing components or solder joints,
but failed to classify them.

Li et al. [7] used random forest pixel classifier to segment
components based on depth images of PCBs. The component
identification rate of 83.64% was performed for real PCB
images. Yin [8] designed a multi-level template matching
algorithm to detect PCB components. A fast coarse matching
was implemented to locate the similar region, then a precise
matching was carried out to estimate whether the similar
regions were targeted components. This method detected
resistors, inductors and capacitors at the precisions of 95.3%,
94.1% and 96.5% respectively.

Wang et al. [9] combined multi-template matching and
species based particle swarm optimization algorithm to
inspect PCB components. The addition of swarm optimiza-
tion reduced the computation cost. The average detection
rate for six resistors was 100% and the best mean running
time was about 25.96s for a 762×612 pixel image. Superior
to [9], Dong et al. [10] proposed an improved particle
swarm optimization algorithm to detect PCB components
with the assistance of template matching. This particle swarm
optimizer used the notion of chaos and species to determine
neighborhood best values. As the result, the best average
running time for the same images in [9] was reduced to
15.71s, maintaining the successful rate of 100%.

According to previous reviews, traditional machine learn-
ing based works for detecting PCBs are summarised in
Table 1. In spite of good detection performances for PCB
inspection, traditional machine learning based approaches
still have certain limitations. Many image processing oper-
ations must be executed to get good accuracy and localize
the targets. Normally, image processing such as template
matching or image subtraction needs a perfect template, that
is extremely sensitive to variable surroundings. Thus, these
methods have poor generalization ability and weak robust-
ness. Furthermore, all of them are multi-stage approaches.
In consequence, none of them may meet current demands
of real-time and automatic detection in the real applications
at all.

B. DEEP LEARNING BASED METHODS FOR PCB
INSPECTION
Different from traditional machine learning algorithm based
methods, CNNs can achieve PCB component detection
automatically without the intervene of reference images.
Advanced CNN models have performed great results in
the object detection for industrial products. Similarly, many
works utilized CNNs to detect PCB defects and components,
pursuing progress in performances.

Mamidi et al. [30] proposed a PCB inspection system
based on a YOLOv4-tiny [31] network to identify PCB
surface defects. The overall mAP achieved 79.72% for
6 types of defects, such as spurious copper, short, missing
hole, spur, open circuit and mouse bite. Lan et al. [32]
designed an improved YOLOv3 network to detect PCB
surface defects. The batch normalization layer was combined
to the convolutional layer to improve the forward inference
speed. GIoU loss function was used to improve the detection
effect of the model on small targets. Moreover, K-means++
clustering was applied to get more appropriate anchors. This
method performed the mAP of 92.13%, with the detection
speed of 63 FPS, which was superior to the original YOLOv3
model.

Based on extended FPN, a PCB defect detection algorithm
was introduced in [33]. The backbone was built upon
ResNet-101. To precisely classify the PCB defects, focal loss
function was introduced. The mAP of this method achieved
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TABLE 1. Summary of machine learning based works.

96.2% for 6 types of PCB surface defects in the public
dataset.

Evangelidis et al. [34] proposed a methodology to replace
expensive laboratory sensors with low-cost ones by introduc-
ing a data-driven soft sensor model. With the assistance of
the methodology, a PCB inspection system for glue deposits,
which relied on an industrial camera and Jetson AGX Xavier
unit, was designed. An instance segmentation network based
on Mask R-CNN [35] and Faster R-CNN [17] was proposed
to predict coordinates of each glue deposit and classify their
types. Then, an improved residual architecture (R2esNet) was
proposed for volume estimation of glue deposits. The method
achieved greatly satisfactory results for glue defects in PCB
manufacturing, which can facilitate the quality inspection
process efficiently, and optimize the production process.

Li et al. [18] proposed an improved YOLOv3 to detect
PCB components, where an extra output layer was added.
The detection mAP for PCB components reached 93.07%.
However, the introduction of extra prediction layer brought
in additional computation, delaying the inference. Contrast
to the heavyweight model in [18], Shen et al. [19] proposed a
lightweight deep learning model, integrating Faster R-CNN
and PeleeNet, which performed rapid and precise detection
for various PCB components. The detection precision
of this method attained 85.8% and the detection speed
reached 27 FPS.

Zhang et al. [20] just used YOLOv3 to recognize PCB
components without any modification. The overall detection
rate for 11 types of PCB components was about 92%,
and the running time was 0.55s for each input image.
Based on depthwise convolution and separable convolution,
Chen et al. [21] designed a simple CNN model to classify
normal components and defective components. The detection
precisions for qualified products and defective products
reached 96.96% and 95.70% respectively. The average
inference time reached 27ms per component, which is almost

real-time. However, it only detected a small region of
42×42 pixel instead of a whole PCB image.

Liu et al. [22] proposed Gaussian IoU (GsIoU) loss
function for bounding box regression to replace the original
one in YOLOv4. The introduction of GsIoU produced the
mAP increase of 3.3% compared with the baseline. However,
the dataset only contained 6 types of PCB components, which
are large or medium-size, and dual in-line packaged in the
board sparsely. Therefore, this method may struggle to detect
tiny and dense PCB components.

Deep learning based works for PCB inspection are
summarised in Table 2. Compared with machine learning
based methods, CNN based methods can extract and fuse
feature maps from different depths so that they are immune
to complex noises. Nevertheless, there still exist several
limitations. Concerning the PCB component inspection,
components used in past works are neither abundant in
categories nor densely distributed, mitigating the difficulty
of recognition. In addition, most of them could not attain
rapid and precise component detection simultaneously.
Therefore, there is an urgent need for a novel lightweight and
high-precision CNN model detecting densely packed PCB
components.

III. METHODOLOGY
A. DATA PREPARATION
1) DATA ACQUISITION
We use 47 physical PCB assembly images from the public
dataset in [36]. There are 18108 objects in total, meaning
that each image contains 385 components on average. What’s
more, sometimes 50% of components such as tiny resistors
and capacitors are concentrated in a small area, only taking
up 10% of the entire image. In a word, the components are
densely placed on the board or a small local area of the board.

The original data classified the PCB components according
to their types and silkscreen number, such as ‘resistor R10’,
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TABLE 2. Summary of deep learning based works.

‘connector CN2’ etc. Thus, the labels in this data are very
huge and detailed. Here, for the task of component iden-
tification, we remove the silkscreen numbers of electronic
components and group the same type of components together.
All the silkscreen numbers printed on the board are labelled
as one class, that is text. Finally, there are totally 32 classes
of components (including text) in our dataset.

Random cropping was implemented to obtain sub-images
with the size of 640 × 640 pixels. To keep off the over-fitting
problem, data augmentation techniques must be applied to
produce abundant instances. In this work, we used traditional
geometrical transformation and morphological operations,
including rotation, flipping, transpose, adding noise and
color space conversions including RGB shift and random
brightness contrast. Finally, 11330 images was generated,
in which training set, validation set and test set were allocated
on the ratio of 7: 2: 1. The number and input sizes of training,
validation and testing images are tabulated in Table 3. Our
data examples are illustrated in Fig. 1. It shows that numerous
tiny components and texts are densely and closely packed on
the board.

2) DATA ANALYSIS
The distribution and dimensions of labels used for training
can be found in Fig. 2. The amounts of each target classes are
tabulated in Table 4.
There are a total of 180818 instances in our training

set as shown in Table 4. Fig. 2(a) representing the label
positions indicates that targets are uniformly distributed in
the whole images instead of gathering at a specific region.
The x-axis represents the ratio of label center coordinates to
the image width, while the y-axis represents the ratio of label
center coordinates to the image height. These ratios provide a

TABLE 3. The number and input size of images in different sets.

standardized measure for positioning labels within the image.
Fig. 2(b) exhibits the ratios of label size to the image size,
indicating the PCB components are extremely diverse in
dimensions. The SMD components are extremely tiny and
dense, while the PTH (Plated through holes) components are
relatively large-sized, resulting in the large scale variance.

B. YOLOv8
Based on the success of previous series of YOLO models,
YOLOv8 [25] was built by introducing some improvements.
The architecture of YOLOv8 is shown in Fig. 3, which
can be mainly divided into three ends, including Backbone,
Neck and Prediction. More details of each component in the
YOLOv8 are introduced in later sections.

1) THE BACKBONE
Before feeding into the network, input images are processed
automatically. Concerning training inputs, Mixup augmenta-
tion [37] are applied tomarkedly fertilize the context informa-
tion of input images and diminish the obstruction from noisy
samples. In addition, several image processing techniques
such as translation, scaling etc. can be applied randomly to
augment input images automatically. Afterwards, augmented
images are uniformly scaled and filled to a standard size.
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FIGURE 1. Examples in our dataset.

FIGURE 2. Label distribution and sizes, (a) label positions, (b) label size.

In contrast, test inputs are adaptively scaled to the setting size
without any augmentation to maintain a rapid inference.

The backbone extracting feature maps is extremely vital
to the performances of deep learning models. In YOLOv8,
the backbone is composed of elementary convolution layers,
newly proposed C2f modules and the spatial pyramid
pooling- fast (SPPF) block.

a: C2F MODULE
The architecture of C2f module can be found in Fig. 4.
The main components are convolutions followed by batch
normalization and SiLU [38] activation function and several
Bottleneck blocks. There are two different types of bottleneck
block. When the add parameter is set to true, the bottleneck
involves residual shortcut addition which is similar to the
Resnet block [39]. Otherwise, the bottleneck is simply the
stack of two convolutions.

According to the architecture, it can be found that
the C2f module integrates the merits of Efficient layer
aggregation networks (ELAN) [40] and CSPNet [41]. ELAN
adopts less transition layers to shorten the shortest gradient
path of the flow. Inspired by this improved stack tactic,
C2f module adds more parallel branches to obtain richer
gradient information without stretching the gradient path.
Compared with C3 block in YOLOv5 [42], C2f mod-
ule is able to get higher accuracy and more reasonable
latency.

b: SPPF
In YOLO series, SPP was used to observe feature maps
with multi-scale receptive fields, assisting the model obtain
more abundant information. SPPF, whose structure is shown
in Fig. 5, was proposed in YOLOv5 [42] and still used in
YOLOv8.
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TABLE 4. Amounts of each labels in the training set.

FIGURE 3. The architecture of YOLOv8.

FIGURE 4. The structure of C2f module (Note: k means the kernel size,
s means stride and p means padding of convolution).

2) THE NECK
The core insight of neck end is the multi-level feature
fusion through FPN. The fusion between deep features
and shallow features makes the model maintain stronger
semantic information and more image details simultaneously,
beneficial to address the matter of scale variance. The

FIGURE 5. The architecture of SPPF.

feature pyramid network used in YOLOv8 is PANet [43],
whose structure can be found in Fig. 6. Compared with
traditional FPN that fuses feature maps from the top to
bottom, PANet introduces another fusion from the bottom
to top. The overall characterization ability of the model is
enhanced.

3) THE PREDICTION HEAD
Decoupled prediction heads are used inYOLOv8, as shown in
Fig. 7. In previous YOLO series, for the feature maps fed into
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FIGURE 6. The PANet structure used in YOLOv8.

FIGURE 7. The structure of one Decoupled Head.

the head, the predictions of classification and bounding box
regression are done simultaneously, sharing the parameters
of the previous layer. However, YOLOv8 decouples them
to predict separately. The decoupled prediction head can
accelerate the model convergence and improve the detection
accuracy [44].

C. THE PROPOSED METHOD
Although YOLOv8 has obtained significant detection per-
formance promotions on the public COCO dataset [45], the
generalization abilities on custom datasets have not been
widely verified. Among YOLOv8 series models with differ-
ent sizes, the lightest YOLOv8-nano has the highest detection
speed with comparable accuracy. However, due to the densely
packed PCB components with large scale variance and
diverse appearances, it still needs to be further improved
to accomplish fleet and precise detection. Here, concerning
several improvements on YOLOv8-nano, we propose a novel
detection model for PCB components. As illustrated in
Fig. 8, the main improvements involve the backbone, which
is modified by introducing Ghost convolution modules and
C2Focal modules. Moreover, a new Sig-IoU loss function
for bounding box regression is used to replace the original
CIoU loss.

1) GHOST CONVOLUTION
Feature maps generated by traditional convolution modules
have many similar pairs, like a ghost of each another. These
ghost pairs are called redundant information, which are
vital for a deep learning model to produce a comprehen-
sive understanding of the input images. Thus, instead of
abandoning these similar pairs, Han et al. [27] proposed a
novel Ghost module to retain them in a cost-efficient way.
In the Ghost module, output feature maps are considered
as the combination of intrinsic features and ghost features.
The intrinsic feature maps are generated by common
convolutions, but the ghost feature maps are generated by
cheap linear transformations on each intrinsic feature map.

The architecture of Ghost convolution module used in our
model is presented in Fig. 9. The cheap linear operations can
be achieved by Depthwise convolution, whose computational
cost is much less than the ordinary convolution [28].
In Depthwise convolution, the input feature map is divided
into g groups according to input channel, and then ordinary
convolution is performed for each group, where g equals to
the number of input channel.

Given an input feature map Fin ∈ Rcin×h×w, where
h and w are the height and width of the input feature, and
cin is the number of input channels, the action of an ordinary
convolution layer can be formulated as

Fout = Fin ∗ f + b (1)

where * represents the convolution action, b means the bias,
Fout ∈ Rh

′
×w′

×cout means the output feature map, h′ and w′

are the height and width of the output feature, and cout is the
number of output channels. Additionally, f ∈ Rcin×k×k×cout

represents the convolution filter, where k×k means the kernel
size. The number of FLOPs of this process is cout ×h′

×w′
×

cin × k × k and the amount of parameters of this procedure is
cout × cin × k × k .
Concerning the Ghost convolution, for the primary ordi-

nary convolution producing half output channels, the FLOPs
and the amount of parameters are 1/2cout×h′

×w′
×cin×k×k

and 1/2cout × cin × k × k respectively. The FLOPs of
Depthwise convolution could be 1 × 1/2cout × h′

× w′
×

kc × kc, where kc is the kernel. The amount of parameters is
1 × 1/2cout × kc × kc. Therefore, the FLOPs ratio between
ordinary convolution and Ghost convolution is

rf =
cout×h′

×w′
×cin×k×k

1
2cout×h

′×w′×cin×k×k +
1
2cout×h

′×w′×kc×kc

=
cin × k × k

1
2cin × k × k +

1
2kc × kc

≈ 2 (2)

where kc × kc has the similar magnitude as that of k × k . The
parameter amount ratio is

rp =
cout × cin × k × k

1
2cout × cin × k × k +

1
2cout × kc × kc

=
cin × k × k

1
2cin × k × k +

1
2kc × kc

≈ 2 (3)
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FIGURE 8. The architecture of our proposed model (Note: the marks * indicate where the modifications were implemented).

FIGURE 9. A presentation of convolution and Ghost convolution module.
(a) ordinary convolution, (b) Ghost convolution.

As the consequence, Ghost convolution module produces
feature maps with same number of channels as that produced
by ordinary convolution. However, the FLOPs and parameter
amount have been cut down to half of ordinary convolution,
theoretically contributing to speeding up the module.

2) C2FOCAL MODULE
It is always challenging to detect densely distributed targets
at various scales. The common solution for detecting various
scale targets is to produce and fuse feature maps with various
dimensions. For example, features with strides of 8, 16, 32,
64 and 128 can be used to detect targets of corresponding
scales. In the proposed network, only 3 different scale
features with strides of 8, 16 and 32 are produced and used
for final prediction. The reason is generating deeper features
with different scales introduces extra huge parameters, as the
numbers of channels of the deep features gradually increase
when the feature maps scale down. Therefore, instead of
generating deeper features, the FocalNeXt block proposed by
Zhang, et al. [26] is introduced to enlarge the receptive field
of the model, handling scale variance issue for dense object
detection.

The FocalNeXt block, whose structure can be found
in Fig. 10, was built based on ConvNeXt block [46].

FIGURE 10. The architecture of proposed C2Focal module.

FIGURE 11. Dilated convolution, (a) normal convolution (dilation
rate = 1), (b) dilated convolution with dilation rate of 2, (c) dilated
convolution with dilation rate of 3 (Note: red circle indicates the
element of kernel, the blue area means receptive field).

The core insight is that FocalNeXt block involves dilated
convolution and two jump joins to expand the receptive
field of neurons. Unlike the normal convolution, dilated
convolution introduces a hyper-parameter called the ‘‘dilation
rate’’, which defines the spacing between the values of
the convolution kernel, as shown in Fig. 11. The normal
convolution covers a 3×3 area in the input image, same as
the kernel size. While, the dilated convolution with dilation
rate of 2 covers a 5×5 region in the input image, which
equals to the normal convolution operation with kernel size
of 5×5. Thus, dilated convolution can increase the receptive
field without increasing the amount of parameters.
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FIGURE 12. The schematic diagram of Sig-IoU loss.

Here, we propose C2Focal module by introducing the
FocalNeXt block to replace the original C2f module in
YOLOv8. The architecture of our proposed C2Focal module
is illustrated in Fig. 10. The dilated convolutions with
different dilation rates in the FocalNeXt blocks expand the
receptive field and maintain coarse-grained global features.
The normal convolutions and jump connections retain
fine-grained local information. Thus, the proposed C2Focal
module is able to fuse both coarse-grained and fine-grained
features. Benefiting from the introduction of C2Focal mod-
ule, our model has achieved competitive results, meanwhile
only introducing insignificant additional computation cost.

3) SIG-IoU LOSS
The loss function of YOLOv8 consists of binary cross-
entropy loss for classification and CIoU loss for bounding
boxes regression. These two elements are summed with
different weights to calculate the overall loss. The CIoU loss
can be formulated as

lbox = lIoU + ldis + lasp

= 1 − IoU +
ρ2(bp, bgt )

(we)2 + (he)2
+ αν

ν =
4
π2 (arctan

wgt
hgt

− arctan
wp
hp

)2

α =
ν

(1 − IoU ) + ν

IoU =
|A ∩ B|

|A ∪ B|
(4)

where b represents the central point of box, ρ represents the
Euclidean distance, w and h mean the width and height of
corresponding box, as shown in Fig. 12.
The last term αν in Equation 4 denotes the discrepancy of

the width-to-height ratio. The gradients of ν with respect to
wp and hp can be calculated as follows

δν

δwp
=

8
π2 (arctan

wgt
hgt

− arctan
wp
hp

) ×
hp

w2
p + h2p

δν

δhp
= −

8
π2 (arctan

wgt
hgt

− arctan
wp
hp

) ×
wp

w2
p + h2p

(5)

Thus, when the prediction bounding boxes are very tiny,
that the width and height range from 0 to 1, the value of
w2
p + h2p will be extremely small, leading to the Gradient

explosion. To avoid this issue, we design a novel Sig-IoU

TABLE 5. Experimental configuration.

TABLE 6. Confusion matrix.

loss for bounding box regression, in which the arc-tangent
function in the last term is replaced by Sigmoid function. The
Sig-IoU loss is formulated as

lsig−box = lIoU + ldis + lasp

= 1 − IoU +
ρ2(bp, bgt )

(we)2 + (he)2
+ αν

ν = (
1

1 + e−wgt/hgt
−

1

1 + e−wp/hp
)2

α =
ν

(1 − IoU ) + ν
(6)

The detection results in following section show that our
proposed Sig-IoU loss is superior to original CIoU loss.

IV. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL CONFIGURATION
The detailed configuration used for training and verification
experiments are tabulated in Table 5.

B. EVALUATION METRICS
Based on confusion matrix shown in Table 6, precision and
recall are calculated to evaluate our proposed model. The
values of precision and recall can be calculated by Equation 7.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN
(7)
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TABLE 7. Ablation results.

In this paper, average precision (AP) is used to obtain a much
sounder evaluation. The calculation of AP is formulated as

AP =

∫ 1

0
p(r)dr (8)

where p represents precision and r means recall. Then, mAP
is calculated based on different IoU thresholds.

C. EXPERIMENT RESULTS
1) ABLATION RESULTS
Ablation experiments for the improvements of Ghost con-
volution module, C2Focal module and Sig-IoU loss are
executed to validate their benefits. We set YOLOv8-nano as
the baseline to make the ablation. To test the performances
of our proposed modifications, 1122 PCB component images
are detected. We present the ablation results in Table 7.
It indicates that our proposed model is much superior
to original YOLOv8-nano on the task of diverse PCB
component detection.

The introduction of C2Focal modules to replace the origi-
nal C2f modules contributes to apparent boost to the detection
metrics. As shown in Table 7, the recall metric markedly
increases by 3.7% compared with the baseline, although
the precision value has no evident enhancement yet. The
metrics of mAP@0.5 and mAP@0.5:0.95 have significant
increases of 1.4% and 0.6% respectively. The improvements
in detection performances profit from the perception that
FocalNeXt block can enlarge the receptive field of neurons
and integrate fine-grained local and coarse-grained global
features. Thus, the C2Focal module integrating FocalNeXt
block mitigates the adverse impact from the scale variance
to achieve preferable results. Moreover, only introducing
little additional computation cost, the model with C2Focal
modules still reaches the detection speed of 104 frames per
second (FPS), which meets the requirement of industrial
application.

Then, we use the Sig-IoU loss function for bounding
box regression. As shown in Table 7, the introduction
of Sig-IoU loss shows a little decrease in the precision.
However, the recall is observably increased to 85.3% with an
increment of 1.5%. The detection metrics of mAP@0.5 and
mAP@0.5:0.95 also have certain rises of 0.3% and 0.2%
respectively. As discussed previously, there are plenty of
tiny components in our dataset, easily causing the gradient

FIGURE 13. The bounding box loss curve.

explosion to affect the converge of the model. The intro-
duction of Sigmoid function into the loss copes with the
gradient explosion issue successfully, whichmakes themodel
converge faster. Fig. 13 presents the convergence curves of
CIoU and Sig-IoU loss for box regression. It demonstrates
that our proposed Sig-IoU loss function reduces faster
and lower, making prediction boxes approach ground truth
quickly.

After involving the Ghost convolutions, the detection
performances of our model have marked enhancements
too. The detection precision is significantly increased by
5.3% to reach 89.7%. Although the recall is reduced by
1.8%, it is still much larger than that of the baseline. The
values of mAP@0.5 and mAP@0.5:0.95 generate the evident
enhancements of 0.3% and 0.7%, respectively. Furthermore,
Ghost convolution is able to generate equivalent feature maps
using less parameters compared with common convolution,
theoretically speeding up the detection process. Therefore,
the inference speed has been increased to 110 FPS, which
approaches nearly to the speed of 113 FPS obtained by
original YOLOv8-nano.

Eventually, our proposed model significantly outperforms
the YOLOv8-nano in the metrics of precision, recall and
mAP. The values of precision and recall achieved by our
method get 89.7% and 83.5% respectively, which exist 4.5%
and 3.4% enhancements than that by YOLOv8-nano. The
detection mAP@0.5 and mAP@0.5:0.95 are 87.7% and
75.3%, providing 1.9% and 1.4% growth separately than the
baseline. When applying to the validation set, our method
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FIGURE 14. The detection examples by different models, (a) ground truths (b) results by our proposed model, (c) results by
YOLOv8-nano (Note: arrow 1 indicates redundant prediction box, arrow 2 indicates misjudging the background as a connector,
arrow 3 represents missing battery).

achieves 85.7% mAP@0.5 and 72.8% mAP@0.5:0.95,
respectively. In addition, our model is lighter, only containing
2.6 million parameters, which is decreased by 19% compared
with the baseline. Thus, our model can finish detecting one
image within 9.1 ms averagely, that is 110 FPS. The inference
speed of our proposed model is approximately comparable
to the speed of the YOLOv8-nano, meeting the demand for
industrial application.

The examples of PCB component detection results are
illustrated in Fig. 14, verifying the advancement of ourmodel.
It indicates that YOLOv8-nano leaves redundant prediction
boxes for the class of component text. Additionally, it misses
the battery component or misjudges the background as a

connector. In contrast, our proposed model avoids all the
previous failures. Our model detects the densely distributed
resistors, capacitors, texts etc. with high confidence scores,
demonstrating the potential of our proposed improvements in
the model.

2) PERFORMANCE COMPARISON RESULTS
We compare the performances between our model and other
SOTAs, such as Faster R-CNN [17], YOLOv3-tiny [23],
YOLOv4-tiny [31], YOLOv5-small [42], YOLOX-tiny [44],
YOLOv7-tiny [47] and YOLOv8-nano [25]. The comparison
metrics include the amount of model parameters, mAP and
detection speed.
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FIGURE 15. Detection results of PCB components by different methods, (a) ground truths, (b) the proposed model, (c) YOLOv8-nano,
(d) YOLOv7-tiny, (e) YOLOv5-small, (f) YOLOv3-tiny, (g) Faster RCNN, (h) YOLOv4-tiny, (i) YOLOX-tiny.

According to the presentation in Table 8, our proposed
model significantly outperforms other benchmarks, achiev-
ing the highest 87.7% mAP@0.5 and 75.3%mAP@0.5:0.95.
Faster RCNN, as the noted two-stage CNN model, only
obtains 64.9%mAP@0.5 and 49.71%mAP@0.5:0.95, which
deeply falls behind our model. And it has vast parameters,
leading to an extremely large latency. The inference speed of
Faster RCNN is almost 10 times slower than our model so
that it cannot execute real-time detection.

YOLO series are known for simultaneous high-speed and
precise detection. Here, all of YOLOv3-tiny, YOLOv5-small

and YOLOv8-nano achieve good performances. YOLOv7-
tiny, YOLOv4-tiny and YOLOX-tiny perform poorly on our
PCB component dataset, while YOLOv7-tiny and YOLOv4-
tiny take the lead in detection speed. Concerning our
proposed model, it undoubtedly exceeds other YOLO series
in detection precision. Furthermore, benefiting by the intro-
duction of Ghost convolution andC2Focalmodule, ourmodel
has quite limited amount of parameters, that is 2.6 million
only. Although our model is not the fastest one, the inference
speed of 110 FPS has been achieved, which is potential to be
applied in the real-time PCB inspection industry.
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TABLE 8. Comparison results between our model and other SOTAs.

TABLE 9. Explanations of bad predictions in Fig. 15.

Fig. 15 compares the detection outputs produced by our
proposed method and other SOTAs. None of Faster R-CNN
and other YOLO series succeeds in detecting all the targets
without errors. As shown in Fig. 15, all of YOLOv8-nano,
YOLOv7-tiny, YOLOv4-tiny and YOLOv5-small produce
superfluous prediction boxes for component text. Moreover,
YOLOv7-tiny, YOLOv4-tiny and YOLOX-tiny miss the test
point target sometimes. YOLOv5-small correctly labels the
test point, but it also produces a false detection simulta-
neously that the test point is labeled as a button. For the
small component text on the electrolytic capacitor, YOLOv3-
tiny, YOLOv4-tiny and YOLOX-tiny have the trouble in
finding out it. In addition, YOLOv4-tiny incorrectly labels
the electrolytic capacitor as component text. Similarly, Faster
R-CNN generates redundant bounding boxes or misses some
targets sometimes.Worse than that, Faster R-CNN detects the
test point as a connector incorrectly. For better understanding,
the bad predictions in Fig. 15 are pointed out by red arrows,
and the detailed explanations are tabulated in Table 9.

In contrast, profiting from the proposed refinements such
as C2Focal module, Ghost convolution module and advanced
bounding box regression loss, our method identifies all the
PCB components favorably with notable confidences.

V. CONCLUSION
A creative deep learning model is proposed to detect
densely packed PCB components efficiently and precisely.
The proposed network beats conventional works, which
are weighty in parameter and computation, and prolonged

in detection time. A couple of improvements exist in our
method. We introduce the FocalNeXt block to design the
C2Focal module, combining both fine-grained local and
coarse-grained global features concurrently. We replace the
common convolution by the lightweight Ghost convolution
to reduce the computation effectively without affecting the
detection precision of the model. Besides, the bounding
box regression loss function is upgraded to Sig-IoU loss,
enhancing the localization accuracy and accelerating the
convergence of the model.

Our model attains the highest detection precisions of
87.7% mAP@0.5 and 75.3% mAP@0.5:0.95 on our PCB
component dataset. In addition, our model is very light in
the amount of parameters. Furthermore, our model earns the
detection speed of 110 FPS, which is several times faster
than Faster RCNN. Thus, it is potential to be implemented
in the real-time and high-precision PCB inspection industry.
We believe our proposed method will boost the zero-error
quality control for PCBs, plunging the production cost
significantly.

In this paper, the proposed method not only pursues
the precision, but also pays attention to the detection
speed. High inference speed makes the proposed method
possible for the real application in the PCB production line.
Moreover, the proposed method outperforms other SOTAs
in detection precision, demonstrating the effectiveness of
out proposed modules and improvements. And our method
detects 32 classes of dense PCB components, infinitely
superior than other works. However, so many classes
of components with diverse appearances and dimensions
possibly make the accuracy not extremely high. Another
limitation is the imbalanced PCB component dataset. Some
classes of components are infrequent so that the detection
performances for them are relatively poor. In addition, the
policy that merges all the silkscreen numbers of electronic
components in one class could also cause the data imbalance.

Therefore, future works could focus on the detection
improvements for imbalanced PCB components. A definitely
potential direction is improving the strategy for grouping
‘text’ to make the instance distribution more reasonable. Fox
example, only these kinds of text instances with the same
types of components can be merged in one class, such as
text_connector, text_resistor etc. Another possible direction
for improving the detection performance is to involve the
angles of PCB components using arbitrary-oriented detectors.
The regression of angular prediction can be transformed to
a classification task [48], [49], [50], as small number of
components are placed on the board with ±45◦angles only.

In addition, based on the achievements of this paper,
PCB component defects detection or pixel-level segmentation
could be developed further. Moreover, the proposed method
is potential to be used for augmented reality applica-
tion in factories. For example, the recognition informa-
tion of PCB components can be projected in the user’s
field of view for better understanding of PCB assembly
construction.
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