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ABSTRACT Finding periodic-frequent patterns in temporal databases is a prominent data mining problem
with bountiful applications. It involves discovering all patterns in a database that satisfy the user-specified
minimum support (min_sup) and maximum periodicity (max_per) constraints. Min_sup controls the least
number of transactions in which a pattern must appear in a database. Max_per controls the maximum
time interval within which a pattern must reappear in the database. The popular adoption of this task has
been hindered by an open problem, which involves setting appropriate min_sup and max_per values for
any given database. This paper addresses this open problem by proposing a solution to discover top-k
periodic-frequent patterns in a temporal database. Top-k periodic-frequent patterns represent the k number
of periodic-frequent patterns having the lowest periodicity value in a database. An efficient depth-first search
algorithm, Top-k Periodic-Frequent Pattern Miner (k-PFPMiner), which takes only k threshold as an input,
was presented to find all desired patterns in a database. Experimental results on synthetic and real-world
databases demonstrate that our algorithm is efficient and scalable.

INDEX TERMS Data mining, pattern mining, temporal databases, top-k, periodic-frequent patterns.

I. INTRODUCTION
Pattern mining is an important sub-field of data mining.
It involves discovering all user interest-based patterns hidden
in a database. Frequent pattern mining (FPM) [1] is a funda-
mental knowledge discovery technique introduced as a key
intermediary step to discover association rules between the
items in a database. It involves discovering all patterns having
support no less than the user-specified minimum support
(min_sup) value. The min_sup is a hyper-parameter that
controls all the minimum number of transactions in which
a pattern must appear in a database. It is also an important
parameter that controls the number of patterns discovered
in a database. Unfortunately, setting this parameter for any
database is an open research problem. When confronted
with this problem in real-world applications, researchers
try to solve it by finding top-k frequent patterns [2] as
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the constraint k is relatively easier to specify than the
min_sup value. Since then, the problem of finding top-k
frequent patterns has received much attention [2]. A classic
application of top-k frequent pattern mining is market-
basket analysis. It involves identifying the top-k frequently
purchased itemsets by customers. An example of a top-k
frequent pattern is as follows:

{Milk,Beer} [support = 10%].

The above pattern indicates that 10% of the customers
have purchased the items ‘Milk’ and ‘Beer’ together. This
knowledge may help managers to make profitable business
decisions, such as product placement and campaigning.

Over the years, the FPM has inspired many knowledge
discovery techniques, such as closed frequent pattern mining
[3], maximal frequent pattern mining [4], fuzzy frequent
pattern mining [5], high utility pattern mining [6], frequent
sequence pattern mining [7], and generators [8]. However, the
wide societal adoption of this technique has been hindered by
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its inability to consider the temporal occurrence information
of an item in a database. Tanbeer et al. [9] tried to solve this
problem by extending the FPM to discover periodic-frequent
patterns (PFPs) in a temporal database. An example of a PFP
is as follows:

{Milk,Beer} [support = 80%, periodicity = 2%].

The pattern indicates that items are sold every 2 hours with
80% support. Based on the identified PFP, the retailer can
send text reminders to customers on weekends, encouraging
them to purchase the associated items and providing
discounts as an incentive. This proactive approach aims
to enhance customer engagement, foster loyalty, and drive
sales. Furthermore, in the literature, the model of PFP
was extended to find local periodic patterns [10], periodic
sequential patterns [11], fuzzy PFPs [12], maximal PFPs [13],
recurring patterns [14], geo-referenced PFPs (GPFPs) [15],
fuzzy GPFPs [16] and stable periodic patterns [17], [18],
[19]. However, there are certain limitations of PFPM. The
two significant limitations of PFP are: First, generating too
many patterns that are uninteresting to the user. Secondly,
relying on min_sup and max_per constraints to extract the
desired patterns.

This paper presents a novel approach to address the above-
mentioned limitations in PFPM. Rather than relying on the
conventional min_sup and max_per constraints, we propose
utilizing a single constraint k to discover desired patterns.
This constraint represents the selection of the top-k most
PFPs. By adopting this approach, we mitigate the challenge
of selecting appropriate minSup and maxPer values, which
often require prior knowledge of the database characteristics.
Instead, the user can leverage the top-k PFPs, which are
helpful to the user in analyzing the pattern behavior.

The contributions of this paper are as follows:
1) This paper proposes a novel model of top-k PFPs that

may exist in a temporal database. Informally, a PFP is
a pattern that frequently occurs at regular intervals in
a temporal database. The top-k PFPs represent the k
number of PFPs with the lowest periodicity in the entire
database.

2) The space of an itemset lattice represents the search
space of finding PFPs. The size of this search space
is 2n − 1, where n represents the total number of items
in a temporal database. Reducing this enormous search
space is challenging without min_sup and max_per
constraints. Our model employs a new upper-bound
measure, dynamic maximum periodicity, to reduce the
search space effectively. Please note that our model’s
upper-bound value will automatically be calculated and
updated without human intervention.

3) This paper presents two novel pruning techniques to
reduce the computational cost of finding the PFPs.
Both of these techniques rely on dynamic maximum
periodicity. The objective of the first pruning technique
is to prune the search space in the itemset lattice
effectively. The objective of the second pruning

technique is to determine whether a pattern is periodic
or aperiodic in the database effectively. Traditionally,
the time complexity to determine whether a pattern is
periodic or aperiodic in the database is O(m), where m
represents the number of occurrences of a pattern in the
database.

4) An efficient single-pass algorithm using a best-first
search strategy, called top-k PFP Miner (k-PFPMiner),
is proposed to find all desired patterns in a database.

5) Experimental results on synthetic and real-world
databases demonstrate that our algorithm is memory
and runtime efficient and also highly scalable.

This paper is an expanded version of a previous conference
paper [20], providing a brief overview of the literature
on this topic. In this paper, we have extended the related
work by comprehensively reviewing the current literature.
Furthermore, we report new experimental findings that
demonstrate the superior performance of k-PFPMiner over
the naïve on various databases, regardless of the k value.
The rest of this paper is organized as follows. Section II

describes the relatedwork on finding top-k PFPs in databases.
Section III describes the proposed model to find top-k PFPs
in databases. Section IV describes the proposed algorithm to
discover the top-k PFPs. Section VI presents the experimental
results obtained. Finally, in section VII, we conclude and
discuss future research.

II. RELATED WORK
In this section, we briefly look at past studies about frequent
pattern mining, periodic-frequent pattern mining, and top-k
periodic-frequent pattern mining.

A. FREQUENT PATTERN MINING
Frequent pattern mining is a fundamental technique in the
field of big data analytics, finding extensive applications
across various domains such as bio-informatics [21], market
basket analysis [22], energy reduction in smart homes [23],
malware analysis [24], webpage click-stream analysis [25],
proof sequence analysis [26], and text analysis [27]. The
goal of frequent pattern mining is to discover patterns that
occur frequently in a given transactional database, enabling
valuable insights and knowledge extraction. Several well-
known algorithms, including Apriori [1], FP-growth [28],
and Eclat [29], have been developed to tackle the challenge
of finding frequent patterns efficiently. These algorithms
employ different strategies and have varying degrees of
scalability and efficiency, offering flexibility for different
data scenarios [27]. However, while frequent pattern mining
techniques have proven effective in uncovering commonly
occurring patterns, they may not adequately capture patterns
that exhibit consistent temporal behavior. Traditional fre-
quent pattern mining approaches focus solely on identifying
patterns that occur frequently, without considering the
temporal dimension of the data. This limitation hinders
their ability to detect patterns that occur consistently over
time or exhibit periodicity. To address this gap, researchers
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have proposed alternative techniques, such as temporal data
mining and periodic-frequent pattern mining, to specifically
target temporal patterns. These approaches take into account
the temporal variations and dependencies within the data,
allowing for the discovery of patterns that exhibit temporal
consistency or periodicity. By incorporating time-related
information into the mining process, these methods identify
valuable patterns that may have significant implications in
various domains, such as understanding customer behav-
ior over time or detecting recurring events in temporal
databases [9].

B. PERIODIC FREQUENT PATTERN MINING
Periodic-frequent pattern mining considers temporal patterns
that occur periodically or cyclically in databases. Tan-
beer et al. [9] proposed a novel algorithm, periodic frequent
pattern-growth, to identify periodic-frequent patterns (PFPs)
in transactional databases. Their algorithm utilizes the PF-
tree, a tree data structure with tail nodes storing transaction
identifiers for each pattern. Pruning involves moving the tail
node to the parent node, enabling efficient pattern storage.
PFPs are generated using a measure based on min_sup and
max_per . The authors claimed efficiency in their mining
process and demonstrated effective identification of PFPs in
large databases.

Kiran and Kitsuregawa [30] proposed the ExPF-growth
algorithm for identifying PFPs using the minimum periodic
ratio measure. The algorithm utilizes potential patterns and
employs an ExPF-list and a prefix tree to store transactional
identifiers. It recursively expands patterns, checking their
periodicity and support thresholds and pruning uninteresting
patterns. The ExPF-growth algorithm terminates when no
more patterns can be expanded or when all patterns have been
mined.

Kiran et al. [31], [32] proposed the PFP-growth++ algo-
rithm for mining PFPs from large transactional databases.
The algorithm utilizes the PF-tree++ data structure,
an extension of the PF-tree, to efficiently store patterns.
A significant contribution of the algorithm is the introduction
of local periodicity, which allows for early termination when
no new periodic patterns can be found. By leveraging the
PF-tree++ structure, local periodicity concept, and pruning
techniques, the PFP-growth++ algorithm can handle large
databases and reduce unnecessary computations.

Anirudh et al. [33] proposed PS-growth, a memory-
efficient algorithm for mining PFPs in sparse databases.
It uses periodic summaries to reduce search space and
memory usage. Transactions are divided into intervals based
on periodicity, and candidate patterns are generated using
these summaries. PS-growth achieves fastermining and lower
memory consumption by reducing the number of candidate
patterns at each level of the search tree.

Surana et al. [34] introduced the MaxCPF model for
discovering PFPs with constraints on maximum length or
size. They developed the MaxCPF-tree, a modified version

of the FP-tree, to efficiently mine these patterns. The
MaxCPF-tree stores pattern information in a compressed
form, reducing memory usage and improving efficiency.
They also proposed the MaxCPF-List to filter out false
positives during mining. This approach effectively identifies
frequent and periodic patterns while considering constraints.

Ravikumar et al. [35], [36] proposed PF-ECLAT, an exten-
sion of the ECLAT algorithm, for mining PFPs in columnar
temporal databases. It employs a list-based approach and
utilizes pruning techniques to efficiently discover interesting
patterns.

C. TOP-K PERIODIC PATTERN MINING
Top-k periodic-frequent pattern mining involves finding
the k most periodic-frequent patterns in a database.
Amphawan et al. [37] proposed MTKPP, a non-support
metric-based algorithm for discovering PFPs. It utilizes a
sliding window technique and a top-k list structure to identify
the k most frequent PFPs. MTKPP employs a best-first
strategy, pruning unlikely candidates until either k patterns
are found or no further pruning is possible. Its uniqueness
lies in not relying on a support metric, making it suitable for
diverse applications.

Viger et al. [17] proposed TSPIN to find the top-k stable
periodic patterns. It considers user-specified constraints
max_per , and maxLA in addition to k . It stores all the
transactions in SPP-tree and internal min_sup as 1. SPP-tree
is mined recursively, the lowest frequent pattern is removed
from the queue, and min_sup is raised to the least frequent
pattern in the remaining queue. However, the above studies
still require users to specify the other constraints in addition
to k .

III. MODEL OF TOP-K PERIODIC-FREQUENT ITEMSET
Let O denote the set of objects (or items). An itemset P ⊆ O
is referred to as an itemset or pattern. If an itemset contains
α, α ≥ 1, number of items, it is known as an α-pattern.
In a transaction, represented by tk = (ts, X ), the tuple
contains the timestamp ts indicating when the pattern X
occurred. A temporal database TDB over O is a collection
of transactions, specifically TDB = {tr1, · · · , trm}, where
m = |TDB| represents the number of transactions in TDB.
For a transaction trk = (ts, X ) with k ≥ 1 and a pattern
Z ⊆ X , it is said that Z occurs in trk (or trk contains Z ), and
the timestamp associated with this occurrence is denoted as
tsZ . Let TSZ = {tsZj , · · · , tsZk }, with j, k ∈ [1,m] and j ≤ k ,
be an ordered set of timestamps indicating the occurrences
of pattern Z in the temporal database TDB.
Example 1: Consider a set of items O = {p, q, r, s, t}.

Table 1 shows a temporal database constructed from these
items. We are interested in the pattern {r, p}, which we
represent as ‘rp’ for brevity. This pattern is referred to
as a 2-pattern due to the presence of two items. In the
given database, the pattern ‘rp’ appears at the timestamps
1, 3, 4, 6, 7, 8, and 9. Therefore, the list of timestamps

VOLUME 11, 2023 119035



P. Likhitha et al.: k-PFPMiner: Top-k Periodic Frequent Patterns in Big Temporal Databases

TABLE 1. Temporal database.

in which the pattern ‘rp’ occurs is denoted as TSrp =

{1, 3, 4, 6, 7, 8, 9}.
Definition 1 (Periodicity of Z): A period of Z in TDB is

calculated using the following three ways: (i) pZ1 = tsZa −

tsmin, (ii) pZi = tsZq − tsZp , where 2 ≤ i ≤ |TSZ | and a ≤

p ≤ q ≤ c represent the periods (or inter-arrivals) of Z in
the database, and (iii) pZ

|TSZ |+1 = tsmax − tsZc . The maximal
and minimal timestamps of all transactions in the database
are represented as tsmin and tsmax . Let PZ = pZ1 , pZ2 , · · · , pZk ,
where k = |TSZ | + 1, be the set of all periods of Z in the
temporal database. The periodicity of Z , denoted as per(Z ),
is defined as the maximum value among the periods in PZ ,
i.e., per(Z ) = max(pZ1 , pZ2 , · · · , pZk ).
Example 2: The periods for the pattern ‘rp’ are calculated

as follows: prp1 = 1 (= 1 − tsinitial), p
rp
2 = 2 (= 3 − 1),

prp3 = 1 (= 4 − 3), prp4 = 2 (= 6 − 4), prp5 = 1 (= 7 − 6),
prp6 = 1 (= 8 − 7), prp7 = 1 (= 9 − 8), and prp8 = 1 (=
tsfinal − 9), where tsinitial = 0 represents the timestamp of
the initial transaction and tsfinal = |TDB| = 10 represents
the timestamp of the final transaction in the database. The
periodicity of the pattern ‘rp,’ denoted as per(rp), is calcu-
lated as the maximum value among the periods, resulting in
per(rp) = max(1, 2, 1, 2, 1, 1, 1, 1) = 2.
Definition 2 (Top-K Periodic-Frequent Pattern X): Let

X1,X2, · · · ,Xk , · · · ,Xp, 1 ≤ k ≤ p ≤ 2m − 1, be an
ordered set of all patterns such that per(X1) ≤ per(X2) ≤

· · · ≤ per(Xk ) ≤ · · · ≤ per(Xp). A pattern Xa, 1 ≤ a ≤ p,
is considered a top-k periodic pattern if its periodicity is no
greater than the periodicity of pattern Xk in the database.
In other words, Xa is classified as a top-k periodic pattern
if per(Xa) ≤ per(Xk ).
Example 3: Let us assume that the current candidate top-

K periodic pattern list as {p, q, r, s, t}. If the per(rp) ≤

per(t), the pattern rp is considered as top-k periodic frequent
patterns.
Definition 3 (Problem Definition): The objective of top-

k periodic pattern mining in a temporal database (TDB) is
to identify the k periodic-frequent patterns with the lowest
periodicities. The goal is to focus specifically on these top-k
patterns rather than discovering all periodic-frequent patterns
in the database.

IV. OUR ALGORITHM
A. BASIC IDEA: DYNAMIC MAXIMUM PERIODICITY
To address the challenge of reducing the large search space
in top-k periodic-frequent pattern mining, we propose an
approach that involves the following steps:

• Create an empty list called the candidate periodic
pattern-list (cPP-List) and initialize a Max-heap data
structure with its root set to null.

• Scan the database and add the patterns to the cPP-
List. At the same time, update the Max-heap with the
periodicity values of these patterns.

• As the cPP-List grows, keep track of its size. Once the
size of the cPP-List reaches the desired value of k , set
the dynamic maximum periodicity (dMaxPer) equal to
the value stored at the root of the Max-heap.

• Prune the search space by applying the dMaxPer
constraint to the itemsets. Remove any patterns that do
not satisfy the constraint.

• If any pattern satisfies the constraint, add it to the cPP-
List by removing the existing k-pattern and updating
dMaxPer accordingly.

• Repeat this process until the entire search space is
explored.

By employing this approach, we can effectively reduce
the search space by dynamically updating the maximum
periodicity value and pruning patterns that do not meet the
constraint. The time complexity to determine the periodicity
of a pattern is O(1) for each pattern and O(n) for the entire
database, where n represents the number of timestamps or
frequency of a pattern in the database. This approach allows
us to focus on the most relevant top-k periodic-frequent
patterns, improving the efficiency and effectiveness of the
mining process. O(n)
Definition 4 (Dynamic Maximum Periodicity Constraint):

Let AP represent the set of all patterns in the database, where
AP = {X1,X2, · · · ,X2n−1} and n is the number of items. The
patterns explored by our algorithm so far are stored in the set
EP, a subset of the set of all patterns (EP ⊆ SP). Among the
patterns explored, we have a subset EPk that contains the top-
k candidate periodic patterns found up to this point, where
|EPk | = k . The dynamic maximum periodicity, denoted as
dMaxPer , measures the highest periodicity among all the
patterns in EPk . In other words, dMaxPer is calculated as
the maximum value of the periodicity (per) among all the
patterns in EPk : dMaxPer = max(per(Xp)|forallXpinEPk ).
Example 4: Given a set of all patterns in the database

AP = {p, q, r, s, t, pq, pr, · · · , pqrst}, and the set of
explored patterns until now EP = {p, q, r, s, t} which is
a subset of AP. If k = 5, then EPk represents the top-
5 candidate periodic patterns discovered so far, which is
EPk = p, q, r, s, t . The dMaxPer is calculated as the
maximum periodicity among the patterns in EPk . Let’s
consider the pattern rp as an example. The ts at which rp
occurs are TSrp = {1, 3, 4, 6, 7, 8, 9}, and the per(rp) = 2.
If we explore an additional pattern rp and update EP to
EP = {p, q, r, s, t, rp}, we need to determine if rp should
be included in the top-5 candidate periodic patterns. Since
per(rp) = 2 and dMaxPer = 4, we compare the periodicity
of rp with dMaxPer . As per(rp) is less than dMaxPer ,
we prune the pattern t from EP since its periodicity is higher
than that of rp. The updated EPk becomes {p, q, r, s, pr}, and
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FIGURE 1. Finding periodic-frequent patterns. (a) After scanning the first transaction. (b) After scanning the second transaction. (c) After scanning the
third transaction. (d) After scanning the fourth transaction. (e) After scanning all the transactions. (f) the final list of periodic-frequent items sorted in
ascending order of their periodicity .

FIGURE 2. Mining Top-K periodic patterns using DFS.

the new dMaxPer is calculated as the maximum periodicity
among the patterns in EPk , which is max(2, 2, 1, 3, 2) = 3.
By updating EP and dMaxPer , we ensure that the set of
top-K periodic-frequent patterns remains up-to-date with the
highest periodicities observed so far.

The constraint mentioned above states that for a pattern
to be considered a candidate top-k periodic pattern, its
periodicity must be less than the current value of dMaxPer .
This constraint serves as a criterion to determine the
minimum occurrences required for a pattern to be considered
a candidate top-k periodic-frequent pattern.

Property 1 (Pruning Technique): If the per(X ) is greater
than the current value of dMaxPer , it implies that X and
its supersets cannot be considered top-k periodic-frequent
patterns. In other words, if the periodicity of X exceeds
dMaxPer , the pattern occurs less frequently or exhibits a
longer time interval between occurrences than the existing
top-k periodic-frequent patterns.

The correctness of this property is based on Proper-
ties 2, 3, and Lemma 1. Our algorithm uses the above
pruning technique to discover top-k periodic patterns
effectively.
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Property 2: For a pattern X , if per(X ) > dMaxPer , then
X cannot be a top-k periodic pattern.
Lemma 1: For a pattern X , if per(X ) > dMaxPer , then X

cannot be a top-k periodic pattern.
Proof: The correctness is straightforward to prove from

Property 2.
Property 3: If X ⊂ Y , then per(X ) ≤ per(Y ) as

TSX ⊇ TSY .

V. K -PFPMINER
A. FINDING 1-LENGTH PERIODIC PATTERNS
The downward closure property of periodic-frequent patterns,
as demonstrated in Property 1, is a fundamental characteristic
that contributes to identifying top-k periodic patterns in a
temporal database. This property asserts that if a pattern
is deemed periodic-frequent, all of its subsets are also
periodic-frequent. Consequently, 1-length periodic-frequent
patterns hold significant importance in discovering top-k
periodic patterns. Algorithm 1 presents a systematic approach
that leverages the cPP-List to identify periodic-frequent
patterns. To provide an understanding of the algorithm’s
functionality, we will now delineate its operation using the
temporal database illustrated in Table 1, with the parameterK
set to 7.

The database is scanned sequentially to generate 1-length
periodic-frequent patterns. Consider the first transaction,
‘‘1:pqr’’, with the current timestamp tscur = 1. The items p,
q, and r are inserted into the cPP-List. Their corresponding
timestamps are set to 1, and the values ofP and TSl are also set
to 1. This process is described in lines 5 and 6 of Algorithm 1.
The cPP-List after scanning the first transaction is illustrated
in Figure 1(a). Moving on to the second transaction, ‘‘2:qrs’’,
with tscur = 2, the new item s is added to the cPP-List with its
timestamp set to 2. Similarly, the timestamps of the existing
items q and r are updated to 2. The values of P and TSl
are also adjusted accordingly. This process is carried out in
lines 7 and 8 of Algorithm 1. The resulting cPP-List after
scanning the second transaction is depicted in Figure 1(b).
No new items are added in the third transaction, ‘‘3:pqrs’’,
with tscur = 3. Therefore, the timestamps of the existing
items are updated. This step is executed in lines 7 and 8
of Algorithm 1. The resulting cPP-List after scanning the
third transaction is shown in Figure 1(c). Proceeding to the
fourth transaction, ‘‘4:pqrt’’, with tscur = 4, the new item
t is inserted into the cPP-List with its timestamp set to 4.
Additionally, the timestamps of the existing items are updated
accordingly. This process is performed in lines 7 and 8 of
Algorithm 1. The resulting cPP-List after scanning the fourth
transaction is displayed in Figure 1(d). A similar procedure
is repeated for the remaining transactions in the database.
The final cPP-List obtained after scanning the entire database
is demonstrated in Figure 1(e). The cPP-List is then sorted
in ascending order based on the periodicity of the patterns,
as shown in Figure 1(f). The top k patterns are stored in
the variable topkPatterns, and dMaxPer is calculated as the

maximum periodicity within the cPP-List, as outlined in
lines 13-15 of Algorithm 1.

Algorithm 1 PeriodicItems(Temporal Database (TDB), K (k)
1: Let cPP-list = (X ,TS-list(X )) be a dictionary that

records the temporal occurrence information of a pattern
in a TDB. Let TSl be a temporary list to record the times-
tamp of the last occurrence of an item in the database.
Let P be a temporary list to record the periodicity of an
item in the database. Let topkPatterns be a list to record
the top items with lowest periodicity. Let dMaxPer be a
variable to store the dynamic maximum period dMaxPer
among topkPatterns.

2: for each transaction tcur ∈ TDB do
3: Set tscur = tcur .ts;
4: for each item i ∈ tcur .X do
5: if i does not exit in cPP-List then
6: Insert i and its timestamp into the PFP-list. Set

TSl[i] = tscur and P[i] = (tscur − tsinitial);
7: else
8: Add i’s timestamp in the cPP-List. Update

TSl[i] = tscur and P[i] = max(P[i], (tscur −

TSl[i]));
9: end if
10: end for
11: end for
12: for each item i in cPP-List do
13: Calculate P[i] = max(Per[i], (tsfinal − TSl[i]));
14: end for
15: Sort the remaining items in the cPP-List in ascending

order of their periodicity.
16: for each item i in PFP-list do
17: if length(topkPatterns) < K : then
18: Store the item into topkPatterns
19: end if
20: end for
21: dMaxPer = max(periodicity of all items in topkPatterns)

22: Call k-PFPMiner(cPP-List).

1) FINDING TOP-K PERIODIC PATTERNS USING CPP-LIST
Algorithm 2 outlines the procedure for discovering top-
k periodic patterns in a database. Now, we will describe
the algorithm’s functioning using the recently generated
cPP-List.

We initiate the process by considering the first pattern in
the cPP-List, which is pattern r (line 2 in Algorithm 2). The
periodicity of r is recorded and displayed in Fig. 2(a). As r
is a periodic-frequent pattern, we proceed to its child node rp
and generate its TS-list by intersecting the TS-lists of r and p,
denoted as TSrp = TSr ∩ TSp (lines 3 and 4 in Algorithm 2).
The periodicity of rp is recorded and displayed in Fig. 2(b).
We then check if rp is a candidate periodic-frequent or
uninteresting pattern (line 6 in Algorithm 2). Since rp is a
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candidate periodic-frequent pattern, we proceed to check if
its periodicity (per(rp)) is less than dMaxPer , as defined
in Algorithm 3. We calculate dMaxPer as the maximum
periodicity among all the periodic-frequent patterns in the
current set of topkPatterns. Since rp satisfies the condition
of being a top-k periodic-frequent pattern, we proceed to its
child node rpq and generate its TS-list by intersecting the
TS-lists of rp and q, denoted as TSrpq = TSrp ∩ TSq. The
periodicity of rpq is recorded and displayed in Fig. 2(c).
We identify rpq as a periodic-frequent pattern and check
if it qualifies as a top-k periodic-frequent pattern. Once
again, we proceed to its child node rpqs and generate its
TS-list by intersecting the TS-lists of rpq and s, denoted as
TSrpqs = TSrpq ∩ TSs. As the periodicity of rpqs is greater
than dMaxPer , we prune it from the candidate periodic
patterns list, as shown in Fig. 2(d). We then move to the
other child of rp and generate its TS-list by intersecting
the TS-lists of rp and s, denoted as TSrps = TSrp ∩ TSs.
As the periodicity of rps is greater than dMaxPer , we prune it
from the candidate periodic-frequent patterns list, as shown
in Fig. 2(e). This process is repeated for the remaining
nodes in the set-enumeration tree to find all periodic-frequent
patterns. The final list of periodic-frequent patterns generated
from the temporal database in Table 1 is shown in Fig. 2(f).
This approach of finding periodic-frequent patterns using
the downward closure property is efficient as it effectively
reduces the search space and computational cost.

Algorithm 2 k-PFPMiner(cPP-List)
1: for each item i in cPP-List do
2: Set pi = ∅ and X = i;
3: for each item j that comes after i in the cPP-List do
4: Set Y = X ∪ j and TSY = TSX ∩ TS j;
5: Calculate periodicity of Y ;
6: if per(TSY ) ≤ dMaxPer then
7: Add Y to pi and Y is considered as candidate top-

k periodic-frequent itemset;
8: end if
9: Check(Y ,TSY )

(to check if pattern can make in to top-k periodic-
frequent pattern)

10: end for
11: k-PFPMiner(pi)
12: end for

Algorithm 3 Check(X , TS-List)
if per(TS − List) < dMaxPer then
Pop the Last pattern and insert X in topk − patterns.

end if
dMaxPer = max(periodicity of all items in topkPatterns)

B. TIME COMPLEXITY ANALYSIS
Suppose we are examining a database that stores temporal
information. This database contains a total of a transactions,

each corresponding to a specific time point. Across all
of these transactions, c unique items have been recorded.
Furthermore, the average transaction length is equal to b.
In this database, all items are deemed of interest and therefore
included in the analysis. Understanding the characteristics
of the database, including the number of transactions,
unique item count, and length of transactions, is crucial for
performing the complexity analysis.

Due to its effective computation and identification of
k−PFPs, the k−PFPMiner method makes significant con-
tributions to the field of pattern mining. The Algorithm 1
begins by calculating the per and storing ts of each item by
building the cPP-List. The current dMaxPer is updated as
the maximum periodicity of all the current top-k periodic-
frequent patterns. The cPP-List is sorted in ascending order
based on their per . The complexity of this initial Algorithm 1
is O(ab), where a is the number of transactions and b is the
average transaction length.

Once the one-length k−PFPs have been identified, we gen-
erate combinations of items to form larger k−PFPs. This
is accomplished using procedures outlined in Algorithm 2.
Algorithm 3 follows a two-step procedure. The first step
involves accessing two items and comparing their (d − 1)-
itemset timestamp lists to generate a d-itemset timestamp
list with a complexity of O(c2). The second step involves
calculating the dMaxPer of each itemset and discarding
the uninteresting patterns based on the user-specified k
parameter, which have a complexity of O(a). Overall, the
complexity of this Algorithm 2 is O(c2).
Finally, the entire complexity of finding all the k−PFPs

using k−PFPMiner is O(c2), which makes k−PFPMiner a
highly efficient method for pattern mining.

VI. EXPERIMENTAL RESULTS
We conducted an evaluation of our algorithm, k-PFPMiner,
for the task of discovering Top-k periodic-frequent patterns
in temporal databases. As no existing algorithm specifically
addresses this task with only the k constraint, our evaluation
aimed to assess the effectiveness and performance of k-
PFPMiner. We evaluated various databases, systematically
varying the value of k to gain insights into the algorithm’s
behavior and capabilities.

A. EXPERIMENTAL SETUP
Our k-PFPMiner algorithm was implemented in Python
3.7 and executed on a high-performance Gigabyte R282-z94
rack server machine. This server machine has two AMD
EPIC 7542 CPUs and 600 GB RAM, running the Ubuntu
Server OS 20.04. The experiments have used synthetic
(T10I4D100K, T20I6D10K) and real-world (Retail, BMS-
WebView-2, Chess, Pollution, and Kosarak) databases.

The synthetic databases, T10I4D100K and T20I6D100K,
were generated following the procedure described in [1].
The Retail database is a real-world database. The real-world
database named BMS-WebView-2 is sparse and contains
click-stream data of an e-commerce website for several
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TABLE 2. Statistics of the database.

FIGURE 3. Top-k most patterns by varying k in different databases.

FIGURE 4. Runtime evaluation on various databases by varying k .

months. It was used for the KDDCUP 2000 competition. The
Chess database is a high-dimensional real-world database

containing 75 items and 3196 transactions prepared from the
UCI chess database. The Kosarak database is an extensive
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FIGURE 5. Memory evaluation on various databases by varying k .

FIGURE 6. Scalability of k-PFPMiner.

clickstream data collection of 990,000 sequences from a
Hungarian news portal.

The Pollution database, on the other hand, is a high-
dimensional real-world database provided by the Japanese
Ministry of the Environment through the Atmospheric
Environmental Regional Observation System (AEROS) [38].
It aims to address air pollution issues. Each transaction in
this database contains information such as the timestamp in
hours and the station identifiers that have recorded PM2.5
values equal to or greater than 16 µg/m3. The Pollution
database comprises 1,600 unique items and 720 transactions.
The transaction lengths also vary in this database, with the
minimum, average, and maximum lengths being 11, 460, and
971 items, respectively.

These databases were chosen to evaluate our k-PFPMiner
algorithm’s performance and effectiveness in different sce-
narios and assess its scalability and applicability in both
synthetic and real-world contexts. We provide statistical
details for each database used in our experiments in Table 2.
The algorithms are available in Github [39] to verify the
repeatability of our experiments.

B. INFLUENCE OF THE K-PARAMETER ON THE
PERFORMANCE OF THE K-PFPMINER
In the first experiment, we varied the parameter k to assess
its impact on the performance of k-PFPMiner in terms of
runtime andmemory usage. The experiments were conducted
on the six databases: T10I4D100K, T20I6D100K, Retail,
BMS-WebView-2, Chess, and Pollution 3.

Fig. 3 illustrates the number of PFPs generated by the
naïve and k-PFPMiner algorithms over different databases
at varying k values. The Y-axis represents the number of
PFPs generated by each algorithm, while the X-axis denotes
the specific k value at which the patterns were gener-
ated. Based on this figure, the following observations can
be made:

• Firstly, the naïve and k-PFPMiner algorithms generate
an equal number of PFPs for each database. As a result,
both curves overlap one another.

• Secondly, an increase in the k threshold increases the
number of 3Ps generated. This can be attributed to the
fact that a higher k value results in more patterns that
can be extracted from the complete set of PFPs.
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The runtime results of the experiments are presented in
Figure 4, which provides an overview of the execution time
for different values of k . This graph allows us to analyze the
relationship between k and the runtime required to mine the
top-k periodic-frequent patterns.

In Fig. 4, the x-axis represents the values of the parameter
k , while the y-axis represents the execution time of the
k-PFPMiner algorithm. Based on this figure, the following
observations can be made:

• Firstly, increasing the value of k tends to increase
the runtime of the k-PFPMiner algorithm. This is
a reasonable observation since as k increases, more
patterns are discovered, and a larger number of itemsets
from the search space need to be considered to identify
the top-k periodic-frequent patterns. Consequently,
k-PFPMiner may need to evaluate more patterns to pop-
ulate the candidate set cPP-List, resulting in increased
computational time.

• Secondly, we observe that the k-PFPMiner algorithm
requires considerably less runtimewhen compared to the
naïve algorithm against all the databases (either sparse or
dense nature), regardless of the k value.

The memory results of the experiments are presented
in Figure 5, which provides an overview of the memory
consumption for different values of k . This graph allows us to
analyze the relationship between k and the memory required
to mine the top-k periodic-frequent patterns.

In Fig. 3, the x-axis represents the values of the parameter
k , while the y-axis represents the memory consumption of the
k-PFPMiner algorithm. Based on this figure, the following
observations can be made:

• As the value of k increases in the k-PFPMiner algorithm,
the memory consumption also tends to increase. This
is primarily because when k is set to larger values, the
algorithm needs to consider more itemsets to populate
the candidate set Qk . The process of evaluating and
storing these additional itemsets requires more memory
resources.

• k-PFPMiner algorithm requires significantly less mem-
ory than the naïve algorithm across all evaluated
databases, regardless of their density or sparsity and the
k value. Furthermore, this difference in memory usage
was exceptionally high at high k values.

C. INFLUENCE OF THE NUMBER OF TRANSACTIONS ON
K-PFPMINER PERFORMANCE
To assess the scalability of the proposed algorithm, we exper-
imented to measure its execution time and peak memory
usage as the number of transactions in the database was
varied. The real-world database kosarak was selected for this
experiment due to its many distinct items and transactions.
The database was partitioned into five parts, and the
algorithm’s performance was evaluated after adding each
part to the previously processed data. Figure 6a and 6b
respectively show the runtime and memory requirements
of k-PFPMiner algorithm at different database sizes when

k = 200. It is evident that both the execution time and
memory usage increase as the size of the database grows. This
observation is reasonable as larger databases tend to have
more itemsets, requiring additional processing time for their
evaluation.

VII. CONCLUSION AND FUTURE RESEARCH
Traditional algorithms for mining periodic-frequent patterns
often rely on manually setting thresholds for min_sup and
max_per , which can be challenging and may not yield
optimal results. This paper addresses these limitations by
proposing a novel model for discovering top-k periodic-
frequent patterns in temporal databases. These patterns repre-
sent the k most frequent patterns with the lowest periodicity
values across the entire database. Our model introduces a new
upper-boundmeasure called dynamicmaximum periodicity to
reduce the search space effectively. Importantly, this upper-
bound value is automatically calculated and updated without
human intervention, providing a more efficient and adaptive
approach. Furthermore, we have developed a novel pruning
technique that significantly reduces the time complexity
of identifying whether a pattern is periodic or aperiodic.
In the best case, this complexity has been reduced to O(1);
in the worst case, it is O(n). To efficiently discover all
desired patterns in the database, we propose an efficient
single-pass algorithm called top-k Periodic-Frequent Pattern
Miner (k-PFPMiner). This algorithm utilizes a best-first
search strategy, enabling it to effectively navigate the search
space and find the top-k periodic-frequent patterns in an
optimized manner. Extensive experimental evaluations have
been conducted using synthetic and real-world databases
to assess the performance of k-PFPMiner. The results
demonstrate that our algorithm is highly efficient and can
discover valuable patterns in temporal data. As for future
work, we will work on discovering top-k periodic-frequent
patterns in uncertain databases.
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