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ABSTRACT Hyperspectral band selection plays a key role for overcoming the curse of dimensionality in
the classification of hyperspectral remote sensing images (HSIs). Recently, clustering-based band selection
methods have demonstrated great potential to select informative and representative bands for hyperspectral
classification tasks. However, most clustering-based methods perform clustering directly on the original
high-dimensional data, which reduces their performance. To address this problem, a novel band selection
method called global-local consistency constrained deep embedded clustering (GLC-DEC) is proposed
in this paper. In GLC-DEC, to simultaneously learn the low-dimensional embedded representation and
cluster assignments of all bands in an HSI, the stacked autoencoder is integrated with the K-means method.
In addition, to reduce the adverse impact of a limited number of training samples available in HSIs, local
and global consistency constraints are imposed on the embedded representation so that discriminatively
consistent representation of all bands is learned. Specifically, local graph regularization and global graph
regularization are introduced into theGLC-DECmodel, bywhich the strong correlation between neighboring
bands and the manifold structure of all bands are fully exploited. Based on the clustering results provided by
GLC-DEC, a group of representative bands are selected by using the minimum noise method. Experimental
results on two real datasets demonstrate that the proposed GLC-DEC outperformed several state-of-the-art
methods.

INDEX TERMS Hyperspectral band selection, deep embedded clustering, stacked autoencoder,
representation learning, graph regularization.

I. INTRODUCTION
Hyperspectral remote sensing images (HSIs) usually consist
of hundreds of narrow and continuous bands, and thus
can provide rich spectral and spatial information of ground
objects. Currently, HSIs are applied in a wide range of
applications such as environmental protection [1], [2], [3],
anomaly detection [4], [5], [6], land cover analysis [7],
[8], image segmentation [9], and hyperspectral classifica-
tion [10], [11], [12]. For these applications, hyperspectral
classification is a vital task used to identify different land
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covers that have distinct spectral differences. However, the
high-dimensionality of an HSI cube causes the Hughes’
phenomenon [13], which may lead to performance degrada-
tion in hyperspectral classification applications. An effective
method to alleviate this problem is band selection, with
the aim of selecting a representative subset of bands for
hyperspectral classification. In contrast to feature extraction,
which may lose critical information of HSIs, band selection
is more physically meaningful as it effectively preserves the
original spectral information.

Band selection methods have been classified as supervised
[14], [15], [16], semisupervised [17], [18] and unsupervised
methods [19], [20], [21] according to the proportion of
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labeled and unlabeled samples in the training set. Compared
with supervised and semisupervised methods, which need
a certain number of labeled samples, unsupervised methods
present excellent prospects for application as they no longer
need any labelled samples [22]. In recent years, a large
number of unsupervised band selection methods have been
proposed by researchers. These methods can be classified
as three categories: searching-based, ranking-based, and
clustering-based methods. Searching-based methods choose
the target band subset by optimizing certain specific criteria.
Ranking-based methods generally employ defined metrics
to evaluate the significance of all bands, and then select a
group of bands with high ranking. To obtain discriminative
bands while reducing redundant information, clustering-
based methods perform band selection by grouping highly
similar bands into a set of clusters as well as selecting one
representative band in each cluster.

Currently, clustering-based band selection methods have
demonstrated great potential to solve the band selection
problem. However, most clustering-based methods perform
clustering directly on the original high-dimensional data,
which reduces their performance because the distance
measure becomes meaningless in high-dimensional space.
This oriented researchers to find the interpretable (dis-
)similarity between objects in embedded space [23]. Lately,
deep embedded clustering (DEC) has attracted much
attention as it can learn the embedded representation
and cluster assignments simultaneously. According to the
network structure being used, DEC can be divided into
autoencoder-based, generative-adversarial-network-based,
and variational-autoencoder-based methods [24]. Among
these methods, autoencoder-based methods are the most
common because they are easy to implement and have the
ability to avoid trivial solutions. Yang et al. [25] proposed a
deep clustering network (DCN), where a stacked autoencoder
(SAE) is integrated with the K-means method, allowing
the embedding representation to have a clustering-friendly
structure. Although existing DEC methods have exhibited
significant performance improvements, they are rarely used
in band selection tasks and require further study. In addition,
it remains challenging to obtain clustering results that are
applicable to band selection by designing effective objective
functions for DEC based on the prior information of HSIs.

To select a more representative band subset for hyperspec-
tral classification by improving DCN, we propose a novel
band selection method, namely global-local consistency
constrained deep embedded clustering (GLC-DEC). As there
are only a few hundred bands in a typical real HSI,
the embedded representation learned by DCN may have
significant difference for similar bands in the original data,
which reduces the effectiveness of clustering for band
selection. Tomaintain better consistency between the original
data and the embedded representation, we introduce the local
and global consistency constraints into the DCN model.
These constraints are designed based on the assumption that

there exist a strong correlation between neighboring bands
as well as a manifold structure between all bands of an
HSI. Consequently, the clustering results obtained by the
proposed GLC-DEC are expected to help select a more
representative subset of bands. Specifically, in GLC-DEC,
the prior correlation between neighboring bands is exploited
by imposing local consistency constraints on the embedded
representation via local graph regularization. In addition,
to make full use of the manifold structure between all
bands, global graph regularization is further introduced into
GLC-DEC to impose global consistency constraints on the
embedded representation, which contributes to achieving a
globally consistent representation of all bands. Then, the
minimum noise method is employed to select representative
bands from the clustering results. In the experiments, our
method is compared with seven representative methods on
two real datasets. The experimental results validate the
effectiveness of the proposedmethod. Themain contributions
of this paper are listed as follows.

• A deep embedded clustering-based band selection
method is proposed. Our method can simultaneously
learn the embedded representation and clustering assign-
ments, which enable the embedded representation to
have a clustering-friendly structure. To the best of our
knowledge, this is the first time that deep embedded
clustering is applied to band selection.

• We introduce the global and local consistency con-
straints into the deep embedded clustering. These
constraints are designed to make full use of the manifold
structure of HSIs and the prior information that there
exists strong correlation between neighboring bands.
Consequently, the connectivity from the original space
to the representation space can be preserved, which is
conducive to obtaining better embedded representation
for clustering.

• We evaluated the proposed GLC-DEC method on two
real hyperspectral datasets, and the performance of
GLC-DEC is compared with seven representative band
selection methods. The proposed method has been
demonstrated to be effective by the results of our
experiments.

II. RELATED WORK
The unsupervised band selection methods can be classified
into three categories: clustering-based, ranking-based, and
searching-based methods. Next, some representative band
selection methods will be briefly reviewed.

A. CLUSTERING-BASED METHODS
To select representative bands, the clustering-based meth-
ods usually first conduct clustering on the target HSI,
then select one representative band on each cluster. Typ-
ical methods include hypergraph spectral clustering [26],
multiscale superpixel-level group-clustering [27], and the
adaptive subspace partition strategy (ASPS) [28]. However,
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these methods perform clustering directly on the original
high-dimensional data, which reduces their performance
because the distance measure becomes meaningless in high-
dimensional space. Recently, several studies have worked
on finding the embedded representation of HSIs to obtain
effective cluster assignments for band selection. Sun et al.
[29] adopted an L2-norm-based regularizer to generate sparse
embedded representation of high dimensional hyperspectral
bands under the linear assumption, by which the subse-
quent cluster task can be performed on the embedded
representation. Wang et al. [30] proposed a region-aware
latent features fusion based clustering method. This method
employs superpixel segmentation to obtain multiple spatial
regions and creates the Laplacian matrix of each region.
Then, the low-dimensional feature representation of each
spatial region is obtained based on the corresponding
Laplacian matrix that reflects the band-wise similarity of the
corresponding region. Next, the shared feature representation
of an HSI can be generated by integrating all latent feature
representations corresponding to each region. To fully utilize
the spatial information, as well as jointly learn and fuse
the latent feature representations in a unified framework,
Wang et al. [31] employed a hierarchical strategy to learn
the low-dimensional discriminative feature representation of
each spatial region. Then, the information entropy is used
as a metric to select the representative bands based on
the unified feature representation. Recently, deep learning
techniques have been applied to band selection applications to
capture the inherent nonlinear structure of high-dimensional
data [32]. For instance, [33] applied deep convolutional
autoencoder to transform HSIs into embedded space in a
nonlinear way. Their work regards the representation learning
and clustering task as an independent phase, which may lead
to unfavorable representation for the subsequent clustering
task.

B. RANKING-BASED METHODS
This kind of method generally selects a group of represen-
tative bands with high ranking. To rank all bands, several
metrics such as variance, entropy, and information divergence
are used to assess the importance of all bands. For instance,
Chang et al. [34] employed principal component analysis to
evaluate the prioritization of bands. However, this method
neglected the redundancy between the bands. To address this
problem, the divergence-based band-decorrelation scheme
[35] was designed by discarding bands with differences
below a preset threshold. In addition, [36] designed a band
selection network, which assumes that all bands can be
sparsely reconstructed by some informative bands. Then, the
final bands is selected by ranking the learned sparse weights
of all bands. Sun et al. [37] proposed a concrete end-to-end
autoencoder-based unsupervised band selection framework
(CAE-UBS) by introducing concrete random variables into
the autoencoder. The representative bands are obtained by the
information entropy criterion. Since ranking-based methods

mainly concern the performance of individual bands and
ignore the relationship between different bands, the band
subsets given by these methods usually have a high level of
redundancy.

C. SEARCHING-BASED METHODS
The searching-based methods choose the target band subset
by optimizing certain specific criteria. Wang et al. [38]
proposed a method that regards band selection as a column
subset selection problem. It selects the column subset with
the largest volume as the final band subset. Geng et al. [39]
proposed a volume-gradient-based band selection method,
in which the computational complexity can be reduced by
avoiding explicitly calculating the volume. In [40], Zhu
et al. employed a structure-aware metric to evaluate the
significance of all bands, and then selected representative
bands by using dominant set extraction. Liu et al. [41]
proposed a band grouping-based sparse self-representation
band selection method. To be specific, they first divided all
bands into multiple non-overlapping band subsets. Next, the
representative bands is determined by selecting a subset that
has the smallest reconstruction error. In addition, Wan et
al. [42] evaluated the redundancy between bands by using
the fitness function based on information theory. Although
the searching-based methods have certain global search
capabilities, most searching-basedmethods usually have high
computational complexity since they deal with a nonlinear
optimization problem.

III. PROPOSED METHOD
Fig. 1 illustrates the framework of the proposed GLC-
DEC method. The model of GLC-DEC mainly consists
of the model of DCN, the local graph regularization,
and the global graph regularization. In DCN, the model
of SAE is integrated with that of K-means so that the
embedded representation and cluster assignments of all
bands in an HSI is simultaneously learned. In addition,
to maintain better consistency between the original data
and the embedded representation, we introduce the local
and global consistency constraints into the model of DCN.
Specifically, the prior correlation between neighboring bands
is exploited by imposing local consistency constraints on the
embedded representation using local graph regularization.
Meanwhile, to fully utilize the manifold structure between
all bands, global graph regularization is further introduced
into DCN to impose the global consistency constraints on
the embedded representation, which contributes to achieving
globally consistent representation of all bands. According to
the clustering results available fromGLC-DEC, theminimum
noise method is employed to select representative bands. Let
M ⊂ Rn be a d-dimensional manifold embedded in Rn,
where the original data are hypothesized to be located in.
Given that the encoder of SAE is expressed as f : M → Rd ,
and the decoder is represented by g : Rd

→ M, the objective
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FIGURE 1. Illustration of the framework of GLC-DEC method. The model of GLC-DEC mainly consists of the model of DCN, the local graph regularization,
and the global graph regularization. In DCN, the model of SAE is integrated with that of K-means so that the embedded representation and cluster
assignments of all bands in an HSI is simultaneously learned. In addition, to maintain better consistency between the original data and the embedded
representation, we introduce the local and global consistency constraints into the model of DCN. Specifically, the prior correlation between neighboring
bands is exploited by imposing local consistency constraints on the embedded representation using local graph regularization. Meanwhile, to make full
use of the manifold structure between all bands, global graph regularization is further introduced into DCN to impose the global consistency constraints
on the embedded representation, which contributes to achieving globally consistent representation of all bands. According to the clustering results
available from GLC-DEC, the minimum noise method is employed to select representative bands.

function of GLC-DEC can be defined as

J (f , g) = R(f , g) + λC(f ) + λlF(f ) + λgL(f ), (1)

whereR(f , g)+ λC(f ) represents the loss of DCN; F(f ) and
L(f ) represent the local graph regularization and the global
graph regularization, respectively, used to impose consistency
constraints on the space of function f; λ, λl and λg denote the
regularization parameters. Next, we will introduce the model
of GLC-DEC in detail.

A. DCN
The loss function of DCN [25] is composed of two parts,
namely the SAE loss and the clustering loss. Among them,
the SAE loss is utilized to acquire feature representations,
while the clustering loss encourages these features to possess
more discriminative properties for clustering. Specifically,
the network structure of SAE includes (S+1) fully connected
layers, where S denotes a positive even number. The first
S
2 + 1 layers of SAE function as the encoder used to generate
the embedded representation of the original data, while the
last S

2 + 1 layers form the decoder that reconstructs the

original data based on the output of the encoder. Given the
original HSI data X ∈ RM×N , with M and N denoting the
number of pixels and bands, respectively, the input of SAE
is expressed as H(0)

= X, where h(0)i = xi denotes the i-th
band. The output of each layer in SAE is represented as H(s),
s = 0, 1, . . . , S, with

h(s)i = 8(s)
(
W(s)h(s−1)

i + b(s)
)

, (2)

where 8(s)(·) indicates the activation function; W(s) denotes
the parameters between layers (s−1) and s; b(s) represents the
bias parameters. To generate an embedded representation of
the original HSI data, the encoder maps X into the potential
space, and the obtained embedded representation matrix is
expressed as

H
(
S
2

)
= [f (x1), f (x2), · · · , f (xN )] ∈ RB×N , (3)

where B denotes the dimension of the embedded representa-

tion h
( S2 )
i . Based on the output of the encoder, the output of the

decoder provides the reconstructed data, which is formulated
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as

H(S)
= [g(f (x1)), g(f (x2)), · · · , g(f (xN ))] ∈ RM×M . (4)

To better reconstruct the original data, the loss function of the
SAE is generally defined as

R(f , g) = ∥X − H(S)
∥
2
F , (5)

where
∣∣∣∣ · ∣∣∣∣F represents the Frobenius norm of matrices.

Although SAE can learn the embedded representation of
the original data, the generated embedded representation
is not necessarily conducive to clustering. To jointly learn
the cluster assignments and embedded representation, DCN
integrates the loss function of K-means into SAE. More
formally, the objective function of DCN can be given by [25]

J (f , g)

= R(f , g) + λC(f ) = ∥X − H(S)
∥
2
F + λ∥H

(
S
2

)
− ZA∥

2
F ,

(6)

where Z = [z1, z2, . . . , zc, . . . , zC ] ∈ RB×C represents the
matrix formed by C centroids, with zc denoting the centroid
of the c-th cluster; and A ∈ RC×N denotes the clustering
assignments matrix in which each column has only one
nonzero element. Note that to jointly optimize the objective
function of SAE and K-means according to Equation (6),
the embedded representation generated by the encoder is
regarded as the input of K-means in each iteration of the
optimization process of DCN.

B. CONSTRAINTS FOR CONSISTENT REPRESENTATION
Although the DCN model in Equation (6) can learn the
embedded representation with a clustering-friendly structure,
it neglects to exploit the prior information of HSIs. This
may limit the effectiveness of clustering results for band
selection. To address this problem, we impose two constraints
on the embedded representation by designing effective
regularization according to the assumption that there exist
strong correlation between neighboring bands as well as
manifold structure among all bands. Specifically, to promote
the locally consistent representation between neighboring
bands, we design an local graph regularization for DCN.
Furthermore, aiming at learning the representation with
global consistency based on the manifold structure of all
bands, we introduce a global graph regularization into the
model of DCN.

1) GLOBAL CONSISTENCY CONSTRAINT
To preserve the global consistency of representation based on
the manifold structure of all bands, we design a global graph
regularization for DCN. This regularization is proposed on
the basis of themanifold assumption that the low-dimensional
embedded representations of two data bands are similar if
they are close to each other in the original geometric space.
According to [43], the manifold structure of HSIs can be
effectively captured by a K -nearest neighbor graph, in which

each vertex corresponds to a band. Accordingly, given an
HSI matrix X = {x1, x2, . . . , xN }, we construct a K -nearest
neighbor graph G1 = (V1,E1), where V1 = {x1, x2, . . . , xN }

denotes the vertex set of G1, while E1 represents the edge set
ofG1. Then, each edge (xi, xj) in E1 is constructed as follows:
for each band xi, we find a band xj from xi’s K -nearest
neighbors based on the Euclidean distance in the original
space. To measure the similarity between xi and its neighbor
xj, we calculated a weight for the edge (xi, xj) by using the
heat kernel weighting strategy

Oij = e−
∥xi−xj∥

2

σ , (7)

where O ∈ RN×N represents the weight matrix [44]. Based
on the matrix O, the global graph regularization is expressed
as

L(f ) =

N∑
i,j=1

∥h

(
S
2

)
i − h

(
S
2

)
j ∥

2Oij = Tr

(
H
(
S
2

)
LH

(
S
2

)T)
,

(8)

where Tr(·) denotes the trace of matrices, and L = D − O
indicates the Laplace matrix, with D denoting the diagonal
matrix whose diagonal entry is expressed by

Dii =

∑
j

Oij. (9)

With the introduced global graph regularization, the embed-
ded representation learned by the encoder is expected to
preserve better global consistency between each band and its
neighbors.

2) LOCAL CONSISTENCY CONSTRAINT
In this study, to maintain the local consistency between the
embedded representation of adjacent bands, we introduced
the local graph regularization into DCN. This regularization
is designed based on the assumption that neighbouring
bands are strongly correlated with each other. Accordingly,
given an HSI matrix X = {x1, x2, . . . , xN }, we construct
a bipartite graph G2 = (V2,E2), in which V2 =

{x1, x2, . . . , xN ,u1,u2, . . . ,uN } denotes the vertex collec-
tion ofG2, E2 = {(x1,u1), (x1,u1), . . . , (xN ,uN )} represents
the set of edges of G2. In the set V2, ui denotes the average
vector of xi−1 and xi+1. To measure the similarity between xi
and ui, a weight ωi is calculated for each edge (xi,ui), where
i = 1, 2, . . . ,N . Fig. 2 shows an illustration of the bipartite
graph G2. To facilitate the calculation of the weights of G2,
we constructed the matrix

X̄ =
[
x1, x2, . . . , xN ,u1,u2, . . . ,uN

]
. (10)

Based on X̄, the weight ωi is defined by the heat kernel
weighting strategy

ωi = e−
∥X̄:,i−X̄:,i+N∥

2

σ . (11)
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FIGURE 2. Illustration of the bipartite graph G2.

Accordingly, the local graph regularization can be expressed
as

F(f ) = Tr
(
QPQT

)
, (12)

with

Q =

[
h

(
S
2

)
1 ,h

(
S
2

)
2 , . . . ,h

(
S
2

)
N , r1, r2, . . . , rN

]
, (13)

where h

(
S
2

)
i represents the embedded representation of band

xi, and ri denotes the average vector of h

(
S
2

)
i−1 and h

(
S
2

)
i+1 ;

P = D̄ − Ō indicates the Laplace matrix, in which Ō ∈

R2N×2N represents the weight matrix with Ōi,i+N = ωi,
i = 1, 2, . . . ,N , and D̄ ∈ R2N×2N denotes a diagonal
matrix with D̄nn =

∑
m Ōnj, m = 1, 2, . . . , 2N . Compared

with global graph regularization, which is used to enforce
the global consistency of embedded representation based
on the manifold structure, the local graph regularization
can impose the similarity constraint between the embedded
representation of each band and the average of the embedded
representation of its neighboring bands.

C. OVERALL MODEL
The overall objective function of GLC-DEC is expressed as

J (f , g) =R(f , g) + λC(f ) + λlF(f ) + λgL(f )

= ∥X − H(S)
∥
2
F + λ∥H

(
S
2

)
− ZA∥

2
F

+λlTr
(
QPQT

)
+ λgTr

(
H
(
S
2

)
LH

(
S
2

)T)
,

(14)

where λl and λg denote the regularization parameters.
The advantage of GLC-DEC expressed in Equation (14)

lies in that by introducing local and global consistency
constraints, the strong correlation between neighboring bands
and the manifold structure of all bands can be effectively
exploited. Consequently, the connectivity between the origi-
nal space and the representation space can be increased. This
is conducive to obtaining better embedded representations for
clustering. Based on the above analysis, the algorithm steps
of GLC-DEC is listed in Algorithm 1.

Algorithm 1 GLC-DEC Algorithm for Band Selection

1: Input: HSI data X ∈ RM×N , the number of selected
bands C , maximum iterations T, and regularization
coefficients λ, λl , and λg.

2: Output: The band subset Υ .
3: Compute the Laplace matrix L of global graph regular-

ization by Equation (7) and Equation (9);
4: Calculate the Laplace matrix P of local graph regulariza-

tion by Equation (11);
5: Random initialize W and b according to the given

network configure;
6: Pretrain SAE and obtain initial clustering centroids by

running K-means in the embedded space;
7: while model is not convergent or maximum iterations T

is not met do

8: Obtain the embedded representation H
(
S
2

)
by

Equation (3);
9: Update clustering assignments matrix A and cluster

centroids matrix Z;
10: Compute the K-means clustering loss;
11: Compute the local graph regularization loss by

Equation (12);
12: Calculate the global graph regularization loss by

Equation (8);
13: Obtain the reconstruction data H(S) according to

Equation (4);
14: Calculate the reconstruction loss of SAE according to

Equation (5);
15: UpdateW and b via Equation (14);
16: end while
17: Select the representative band subset Υ using minimum

noise method;
18: return Υ .

D. BAND SELECTION
Many conventional clustering-based methods perform band
selection using criteria based on information divergence or
band distance from the centroid to each band in a cluster.
However, these methods do not consider noise interference,
which limits the performance of hyperspectral classification
when the selected bands contain significant noise. To address
this problem, the minimum noise method [28] is applied to
select representative bands based on the obtained clustering
results. Specifically, each band in a cluster is split into η

blocks, each of which hasR×R pixels. Next, the noise level of
each band is evaluated by calculating multiple local variances
based on the blocks of the corresponding band. The local
variance LV of each block is calculated by

LV =
1(

R2 − 1
) R2∑
i=1

(Ti − LM)2 , (15)

with

LM =
1
R2

R2∑
i=1

Ti, (16)
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TABLE 1. Detail information about two real HSI datasets.

where LM indicates the average of all pixels in the current
block and Ti indicates the value of the i-th pixel in this block.
Next, based on the difference between the maximum and
minimum variance of η blocks, k bins with equal width are
divided by

k = (max LV − minLV)/β, (17)

where maxLV and min LV denote the maximum and
minimumvariance, respectively, while β denotes the partition
granularity. Then, according to the value of the local variance,
each block is allocated to one of these bins. The bin that
contains the most blocks is an indicator of the approximate
level of noise in the current band. Finally, according to the
noise estimate in each band, a subset of bands is obtained by
selecting a band with the minimum noise in each cluster.

IV. RESULTS
We tested the proposed GLC-DEC method on two real HSI
datasets, and the performance of GLC-DEC is compared with
seven representative band selection approaches: maximum-
variance principal component analysis (MVPCA) [34],
enhanced fast density-peak-based clustering (E-FDPC) [45],
ASPS [28], deep subspace clustering (DSC) [33], region-
aware hierarchical latent feature representation learning-
guided clustering (HLFC) [31], band selection network
(BS-Net) [36], CAE-UBS [37].

A. DATASETS
Two real HSI datasets listed in Table 1 were used to
evaluate our method. Fig. 3 shows the pseudocolor images
corresponding to these two datasets.

The Indian Pines dataset was collected by an airborne
visible/infrared imaging spectrometer in 1992 at a test site
in northwest Indiana, USA. This dataset contained 145 ×

145 pixels, with each pixel comprising 220 spectral bands.
Before the experiments, bands corresponded to the water
absorption regions, including bands with numbers [104-108],
[150-163], and 220, were deleted, and the remaining
200 bands were used. This scene contained 16 categories of
objects. Table 2 shows the number of training and testing
samples in each class of the Indian Pines dataset in our
experiments.

The Pavia Centre dataset was acquired by the ROSIS
sensor over Pavia in northern Italy. This dataset contained
102 spectral bands with an image size of 1096 × 715 pixels.
The spatial resolution of this scene reaches 1.3 m. In our
experiments, we selected a subscene located within [250-394,
400-544] of the Pavia Centre scene to evaluate our proposed
method. This subscene contained 145× 145 pixels and seven

FIGURE 3. Pseudocolor images of two real HSI datasets. (a) Indian Pines.
(b) Pavia Centre.

TABLE 2. The number of training and testing samples in each class of
Indian Pines dataset.

TABLE 3. The number of training and testing samples in each class of
Pavia Centre dataset.

classes. In our experiments, the number of training and testing
samples in each class of the Pavia Centre dataset are shown
in Table 3.

B. COMPARISON METHODS
Our proposed GLC-DEC is compared with seven benchmark
methods, and their characteristics are summarized below:

1. E-FDPC [45]: E-FDPC belongs to the clustering-based
band selection method. It can select representative bands
by introducing the weighted local density and distance into
FDPC, as well as adjust the representative bands via an
exponential-based learning rule.

2. ASPS [28]: ASPS also belongs to the clustering-based
band selection method. It first divided the 3D HSI cube into
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multiple subcubes by conducting clustering on an HSI. After
that, ASPS introduces local variance to evaluate the noise of
bands. Lastly, the bands subset is generated by selecting a
band with the lowest noise from each cluster.

3. DSC [33]: DSC is a clustering-based method with
two phases. It first conducted clustering on the latent
representation learned by the convolutional autoencoder.
Then, the representative bands are obtained by selecting a
band that is close to the cluster center in each cluster.

4. HLFC [31]: HLFC belongs to the clustering-based band
selection method. It first employed superpixel segmentation
to obtain multiple spatial regions. Then, Laplacian matrices
that can learn latent features of all regions using the
hierarchical strategy are generated based on the graphs
that reflect the band-wise similarity of each region. The
unified feature representation of an HSI can be generated by
integrating all latent features corresponding to each region.
Finally, the optimal band subset is formed by selecting a band
that has maximum information entropy in each cluster given
by k-means.

5. BS-Net [36]: BS-Net is a ranking-based method, which
regards band selection as a band reconstruction task with the
assumption that each band is sparsely reconstructed by some
informative bands. Based on the learned sparse weights of
bands, the final bands are selected by ranking the average
band weight of each band.

6. CAE-UBS [37]: CAE-UBS is a ranking-based method,
which proposed a concrete autoencoder by introducing
concrete random variables into the autoencoder. Based on the
weights of the concrete autoencoder, CAE-UBS can generate
candidates for band selection. Then, the representative bands
is chosen by the information entropy criterion.

7. MVPCA [34]: MVPCA belongs to the ranking-based
method. It first estimates the priority of all bands via the
definition of a variance-based band power ratio, and then
regards the bands that have the high priority as representative
bands.

C. EXPERIMENTAL SETUP
To compare the performance of all the methods, we used
the classification accuracy given by support vector machine
(SVM) and K-nearest-neighbor (KNN) classifiers as the
performance metric. In our experiments, we select the appro-
priate proportion of training samples by cross-validation.
According to the result of cross-validation, as shown in Tables
2–3, we randomly choose 20% of samples from each class as
the training data, while keeping the remaining 80% samples
as the testing data. To demonstrate the overall accuracy of
all methods, we tested them on the two datasets while using
different amounts of bands (5-50 with an interval of 5). Note
that we evaluated the performance of all methods using three
accuracy measures: overall accuracy (OA), average overall
accuracy (AOA), and kappa coefficient (Kappa).

We implemented GLC-DEC method using the PyTorch
platform. The encoder part of SAE has three hidden layers
which include 700, 100 and 20 neurons, respectively. The

decoding network has a mirror structure. The learning rate
was 1.0 × 10−4 and the maximum iterations T was 500.
Three regularization parameters were set to λ = 0.05,
λg = 10, 000, and λl = 100, respectively. The network and
parameter settings were the same for both the Indian Pines
and Pavia Centre datasets. According to reference [28], the
relevant parameters in the minimum noise method were set
to η = 841, R = 5, β = 3, and k = 5 on the two datasets.

D. EXPERIMENTAL RESULTS
The AOA and Kappa values calculated based on the results
given by SVM and KNN on Indian Pines and Pavia Centre
datasets are compared in Fig. 4 and Fig. 5, respectively.
It is obvious that GLC-DEC exhibits the best performance
on both datasets. With the SVM classifier, HLFC achieved
the second-best performance. Meanwhile, ASPS provided
the second-best performance with the KNN classifier.
In addition, Fig. 6 (a) and (b) show the OA values of SVM
and KNN, respectively, when all methods were tested on the
Indian Pines dataset. Concerning the Pavia Centre dataset,
Fig. 7 (a) and (b) present the OA curves corresponding to
SVM and KNN. Note that the OA curves in Fig. 6 and Fig. 7
show the performance of all the methods when they yielded
5-50 selected bands with an interval of 5.

To further evaluate the performance of GLC-DEC, the
classification accuracy for each class on the two datasets
using 20 selected bands is listed in Tables 4–5. The optimal
values are indicated in red bold font, while the second-
best values are indicated in blue italic font. According to
Tables 4–5, it can be seen that some band selection methods
are slightly unstable on different datasets. For instance, BS-
Net performs better on the Indian Pines dataset than on the
Pavia Centre dataset, the same trend is also observed for
the DSC method. Moreover, GLC-DEC provides the best or
second-best performance in most cases, which demonstrates
that our method has superior performance on both datasets.
In addition, detailed analysis of the OA values for all methods
on the Indian Pines and Pavia Centre datasets is given as
follows.

On the Indian Pines dataset, as illustrated in Fig. 6 (a)
and (b), our proposed GLC-DEC method outperformed all
the alternatives when using the SVM and KNN classifier.
Especially, when selecting 5 and 15 bands, our method
exhibited a significant advantage. According to Fig. 6 (a),
we can see that the OA value of GLC-DEC improves by
6% over the second-best method when selecting 5 bands.
As shown in Fig. 6 (b), with the KNN classifier, GLC-DEC
outperforms the second-best method by 2% when 15 bands
were selected.

As to the Pavia Centre dataset, we can see from Fig. 7
(a) that our proposed GLC-DEC method outperforms other
methods with the SVM classifier except for the case that
10 and 15 bands are selected. Although HLFC performs
similarly to GLC-DEC when selecting 10 and 15 bands,
GEC-DEC performs slightly better at the other bands.
As shown in Fig. 7 (b), MVPCA and DSC had lower

129716 VOLUME 11, 2023



S. Ning, W. Wang: GLC-DEC for Hyperspectral Band Selection

TABLE 4. The comparison of classification accuracy of all methods for each class of the Indian Pines dataset, where GLC-DEC is our method and larger
values indicate better performance.

TABLE 5. The comparison of classification accuracy of all methods for each class of the Pavia Centre dataset, where GLC-DEC is our method and larger
values indicate better performance.

FIGURE 4. Average Overall accuracy (AOA) on two datasets for seven band selection methods.

performance, while GLC-DEC has higher OA values on all
bands.

In addition, Fig. 8 and Fig. 9 compare the ground truth
classification information to the classification maps based
on GLC-DEC when 20 bands were selected. These figures
demonstrate the superior classification of the GLC-DEC
method for both datasets. It is worth noting that only
20 selected bands were used, which account for 10% and
20% of the original Indian Pines and Pavia Centre datasets,
respectively. Thus, our proposed method can reduce a lot of

data redundancy while maintaining satisfactory classification
results for HSIs.

V. DISCUSSION
According to the performance comparison as illustrated in
Fig. 6 and Fig. 7, it can be observed that the amount of
selected bands has a significant impact on the classification
performance. Specifically, we can see form Fig. 6 and Fig. 7
that the OA values rise slowly or even decreases when the
selected bands reached a certain number instead of keeping
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FIGURE 5. Kappa coefficient (Kappa) on two datasets for seven band selection methods.

FIGURE 6. Overall accuracy (OA) for the support vector machine (SVM) and K-nearest-neighbor (KNN) classifiers on the Indian Pines dataset
for different numbers of bands.

FIGURE 7. Overall accuracy (OA) for the support vector machine (SVM) and K-nearest-neighbor (KNN) classifiers on the Pavia Centre dataset
for different numbers of bands.

significantly rising with the increasing of selected bands. Pre-
vious studies have also shown that the performance classifi-
cation is not exactly proportional to the amount of bands [46].

This can be interpreted as more bands leading to more redun-
dancy. Therefore, selecting a reasonable number of bands is
necessary to achieve optimum classification performance.
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FIGURE 8. Ground truth map and classification maps generated by GLC-DEC using two classifiers on the Indian Pines dataset.
(a) Ground truth. (b) GLC-DEC by SVM. (c) GLC-DEC by KNN.

FIGURE 9. Ground truth map and classification maps generated by GLC-DEC using two classifiers on the Pavia Centre dataset.
(a) Ground truth. (b) GLC-DEC by SVM. (c) GLC-DEC by KNN.

The advantage of ourmethod lies in that the performance of
GLC-DEC has superior performance on different classifiers,
and is robust to the number of selected bands. As shown
in Fig. 6 and Fig. 7, our method is optimal with SVM
and KNN classifiers when the band is selected in the range
5-50 with an interval of 5. Compared with ranking-based
methods which neglect to consider the similarity between
the selected bands, our method chooses one band from each
cluster, which can avoid high similarity among the selected
bands. Compared with other clustering-based methods (i.e.,
E-FDPC, ASPS, DSC, and HLFC), our method has better
performance because GLC-DEC can not only jointly learn
embedded representation and clustering assignments of all
bands, but also consider the similarity between neighboring
bands and manifold structure of HSIs.

Our study also has some limitations. On the one hand,
the conventional K-means clustering method is used in the
GLC-DEC method, while the performance sensitivity of

our method to different clustering methods (e.g., spectral
clustering and Gaussian mixture models) deserves further
investigation. On the other hand, although theminimum noise
method considers the noise interference to band selection,
the affect of noise is not considered in our proposed model.
In future studies, we will explore the deep embedded
clustering based on other clustering methods and noise
modeling to obtain more effective clustering results for band
selection.

VI. CONCLUSION
In this paper, we proposed a novel hyperspectral band
selection method based on the deep embedded clustering.
Compared with conventional clustering-based band selection
methods, our proposed method can achieve more effective
clustering results for band selection by simultaneously learn-
ing the embedded representation and cluster assignments.
Specifically, by introducing consistency-related constraints
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into the DCN model, the strong correlation between neigh-
boring bands and the manifold structure of all bands of HSIs
are fully exploited. Consequently, the obtained clustering
results achieved by our proposed method are more applicable
to the task of band selection. The experimental results on
two real datasets demonstrated that our method outperformed
seven state-of-the-art methods.

REFERENCES
[1] A. C. Curcio, L. Barbero, and G. Peralta, ‘‘UAV-hyperspectral imaging to

estimate species distribution in salt marshes: A case study in the Cadiz Bay
(SW Spain),’’ Remote Sens., vol. 15, no. 5, p. 1419, Mar. 2023.

[2] Z. Li et al., ‘‘In-orbit test of the polarized scanning atmospheric
corrector (PSAC) onboard Chinese environmental protection and disaster
monitoring satellite constellation HJ-2 A/B,’’ IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 4108217.

[3] Z. Huang, W. Huang, S. Li, B. Ni, Y. Zhang, M. Wang, M. Chen, and
F. Zhu, ‘‘Inversion evaluation of rare Earth elements in soil by visible-
shortwave infrared spectroscopy,’’ Remote Sens., vol. 13, no. 23, p. 4886,
Dec. 2021.

[4] Y. Gao, T. Cheng, and B. Wang, ‘‘Nonlinear anomaly detection based on
spectral–spatial composite kernel for hyperspectral images,’’ IEEEGeosci.
Remote Sens. Lett., vol. 18, no. 7, pp. 1269–1273, Jul. 2021.

[5] L. Zhuang, L. Gao, B. Zhang, X. Fu, and J. M. Bioucas-Dias,
‘‘Hyperspectral image denoising and anomaly detection based on low-rank
and sparse representations,’’ IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5500117.

[6] C.-I. Chang, ‘‘Target-to-anomaly conversion for hyperspectral anomaly
detection,’’ IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5540428.

[7] N. Dahiya, S. Singh, S. Gupta, A. Rajab, M. Hamdi, M. Elmagzoub,
A. Sulaiman, and A. Shaikh, ‘‘Detection of multitemporal changes
with artificial neural network-based change detection algorithm using
hyperspectral dataset,’’ Remote Sens., vol. 15, no. 5, p. 1326, Feb. 2023.

[8] Z. Feng, S. Yang, M. Wang, and L. Jiao, ‘‘Learning dual geometric
low-rank structure for semisupervised hyperspectral image classification,’’
IEEE Trans. Cybern., vol. 51, no. 1, pp. 346–358, Jan. 2021.

[9] J. Nalepa, M. Myller, Y. Imai, K.-I. Honda, T. Takeda, and M.
Antoniak, ‘‘Unsupervised segmentation of hyperspectral images using 3-
D convolutional autoencoders,’’ IEEE Geosci. Remote Sens. Lett., vol. 17,
no. 11, pp. 1948–1952, Nov. 2020.

[10] C. Zhao, B. Qin, S. Feng, W. Zhu, L. Zhang, and J. Ren, ‘‘An unsupervised
domain adaptation method towards multi-level features and decision
boundaries for cross-scene hyperspectral image classification,’’ IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5546216.

[11] T. Alipour-Fard, M. E. Paoletti, J. M. Haut, H. Arefi, J. Plaza, and
A. Plaza, ‘‘Multibranch selective kernel networks for hyperspectral
image classification,’’ IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6,
pp. 1089–1093, Jun. 2021.

[12] W. Wang, W. Wang, and H. Liu, ‘‘Correlation-guided ensemble clustering
for hyperspectral band selection,’’ Remote Sens., vol. 14, no. 5, p. 1156,
Feb. 2022.

[13] Z. Dou, K. Gao, X. Zhang, H. Wang, and L. Han, ‘‘Band selection of
hyperspectral images using attention-based autoencoders,’’ IEEE Geosci.
Remote Sens. Lett., vol. 18, no. 1, pp. 147–151, Jan. 2021.

[14] H. Yang, M. Chen, G. Wu, J. Wang, Y. Wang, and Z. Hong, ‘‘Dou-
ble deep Q-network for hyperspectral image band selection in land
cover classification applications,’’ Remote Sens., vol. 15, no. 3, p. 682,
Jan. 2023.

[15] C. He, Y. Zhang, andD. Gong, ‘‘A pseudo-label guided artificial bee colony
algorithm for hyperspectral band selection,’’ Remote Sens., vol. 12, no. 20,
p. 3456, Oct. 2020.

[16] M. Baisantry, A. K. Sao, and D. P. Shukla, ‘‘Discriminative spectral–
spatial feature extraction-based band selection for hyperspectral image
classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5518014.

[17] F. He, F. Nie, R. Wang, W. Jia, F. Zhang, and X. Li, ‘‘Semisupervised band
selection with graph optimization for hyperspectral image classification,’’
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 12, pp. 10298–10311,
Dec. 2021.

[18] J. Feng, L. Jiao, F. Liu, T. Sun, and X. Zhang, ‘‘Mutual-information-based
semi-supervised hyperspectral band selection with high discrimination,
high information, and low redundancy,’’ IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 5, pp. 2956–2969, May 2015.

[19] M. Habermann, E. H. Shiguemori, and V. Frémont, ‘‘Unsupervised
cluster-wise hyperspectral band selection for classification,’’Remote Sens.,
vol. 14, no. 21, p. 5374, Oct. 2022.

[20] Y. Liu, X. Li, Z. Hua, and L. Zhao, ‘‘EBARec-BS: Effective band attention
reconstruction network for hyperspectral imagery band selection,’’ Remote
Sens., vol. 13, no. 18, p. 3602, Sep. 2021.

[21] Z. Zhang, D. Wang, X. Sun, L. Zhuang, R. Liu, and L. Ni, ‘‘Spatial
sampling and grouping information entropy strategy based on kernel fuzzy
C-means clustering method for hyperspectral band selection,’’ Remote
Sens., vol. 14, no. 19, p. 5058, Oct. 2022.

[22] Q. Wang, F. Zhang, and X. Li, ‘‘Optimal clustering framework for
hyperspectral band selection,’’ IEEE Trans. Geosci. Remote Sens., vol. 56,
no. 10, pp. 5910–5922, Oct. 2018.

[23] I. Assent, ‘‘Clustering high dimensional data,’’ Wiley Interdiscipl. Rev.,
Data Mining Knowl. Discovery, vol. 2, no. 4, pp. 340–350, Jun. 2012.

[24] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, ‘‘A survey
of clustering with deep learning: From the perspective of network
architecture,’’ IEEE Access, vol. 6, pp. 39501–39514, 2018.

[25] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, ‘‘Towards K-means-
friendly spaces: Simultaneous deep learning and clustering,’’ in Proc. Int.
Conf. Mach. Learn., 2017, pp. 3861–3870.

[26] J. Wang, H. Wang, Z. Ma, L. Wang, Q. Wang, and X. Li, ‘‘Unsupervised
hyperspectral band selection based on hypergraph spectral clustering,’’
IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[27] S. Jia, Y. Yuan, N. Li, J. Liao, Q. Huang, X. Jia, and M. Xu, ‘‘A
multiscale superpixel-level group clustering framework for hyperspectral
band selection,’’ IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5523418.

[28] Q. Wang, Q. Li, and X. Li, ‘‘Hyperspectral band selection via adaptive
subspace partition strategy,’’ IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 12, no. 12, pp. 4940–4950, Dec. 2019.

[29] W. Sun, L. Zhang, B. Du, W. Li, and Y. Mark Lai, ‘‘Band selection
using improved sparse subspace clustering for hyperspectral imagery
classification,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 8, no. 6, pp. 2784–2797, Jun. 2015.

[30] J. Wang, C. Tang, Z. Li, X. Liu, W. Zhang, E. Zhu, and L. Wang,
‘‘Hyperspectral band selection via region-aware latent features fusion
based clustering,’’ Inf. Fusion, vol. 79, pp. 162–173, Mar. 2022.

[31] J. Wang, C. Tang, X. Liu, W. Zhang, W. Li, X. Zhu, L. Wang, and
A. Y. Zomaya, ‘‘Region-aware hierarchical latent feature representation
learning-guided clustering for hyperspectral band selection,’’ IEEE Trans.
Cybern., vol. 53, no. 8, pp. 5250–5263, Aug. 2023.

[32] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, ‘‘Deep learning classifiers
for hyperspectral imaging: A review,’’ ISPRS J. Photogramm. Remote
Sens., vol. 158, pp. 279–317, Dec. 2019.

[33] M. Zeng, Y. Cai, Z. Cai, X. Liu, P. Hu, and J. Ku, ‘‘Unsupervised
hyperspectral image band selection based on deep subspace clustering,’’
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 12, pp. 1889–1893,
Dec. 2019.

[34] C.-I. Chang, Q. Du, T.-L. Sun, and M. L. G. Althouse, ‘‘A joint band
prioritization and band-decorrelation approach to band selection for
hyperspectral image classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 37, no. 6, pp. 2631–2641, Nov. 1999.

[35] C.-I. Chang and K.-H. Liu, ‘‘Progressive band selection of spectral
unmixing for hyperspectral imagery,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 4, pp. 2002–2017, Apr. 2014.

[36] Y. Cai, X. Liu, and Z. Cai, ‘‘BS-Nets: An end-to-end framework for band
selection of hyperspectral image,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 3, pp. 1969–1984, Mar. 2020.

[37] H. Sun, J. Ren, H. Zhao, P. Yuen, and J. Tschannerl, ‘‘Novel
Gumbel–Softmax trick enabled concrete autoencoder with entropy con-
straints for unsupervised hyperspectral band selection,’’ IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5506413.

[38] C. Wang, M. Gong, M. Zhang, and Y. Chan, ‘‘Unsupervised hyperspectral
image band selection via column subset selection,’’ IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 7, pp. 1411–1415, Jul. 2015.

[39] X. Geng, K. Sun, L. Ji, and Y. Zhao, ‘‘A fast volume-gradient-based band
selection method for hyperspectral image,’’ IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 11, pp. 7111–7119, Nov. 2014.

129720 VOLUME 11, 2023



S. Ning, W. Wang: GLC-DEC for Hyperspectral Band Selection

[40] G. Zhu, Y. Huang, J. Lei, Z. Bi, and F. Xu, ‘‘Unsupervised hyperspectral
band selection by dominant set extraction,’’ IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 1, pp. 227–239, Jan. 2016.

[41] K.-H. Liu, Y.-K. Chen, and T.-Y. Chen, ‘‘A band subset selection approach
based on sparse self-representation and band grouping for hyperspectral
image classification,’’ Remote Sens., vol. 14, no. 22, p. 5686, Nov. 2022.

[42] Y. Wan, C. Chen, A. Ma, L. Zhang, X. Gong, and Y. Zhong, ‘‘Adaptive
multistrategy particle swarm optimization for hyperspectral remote sensing
image band selection,’’ IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5520115.

[43] D. Cai, X. He, J. Han, and T. S. Huang, ‘‘Graph regularized nonnegative
matrix factorization for data representation,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 8, pp. 1548–1560, Aug. 2011.

[44] Z. Xue, S. Yang, and L. Zhang, ‘‘Weighted sparse graph regularization
for spectral–spatial classification of hyperspectral images,’’ IEEE Geosci.
Remote Sens. Lett., vol. 18, no. 9, pp. 1630–1634, Sep. 2021.

[45] S. Jia, G. Tang, J. Zhu, and Q. Li, ‘‘A novel ranking-based clustering
approach for hyperspectral band selection,’’ IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 1, pp. 88–102, Jan. 2016.

[46] Y. Yuan, J. Lin, and Q. Wang, ‘‘Dual-clustering-based hyperspectral band
selection by contextual analysis,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 3, pp. 1431–1445, Mar. 2016.

SHANGFENG NING received the B.S. degree
from the Qingdao Institute of Technology, Qing-
dao, China, in 2020. He is currently pursuing
the master’s degree in software engineering with
Liaocheng University, Liaocheng, China. His cur-
rent research interests include machine learning
and hyperspectral image processing.

WENHONG WANG received the B.S. degree
in computer software from Shandong University,
Jinan, China, in 1995, theM.S. degree in computer
application technology from the Beijing Univer-
sity of Chemical Technology, Beijing, China,
in 2003, and the Ph.D. degree in computer science
and technology from Zhejiang University, China,
in 2016.

Since 1998, he has been with the Col-
lege of Computer Science, Liaocheng University,

Liaocheng, China, where he is currently an Associate Professor of computer
science and technology. His main research interests include hyperspectral
image analysis, pattern recognition, and machine learning.

VOLUME 11, 2023 129721


