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ABSTRACT Research on autonomous vehicles has made significant advances in recent years. To operate
an autonomous vehicle safely and effectively, precise localization is essential. This study aims to present the
state of the art in localization to scientists new to the area. It presents and summarizes works from the field of
localization and suggests a classification for the works. Approaches to localization are mainly divided into
three categories: conventional localization, machine-learning-based localization, and vehicle-to-everything
(V2X) localization. Conventional localization primarily depends on high-definition (HD) maps or certain
marks, such as landmarks and road marks. Machine-learning-based localization approaches include using
neural networks, end-to-end approaches, as well as reinforcement learning for performing or improving
localization. Moreover, V2X localization methods localize vehicles by communicating with other vehicles
(V2V) or infrastructures (V2I). This study not only presents a bigger picture of the area of localization in
autonomous driving but also presents the potentials and drawbacks of different localization methods. At the
end of the review, some research areas open for future research are also highlighted.

INDEX TERMS Autonomous vehicle localization, map-based localization, mark-based localization,
machine-learning-based localization, neural network, deep reinforcement learning, end-to-end localization,
multi-vehicle localization.

I. INTRODUCTION
It is inevitable that autonomous vehicles will replace ordinary
vehicles in the future to perform all kinds of transportation
works [1]. Society of Automotive Engineers (SAE) has
categorized vehicular autonomy into six levels (0 to 5),
depending on the level of a human driver's involvement
during vehicular operation [2]. Researchers from academia
and industry alike are working hard toward the goal of full
autonomy (level-5). The autonomy system of driverless vehi-
cles typically depends on perception and decision-making,
which are divided into various subsystems. Perception is
mainly responsible for jobs such as obstacle detection (both
static and dynamic), traffic signal detection, road marking
detection, localization, and many more. On the other hand,
decision-making includes tasks such as path planning, motion
planning, behavior planning, control, etc., [3]. Reference
[4] divided autonomous vehicle navigation into five main
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components: perception, localization and mapping, route
planning, decision-making, and control. Localization can be
defined as estimating the vehicle's pose (position, orienta-
tion) along with the associated uncertainty in a reference
frame. Localization is essential for safe autonomous vehicle
operation on the road, thus, is a prerequisite for autonomous
driving. Often, during vehicular operation, an autonomous
vehicle does not have prior knowledge about its environment,
such as a new location, changes in a map, or the position of
a dynamic obstacle. In that case, a vehicle must model its
environment for carrying out basic tasks like path planning
or obstacle avoidance. Thus, a correct estimation of vehicle
location is very important for vehicular operation. Different
approaches to the localization problem demand various sens-
ing and processing resources, and they produce localization
estimation with various properties. Some common methods
are (i) localization using a prior map, (ii) simultaneous
localization and mapping (SLAM), (iii) dead reckoning
(DR) using IMU, (iv) vision-based localization, (v) beacon-
based localization, etc., [5]. A few more methods are not
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mentioned in this work [5], such as localization usingwireless
communication or radio frequency identification (RFID),
machine-learning-based localization, and many more. Gen-
erally (independent of solution methods), localization uses
data from various sensors (global navigation satellite system
(GNSS), light detection and ranging (LiDAR), radio detec-
tion and ranging (Radar), inertial measurement unit (IMU),
camera, ultrasonic, etc.) and analyzing those data under the
aegis of numerous methods [6]. For performing localization,
the data from individual sensors must often be properly fused.
This sensor data is then used to perform localization, i.e.,
a position and orientation estimation, which can be used for
higher-level decision tasks.

Sensors are usually divided into two categories based on
their use, i.e. (i) perceiving the environment (exteroceptive
sensors) and (ii) measuring a robot's internal condition (pro-
prioceptive sensors). Vehicle localization is often performed
by fusing and processing data from exteroceptive sensors
such as GNSS, LiDAR, Radar, and camera, and propriocep-
tive sensors like IMU, gyroscope, odometer, etc., [7]. Another
way to categorize sensors is based on the source of measured
energy. Passive sensors (camera, GNSS, inertial sensors)
do not emit their own energy. In contrast, active sensors
(LiDAR, Radar, etc.) emit energy, a part of which is then
captured for the purpose of perceiving the environment [8].
Different sensors used for vehicle localization have their
own unique drawbacks, such as LiDARs being costly, IMU
and GNSS often being low precision, etc. Though the
camera is a very intuitive sensor for observing the vehicle's
environment, it also has drawbacks such as a narrow field of
view [9]. LiDAR, despite being relatively costly, is useful for
vehicle localization and tracking moving objects [10]. The
principle of LiDAR operation is presented in Fig. 1. LiDAR
operates on the principle of time of flight, where the time
difference between emitting a laser beam and receiving back
its reflection is used to estimate the distance of a physical
object that caused the beam to be reflected [11].
GNSS is affordable and convenient for position estimation.

However, it is unreliable due to satellite signals being
blocked and reflected by tall buildings in urban settings
[12], (shown in Fig. 2). Besides accuracy, availability and
reliability are two significant issues for localization, and
GNSS suffers in both cases. Different GNSS services can
also be turned off or made unavailable to public users
by the corresponding operators. So, GNSS is not optimal
for reliable localization, especially for level-5 autonomy.
Therefore, for true autonomy, a vehicle should be able to
localize itself using its other exteroceptive sensors, such as
cameras, LiDAR, etc. Robustness and accuracy are vital for
localizing an autonomous vehicle to drive in an urban area,
and robustness also includes localization in harsh weather
conditions. Changing and adverse weather conditions are one
of the most challenging problems in vehicle localization.

We know that the sensors are key for an autonomous
robot to sense the environment and behave according to the
situation. Vehicle localization can be performed using a single

FIGURE 1. Principle of LiDAR operation, from [11].

FIGURE 2. The connections between satellites and GNSS receivers can be
blocked by tall buildings (represented by red lines) or might be directly
observable (represented by green lines), from [12].

sensor such as LiDAR, camera, or Radar, or data from various
sensors can be employed using sensor fusion to perform
localization more robustly [13]. Using multiple sensors
also provides redundancy in case one of the sensors fails
[1]. Each sensor has its distinct characteristics. Combining
and matching real-time data from multiple sensors and
matching this information with a pre-built map could even
provide a more accurate pose estimation [14]. From the
above discussion, it is evident that sensors are fundamental
for vehicle localization (especially cameras and LiDAR).
Previously, someworks have compared different sensors used
for localization. For example, [15] presented a comparison of
camera and LiDAR for autonomous vehicle localization.

In this survey, all the research works reviewed here
were collected through ‘‘Google Scholar’’ using search
keywords (such as vehicle localization, car localization,
autonomous driving localization, map localization, neural
network localization, CNN localization, visual localization,
camera localization, LiDAR localization, Radar localiza-
tion, end-to-end localization, reinforcement localization, V2I
localization, V2V localization, weather localization, point
cloud localization, and many more) related to autonomous
ground vehicle localization. After collecting sufficient
research papers, we screened them for works only on
autonomous ground vehicles (and discarded the works on
mobile robots, etc.). Similarly, we screened the papers for
the localization of autonomous vehicles only, independent
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FIGURE 3. Categories of localization techniques presented in this work.

of the localization approaches. After that, we categorize
localization into three main categories (shown in Fig. 3).
First, we review conventional localization approaches (shown
in section II). Such approaches usually use exteroceptive
sensor data and employ Bayes-filter-based methods to
perform localization within a prior map. This category also
includes localization using road marks and landmarks. Then,
we review modern approaches that employ machine learning
in one form or another to perform or improve the localization
(section III). Lastly, we review localization works based
on communication between a vehicle and other vehicles or
infrastructures (section IV). A few survey works on local-
ization have been conducted by researchers ([1], [4], [10],
[11], [16], [17], [18], [19], [20]) previously, but none of them
address conventional localization, machine-learning-based
(ML-based) localization, and V2X localization methods
together (Table 1). We point out the strengths and weaknesses
of different methods as well as their suitability in different
contexts and point out open areas of research in the field of
localization. At the end of the paper, we present a summary
table (Table 2) that lists works that fall under different
categories and includes details such as sensors used, methods
employed, and the accuracy achieved by corresponding
works.

II. CONVENTIONAL LOCALIZATION
The camera is a vital exteroceptive low-cost sensor that can
be used for visual perception and scene detection in various
weather conditions [21]. LiDAR is also commonly used for
object detection and scene perception besides the camera.
The conventional localization approaches mainly depend on
the perception from onboard sensors like cameras, LiDAR,
Radar, etc. Perception information from sensors such as
cameras and LiDAR is often first used to build a map of
the environment in which a vehicle is meant to operate.

TABLE 1. Comparison between vehicle localization topics covered by
previous survey papers and our survey.

Sometimes, existing maps such as OpenSteetMap1 can
provide a foundation for such maps. During autonomous
operation, perception information from the sensors is
matched with the prior map for localization. In some
cases, landmarks, road marks, etc., are also used in the
matching process. Sometimes, sensors such as IMU, GNSS,
gyroscope, odometer, etc., are also employed in addition
to the above-mentioned primary sensors, i.e., camera and
LiDAR, to achieve robustness in localization.

Most conventional localization approaches can be divided
into map-based approaches and mark-based approaches [22].
For map-based approaches, a detailed map with suitable
features is required to match with extracted sensors' data for
localization. On the other hand, mark-based approaches do
not require a detailed map; the positions of the markings
are enough for localization [22]. Nevertheless, few works,
such as [23], exploited marking concepts such as landmarks
during map creation and localization. The work proposed
vision-only localization by a monocular camera that used
landmarks to create a visual map by taking images through
the mapping trajectory. They then achieved a centimeter-level
localization accuracy through map matching in the GNSS-
denied region. In the conventional localization section,
we have discussed both approaches (map-based and mark-
based) according to the main focuses of the corresponding
works.

So, in summary, map-based approaches mainly deal with
map generation and localization inside the prior map. And
the marking-based methods consider elements such as road
markings, lanemarkings, and landmarks as detectable objects
to perform vehicle localization. The concept of SLAM is
worth mentioning here [24], [25]. In SLAM, a robot or
vehicle builds a map of a priori unknown environment while
also localizing in it simultaneously [26]. The topic of SLAM
is out of the scope of this review.

1www.openstreetmap.org
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FIGURE 4. HD map-based vehicle localization, from [28].

A. MAP-BASED APPROACH
The SLAM method is very well used in localization for
robots and autonomous vehicles. However, the traditional
SLAM method suffers from the error growth problems [27].
SLAM requires enormous storage space, high computing
power, and quick data transmission ability [28]. Therefore,
the necessity of a prior map-based localization, which
is more accurate and requires less computational effort,
is well understood. Fig. 4 shows an HD map-based vehicle
localization framework. HD map contains various types
of environmental information, which requires high data
volume, and high computational effort is needed (like in
SLAM) to analyze and fuse the map data and the sensor
information. It is also difficult to evaluate the performance
of map matching in complex urban areas [29]. Despite that,
localization based on HD map generation and matching is
a popular technique due to their (i.e. HD maps') suitability
and availability, along with the continuously reducing cost
of LiDAR sensors. Nevertheless, some conditions should be
met to acquire reliable localization, such as feature adequacy,
local similarity, layout, and representation quality of the
map [30]. Reference [30] proposed a mapping capability
evaluation technique by performing localization with the help
of a normal distribution transformation (NDT) scan-matching
framework.

LiDAR is a very useful sensor in creating an HD map,
such as in [31], LiDAR point cloud data and post-processed
localization measurements accumulated, then assembled the
measurements to create a full HD map. The work proposed
a map-making method suitable for localization through map-
matching, but no localization was performed there. Reference
[32] accumulated several Velodyne LiDARs (seven) to fuse
and generate point clouds for producing a high-definition
3D map with georeferencing coordinate information through
the GNSS/IMU. The map is meant to help perform a
LiDAR-based localization through map matching, but the
work does not cover the localization process. Reference
[33] used 3D LiDAR-generated range images to create a

mesh-based map by Poisson surface reconstruction, then
localize an ego vehicle inside the map with the help of
the Monte Carlo localization (MCL) framework. Reference
[34] used the SeqPolar localization technique featured in
two steps: first, creating a polarized LiDAR map, and
then, a second-order HMM-based (hidden Markov model)
localization through map matching. A renowned approach
of map-based localization through a probabilistic map is
proposed in [35]. The process incorporates Global Position-
ing System (GPS), LiDAR, and IMU sensor data to build
a probabilistic grid map and use that map for localization
through a 2D histogram filter.

The characteristics of an urban area are complex due to
the presence of semi-static and dynamic objects. To achieve
a robust localization, it is crucial to check consistency to
manage the discrepancy between map and sensor data. Ref-
erence [36] proposed Fourier-Mellin transformation (FMT)
for map matching to estimate the vehicle's global pose
and incorporated a cumulative sum test for checking the
consistency of the map. The localization measurement used
the Kalman filter (KF) framework to combine LiDAR
odometry, wheel odometry, map matching result, and GPS.
Reference [37] presented a sensor fusion of 3D LiDAR,
GNSS, wheel odometry, and inertial data to match and
verify better localization accuracy in a prior map. More
conveniently, the map could also be used where some data is
invalid or corrupted in a part of the map. Although an updated
map helps more precise vehicle localization, [38] performed a
reliable vehicle localization (even in the nighttime, in shadow,
and with dynamic obstacles) using a three-years-old 3D map.
The work used a 3D point cloud map (PCL) generated by a
3D LiDAR but localized with a stereo camera through map
matching by transforming the real-world coordinate system
to the camera coordinate and synthesizing the virtual depth
and intensity of the 3D PCL map.

To perform localization robustly, the map should be
updated concerning the real world regarding feature infor-
mation. In [39], a SLAMCU (Simultaneous Localization
And Map Change Update) algorithm detects and updates the
HD map. The Dempster-Shafer evidence theory is applied
to detect the change in the map. Then Rao-Blackwellized
particle filter (RBPF) is used to estimate and update the
vehicle state inside the map. A point cloud-based robust
localization through the particle filter (PF) method using
data fusion between vertical and road intensity information
from a prior map has been proposed in [40]. In this
work, the iterative closest point (ICP) algorithm is used
for map matching, and the PF-based localization method
is used to estimate the vehicle pose through the vehicle's
sensor system such as 3D LiDAR, IMU, RTK-GPS (real-
time kinematics global positioning system), wheel odometry,
and map matching information. Reference [41] tried to
achieve robust localization based on the extended Kalman
filter (EKF) using the map-matching result along with the
sensor fusion information through IMU, cellular signal, and
GNSS signal. The work presented a comparison between
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the experimental error of with-GNSS and without-GNSS
features. The GNSS failure case is very commonly observed
in a highway tunnel area. Reference [42] used a 3D LiDAR
to extract predefined tunnel facility points, and an EKF helps
pose estimation by matching those features. Reference [43]
used a prior map for matching to help vehicle localization
through visual odometry and road markings. Reference [44]
showed another example of a map matching-based vehicle
localization technique by matching between offline prior
maps and online 3D point clouds, which also corrected the
gathered drift by LiDAR-only odometry during localization.

Conventional map-based localization often suffers from
changes in maps during nighttime or harsh weather. Often,
features inside the prior map look different at various
times of the day and night or in different seasons [45].
For example, lane marking on a road could be partially
invisible or fully covered by snow in snowy weather.
In that situation, it is important to use sensors that are less
error-prone to harsh weather, or a technique is required to
reconstruct the map during driving for real-time localization.
Reference [46] improved localization accuracy in harsh
weather conditions by using principal component analysis
(PCA) to reconstruct LiDAR images to enhance the quality of
themap images. After edge-profilematching with preexisting
map information and successfully detecting the snow lines
inside the lanes, the ego vehicle performed lateral localization
with lane-level accuracy. An experiment took place in
JAPAN to verify the robustness of localization, and achieved
a lateral error within 20 cm at 60 km/h vehicle speed.
Another approach of localization in snowy winter conditions
is performed through 76GHz millimeter-wave Radar-based
(MWR)map generation in [47]. The localization is performed
by error propagation uncertainty modeling and verifies a
comparison between two states: with and without snow, using
Radar data and previous LiDAR data as a baseline. The
experimental verification shows a 25 cm root mean square
error (RMSE) independent of snowfall conditions. Reference
[48] investigated the possibility of replacing LiDAR with
Radar for mapping and localization in all weather conditions.
In this paper, the author presents a comparison between
LiDAR-only, Radar-only, and cross-modal Radar-to-LiDAR-
based work. They assert that the conventional ideas about
LIDAR's sensitivity in weather conditions are exaggerated,
and LiDAR-only based localization performs better than the
other two approaches. Reference [49] localized vehicles in
severe weather conditions (fog, snow) just using standard
equipment like GPS, a camera, and a 3D map. In this work,
GPS estimates the vehicle's pose and yaw angle. The work
then corrects the vehicle's state, pitch, and roll angle by road
marking information collected through the camera and 3D
road map (from projected map in the image).

Visual map creation and localization of a vehicle inside
the visual map is a state-of-the-art technique of modern
research. The process behind the visual map creation is
very straightforward. The map is created by a sequence of

images taken from a constant distance called nodes inside
an ordinary map or road trajectory. The image-represented
nodes are linked with positioning information (e.g., through
GNSS) and used later during image matching to extract the
position information. Reference [50] utilized a visual map to
determine the current vehicle position by using a monocular
camera and a GPS receiver. In this work, first, GPS data is
linked to multiple feature types such as the image's holistic
and local features. Then, the k-nearest neighborhood (KNN)
in these feature spaces is used to find the vehicle pose in a
visual map. A piece of advanced knowledge about routine
traffic images (e.g., edges of the car and their relation to
a vehicle pose) could help to develop a model for pose
estimation [51]. The localization method needs to access the
local image gradient data from the input video stream of the
vehicle motion. The process could eliminate the hassle of
traditional feature extraction and matching, and efficiently
identify a 3D object from a 2D image to help the localization
process based on previous knowledge of analyzed traffic
images mentioned before [51].

Due to the availability and continuous reduction of the
cost of LiDARs, they are now commonly used for creating a
LiDAR-based PCL. LiDAR-generated maps are often used in
the localization process as a prior map for map matching and
estimating the pose and location of an ego vehicle. Reference
[52] proposed a LiDAR-based localization by creating a 3D
PCL through mobile laser scanning and used that map for
localization through key features extraction and matching.
Reference [53] used a 3D LiDAR to detect a larger extent of
dense curb points and a robust regression method called least
trimmed squares (LTS) to handle blocking scenes. The MCL
algorithm estimates the pose of a vehicle from the support of
curb maps for path planning and safe navigation. A similar
work is proposed in [54] using GPOM (Gaussian Process
Occupancy Maps), where an OGM (Occupancy grid maps)
was built with roadmarking data andGPOMconstructedwith
curb data to help the MCL algorithm. Reference [55] used
3D LiDAR data for localization by the MCL method with
the help of a Neural Network to find the overlap between
3D laser scans and a pre-built map. The matching technique
between 3D LiDAR data and a high-precision prior map for
localization is also shown in both [56] and [57]. The ICP
algorithm helps to estimate the matching, and KF is used
to locate the pose and orientation of those vehicles. Other
steps, such as curb detection and contour extraction from the
curb, also helped the localization process by providing useful
information about the curbs. Reference [58] used 3D NDT-
based scan-matching in a prior 3D PCL developed through
multilayer LiDAR. An EKF-based localization is established
using the information collected from the NDT-based scan-
matching and DR. Hessian matrix-based pose uncertainty
measurement played an important role in optimizing the
scan-matching. The average absolute error achieved in a
rural mountainous environment is 8 cm and 38 cm in lateral
and longitudinal directions, respectively. In [59], a prior
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PCL is generated by using graph SLAM techniques, with
synthetic LIDAR as input. Then, the synthetic 2D LiDAR
and odometry information are used with the MCLmethod for
precise vehicle localization in 3D urban areas. Reference [60]
proposed low-cost KF-based vehicle localization in a PCL
using precise and robust segmentation-based LiDAR and
MEMS IMU (micro-electro-mechanical system inertial mea-
surement unit), which achieved centimeter-level accuracy (3
to 5 cm). Reference [61] used a multilayer LiDAR to build a
PCL where the upper layer is built of the 2D point cloud from
vertical features, and the lower layer is made of a combination
of ground and curb features. The MCL algorithm is used in
this environment to estimate the optimal position. Referenced
[62] also used multiple LiDARs and NDT for mapping and
matching to perform vehicle localization.

The camera is an attractive sensing modality to be used
in conjunction with LiDAR to make the localization process
strong and cheap simultaneously [63]. In the typical LiDAR-
camera-based localization, LiDAR is employed for creating
the map, and the camera is used to estimate the position
according to the map [16]. The strategy mentioned above is
tested in [63], where the authors first created a 3D groundmap
with the help of a 3D LiDAR scanner by measuring surface
reflectivity, then exploit a single monocular camera to match
the mutual information with the map for localization. In the
next paper [64], the authors extended their previous work
[63] to make it exploitable in harsh weather conditions by
adding a novel scan-matching algorithm that uses Gaussian
mixture maps. The Gaussian mixture maps use a set of
Gaussian mixtures over the z-height distribution instead of
ground reflectivity. Again, in their next work [65], the authors
implemented robust localization in severe weather conditions
and improved the accuracy further by strengthening the
previousGaussianmixturemapswith amixture of reflectivity
distribution of the environment, characterizing the z-height,
and several Gaussian mixtures. Then, the localization process
used an EKF and the previously mentioned map for
localization through map matching by a camera. On the other
hand, another work [66] extended the previously discussed
ground reflectivity grid-based map-making ideas with a more
feasible and faster alternative called an alternative edge
reflectivity grid representation. This process uses data from
multiple LiDARs, which are invariants of robot motion,
angle, range, and laser source. Then, an EKF-based localiza-
tion was performed through map matching by a camera.

For commercializing autonomous vehicles, it is essential
to design these vehicles with affordable sensors. A low-cost
sensor set (MEMs-based gyroscope, ordinary GNSS, USB
camera) and localization using the KF within a prior map is
presented in [67]. A low-cost vehicle localization based on
DR and lane marking detection information is shown in [68],
where the GNSS is also used to correct the measurement bias
near traffic crossings. This work achieves 5 cm lateral and
112 cm longitudinal accuracy by exploiting lane and traffic
signs in a sparse semantic map with low-cost sensor fusion
(camera, GPS, IMU, and wheel encoders) by a Bayesian

filtering framework and just using 0.3% of storage data of
LiDAR-based approaches. Another example of using low
data storage through a compressed road scene map has been
presented in [69]. Usually, HD maps take many minor details
that do not contribute to localization and sometimes lead
to drift problems or negatively contribute to map-matching
performance. The mentioned work contains three steps:
mapping, map matching, and sensor fusion for localization.
First, a 3D point cloud-based grid map is compressed into
a 2D grid map. The well-known MCL framework is used
for map matching and localization through sensor fusion by
IMU, wheel-encoder-produced vehicle motion data, and map
matching results. Localization could be possible using just
a Radar, which is very cost-efficient and does not demand
large data storage. Reference [70] utilized automotive grade
Radars and the ICP algorithm to match the Radar data with
a prior map created from the sensors' (GNSS, IMU, Radar)
data. The EKF localization method is also implemented (in
the same work) with ICP for precise vehicle localization.

Real-life robustness can be achieved by ground-penetrating
Radar (GPR), independent of chaotic environments and
adverse weather conditions [71]. GPR uses features that
lie inside the ground, and due to its low-frequency RF
(radio frequency) energy, it is less vulnerable to failure in
harsh weather situations during localization. Reference [72]
also utilized GPR to achieve robust vehicle localization,
perform over 17 KM of driving in various challenging
weather conditions, and perform precise localization without
using LiDAR or cameras. In both cases of GPR mentioned
above, mapping uses underground infrastructure information,
i.e., features beneath the ground, and localizes within that
prior map. Different types of maps have been studied for
vehicle localization by the research community. An efficient
localization technique proposed by [73] is based on a pre-built
numerical map in which vehicle localization depends only
on a vision sensor. This is done in a two-steps process. The
first step is road marking feature extraction and ego-motion
estimation. The next step is the computation of vehicle
pose by matching the map feature information through the
EKF and PF methods. Besides the numerical map, the
OpenStreetMap is another type of common map used as
a prior map instead of building an own map. Reference
[74] used a 3D range scanner to achieve a road network
from OpenStreetMap data, then utilized the MCL technique
to classify the road from non-road areas and successfully
localize a mobile robot inside the map. Reference [75] also
utilized the OpenStreetMap with visual odometry and the
MCL framework for localization. Moreover, this method
helped overcome the drift problem in visual odometry during
the localization process.

B. MARK-BASED APPROACH
The presence of dynamic objects like vehicles and pedestrians
in an urban area can make using generic features challenging
for localization. Landmarks or road marks, on the other
hand, could act as robust features, and can thus be utilized
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FIGURE 5. Schematic illustration of pole-like landmarks in red on a
street, from [77].

for performing localization. The main difference here, i.e.,
in landmark or road-mark-based localization methods, is that
these methods do not require a detailed or high-definition
map of the environment. These methods usually use sparse
maps of environments that contain landmark or road mark
positions.

In literature, landmarks such as trees, traffic light poles,
street light poles, traffic signs, tall buildings, etc., have
been used for vehicle localization (an example of pole-like
landmarks is shown in Fig. 5). Strong localization accuracy is
achievable using landmarks, especially in GNSS-challenged
small urban areas where GNSS does not work properly [76].
Reference [77] presented the use of pole-like landmarks for
performing localization. The drawback of this method is
the non-ubiquity of such landmarks in every region. The
experimental results, which used LiDAR and stereo cameras
as sensors and the MCL technique, provide errors less than
30 cm for LiDAR, below 50 cm for the stereo camera,
and less than a 1-degree heading error. Reference [78] also
used pole-based landmarks for localization with the help
of a voxel grid-based detection method and the PF for
pose estimation. On the other hand, [79] used 3D-LiDAR
data extracted pole landmarks for performing localization.
Reference [80] utilized traffic light information as position
markers and fused IMU data with this information through
the EKF for localization. Reference [81] used pre-existing
roadside snow poles, onboard sensors, and a four-layer laser
scanner to perform robust localization on snow-covered
roads through landmark-based mapmatching. Reference [82]
used road marking poles covered with reflective tape for
localization in an outdoor parking area. The work uses
odometry and 3D Lidar information fused inside an EKF for
performing localization. Reference [83] utilized GNSS, 3D
LiDAR, Radar, pole-like landmarks, and IMU sensor data
for real-time vehicle localization. To successfully fuse those
sensors' data for localization, they proposed real-time MCL
methods such as the PF and unscented Kalman filter (UKF),
and the ICP algorithm for map matching. As mentioned
earlier, one challenge in performing localization using

pole-like landmarks is their availability in an environment.
Reference [84] solved this challenge with an innovative idea
that tall buildings are often available in urban areas to be used
as landmarks. This proposed method uses the vertical corner
features of buildings through 3D LiDAR, the ICP algorithm
to perform matching, and an EKF for localization.

Lane markings are often used in the context of vehicle
localization to achieve precise lateral localization on roads.
Reference [85], for instance, utilized an HD map and
a monocular vision camera to detect the lateral distance
between the vehicle and lane markings, and then fused GPS
coordinates with this information using the KF method for
precise localization. One of the pioneering works on vehicle
localization [86] uses information such as lane markings
embedded in prior maps, L1-GPS, video camera features,
and vehicle data for performing localization. This paper
presents a lane-marking-based map-building process in the
first stage and a map-matching-based localization process by
the dynamic KF in the second stage. Reference [87] utilized
a front-looking camera to detect lane markings, and used
this information to update the particle weights for the PF
algorithm, and integrated an HD map to find the vehicle
position within the map. Vehicle odometry measurements
and GNSS information are also incorporated to perform
this vehicle localization. Commonly, localization is based
on some information given by road features such as lane
markings, so incorporating other elements like guardrails
could help minimize the absence of such information
to prevent localization failure. Reference [88] presented
EKF-based localization using HD map and advanced driving
assistant system (ADAS) environment sensors. A monocular
camera and a Radar are used to detect the lane information
and guardrails, respectively. Then, the EKF used these
sensors' information and ICP algorithm-based map-matching
results for vehicle localization.

Many works in the literature do not just rely on lane
markings but also take into account other markings on roads,
such as crosswalks, stop lines, etc., for performing localiza-
tion. References [89] and [90], for instance, used crosswalks,
and continuous and dashed road markings for performing
vehicle localization. They used the Otsu thresholding method
for detecting road markings from LiDAR point clouds.
Here, the MCL algorithm incorporates a feature detection
method based on the LiDAR reflective intensity information
in [89] or LTS and ring compression analysis in [90]
for localization. Reference [91] presented a free-resolution
probability distribution map (FRPDM) which is based on
road marking data perceived by LiDAR. Using such a map,
the work achieves position errors (RMSE) of 5.7 cm and
17.8 cm in lateral and longitudinal directions, respectively,
with the root mean square (RMS) heading error being
0.281 degrees. This result outperformed the same author's
previous work [92], where the RMSE were 13.6 cm and
22.3 cm in lateral and longitudinal directions, respectively.
In that previous work, i.e., [92], a binary occupancy grid map
was used as an extended line map (ELM) using a 3D LiDAR
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with the help of the Hough transformation. Fast Fourier
transform (FFT) correlation matching was used to perform
the ELM-based localization. Another example of Hough
transformation to detect road lane marking is presented
in [93]. In this work, map-based localization using the
accumulation of multilayer LiDAR data and the PF algorithm
is implemented to acquire lane-level accuracy through road
lanemarking detection. An extension of this work is proposed
for localization by LiDAR-based road sign detection inside an
HD map in [94]. Reference [95] used road link information
from a single camera to perform localization. The vehicle's
position is estimated by matching the GPS information and
HD map via the ICP algorithm. One of the pioneering works
on road marking detection (not localization) through video
input from a vehicle's camera is shown in [96]. An extension
of this work for localization by corner feature detection from
the image of road markings is presented in [97], which is
applicable for different road markings and in various light
conditions.

III. MACHINE-LEARNING-BASED LOCALIZATION
Machine learning is an emerging topic that is being
applied to solve real-life problems in many domains. The
various tasks of autonomous driving, for example, pedestrian
detection, road marking detection, traffic light detection,
vehicle localization, pose estimation, motion planning, cyber
security of vehicles, automotive parking, etc., could be
solved by machine learning, especially deep learning algo-
rithms [98]. Sometimes, ML-based methods provide superior
results compared to conventional methods for solving the
above-mentioned autonomous driving sub-tasks. Moreover,
machine learning methods are sometimes used to enhance
the conventional methods. For example, [99] used the SVM
(Support Vector Machines) method to improve EKF-based
vehicle localization during GPS outage. Not only that, the
ML technique is also used in improving FM-based (frequency
modulation) vehicle localization named RadioLoc in [100].
Below, we discuss ML-based techniques that are used for
performing or improving localization in autonomous driving.
We divide the works into three sections. First, we present
works that employ neural networks, mainly convolutional
neural networks (CNN) or recurrent neural networks (RNN),
for performing or enhancing vehicle localization. Then,
we present works that employ reinforcement learning for this
purpose. Finally, we discuss methods that take an end-to-end
approach to localization in autonomous driving.

A. NEURAL NETWORK
Often, map generation is a vital step for the navigation of
an autonomous vehicle. One challenge for map generation
is the presence of dynamic objects and temporary obstacles,
which require continuous updating of the map. Reference
[101] used a deep learning architecture to construct a durable
map from 3D LiDAR data by filtering removable objects
based on the convolutional dual-view architecture, which
helps the ego vehicle for LiDAR-based re-localization and

trajectory estimation. Another example of object detection
and removable object substitution by the CNN is shown in
[102]. In this work, the deep-learning-based CNN method
replaces part of the traditional visual SLAM for localization.
Reference [103] proposed a dynamic-SLAM framework
based on the SSD (single-shot detector) by a CNN for
mapping and monocular visual localization. So, neural
networks are a handy tool for improving conventional
localization techniques. Reference [104] utilized a CNN to
match LiDAR data and satellite images of the same areas,
thus providing probabilities for the correspondences. Once
the probabilities of matches between satellite and LiDAR
data have been established, the localization is performed
within a PF framework. Neural networks are also employed
in different works to perform sensor fusion, and the fused
data is then used for performing localization. Reference [105]
used satellite and ground images to extract robust features
for the CNN-based pose estimation and optimize through a
neural network. Based on a relative camera pose, a geometry
projection module that bridges the vast cross-view domain
gap, projects features from the satellite map to the ground
view. A differentiable Levenberg-Marquardt (LM) module
helps minimize the differences between the projected and
observed features, and the whole procedure trains in an
end-to-end manner. Like satellite images, high-resolution
aerial images have also been used for vehicle localization
using CNN [106]. Another study on CNN-based vehicle
localization is presented in [107], which uses a bird's-
eye view elevation map and the deep representation of
object features. Reference [108] employed the CNN for
camera-Radar sensor fusion as well as for vehicle's corner
detection. This information is then used in a PF framework for
vehicle localization. Reference [109] proposed a localization
technique using a multimodal sensor fusion framework that
used depth information from a 3D LiDAR and semantic
segmentation information from RGB images through a
CNN architecture called ERFnet. It is clear from the above
discussion that CNN is a useful tool for vehicle localization,
and usually assists in sensor fusion.

Several deep learning techniques are also used along with
the Bayes filter or other conventional methods for improving
localization accuracy. A vehicle localizationmethod based on
an EKF and deep learning is proposed in [110]. In this work,
the authors tried to eliminate the sensor noise influence in
a microelectromechanical-system-based inertial navigation
system (INS) by introducing an improved extended Kalman
filter (IEKF). Then, the position estimation is measured by
multiple long short-termmemory (multi-LSTM) based on the
Gaussianmixture model and Kullback-Leibler (KL) distance.
The study focused on and successfully improved localization
accuracy by combining the IEKF and multi-LSTM in the
presence of GPS outages, but found that the longer the
GPS outage, the higher the localization error. Another
example of using neural networks for lateral localization
in harsh weather is shown in [111]. The work employs
a neural network to match edge profiles on the road in
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FIGURE 6. Deep Global Visual Localization (DeepVGL), example of a
visual localization, from [114].

differing weather conditions, thus assisting in precise lateral
localization. Reference [112] proposed a novel L3-Net
(Learning based LiDAR Localization) system that works
by mathcing pre-built map and online LiDAR point clouds
based on several deep learning procedures (both the CNN and
RNN). Reference [113] established LocNet by incorporating
artificial statistics and a Siamese neural network for LiDAR
data to convert a place recognition problem to a similarity
model problem for feature learning. A dimension reduction
of sensor data is performed to create a low-storage prior map.
A PF algorithm is utilized in this map for localization tasks
such as pose estimation after place recognition.

However, in recent years, the deep learning algorithm,
i.e., the neural network methods, has mostly been used
for the visual localization task among all other localization
techniques. Reference [114] proposed a deep visual global
localization (DeepVGL) through the deep neural network
using image data to estimate the vehicle's global pose and
extend its localization capacity in different weather condi-
tions (shown in Fig. 6). The DeepVGL located a self-driving
car within 0.2 meters in 75 percent of its test cases. Reference
[115] improved the mentioned DeepVGL method for more
robust localization using some data augmentation techniques.
Reference [116] built a local semantic map using wheel-
inertial ego-motion and image sequences. A supervised
neural network helps visual localization through matching
between the map and online map database, and an invariant
KF is used to fuse the other onboard sensors with the visual
localization. Another example of visual localization is also
shown in [117], where images are kept in a database with GPS
coordinate information and retrieved for position estimation
through a CNN-based localization model. Reference [118]
arranged images as input and corresponding relative pose
vector as output for the CNN-based visual localization. The
authors trained a hybrid weightless neural network system
for visual localization in this work. Over the last year,
many researchers have used visual localization in everyday
autonomous vehicle research to execute the localization task.
Reference [119] proposed a localization technique called
ImPosing (Implicit Pose Encoding), which uses a 3D scene
representation or a set of geo-referenced images for perform-
ing localization. Moreover, [120] proposed a CNN-based
visual localization method to perform localization in various

weather conditions, where the k-Means technique is used to
obtain precise coordinates, and depth images are combined
with RGB images using the IHS (Intensity Hue Saturation)
method to check the positional accuracy of the CNN.

The CNN-based localization is also useful for uncertainty
measurement and improves the accuracy via uncertainty-
aware perception. Reference [121] proposed a CNN-based
algorithm called CoordiNet to predict the camera pose from
a single image; it also provides the uncertainty estimation of
the pose. A single loss function managed the learning of the
pose and uncertainty, and an EKF also helped its test time
fusion. Reference [122] used a multi-task uncertainty-aware
perception model for robust localization by a monocular
vision camera and vehicle odometry. This work used traffic
lights and only lane borders to create an image-based
sparse map, then localize the ego vehicle using pose graph
localization inside the map. Deep learning has also been
employed for curb detection. Reference [123] proposed a
precise and low-cost lateral localization method that uses
a mono-vision fish eye camera and a deep curb detection
network.

B. REINFORCEMENT LEARNING
Reinforcement learning (RL) is one of the powerful Artificial
Intelligent (AI) models that can be applied to automotive
applications to teach machines through their environment and
mistakes. The RL method was improved by deep learning
(and thus Deep Reinforcement Learning, or DRL) and
became popular day by day after a successful introduction
by Google DeepMind. DRL can be applied to various
autonomous vehicle tasks through multiple techniques and
algorithms. Reference [124] proposed a short overview
of the use case of the DRL framework for autonomous
driving, which suggested that CNN and RNN are suitable
for perception and localization tasks, respectively, and that
DRL is more convenient for planning and control. Among
a few localization tasks studied through RL, [125] used RL
to improve the localization results, where RL helped the
usual KF method to adjust its noise covariance matrix and
positioning accuracy. The setup is called the adaptive Kalman
filter navigation algorithm based on reinforcement learning
(RL-AKF), where the united navigation system is considered
as the environment, and correcting current positioning errors
is considered as a reward, to optimize the positioning noise.
However, the experimental results show that the proposed
method depends on GNSS/INS, which are prone to errors
such as GNSS outages. Reference [126] used RL-based Deep
Q-Learning Localizer (DQLL) to improve lane level localiza-
tion after CNN-based lane detection through bounding boxes.
Reference [127] utilized a reinforcement-learning-based
learning-to-optimize (RL-L2O) method to improve LiDAR-
based 3D object detection and localization by training in
an end-to-end manner. The using of the RL method to
improve localization is also shown in [128], but the work used
unmanned aerial vehicles (UAVs) to perform localization for
a connected and autonomous vehicle (CAV).
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FIGURE 7. Comparison between a generic modular system and an
end-to-end framework, from [129].

The DRL approach is mainly used for planning and
controlling tasks [124]. And to a limited extent for perception
and vehicle localization, as discussed above, mostly for opti-
mizing the localization results. As RL does not require data
labeling as in the case of supervised learning, localization
using reinforcement learning has potential for future research.
However, the RL method is in the beginning stage for the
localization task, so the researchers could start their research
with how to complete a whole localization process with the
RL or DRL method instead of only improving results with
the RLmethod after completing a localization task with other
methods. Even while completing a planning or control task
for vehicular operation, how DRL could produce localization
information besides planning or control tasks needs further
investigation.

C. END-TO-END LOCALIZATION
The end-to-end driving method (also known as behavior
reflex) is a compelling approach to optimizing the driving
process, as in these methods, a single end-to-end network
is used to solve different driving sub-tasks. End-to-end
networks consider all or most sub-tasks together as a single
machine learning task (using supervised imitation learning or
reinforcement learning) to map input sensor data to wheel
and steering commands. On the other hand, a modular
pipeline is maintained by the composition of interconnected
modules such as perception, localization, planning, and
control. A comparison between a generic modular system and
an end-to-end framework is shown in Fig. 7, [129].
A deep recurrent convolutional neural network to improve

the geometric information of visual odometry is used in [130]
in an end-to-end and sequence-to-sequence probabilistic
manner. The end-to-end technique mentioned here differs
from usual end-to-end driving and is utilized for pose
estimation as output to perform localization through visual
odometry. Another example of pose estimation is mentioned
in [131], where the authors proposed end-to-end learning
for pose estimation as output and applied CNN to train a

prior data source from Google Street view panoramas. This
work actually improved the PoseNet architecture by an end-
to-end localization without having a map by synthesizing
new images. Reference [132] proposed a deep attention
mechanism to find some stable, distinctive, and salient
features to match for visual localization through an end-to-
end neural network. Reference [133] presented three types of
localization in an end-to-end manner, starting with road-level
localization (RLL) using OpenStreetMap data and GPS.
Then, they present ego-lane level localization (ELL) using
prior lane markings, and finally, lane-level localization (LLL)
using the YOLO detector [134], composed of a Bayesian
network and HMM in a probabilistic framework.

One way to divide end-to-end approaches is to divide
them into two categories: one that maps sensor data to
control and one that maps sensor data to localization. In the
context of the second category, pose estimation-based visual
localization has been studied in the literature. Another avenue
that demands further investigation is end-to-end networks that
map sensor data to both localization and control commands.
Reference [135] proposed this through a variational neural
network to map between raw camera data and probabilistic
localization information along with a deterministic control
command. Among all other machine learning approaches,
the end-to-end method is the most prominent for future
research due to its simplicity in application. However, there
are still many questions to be answered. For example, what
should be the proper inputs to increase the accuracy of the
localization? In an end-to-end method, there is some lack
of interpretability; how can we improve those areas through
proper investigation? How dowe localize using an end-to-end
approach without depending on an HDmap and in a weather-
invariant manner?

IV. V2X LOCALIZATION
Vehicle-to-everything (V2X) is a cooperative operation
between vehicles and objects, which is a part of the intelligent
transport system (ITS) studies and is based on the internet
and different types of wireless communication. Vehicle-
to-everything refers to communication between vehicles
and others, such as; vehicle-to-vehicle (V2V), vehicle-to-
pedestrian (V2P), vehicle-to-infrastructure (V2I), vehicle-to-
network (V2N), etc., [136].

A. V2V LOCALIZATION
In the V2V localization system, the ego vehicle communi-
cates with neighboring vehicles to share information about
their positions, directions, trajectories, distances, etc. (Fig. 8)
[11]. Using the shared information, the vehicle estimates
its position without having high-precision sensors [137].
In [137], the authors used a doubled-layer consistency check
for robust localization. At first, GNSS pseudo-range mea-
surements are used to reduce multi-path biases for both the
ego vehicle and neighboring vehicles. Then, GNSS double-
difference-based relative positioning is used to exclude the
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FIGURE 8. Calculating distance from the nearer vehicle, a multi-vehicle
localization framework [11].

multi-path and non-line-of-sight effects. Reference [138]
presented a V2V communication-based positioning system
with the help of a GPS receiver and a ranging sensor, which
improved a standalone GPS-based work by up to 85 percent
on average in the experimental results. In contrast, [139] used
an RFID system to achieve localization accuracy where the
localization system uses both V2V and reader-to-tag (RFID
tag that contains road-related information) communication to
recognize and correct the localization error. The technique
achieves submeter-level localization error with a meager
maintenance cost (one dollar per kilometer) on GPS-free
roads. Despite the cost efficiency, RFID-based localization is
only suitable for short and fixed routes such as sightseeing
buses [18]. Reference [140] discussed the effect of road
configuration on V2V-based localization; they mentioned
that the uniform distribution of connected vehicles could
reduce the cooperative map-matching error. Therefore, the
non-uniform distribution of surrounding vehicles could be
a problem for vehicle-to-vehicle localization. A multi-
vehicle system with a hierarchical control architecture is
proposed to explore an unknown environment collaboratively
by [141]. Deep reinforcement learning is used to avoid
collisions between those collaborative multi-vehicles, and
a novel dynamic Voronoi partition is applied to avoid
exploring duplication by the working vehicles. Reference
[142] proposed split co-variance intersection filter method for
cooperative localization through data fusion. In the method,
each vehicle maintains the estimation of decomposed group
state, shares the estimation with another vehicle, and updates
the estimation with the ego vehicle's sensor data and estima-
tion sent from the other vehicles. Reference [143] proposed
indirect V2V relative pose estimation (InDV2VRPE), which
replaces direct V2V relative pose estimation for multi-vehicle
cooperative localization and improves localization accuracy.

B. V2I LOCALIZATION
The vehicle-to-infrastructure (V2I) system uses infrastructure
such as cellular base stations or roadside units (RSUs) instead
of surrounding vehicles for communication. The RSU helps
ego vehicles estimate their position more accurately, and
there are some advantages of using V2I localization over
the V2V system. Reference [11] discussed those advantages
as: (a) estimating location more accurately due to the
fixed position of the RSUs; (b) being more reliable due
to a fixed number of RSUs within the transmission range;
(c) sharing some critical information like weather conditions,
traffic flow, accident events, etc.; and (d) enhancing traffic
management systems and vehicle control. Reference [144]

used impulse Radio-ultra wide band (IR-UWB) for V2I local-
ization using RSUs. Three different localization techniques,
i.e., direction of arrival (DOA), time of arrival (TOA), and
time difference of arrival (TDOA), and their combinations
are tested for better accuracy. The evaluation through the
MATLAB simulator shows that the combination of DOA
and TDOA works better for the localization task. Another
benefit achieved by this work employing IR-UWB is its high
precision and low maintenance cost. Reference [145] used
V2I communication-based vehicle location information for
vehicle localization in a tunnel environment. A comparison
between the KF on both the Doppler shift and TOA mea-
surements and the EKF on only Doppler shift measurements
is presented, where the EKF-based work outperforms the
KF-based work. Reference [146] used beacon packets of
RSUs and angle of arrival (AOA) estimation for performing
a GNSS-free V2I localization. A weighted least squares
algorithm helps vehicle localization through information
such as the AOA of the beacon packet and the position of
the RSUs. Another work on GNSS-free high-accuracy V2I
localization is discussed in [147]. The authors used a KF
to fuse kinematics information from an inertial navigation
system (INS) and an INS-Assisted Single RSU (only on one
side of the road), which provides a localization accuracy of
1.8 m, which they claim is significantly better than their
GPS-based technique. The performance is cost-efficient and
noteworthy, as it outstrips the existing RSU-based approach
by up to 73.3 percent.

V. CONCLUSION
This work presented a concise overview of research on
the localization of autonomous vehicles. To understand the
recent progress, localization is divided into three categories.
First, conventional localization is presented and split into
two subcategories. In the first category, localization focused
on map-based approaches, which discussed localization in
a prior HD map, generation of an HD map, consistency
checking and updating of a prior map, localization inside
a map during harsh weather, visual maps, LiDAR-based
PCL, and a few other types of maps. The second category
discussed marking-based localization, such as lane marking,
road marking, and landmarking. In recent years, ML-based
localization has caught the boundless interest of autonomous
vehicle researchers. Machine learning contains various
methods and algorithms to precisely analyze the sensor's
data for localization or improve localization accuracy. The
ML-based method is discussed in the neural network, rein-
forcement learning, and end-to-end localization categories.
Finally, collaborative vehicle localization discussed twomain
localization techniques: vehicle-to-vehicle and vehicle-to-
infrastructure-based localization.

This survey provided outlines of previous works on
localization from various points of view and compared their
results (sensors, methods, accuracy) in Table 2, which will
be a guideline for the new researchers of autonomous vehicle
localization to choose the best way to work on localization.
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TABLE 2. Summary table.
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TABLE 2. (Continued.) Summary table.
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TABLE 2. (Continued.) Summary table.
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TABLE 2. (Continued.) Summary table.

By summarizing all the recent works depending on their
approaches, sensor setup, methods, and algorithms, this study
found some research areas appealing to achieving better
localization accuracy but still need further investigation.
For example, use cases of deep reinforcement learning and
end-to-end methods for precise localization, localization in

harsh weather and through the various seasons, localization
in rural areas and highways, etc., which are still disregarded
by the autonomous vehicle research community.

Based on the research works presented here, this study also
found that autonomous vehicle localizationwill progressively
be based on ML methods. This trend has already begun and
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will increase in the future.ML-based localization will be used
either to improve the results of conventional localization,
which are based on HD map or Bayes filter-like algo-
rithms, or as standalone ML-based localization. ML-based
standalone localization methods include visual localization,
training a neural network in an end-to-end manner to
perform localization, and optimization of localization by the
RL method. Improvements in technology, such as internet
availability and speed, wireless communication using 5G and
radio frequency technologies, etc., will catalyze the research
towards smart cities and ITS. Thus, V2X localizationwill also
be a topic of significant research in the future.
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