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ABSTRACT Self-supervised learning (SSL) has emerged as a promising approach for learning repre-
sentations from unlabeled data. Momentum-based contrastive frameworks such as MoCo-v3 have shown
remarkable success among the many SSL methods proposed in recent years. However, a significant gap in
encoder representation exists between the online encoder (student) and the momentum encoder (teacher)
in these frameworks, limiting the performance on downstream tasks. We identify this gap as a bottleneck
often overlooked in existing frameworks and propose ‘‘residual momentum’’ that explicitly reduces the gap
during training to encourage the student to learn representations closer to the teacher’s. We also reveal that
a similar technique, knowledge distillation (KD), to reduce the distribution gap with cross-entropy-based
loss in supervised learning is useless in the SSL context and demonstrate that the intra-representation gap
measured by cosine similarity is crucial for EMA-based SSLs. Extensive experiments on different benchmark
datasets and architectures demonstrate the superiority of our method compared to state-of-the-art contrastive
learning baselines. Specifically, our method outperforms MoCo-v3 0.7% top-1 in ImageNet, 2.82% on
CIFAR-100, 1.8% AP, and 3.0% AP75 on VOC detection pre-trained on the COCO dataset; it also improves
DenseCL with 0.5% AP (800ep) and 0.6% AP75 (1600ep). Our work highlights the importance of reducing
the teacher-student intra-gap in momentum-based contrastive learning frameworks and provides a practical
solution for improving the quality of learned representations.

INDEX TERMS Contrastive learning, residualmomentum, representation learning, self-supervised learning,
knowledge distillation, teacher-student gap.

I. INTRODUCTION
Self-Supervised contrastive learning (SSL) has proven to be
highly successful in the field of natural language processing
(NLP) [1], [2] over the past few years. Recently, it has
also emerged as a critical research paradigm in computer
vision, owing to its unique advantage of not requiring
expensive human labeling, as in the case with supervised
learning frameworks [3], [4], [5], [6], [7]. In fact, SSL has
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outperformed traditional supervised pretraining methods in
learning representations for a wide range of downstream
tasks, including classification, segmentation, and object
detection [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. Without the ground-truth label, the core of most SSL
methods lies in learning an encoder using augmentation-
invariant representation [13], [18], [19], [20], [21], [22],
[23], [24]. Amongst them, contrastive learning frameworks
based on exponential moving averages (EMA or momentum)
have attracted much attention. MoCo [25], MoCo-v2 [26],
BYOL [20], DINO [27], ReSSL [28], DenseCL [29], and the
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FIGURE 1. Linear classification comparison on four datasets. We use
ResNet-18 for CIFAR-10 and CIFAR-100; ResNet-50 for ImageNet-100 and
ImageNet-1K. Models are trained 200ep for ImageNet-1K, and 1000ep for
other datasets.

recent MoCo-v3 [9] are examples of the momentum-based
frameworks that achieved great success in self-supervised
visual representation learning. These frameworks use EMA
to construct two branches of a Siamese architecture where
one branch is withmomentum encoder (called ‘‘teacher’’ [27]
or ‘‘target’’ encoder [20]) and the other branch without it
(called ‘‘student’’ or ‘‘online’’ encoder [20]). Specifically,
MoCo [25] is a milestone in SSL that introduced a slow-
moving average network (momentum encoder) to maintain
consistent representations of negative pairs in a large memory
bank using EMA.Without negative samples, BYOL [20] uses
a moving average network to produce prediction targets to
stabilize the bootstrap step and a simple cosine similarity loss
to reduce the distance between the two distorted versions of
an image. DINO [27] utilizes knowledge distillation (KD)
to predict the output of a teacher constructed by an EMA
encoder.

MoCo-v3 [9], on the other hand, has incorporated the
best practices in the field to create a more powerful
contrastive learning framework. Zhao et al. [13] proposed
GLNet exploiting jointly global and local information under
the EMA paradigm to improve MoCo-v3. Momentum-
based approaches have considerably enriched the field of
self-supervised learning with the teacher-student (TE-ST)
formula. Prior works have carefully exploited the importance
of TE-ST discrepancy, such as various knowledge distillation
techniques in traditional supervised learning [15], [30],
[31], [32], [33], [34] or semi-supervised learning [35],
[36]. However, in self-supervised learning paradigm, this
behavior, i.e. TE-ST gap, has not been adequately discovered.
To fill this space, we investigate if the ST-TE gap exists in
the SSL context and how to solve it.

We find that existing EMA-based SSLs remain a substan-
tial gap between the two encoders. More importantly, we find
that EMA-based SSLs concentrate solely on reducing the
distance between representations of two different augmented
views (inter-view) to learn augmentation-invariant represen-
tation and overlook the significance of reducing the distance
between the representations of the same augmented view for
the teacher and the student (intra-view). In order to address

FIGURE 2. Intra-representation gap (IRAG) between teacher and student
on CIFAR-100 (measured by Eq.5) and their corresponding performance
gap. Our Res-MoCo significantly reduces the IRAG, narrowing their
performance gap.

the potential TE-ST’s representation gap in EMA-based
SSLs, we focus on the intra-representation gap (IRAG) using
the same view (Fig.3d) instead of the inter-representation gap
(ITRG) with different views used in existing SSLs (Fig.3c).

Our investigation revealed a significant IRAG in existing
SSLs during training (Fig.2 bottom), which leads to a large
TE-ST’s performance gap (Fig.2 top), hindering the student’s
capability. We show that the gap becomes more severe in
large-scale datasets such as ImageNet or COCO. To address
this issue, we propose ‘‘residual momentum’’ to directly
reduce the IRAG and ultimately improve the performance of
baseline models (Fig.1). Our contributions are as follows:

• We propose to focus on the representational gap
between teacher and student within EMA-based SSL
frameworks. Such a difference is carefully considered
in supervised learning with KD but is overlooked in SSL
contexts (Fig.3).

• We show that such a disparity (IRAG) can cause a
substantial discrepancy in performance between the two
models during training SSL, hindering students’ ability
to learn better representations.

• To address this issue, we introduce a residual momentum
(referred to as ‘‘intra-momentum’’) during training,
explicitly reducing the representation gap between
the teacher and student in EMA-based SSLs. Our
approach narrows their performance gap and signifi-
cantly improves the student model’s performance, and
provides a complete picture of supervised learning and
self-supervised learning from the perspective of the
TE-ST gap.

• We evaluate the effectiveness of our approach on
challenging benchmark datasets and various network
architectures. Our experimental results demonstrate that
our approach outperforms state-of-the-art CL baselines
and achieves superior performance.
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FIGURE 3. KD in supervised learning shares some similarities with intra-momentum in self-supervised learning but differs in some aspects, as discussed
in the main text. Besides, the comparison of the existing CL frameworks that use Inter-momentum and the proposed method with Intra-momentum. Ti
with i ∈ {1, 2} is a random transformation to the given input image x . As the term suggests, existing SSL with Inter-M uses different inputs, i.e. x1 and
x2 for student and teacher, respectively. By contrast, a model with Intra-momentum uses the same input xi with i ∈ {1, 2} for both the student and
teacher model and uses LIntra_M to minimize their representation gap. Our final method, Res-MoCo, jointly optimizes the intra- and inter-momentum to
achieve the best learning capability, provides a complete picture with supervised learning in the TE-ST perspective.

II. RELATED WORKS
A. MOMENTUM-BASED SELF-SUPERVISED LEARNING
Exponential moving average (EMA or momentum) has been
deeply studied for smoothing the original sequence signal
[37], [38], optimization [39], [40], [41], reinforcement learn-
ing [42], [43], [44], knowledge distillation [45], [46], and
recent semi-supervised learning [36], [47], [48]. Recently,
EMA has also been applied in modern self-supervised
learning frameworks. Amongst the seminal works, MoCo
[9], [25], [26], DINO [27], ReSSL [28], and BYOL [20]
are examples that use the EMA in the target encoder to
prevent model collapse [20], [27], obtain consistent negative
samples [25], [26], or boost performance as in [9] and
[13]. Seyfi et al. [21] proposed XMoCo to extend momentum
contrast to regularize the consistency and improve MoCo-
v2 with a notable margin. Cheng et al. [49] found that
constructing distributed augmentation invariance in an EMA-
based SSL can improve the learned feature quality.

In practice, EMA-based SSL approaches have demon-
strated state-of-the-art performance for downstream tasks
compared to EMA-free SSL counterparts [19], [21], [49],
[50], [51]. The EMA-based frameworks contain two branches
(as shown in Fig.3): the first branch is an encoder that allows
back-propagation [52] during training, which refers to as
online encoder (student). The second branch is target encoder
(teacher), which is constructed by a momentum encoder
whose parameters are dynamically updated via the online
encoder using Eq.1. Different from all the above research
that only focuses on augmentation-invariant representation

learning tasks, our work explores and addresses the disparity
in representation between the teacher and student to improve
EMA-based SSL frameworks such as MoCo-v3.

B. TEACHER-STUDENT GAPS
There have been early works trying to reduce the distribution
gap between the student and teacher networks to maximize
the performance of the student model [53]. In Knowledge
Distillation (KD) [53], the knowledge from a larger and better
performingmodel (teacher) is used to generate the soft targets
for a smaller student model, hence reducing the distribution
gap between the twomodels (the teacher model is often a pre-
trained/fixed model as Fig.3b).

For KD, however, earlier works show the sharpness gap
[31] (with adaptive temperature), confidence gap [54] (with
normalized logits), and capacity gap [30] (with gradient
similarity) between teacher and student, preventing the stu-
dent model’s capability. The other works of self-knowledge
distillation (self-KD) try to use students themselves as
teachers. In [55], the self-KD model is trained to reduce
the distance between features extracted from two separate
distorted versions of an image by a KL divergence loss.

The self-training in [36] may be close to our work where
the distribution distance between outputs of the teacher and
student is minimized to improve generalizability. There are
three points that the mean teacher model in [36] is different
from our work. First, the mean teacher approach works in
a supervised learning paradigm where our proposed intra-
momentum works in a self-supervised manner, i.e. without
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any labels involved. Second, [36] minimizes the distribution
distance or prediction of labels with MSE loss on softmax
outputs. By contrast, intra-momentum is trained to minimize
the representation gap between teacher and student with
cosine similarity loss (i.e. no softmax applied). And third,
in [36], the teacher and student have different inputs with
injected noises η and η′. By contrast, our proposed intra-
momentum uses the same input for both student and teacher
models (see Fig.3).

A key difference between KD in supervised learning and
self-supervised contrastive learning is the output of the latent
vectors. Specifically, SL and KD produce the softmax to
obtain the probability distribution of each labeled class,
while SSL produces the representations that lie on some
hyperspheres (without labels) [56] as clearly illustrated in
Fig.3.

As discussed in [27], momentum-based SSL frameworks
[9], [13], [20], [21], [25], [27] have a form of KD.
For these SSLs, we notice that two different augmented

images (positive pair) are fed separately into the teacher and
student to learn the augmentation-invariant representation.
During training, a loss function (either cross-entropy [27],
contrastive loss [9], [25], [28], or a simple cosine similarity
[20]) is applied in their outputs to minimize their gap.
We refer to this gap as inter-representation gap (ITRG) since
they use different inputs and refer to the momentum in these
frameworks as inter-momentum.

In contrast to the existing inter-momentum used in SSLs,
in this work, we focus on the representation gap between
the teacher (TE) and the student (ST) but for a given
the same input image. We refer to this gap as intra-
representation gap (IRAG), which can be minimized by
the proposed intra-momentum. Compared to the existing
inter-momentum, the intra-momentum has unique properties:
First, it is augmentation agnostic. Second, different from the
traditional inter-momentum integrated into the existing SSL
loss, the proposed intra-momentum is decoupled from the
existing SSL loss and can be flexibly plugged into other CL
frameworks (e.g. Eq.9 and Eq.10).

Motivated by earlier KDs [30], [31], [32], [33], [34],
[35], which reduce various TE-ST gaps mentioned above
that achieve great success in supervised learning. We notice
that ‘‘no existing work shows if the KD losses can work
in SSL beyond the supervised loss’’. This work provides
comprehensive empirical results showing that ‘‘minimizing
the distribution gap as these KD techniques are useless
in the SSL context’’ (Section V-A). Our intra-momentum
is proposed to reduce the ‘‘representation gap’’ in self-
supervised learning by an explicit distance function, i.e.
cosine similarity with ℓ2-norm (Eq.5) that significantly helps
the baselines (see Section V-A). The comparison between the
traditional KD and our method is visualized in Fig.3.

In the following sections, we present the effectiveness of
our proposedmethod in comparison to strong EMA-based CL
seminal frameworks, including MoCo-v3 for classification
pretraining and DenseCL for dense prediction pretraining.

III. METHOD
In this section, we first present the background of SSL.
After that, we analyze how inter-momentum is applied in
the existing SSL frameworks, since MoCo-v3 is the latest
version of MoCo series, which employed the best practices
in the area, we choose mainly MoCo-v3 as our CL baseline.
Then, we introduce the preliminaries of the proposed
intra-momentum to narrow the ‘‘intra-representation gap’’.
Finally, we formulate the objective function of the final
method, which consists of both ‘‘inter-momentum’’ and
‘‘intra-momentum’’.

A. BACKGROUND
Given an unlabeled image x ∈ RH×W×3, two random
augmentations x1 ∈ RH×W×3 and x2 ∈ RH×W×3 are
generated and formed as a positive pair, the augmentations
from the other images in the current mini-batch are treated as
the negative samples [19], [26]. The two augmented images
x1 and x2 are separately fed into two different encoders,
i.e. student and teacher to train the student model to learn
the augmentation-invariant representation.1 We consider an
online encoder (student), i.e. E with a backbone f (e.g.
ResNet-50), projector g [19], [25] and may be followed by
a predictor q [9], [20]. The target encoder (teacher), i.e. Em
(fm, gm, qm) has the same architecture as the student network.
The subscript m beside each character denotes momentum.
The standard backpropagation [52] updates the parameters
of the student network while the teacher’s parameters are
momentum updated as follows [9], [20]:

ξ ← βξ + (1− β)θ, (1)

where θ and ξ are the parameters of the student E and teacher
Em, respectively. A constant β ∈ (0, 1) is the momentum
coefficient which is often chosen with a value of 0.99 for
short training (200 epochs) [20], [25], [50]. In longer training,
i.e. 800 / 1000 epochs for full convergence, SSL methods
often use the higher momentum value, i.e. β = 0.996 [9],
[20], [27]. The presented framework is commonly used in
most EMA-based SSL approaches. We specify the MoCo-v3
design as a baseline in the next section.

B. INTER-MOMENTUM TO MINIMIZE THE
INTER-REPRESENTATION GAP IN SSL
MoCo [25] is the first work to introduce EMA for self-
supervised contrastive learning and has become a ground-
breaking and highly recognized framework. Its latest version,
i.e.MoCo-v3 [9], employs the best practices in the SSL area.
Specifically, MoCo-v3 consists of the online encoder E with
(f , g, q) and the target encoder E′m with (fm, gm). Note that
there is no predictor on the target encoder. Two crops x1 and
x2 are embedded by E and E′m to have the outputs q (query)
and km (key). The objective function of MoCo-v3 is adopted

1To avoid ambiguity, we use following concepts interchangeably: (online
encoder, student); (target encoder, momentum encoder, teacher).
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by InfoNCE loss [57]:

Lctr = − log
exp(q·k+m /τ )

exp(q·k+m /τ )+
∑
k−m

exp(q·k−m /τ )
, (2)

where (·) denotes cosine similarity, k+m is the output of E′m for
the augmentation of a same image as the query q (positive
sample), k−m is the negative samples of q. Symbol τ is a
temperature hyper-parameter [19], q and k are l2-normalized
[9]. For every sample x in the current mini-batch, the above
loss is symmetrized as follows MoCo-v3 [9]:

LInter-M =
1
2

(
Lctr(q1, k2,m)+ Lctr(q2, k1,m)

)
. (3)

Here we put ‘‘Inter-M’’ to the subscript to denote that
momentum used in MoCo-v3 (and all existing SSL frame-
works) to construct the teacher and student that uses two
different augmented images as inputs. Obviously, ‘‘inter-
momentum’’ (Inter-M) in Eq.3 is designed to minimize the
distance between two different inputs (inter-representation
gap), i.e. making x1 and x2 closer to learn the invariant-
augmentation representations during the training process.

Next, we introduce a novel residual momentum (‘‘intra-
momentum’’), which is trained to have representations of the
teacher and student as close as possible.

C. INTRA-MOMENTUM TO MINIMIZE THE
INTRA-REPRESENTATION GAP IN SSL
Previous works, e.g.MoCo-v3 in the last section, only focus
on Inter-M to minimize the gap between the teacher and
student’s outputs from two different augmented images while
ignoring the potential representation gap between the teacher
and student for the same augmented view.

As shown in Fig.2, such an unaware discrepancy causes
a big gap in their performance, which prevents the student
model from learning good representation. To this end,
we propose to measure the intra-representation gap between
teacher and student models using the same input via the lens
of intra-momentum (Intra-M).

Without changes in the architecture of MoCo-v3, we con-
sider the online encoder E(f , g, q) and the momentum
encoder Em(fm, gm, qm). MoCo-v3 uses the output of gm
as the target (asymmetry), but Intra-M uses the output of
qm (symmetry). We define the intra-representation gap as
follows:

LIntra-gap = D(q, qm), (4)

where D is a distance function. In this paper, we consider
three choices for the distance function to narrow the gaps
between the two vectors (either the distribution gap or
the representation gap). First, we use the negative cosine
similarity function (default to measure representation gap) as
follows [20]:

D(q, qm)cosine = ∥q− qm∥22 = 2− 2 · (q · qm), (5)

where ∥.∥ denotes the ℓ2-norm. Vectors q and qm are
ℓ2-normalized. Second, we ablate the other choice of distance
function with the entropy function H as used in KD for
supervised learning (distribution gap) [27], [53]:

D(q, qm)CE = H (q, qm) = −P(q) log(P(qm)), (6)

where P(x) is the softmax output of a vector x ∈ RK :
P(x)(i) = exp(x)(i)/τs∑K

k=1 exp(x)(k)/τs
, τs is a temperature parameter

which the common choices in KD are {3,4,5} [53]. Here, q
and qm are not ℓ2-normalized. And third, we verify the usage
of the mean square error (MSE) to the softmax outputs of the
student and teacher (distribution gap) as in [36]:

D(q, qm)MSE =
1
2
(q− qm)2, (7)

where q and qm are not ℓ2-normalized but softmax-
normalized. Note that q and qm are the outputs of the online
and momentum encoder from the same image augmentation
input. Our experiments show that Intra-M using cosine
similarity performs the best compared to MSE or CE in top-1
linear accuracy. This suggests that cosine similarity for intra-
momentum is more suitable in contrastive learning. We also
tried the asymmetric design for Intra-M, i.e. LIntra-gap =

D(q, gm) however, it performs worse than LIntra-gap =

D(q, qm). This suggests that the asymmetry does not benefit
Intra-M. Finally, following LInter-M (Eq.3), we symmetrize
loss for Intra-M as follows:

LIntra-M =
1
2

(
LIntra-gap(q1, q1,m)+ LIntra-gap(q2, q2,m)

)
. (8)

1) DISCUSSIONS
For the Inter-M, x1 and x2 are forwarded two times to the
student and teacher encoder, resulting in a total of 4 forwards
to the backbone and projector (symmetric loss). Our Intra-
M uses the same outputs gm of Inter-M; the additional costs
come only from anMLP qm and the backward pass, which are
negligible. As shown in Tab.12, Intra-M causes only 5s slower
than MoCo-v3 when pre-trained on ImageNet (the overhead
is less than 1%).

Eq.5 and Eq.7 are used to minimize the representation gap
between vectors q and qm, but Eq.6 is widely used in KD [53]
to match the probability distribution between two vectors,
we included for completeness and comparisons.

D. FINAL OBJECTIVE FUNCTIONS
1) Res-MoCo
We adopt MoCo-v3 [9] as our baseline for the image
classification pretraining. Our final method is named Res-
MoCo (residual momentum contrastive learning) Fig.3,
whose loss is a combination of the two momentum losses
(Eq.3 and Eq.8) for joint optimization as follows:

LRes-MoCo = LInter-M + λLIntra-M. (9)

Here, λ is a hyperparameter used to control the effect of
the EMA of Intra-M. By default, Res-MoCo uses cosine
similarity (Eq.5) for LIntra-M. Eq.9 shows that Res-MoCo is
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FIGURE 4. Impact of Intra-M on different backbone architectures.
We compare MoCo-v3 and the proposed Res-MoCo (adding Intra-M) on
IN-100, pretraining for 1000ep.

designed to narrow the overall representation gap between
the student and teacher, including inter-representation gap
(existingMoCo-v3) and intra-representation gap (this work).
We analyze the impact of each component in the ablation
section. Compared to MoCo-v3, our Res-MoCo achieves
superior performance for all architectures and datasets on
downstream tasks as highlighted in Fig.1 and Fig.4.
To explore the effect of the proposed residual momentum,

we consider also DenseCL [29] (a CL baseline for dense
prediction pretraining) to conduct experiments. Our objective
function, in this case, is as follows:

LRes-DenseCL = LDenseCL + λLIntra-M. (10)

We set λ=1 by default. In optimal setting [29], LDenseCL has
two equal-weighted loss terms (w/Inter-M): global term Lq,
and dense term Lr . Intra-M has been added to each term to
minimize the corresponding teacher-student representational
gap for dense and global representations.

IV. EXPERIMENTS
A. SETUP AND EVALUATION
1) DATASETS
We use CIFAR-10/100 (10/100 classes) [58], ImagetNet-
100 (IN-100, 100 classes) [59], and ImageNet-1K (IN-1K,
1000 classes) [60] for classification and VOC07+12 [61]/
COCO2017 [62] for object detection. We consider different
backbones for Res-MoCo, such as ResNet-18, ResNet-34,
ResNet-50 [3], and ViT-S [63].

2) PRE-TRAINING SETUP
The experiments use the SSL library [64], [65] with their
optimal tuned hyper-parameters, keeping the same settings
for MoCo-v3/Res-MoCo and DenseCL/Res-DenseCL. The
encoder is trained without labels on the training set of each
dataset. We trained ResNet-18 for 1000ep on CIFAR-10/100
and IN-100, while ResNet-50 is used for larger datasets
IN-1K and COCO train2017, trained for 200ep/800ep and
800ep/1600ep, respectively.2

3) EVALUATION
We evaluate the proposed SSL framework, following prior
works [12], [29], in linear classification and transfer learning

2As a common practice, we use the starting momentum β = 0.99 for
200ep and β = 0.996 for 800-1600ep. The value β increases to 1.0 using a
cosine schedule [9], [20].

TABLE 1. CIFAR-10. Comparison of MoCo-v3 and Res-MoCo. All methods
are trained in 1000ep using the same settings on ResNet-18. We employ
the results for other SSL methods from the official solo-learn library [65].

TABLE 2. CIFAR-100. Comparison of MoCo-v3 and Res-MoCo. All methods
are trained in 1000ep using the same settings on ResNet-18. We employ
the results for the other SSL methods from the official solo-learn
library [65].

for object detection. Pre-trained models are assessed by
training a linear classifier on frozen representations using
the test set [9], [65]. Object detection tasks utilize ResNet-
50 pre-trained by Res-MoCo on IN-1K to initialize Faster
R-CNN and fine-tune with a standard 2x schedule [29], [50]
for VOC07+12 and COCO datasets. Finally, we evaluate the
transferability of the COCO pre-trained Res-DensCL/Res-
MoCo models to VOC07+12.

B. MAIN RESULTS
1) LINEAR CLASSIFICATION
In Tab.1 and Tab.2, we report the results on CIFAR-10/100
(size of 32× 32) compared Res-MoCo to its baseline MoCo-
v3 and the other state-of-the-art methods. OnCIFAR-10, Res-
MoCo outperforms MoCo-v3 for all metrics with 93.81%
(+0.71%), 99.84% (+0.04%), and 90.78% (+1.66%) on top-
1, top-5, and KNN-1 accuracy, respectively, and surpassing
other state-of-the-art methods.

On CIFAR-100, the improvement is more significant when
Res-MoCo outperforms baseline MoCo-v3 with +2.82%,
+2.25%, and +3.52% on top-1, top-5, and KNN-1, respec-
tively. Tab.3, Tab.4, Tab.9 report the results for the large-scale
dataset (224× 224), IN-100 and IN-1K. Res-MoCo shows a
clear improvement over MoCo-v3, i.e. +0.7% and +2.41%
accuracy on IN-1K and IN-100, respectively, demonstrating
the effectiveness of Intra-M.
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TABLE 3. Linear Classification accuracy ImageNet-1K vs. Object Detection. All SSL methods used ResNet-50 pre-trained on IN-1K. Detection results of
MoCo-v3/ Res-MoCo are run three times to get an average. Our Res-Moco outperforms all competitors with a visible margin.

TABLE 4. ImageNet-100. Compare baselines and Res-MoCo. Methods are
trained for 1000ep (ResNet-18).

2) TRANSFER LEARNING IN-1K TO COCO/VOC
In Tab.3, the quality of representations is evaluated by
transferring them to object detection. The pre-trained models
are finetuned end-to-end in the target datasets using the
public code [25], [65]. Res-MoCo shows competitive results
among the leading methods, outperforms MoCo-v3 for all
metrics as well as all considered datasets in the same
setting batch size, and surpasses all other COCO competitors
for AP, AP50, and AP75. This demonstrates Intra-M help
learn better quality representations for downstream object
detection beyond classification tasks.

3) TRANSFER LEARNING COCO TO VOC
Tab.5 presents a comparison of transfer learning performance
from COCO [62] to VOC [61] across Res-MoCo and Res-
DenseCL, along with their respective baselines. The results
demonstrate the superiority of our methods, as both Res-
MoCo and Res-DenseCL outperform baselines in all settings.

Specifically, Res-MoCo achieves a 1.5-1.8% improvement
in AP and AP75 over MoCo-v3, while Res-DenseCL
outperformsDenseCL by 0.3-0.6% on thesemetrics. Notably,
MoCo-v3 trained on COCO performs worse than supervised
IN-1K (53.6% vs. 54.2% AP, -0.6%), while Res-MoCo

TABLE 5. Transfer to VOC07+12 object detection. All SSL methods are
pretrained on COCO dataset with ResNet-50.

outperforms it with 55.1% (+0.9%) (800ep) and 55.4%
(+1.2%) (1600ep). These results indicate the importance of
narrowing the TE-ST gap in SSL, and highlight the superior
quality of learned representations in our models.

V. ABLATION STUDY AND ANALYSIS
We have provided the most important results for small-scale
(CIFAR, IN-100) and large-scale (IN-1K, COCO).We follow
recent SSL papers, such as ECCV22 [71] and CVPR22 [12],
to mainly perform ablation studies with CIFAR-10/100 or IN-
100 for efficiency in our hardware resource.

A. GAP REDUCTION FUNCTIONS
Our first choice to reduce the representation gap between the
teacher and student is cosine similarity (CS) loss. We also
ablate the other choices of the distance function such as cross-
entropy (CE) or mean square error (MSE). We find that in
SSL, CS loss performs the best compared to CE in KD [53],
or MSE in self-training [36]. From Tab.6, we obtained the
following interesting insights between SL and SSL:

• Reducing the probability distribution gap, the widely-
used technique with KL divergence or cross-entropy

116712 VOLUME 11, 2023



T. X. Pham et al.: Self-Supervised Visual Representation Learning via Residual Momentum

FIGURE 5. Training on large-scale IN-1K dataset. We show linear accuracy (left) and the corresponding
intra-representation gap (right). In this setting, the existing work MoCo-v3 suffers from a severe mismatch
between the online (student) and target (teacher) models, hindering the learning ability. By contrast,
Intra-M helps reduce the gap to improve learning in Res-MoCo.

TABLE 6. Choices of LIntra-M. Linear classification accuracy on
CIFAR-100, when trained 1000ep when all models are fully converged.
Cosine function performs the best.

loss in KD [30], [32], [33], [72], [73] (very successful
for supervised learning) is unsuitable for SSL. This
makes sense because, in supervised learning, the model
is trained to match the input data to some class
distributions via a cross-entropy loss to produce the class
probability.

• In the context of self-supervised learning, the target is
to train a model to learn some useful representations
from input data, normally with contrastive loss or
negative cosine similarity. The encoder is trained to
produce representations of images that lie into some
hyperspheres with alignment and uniformity [56].
Therefore, reducing the representational gap with cosine
similarity function as intra-momentum is more suitable
for learning representations in contrastive learning
frameworks.

B. TE-ST’S REPRESENTATION GAPS IN SSL
We present learning curves on large-scale datasets to
demonstrate the intra-representation gap in Res-MoCo with
and without residual momentum (Intra-M). The results of
ImageNet-1K in Fig.5 indicate that Res-MoCo significantly
reduces the representation disparity between the teacher
and student (MoCo-v3, max magnitude gap ≈ 0.15). This
leads to a corresponding improvement of the student model
performance during most epochs of training.

In the non-object-centric datasets such as COCO (Fig.6),
the TE-ST’s representation discrepancy is more serious for
MoCo-v3, with a max magnitude gap of ≈ 0.3; Res-MoCo
effectively narrows this gap, resulting in significantly better
AP (≈2%, left chart). DenseCL [29] is optimized for dense
prediction pretraining tasks; however, our experiments show
that there is still a big TE-ST gap in both global and dense
projectionwhen training onCOCO,which negatively impacts
the student’s capability.

FIGURE 6. Performance on VOC07+12 (left) vs. Repr. gap when trained on
COCO with 800ep and 1600ep (right).

FIGURE 7. Impact of Intra-M on CIFAR-100, λ in Eq. 9.

TABLE 7. Impact of embedding and batch size, top-1 (%). Results are
performed using CIFAR-100, trained 1000ep.

C. EFFECT OF INTRA-M WITH DIFFERENT λ

Fig.7 shows effect of Intra-M (Eq.9). Compared to MoCo-
v3, λ>0 helps mitigate significantly the teacher-student
difference, which corresponds to higher linear classification
accuracy. The good trade-off is λ=1, which we used for all
other experiments except other notices. What might be the
impact of gradually diminishing the importance of LIntra-M
in the overall optimization process?

We tried decreasingweightλ from 1 to 0 (Eq.9) via a cosine
decay along the training. And we observe the top-1 linear
accuracy is 1% lower than the case keeping λ fixed.

D. EFFECT ON BATCH AND EMBEDDING SIZE
We show its behavior for varying batch size and dimensions
of the projection output in Tab.7. Overall, Intra-M consis-
tently improves MoCo-v3 in top-1 linear accuracy for all
considered settings, demonstrating the important role of the
proposed Intra-M in our framework Res-MoCo.
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TABLE 8. Impact of Intra-M on ViT models, top-1 (%). Results are
performed using CIFAR-100, trained 1000ep.

TABLE 9. Different Backbone Architectures. Comparison of MoCo-v3 and
Res-MoCo (ours) on ImageNet-100. All experiments are trained for
1000 epochs. With the presence of intra-momentum, models learn better
quality representations.

E. EFFECT ON DIFFERENT ARCHITECTURES
Here we verify the importance of reducing the intra-
representation gap in SSL with various architectures, includ-
ing CNNs (ResNet) and ViT models (Tab.8 and Tab. 9).

F. DIFFERENT TEMPERATURES IN CL LOSS
Temperature plays a crucial role in self-supervised con-
trastive learning [19], [56]. Tab.10 further remarks on the
importance of the intra- momentum’s presence. We find
that with higher temperatures, our model performs much
better than the model without intra-momentum in the KNN
metric, where the baseline without the guide of the teacher’s
output itself with higher temperature, makes the teacher-
student mismatch more serious. Note that KNN is designed
to measure the similarity of a sample to its neighbors.

G. ON THE IMPORTANCE OF TEACHER-STUDENT
SIMILARITY
We find that in EMA-based SSL such as MoCo-v3: ‘‘High
Similarity Outputs of the Teacher and Student Gives
Better Accuracy.’’

To this end, we transform the representation gap from
Eq.5 into cosine similarity for a more friendly view when
comparing their performance on linear evaluation. To this
end, we report Tab. 11 for ResNet-18 It can be seen that over
the training, the more similar the representation model has,
there better linear accuracy and KNN the model obtains.

This demonstrates Res-MoCo with the proposed intra-
momentum highly encourages the student model to match the
teacher’s output, improving student learning capability.

H. IMPORTANCE OF INTRA MOMENTUM
We ablate the importance of the proposed intra momentum by
injecting intra momentum into MoCo-v3 for every 8000 steps
during training. We use CIFAR-100 and ResNet-18 to train
the SSL model for 1000 epochs when all models fully
converge. As shown in Fig. 8, whenever adding intra-M to the

FIGURE 8. The use of Intra-M, use if value 1; otherwise, not use.
We remove Intra-M loss for every 8000 steps (∼ 40 epochs). Experiments
were done on CIFAR-100 for 1000 epochs for all models. Note that when
removing Intra-M, Res-MoCo becomes the baseline.

model MoCo-v3, the representation gap (measured by cosine
similarity) between the student and teacher decreases (blue
line) in Fig. 8 which strongly corresponds to the performance
significantly boost to the level of Res-MoCo (green line).

By contrast, if removing intra momentum, we can observe
that the accuracy of the student models quickly drops to the
MoCo-v3 baseline orange line. This indicates the crucial role
of the proposed intra momentum in the momentum-based
SSL framework.

I. TRAINING TIME
Compared to the MoCo-v3 baseline, adding Intra-M loss
makes the training time overhead of our Res-MoCo less than
1%, as shown in Tab.12, demonstrating the efficiency of the
proposed method.

J. IRAG GAP WITH DIFFERENT MOMENTUM SPEEDS
In this part, we ablate the potential intra-representation gap
(IRAG) between the student and teacher encoder in different
momentum update speeds β = {0.9, 0.99, 0.996}. As shown
in Fig.9, for 1000 epochs, β = 0.996 gives the best
performance for MoCo-v3; however, it also shows the most
significant repr. gap. Although the network architectures of
the teacher and student are identical, the EMA updates the
weight from the student to the teacher with a prolonged
momentum speed, i.e. β = 0.996 [20], [27], [50]; therefore
their weights are still quite different. In Eq.1, with β = 0.996,
only 0.4% of the student’s weight is counted to compute the
new weight for the teacher.

Fig.9 shows a considerable gap in their produced represen-
tations of MoCo-v3, which we identify potentially prevents
the SSL model from learning good representations. The

116714 VOLUME 11, 2023



T. X. Pham et al.: Self-Supervised Visual Representation Learning via Residual Momentum

TABLE 10. Different temperatures. Comparison of MoCo-v3 and Res-MoCo on ImageNet-100. All methods are trained for 1000 epochs using the same
settings run on 2 GPUs, batch size 256. It shows that Res-MoCo outperforms MoCo-v3 for both temperature settings.

TABLE 11. Similarity of the student and teacher of each image itself on ImageNet-100, ResNet-18. During training, Res-MoCo shows a much higher
similarity between teacher and student, which strongly corresponds to a performance boost in both linear top-1 (%) and KNN accuracy (%). We monitor
similarity (sim) by taking the average cosine similarity of each training batch.

TABLE 12. Pretraining time. It is measured per epoch using the 4 GPUs
machine (A6000), using the SSL library in [65].

repr. gap keeps increasing and only narrows at the end
of training. At this point, with a nearly zero learning rate
(cosine decay), the model converged, and the overall weight
was insignificantly updated. The momentum coefficient also
becomes 1 due to the cosine schedule (β increases from
0.996 to 1 [20], [25]) (β = 1 means that the student continues
to update, but the teacher is kept unchanged). Applying intra
momentum loss, this gap is significantly reduced and brings
a performance boost for both values of β, and Res-MoCo
achieves the highest performance gap compared to MoCo-v3
with β = 0.996.

Reducing the representation gap with intra-momentum
makes an apparent effect of forcing the student model to learn
to perform as closely as the teacher possible during training,
hence improving both models together. Note that the teacher
model is dynamically updated with EMA from the student;
therefore, the better the student model learned, the better
teacher models are updated, and vice versa.

K. VISUALIZATIONS
We analyze the pre-trained models with different aspects to
understand how Res-MoCo consistently outperforms MoCo-
v3 for most downstream tasks. First, we compare the feature
maps learned by each method. Second, we use GradCAM
heat map, a powerful tool in deep learning for model

FIGURE 9. Representation gap between teacher and student encoders of
MoCo-v3 and Res-MoCo with different momentum update speeds β on
ImageNet-100.

interpretation [74]. The ResNet-50 trained on IN-100 for
1000ep in Tab.9 is chosen for comparisons.

1) LEARNED FEATURE MAPS
Qualitative results of our Res-MoCo method compared to
MoCo-v3 are shown in Fig. 10. The first four columns
demonstrate that Res-MoCo produces cleaner feature maps
by removing background noise, in contrast to MoCo-v3.

Discarding irrelevant information and focusing solely on
the objects is crucial in achieving high-performance object
recognition and detection [75], [76], [77], [78].
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FIGURE 10. Features learned by MoCo-v3 [9] and Res-MoCo (ours) for
images on the test set of IN-100. We visualize the five most meaningful
feature maps in the last CONV layer in the ResNet-50’s first block. It is
best viewed in color.

FIGURE 11. GradCAM generated by Res-MoCo (ours) and MoCo-v3, using
images from the IN-100 test set, demonstrates that Res-MoCo produces a
more accurate heat map.

2) GRADCAM ATTENTION
Fig. 11 demonstrates that our proposed Res-MoCo method
generates more accurate object-focused attention heatmaps
compared to MoCo-v3 for various examples. In the second
image (‘‘Sample 2’’), for instance, MoCo-v3’s attention
heatmap highlights not only the dog but also other irrelevant
parts, while Res-MoCo’s heatmap precisely focuses on the
dog’s face. Fig.12 shows the evolution of each model training
for 800 epochs where our models generated better heatmaps.

These visualizations provide compelling evidence of Res-
MoCo’s significant improvements over the strong baseline
MoCo-v3 in object recognition and detection tasks.

VI. DISCUSSIONS ON INTRA-M
A. INTUITION OF INTRA-M
Chen et al. [9] found that EMA (Inter-M) improves MoCo-
v3 performance by 2.2% (top-1 linear accuracy on IN-1K)
compared to the version without it, despite EMA not being
necessary to work. Our Intra-M, which also uses the EMA
encoder, demonstrates similar performance improvements
as Inter-M (see Tab.13). Both methods (case (b) and (c))
leverage EMA as a mean teacher model to generate more

reliable targets (than case (a)) by ensembling past models
[36], [79]. Given augmentations x1 and x2, Inter-M is trained
to make the outputs of student f and teacher fm closer
f (x1) = fm(x2) on the different view. Intra-M trains the
student encoder f to match the teacher encoder’s reliable
representations on the same view f (x1) = fm(x1), minimizing
the gap and promoting better learning.

Combining them (case (d)), the student learns from the
teacher’s reliable representations of another crop and itself,
resulting in improved performance. In EMA-based SSLs, the
teacher is updated dynamically from the student, leading to a
mutually beneficial relationship where both models improve
(see Fig.2,5).
Compared to VICReg [68] and Barlow Twins (BT) [51]:

BT prevents collapse by using a particular term as cross-
correlation to regularize ‘‘redundancy’’ while VICReg reg-
ularizes ‘‘variance’’ and ‘‘covariance’’. Intra-M is designed
not to prevent collapse but to regularize the teacher-student
‘‘representation gap’’ to improve EMA-based SSLs.
Compared to KD: The KD was initially proposed on

supervised learning (SL) to minimize the TE-ST probability
‘‘distribution gap’’. Their teacher model often uses an offline
pre-trained model instead of an EMA update as in SSL.
By contrast, we investigate the ‘‘representation gap’’ in self-
supervised learning (SSL) via the lens of Intra-M to narrow
such a gap for improving SSLs, and we show that reducing
the distribution gap technique of KD is useless in SSLs (see
Table 6).

B. IMPACT OF INTER-M AND INTRA-M
1) CONTRASTIVE LEARNING WITH INTER-M
When removing the momentum encoder in Eq.2, the loss
function for self-supervised contrastive learning becomes as
follows:

LCL = − log
exp(q·k+/τ )

exp(q·k+/τ )+
∑

k− exp(q·k−/τ )
. (11)

We emphasize that the key km (with subscript m) in Eq.3
comes from the EMA encoder, but in Eq.11, the key k{+/−}

comes from the shared online encoder with stop gradient [50]
(i.e. teacher← student).
As shown in Tab.13 for IN-100, CL (w/o any momentum)

yields 78.71% top-1, MoCo-v3 (CL+Inter-M) gives 81.26%.
It shows that Inter-M helps to boost CL + 2.55% improve-
ment on IN-100 and +2.82% on CIFAR-100.

2) CONTRASTIVE LEARNING WITH INTRA-M
We conduct an ablation study by replacing Inter-Mwith Intra-
M in the loss function, which consists of the intra-momentum
and CL terms as follows:

LCL-Intra_M = LCL + LIntra-M. (12)

Tab.13 on IN-100 shows that Intra-M improves CL to
81.66% (+2.95%), which is slightly better than using Inter-M
(81.26%) (+2.55%). Combining Inter-M and Intra-M results
in a boost to 82.62%. This behavior is also observed on
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FIGURE 12. Comparison of GradCAM learned by MoCo-v3 and Res-MoCo (ours) for different epochs. The image samples are from the test set of
ImageNet-100. The first row is the original image, the second row is the heat map by MoCo-v3, and the third row is the heat map produced by
Res-MoCo (ours). It clearly shows that the heat map produced by Res-MoCo is much more accurate than that of MoCo-v3. It is best viewed in color.
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TABLE 13. Impact of Inter-M and Intra-M in contrastive learning
framework (baseline is MoCo-v3 with case b)). Performance on
CIFAR-100/IN-100, pretrained 1000ep using ResNet-18 backbone.

CIFAR-100, where Intra-M performs on par Inter-M, and
their combination yields the best performance with 71.65%.

VII. CONCLUSION
This paper presents a simple yet nontrivial approach to
address a problem in momentum-based SSL frameworks
such as MoCo-v3 that is overlooked: the representation gap
between the teacher and student models during training.
Our investigation reveals that this often overlooked gap
can significantly impede the models’ ability to learn high-
quality representations. To bridge this gap, we propose intra-
momentum, which systematically reduces the representation
gap by training the student model to closely match the
teacher’s output. We have shown that techniques like KD
to reduce the distribution gap in supervised learning is not
applicable to self-supervised learning and proposed reducing
the representation gap instead. Exhaustive experiments on
challenging image datasets demonstrate that our method
significantly outperforms other CL baselines. Our findings
underscore the importance of considering the representation
gap between the teacher and student models in EMA-based
SSL frameworks as MoCo and DenseCL.

VIII. DISCUSSION AND FUTURE WORKS
The proposed method significantly reduces the teacher-
student gap to improve the SSL with a visible margin,
yielding a complete and unified picture of traditional
supervised learning with knowledge distillation. However,
we have mainly conducted extensive experiments with CNN
backbones, i.e. ResNet family. It is interesting to investigate
our method for the large model of vision transformer ViT
[63] or Swin Transformer [80]. The transformers-based
models are powerful and have potential; however, it is very
computationally costly, it is challenging with our current
hardware resources. Some of our experiments with ViT-S
(same size as ReNet-50) (Tab.8 and Tab.9) demonstrated that
the proposed method works well for transformers. Until very
recently, CNN has also been focused again on where CNN
outperforms ViT as shown in [81]. We believe CNN-based
SSL is still adequate to evaluate future SSLs.
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