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ABSTRACT Cloud computing is a technology for efficiently using computing infrastructures and a business
model for selling computing resources and services. However, intruders find such complex and distributed
infrastructures appealing targets for cyber-attacks. Cyber-attacks are severe threats that can jeopardize the
quality of service provided to clients and compromise data integrity, confidentiality, and availability. Cyber-
attacks are becoming more complex, making it more challenging to detect intrusions effectively. Due to
the high traffic and increased malicious activities on the Internet, a single Intrusion Detection System
(IDS) can be overwhelmed. Despite the various Deep Learning (DL) approaches that have been proposed
as alternative solutions, there are still pertinent security issues to be addressed especially in federated
cloud computing domains. This work proposes a Secure Federated Intrusion Detection Model Version 1
(SecFedIDM-V1) using blockchain technology and Bidirectional Long Short-Term Memory (BiLSTM)
Recurrent Neural Network (RNN). The Cobourg Intrusion Detection Dataset (CIDDS) was acquired, pre-
processed and split into 60:20:20, 70:15:15, and 80:10:10 for training, testing, and validation respectively
to develop the proposed intrusion traffic classification component of the proposed model. The developed
SecFedIDM-V1 was later deployed as a Python-based web application that captures network packets for
classifying attacks into normal or an attack type. The attack packets are recorded in a Hyperledger Fabric
(a private blockchain technology) to serve as a signature database to be used by other nodes in the network.
From the evaluation results of the intrusion classifier, the 80:10:10 BiLSTM network performed better than
GRU with a Precision of 0.99624, Recall of 0.99906, F1 Score of 0.99614, False Positive Rate (FPR) of
0.00094, False Negative Rate (FNR) of 0.00395 and True Positive Rate (TPR) of 0.99605. The SecFedIDM-
V1 can be deployed alongside Firewalls in a federated cloud computing environment to reinforce the security
of the infrastructure.
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I. INTRODUCTION
Cloud computing has emerged to answer the quest for the
provision of computation as a utility like electricity andwater.
Cloud computing provides IT-based services to geographi-
cally dispersed locations via the Internet. In this approach,
users utilize the computational power provided by the Cloud
Service Providers (CSP) and pay only for what they con-
sume as opposed to paying an amount upfront or making
long–term contracts. By paying for consumed computation
power, spending on capital goods could be converted into
other operational expenses [1]. Virtually shared resources
in the cloud computing domain include computation and
storage resources, software applications, operating systems,
and network infrastructures. Businesses and individuals gain
access to cloud services either through social media, email,
web application hosting, etc. Cloud storage solutions like
AWS, Microsoft Azure Blobs, and Google Cloud Storage
are widely used by different cloud retailers and accessed
from multiple devices [2], [3]. Well over $1 trillion has
already been devoted actively or passively to cloud-based
computing [4].

The benefits of cloud computing technology include exten-
sibility, resource allocation based on need, less management
overhead, an adjustable pricing system (pay-as-you-go), and
easier application development and delivery. Large data cen-
tres come with astronomical upfront expenses. However,
smaller businesses can attempt to approach this scale impact
by creating federations of computing and storage utilities [5].
Resource migration, resource redundancy, and the combina-
tion of complementary resources or services are the three
main interoperability elements supported by cloud federation,
which consists of services from several providers aggregated
in a single pool [6].

The primary cloud service models are Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS). IaaS provides virtualized computing,
storage, and networking resources. Platform-as-a-Service
provides the environment to design, develop, deploy and
manage software applications whereas SaaS provides end
users with applications without physical machine installation
[2], [4], [7], [8]. As technology advances, the number of
hacking incidents is on the rise. Security issues have become
a major challenge in a complicated technical world. Cloud
providers and users report attacks regularly [9]. Detecting
cyber threats in the cloud is expensive and time-consuming
as they become increasingly sophisticated. In order to prevent
and secure Information Technology (IT) cloud infrastructure
and operations, active Intrusion Detection Systems orModels
(IDS/M) are essential [2].

Intrusion is any unauthorised activity that causes harm to
a computer system/network and has the potential to compro-
mise confidentiality, integrity, or availability of information
[10]. Intrusion detection models are usually embedded in
software applications to check networks or computers for
harmful activities to maintain system security [10]. As a

preventive measure, IDM identifies and stops potential
threats to a system or network before they may cause damage,
including both malicious insiders and hackers from the out-
side [11], [12]. Various experts have proposed using Machine
Learning (ML) algorithms to develop IDMs to improve the
security of computation and network resources. Machine
Learning emulates human cognitive abilities through mod-
elling deduction, inference, extrapolation, and synthesis.
It could be leveraged to build IDMs thereby enabling pre-
cise identification of malicious traffic, leading to fewer
false positive alerts. Common ML algorithms that have
been used for developing IDMs include Support Vector
Machines (SVM), Decision Trees (DT), Bayesian Networks,
Naïve Bayes etc. [13], [14].

However, the foregoing traditional ML methods focus on
the manual engineering of features and are less efficient
in the presence of enormous data that needs classification
in a production environment. Multiple classification tasks
reduce accuracy as dataset size grows. In order to over-
come the high data analysis challenges of traditional ML
algorithms, Deep Learning(DL) algorithms are employed
to improve IDMs performance, especially in multi-class
scenarios [15].

Lately, blockchain technology has permeated every facet
of Information and Communication Technology (ICT), and
its usage has increased. Significant increases in the value
of cryptocurrencies and notable venture capital investments
in blockchain start-up companies have fueled interest in
the development of this technology [16], [17]. Primarily,
blockchain employs the function of a ledger where all trans-
actions carried out by participating peers are recorded and
shared with all participants. With the inclusion of new blocks
over time, this form of blockchain continues to expand.
Popular cryptocurrency blockchains are publicly available,
and transactions may be queried via web platforms such as
blockchain.com, allowing anybody to query the blockchain
transactions. Blockchain enables parties to do business with-
out a (trusted) third party [17], [18].

This paper proposes a Secure Federated Intrusion Detec-
tion Model (SecFedIDM-V1). The model uses Bidirectional
Long Short-Term Memory (BiLSTM), a deep learning
algorithm, to detect and classify malicious activities on
the network by monitoring incoming network packets. The
details of the packets classified as malicious are stored in a
blockchain ledger in a private network where only certified
nodes can access it, and the ledger serves as a signature
database. The rest of this paper is organized as follows.
Section II provides fundamental understanding of Intru-
sion Detection Systems (IDSs) as well as machine learning.
Related research works on IDS, and the use of intelligent
algorithms in IDSs are presented in section II. The design
and implementation of the proposed model are discussed in
section III. Section IV presents the experimental evaluation
results, while the conclusion and future works are presented
in section V.

116012 VOLUME 11, 2023



E. B. Mbaya et al.: SecFedIDM-V1: A Secure Federated Intrusion Detection Model

II. BACKGROUND
A. AN OVERVIEW OF INTRUSION DETECTION SYSTEMS
System intrusion is any illegal attempt to gain access to
a network, cloud, desktop/laptop or Virtual Machine (VM)
with the intent to violate and compromise it, thereby mak-
ing it vulnerable and permitting unauthorized access. This
can be done by exploring vulnerabilities in the system and
circumventing or disabling components of the system [19].
An IDS is a security tool that collects and analyses the
traffic coming into a network, logs the activity, scans a host
system or network for suspicious activity, and alerts system
or network administrators. Common examples of IDS include
host-based, network-based, and hypervisor-based IDS. Host-
based Intrusion Detection Systems (HIDS) monitor physical
and virtual hosts individually. When suspicious activity is
detected on a host or VM, a warning alert is sent to the user.
Some examples of suspicious activities include altering or
deletion of system files, a series of inappropriate system oper-
ations, or undesirable configuration changes. Network-based
Intrusion Detection Systems (NIDS) are typically located at
points within the network, like gateways and routers, to mon-
itor anomalies in network traffic as they form the frontlines
of network security [9], [20].

Other types of IDS include Signature IDS (SIDS) and
Anomaly IDS (AIDS). Signature IDS, (also known as
Knowledge-based Detection (KBD) or Misuse Detection
(MD)), uses patterns of similarity to identify malicious activ-
ities [13], [21]. If a similar pattern is found in the previous
records stored in the signature database, an alarm is triggered,
notifying the admin that an intrusion has been found [10].
For instance, to circumvent a signature that searches for the
filename ‘‘malware.exe,’’ an attacker could create a malicious
program named ‘‘malware1.exe’’. However, anomaly-based
detection is capable of identifying unknown attacks. Sys-
tem/network events can be monitored for an extended period
to build a baseline profile for abnormal behaviour. Static
and dynamic profiles can both be used in practice. Dynamic
profiles are updated regularly, whereas static profiles are
not. Although AIDS can detect wider classes of intrusions,
anomaly-based detection suffers from high false-positive
rates [22].
Based on the type of attack response, IDS can be further

categorized into active and passive IDSs. It is considered a
passive approach when the network or security administrator
gets a notification, and the event is logged. Active IDSs,
also known as intrusion detection and prevention systems,
can identify vulnerabilities, flag suspicious activity, and take
preventive action utilizing a variety of response mechanisms
to keep up with the development of computer-related crimes.
Regarding the mode of operation, IDS schemes can be fur-
ther divided into online and offline schemes. An online IDS
scheme intercepts packets from the network to monitor and
handle intrusions. Its performance depends on the number of
features to be analyzed. However, offline IDSs can help pro-
cess stored logs (such as benchmark records), detect attacks,
understand them, and mitigate future attacks. In addition,

FIGURE 1. Overview of CIDS types.

depending on the time the detection was executed, IDS
can be categorized as an interval-based or real-time
solution [23].

Collaborative Intrusion Detection Systems/Networks
(CIDSs/CIDNs) are intended to improve the detection capa-
bilities of an IDS by permitting single nodes to collect,
communicate and share crucial information with other nodes.
A CIDS is required because a single node IDS cannot effec-
tively identify sophisticated and complicated intrusions in
modern systems. It enables all IDSs to interconnect and
collaborate on emerging cyber issues, immunizing them and
averting threats from increasing [24], [25]. For instance,
a server acting as a central store of logs is more sensitive to
network irregularities than an individual IDS since it aggre-
gates traffic characteristics from several detection sensors.
Collaborative IDS efficiently identifies widespread attacks
in vast networks by providing a global view of the assaults.
Integrating different IDSs, CIDS reduces the computational
cost of detecting intrusions in various servers and improves
detection on the cloud [24], [26]. Due to better detection
performance, collaborative intrusion detection frameworks
are now widely utilized in enterprises. However, two fun-
damental challenges, namely data management and trust
calculation, remain unresolved [22], [27]. Collaborative IDS
are classified, as depicted in Fig. 1, into i) centralized,
ii) decentralized/hierarchical and iii) federated/distributed,
respectively [26], [27], [28].

The centralized CIDS uses a central server to store logs
from all participating units and runs the analysis for detec-
tion of an intrusion on the network. This CIDS is liable
to a Single Point of Failure (SPoF) and unscalable. In dis-
tributed/hierarchical CIDS, the flow is in a hierarchical
pattern. The monitoring nodes send data to an analyzing unit;
then, from the analyzing unit, data is sent to another unit
to identify intrusions in the CIDS. Though the hierarchical
CIDS approach is less prone to SPoF when compared to
the centralized CIDS, it is also not fully scalable. In dis-
tributed/federated CIDS, a peer–peer approach where each
node performs the role of an analyzing unit, and a monitoring
unit is employed. Distributed/Federated CIDS, as shown in
Fig. 1, is very scalable and resistant to SPoF. This research
focuses on a distributed (federated) architectural approach to
addressing the issues of CIDS.
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Data sharing is a significant problem for collaborative
detection since not all organizations wish to disclose their
data directly. Intrusion detection frequently uses machine
learning techniques to create typical profiles, which neces-
sitates many training samples for a classifier. Some firms
are unwilling to disclose their data due to privacy concerns,
making it challenging to improve detection performance.
Secondly, insider threats pose a significant obstacle to coor-
dinated detection and significantly compromise network
security. In a distributed and collaborative setting, determin-
ing the integrity of an IDS node might be difficult. For
instance, it is not easy to quantify the reputation levels of
multiple collaborating parties adequately [29].

The issue of privacy and safety of records can be solved
with blockchain. With blockchain, peers can share data over
a decentralized ledger network. In addition, validators (typ-
ically miners) are used to replace third parties and carry out
decentralised transaction validation. Distributed consensus is
the ability of a group of individuals who do not trust one
another to reach an agreement on how to verify a certain
quantity of a digital transaction without the authorization of
a reliable third party [17], [30], [31].

The benefits of blockchain, a novel distributed ledger
system, include data security, autonomy, openness, privacy,
immutability, efficiency, speed, and cost reduction. The
eviction of central authority and the facilitation of the devel-
opment of autonomous, secure, and transparent systems
result from generating trust across non-trusting organiza-
tions. Several organizations, consortiums, and nations are
integrating blockchain technology into their systems to reap
its benefits [32], [33]. Blockchain is a reliableway tomaintain
an unalterable distributed ledger. It has great potential in
the cloud computing industry, particularly for protecting the
provenance of data items across cloud infrastructure. The
data’s ancestry is determined by the data’s provenance, based
on the data object’s real origination. Assume that authentic
data provenance exists in the cloud for all cloud-stored data,
distributed data calculations, and data transactions, it would
be capable of detecting insider attacks, and identifying a
reliable source of system or network breaches [34].
Individual IDS alerts are recorded as transactions in the

blockchain. Before adding a transaction to the blockchain,
each unique IDS connecting to the centralized server runs
a consensus procedure to validate the transaction. This
architecture ensures that only verified, validated alerts are
updated on the centralized server. These notifications are
tamper-resistant and accessible to all IDS node participants
[35]. No block is appended to the blockchain without the
consensus of all network participants. Due to the network’s
transparency, attacks such as man-in-the-middle and network
session hijacking are impossible. The data included in a block
cannot be modified retrospectively without modifying the
following block. As depicted in Fig. 2, since all participants
share the identical blockchain, any effort to alter the data of
a node is rejected during the ratification of the block, making
it an integrated system [25], [36].

FIGURE 2. An in-depth view of a conventional blockchain.

B. INTRUSION DETECTION DATASET
The choice of dataset is one of the most vital aspects of devel-
oping an IDS. The dataset is used in modelling an IDS during
the training phase and subsequently employed to evaluate the
IDS’s model performance. Setting up and capturing real-time
attacks from regular network traffic is quite expensive
and technically demanding. Thus, authors have resorted to
using publicly accessible benchmark datasets from different
research laboratories. Common datasets employed for IDS
studies include Knowledge Discovery in Databases (KDD)
Cup 99, Canadian Institute for Cybersecurity IDS 2017 (CIC-
IDS2017), and Australian Defense Force Academy (ADFA)
[10], [37]. The Department of Defense Advanced Research
Projects Agency (DARPA) curated the Knowledge Discovery
and DataMining (KDD98) dataset in 1998 as the first attempt
to create an IDS dataset. The dataset contains information
about TCP sessions that begin and end at predetermined
intervals and simulates a wider range of attacks on a military
network [10], [35]. Despite its importance to IDS research,
this dataset has been widely criticized for its inaccuracy
and inability to consider real-world situations. This made
models trained with the dataset perform poorly during the
evaluation phase. The shortcomings in KDD98 led to the
generation of a new dataset called the Network Security
Laboratory (NSL)-KDD. The NSL-KDD, as a modified and
upgraded version of KDD98, contains four categories of
attacks. These include Probe, User to Root (U2R), Denial
of Service (DoS), and Remote to Local (R2L) [39]. The
CIC-IDS2017 dataset comprises of many updated attack
cases and satisfies the criteria for actual attacks. The dataset
consists of five files containing network traffic information
collected over five days. The entirety of the CIC-IDS2017
dataset consists of 3,119,345 records and 83 attributes with
15 class labels (1 normal and 14 attack labels) [40]. The CIC-
IDS2017 dataset contains up-to-date flow-based network data
of normal and attack traffic. This dataset is suitable for
extensive NIDS cloud benchmarking [41], [42]. The Coburg
Intrusion Detection Data Sets (CIDDS) [41], [42] were gen-
erated on an OpenStack platform. It contains 25,112,036
normal and attack flows with 14 different attributes of uni-
directional NetFlow. This dataset was appositely adopted for
this study. Further details on the dataset are presented in
section III-A.
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C. MACHINE LEARNING-BASED INTRUSION
DETECTION SYSTEMS
Over the years, statistical approaches, expert techniques, and
time-series approaches have been explored to developmodels
for IDS. However, with the increased data traffic in modern
networks, it becomes challenging for IDSs developed using
the aforementioned approaches to draw a clear line between
legitimate and harmful operations. This drawback necessi-
tated machine learning and deep learning approaches [43],
[44]. The rapid development of deep learning theory and
technology over the past few years has ushered in a new
era of artificial intelligence and provided a novel approach
to creating intelligent intrusion detection technologies [15].
A typical example of learning approaches for improving the
performance of IDSs is the use of Recurrent Neural Networks
(RNNs), which have existed for a couple of years, but whose
full potential was only recently begun to be recognised.
An RNN comprises input, output, and hidden units. The
hidden unit carries out most of the learning computations.
Information usually flows from the preceding historical con-
cealment unit to the current timing concealment unit. The
RNN model effectively has a one-way data flow from input
to hidden nodes. Hidden units are considered the network’s
memory which stores end-to-end information.

When learning long-term dependency is a model priority,
using Gated Recurrent Unit (GRU) networks (a variant of
RNN) as a learning technique is more suitable. A GRU net-
work avoids the vanishing and explosion of gradient problems
experienced when using traditional RNNs [45], [46]. The
quantity of neurons in the input layer is dictated by the feature
space size, as depicted in Fig. 3. Similarly, the output space
corresponds to the number of neurons in the output layer.
The memory cells in the hidden layer(s) cover the primary
functions of GRU networks. Variations and preservation of
cell status depend on two gates in the cell: the update gate rt ,
and an input gate zt [45], [47], [48]. The following equations
(i.e. (1) and (2)) define the GRU architecture as a whole.

zt = σ (Wz · [ht−1, xt ]) (1)

rt = σ (Wr . [ht−1, xt ]) (2)

h̃t = tanh (Wh · [rt ∗ ht−1, xt ]) (3)

ht = (1− zt) ∗ ht−1 + zt ∗ h̄t (4)

where the input gate is represented by zt and the state vector
for a time frame t is represented as ht. The activation function,
which keeps the reset and update gates within the range of
Zero (0) andOne (1), is represented by σ , xt is the input vector
at a time and Wz,Wr ,Wh are matrices of the model parame-
ters. Before the non-linearities are applied, the architecture
adds a set of bias vectors bz, br , and bh that can be trained
[47], [49], [50].

The motivation for Bi-directional Long Short-Term Mem-
ory (BiLSTM) stems from RNN simultaneously processing
information in both directions. To process input sequences
in both the forward and backward directions, bidirectional
RNNs use two distinct sets of hidden layers. As shown in

FIGURE 3. Gated recurrent unit structure [42], [43].

FIGURE 4. BiLSTM architecture with three layers [48].

Fig. 4, multiple time steps in succession represent a BiLSTM
structure. Each hidden layer in a BiLSTM is linked to the
same output layer. BiLSTMpermits bidirectional information
flow to mitigate RNN’s limitation of using only the prior
context of the input data sequence [51].
Its updating mechanism is usually defined by (5) through

(7) where h⃗(t) is the forward hidden sequence layer,
←

h(t) is
the backward hidden sequence, and y(t) represents the output.
To arrive at an estimate, the network performs iterations on
the forward layer from t = 1 to tf and the backward hidden
layer from t = tf to 1.

h⃗(t) = H
(
Wj⃗Xt + Vj⃗hj⃗(t − 1)+ bj⃗

)
(5)

←

h(t) = H
(
Wj⃗Xt + Vj⃗hj⃗(t − 1)+ bj̄

)
(6)

y(t) = Uj̄hj(t)+ Uj̄h
−

j (t)+ by (7)

The final output, which is y, is computed as

y(t) = σy(h⃗,
←

h) (8)

A model’s effectiveness is determined by calculating the
confusion matrix, from which various performance metrics
can be computed such as True Positive Rate (TPR), False
Positive Rate (FPR), False Negative Rate (FNR), Accu-
racy/Classification Rate (CR), Precision/Positive Predictive
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Value (PPV), Specificity/True Negative Rate (TNR), F1
Score, Training time and Testing time [49], [50].

D. RELATED WORKS
Talaei Khoei and Kaabouch [11] developed a novel
outlier-based method for detecting zero-day cyberattacks.
The primary objective was to create an intelligent IDS
model proficient at sensing zero-day cyberattacks with high
detection precision. Evaluation of the model using the CIC-
IDS2017 and NSL-KDD dataset shows a detection accuracy
of 90.01% for DoS (GoldenEye), 98.43%, for DoS (Hulk),
90.01%, for port scanning, and 99.67% for DDoS attacks.
Sharafaldin et al. [38] proposed the Hierarchical Deep Learn-
ing System based on Big Data (BDHDLS). The BDHDLS
employs behavioral and content features to comprehend net-
work traffic characteristics and payload information. Each
DL model in the BDHDLS focuses on learning the specific
data distribution in a single cluster. This strategy boosts
the detection rate of intrusive attacks compared to prior
approaches that utilized a single learning model. The model
was trained on the Information Centre of Excellence for Tech
Innovation (ISCX) Intrusion Detection Assessment dataset
(ISCXIDS2012) and achieved an accuracy rate of 99.5%.

Lee et al. [39] developed a paradigm for adaptive ensem-
ble learning. The authors developed a multi-tree algorithm
by modifying the amount of training data and establishing
numerous decision trees. They selected multiple basic clas-
sifiers such as Decision Trees, Random Forests, K-Nearest
Neighbors (KNN), and Deep Neural Networks (DNN) to
develop an ensemble adaptive voting algorithm to enhance
the overall detection effect. The authors used the NSL-KDD
to validate their proposed approach. From their findings, the
multi-tree algorithm accuracy was 84.2%, while the adaptive
voting algorithm had an accuracy of 85.2%. In [40], the
researchers proposed a model for network intrusion detection
based on the Convolutional Neural Network (CNN) method.
The model automatically extracts the effective characteristics
of intrusion samples, allowing for their proper classification.
It combines convolution and pooling operations to extract
feature correlations among the data more effectively. Eval-
uation with the KDD99 datasets indicated that the proposed
model achieved an accuracy of 99.23%. Ring et al. [41] pro-
posed a CNN–IDS-based network intrusion detection model.
The model used CNN to automatically extract dimension-
ally reduced data features. The authors utilized a typical
KDD-CUP99 dataset to evaluate the CNN model. From
the findings, the CNN model attained an accuracy of 94%,
a Detection Rate of 93%, and a False Alarm Rate of 0.5%.

In [42], the authors developed a new IDS that integrates
various classifier approaches based on decision tree and
rule-based algorithms, such as the Reduced Error Pruning
(REP) tree, Repeated Incremental Pruning (RIP) algorithm,
and Forest by Penalizing Attributes (Forest PA) algorithm,
to identify suspicious activity. Benign network traffic was
classified using the first and second methods, which use

the dataset’s features as inputs. The third classifier con-
siders aspects of the initial dataset and the results of the
first and second classifiers as inputs. With a training time
of 195.5 seconds and a test duration of 2.27 seconds, the
proposed IDSmodel attained an accuracy of 96.67%, 94.48%
detection rate and 1.15% false positive on the CICIDS2017
dataset. Chattopadhyay et al. [43] proposed an IDS that uses
Core VectorMachines (CVM), a datamining-based classifier.
Compared to Support Vector Machine (SVM) and ensemble
classifiers, it has a lower false positive rate and a lower com-
putational overhead. The classifier was trained and tested on
the KDDCup’99 dataset. Evaluation results show a detection
rate of 99% and a false positive rate of 27%. Shen et al. [45]
presented a Genetic Algorithm (GA) and SVM-based alarm
intrusion detection algorithm for use in a human-controlled
IDS. Using GA’s crossover and mutation probabilities as a
starting point, the authors improved both the efficiency of
the population search and the ability of individuals to share
information. The algorithm’s convergence time and SVM
training speed were both enhanced.

Xu et al. [46] proposed an enhanced IDS based on a
hybrid of PCA and Gaussian Naive Bayes for intrusion
detection. The PCA component reduces data pollution by
weighing the first few principal feature vectors, thus improv-
ing data dimensionality. The Gaussian Naive Bayes classifier
detected intrusion behaviours. The model evaluation shows
a detection reduction time of 60% and an increase in the
detection rate of 91.06%. Ravanelli et al. [47] proposed an
IDS using an enhanced Genetic K-Means (IGKM) algorithm.
This article compares an intrusion detection system using
the k-means++ algorithm to one using the IGKM algorithm
using a smaller portion of the KDD99 dataset with 1,000
occurrences. The k-means++ approach achieves 53.27%
accuracy, while IGKM achieves 72.91%. Lu et al. [48] pro-
posed LA-GRU as a new Intrusion Detection Model (IDM)
based on unbalanced learning and Gated Recurrent Unit
(GRU) networks. In the suggested approach, a modified
Local Adaptive Synthetic Minority Oversampling Technique
(LA-SMOTE) algorithm handles imbalanced traffic. The
GRU network based on deep learning theory detects traffic
anomalies. Evaluation of the NS-KDD dataset shows that the
proposed model got an accuracy of 99.04%, a Detection Rate
of 98.92%, and an FPR of 0.13%.

Zhao et al. [12] developed the RNN-IDS model that is
adept at intrusion detection modelling and has excellent accu-
racy in binary and multi-class classification. Compared to
conventional classification techniques such as J48, Naive
Bayes, and random forest, the model achieves a higher accu-
racy rate and detection rate of 99.81% and 97.09%, respec-
tively. Lynn et al. [49] proposed a new ensemble classifier for
IDS. The classifier was developed using the well-known Ran-
dom Forest (RF) and Average One-Dependence Estimator
(AODE). The AODE handled the issue of attribute reliance
in the Naive Bayes classifier, while the RF increased the
precision rate. The performance of the proposed ensemble
classifier (RF+AODE) on the Kyoto data shows an accuracy
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of 90.51% and a false alarm rate of 0.14 over AODE, Nave
Bayes, and RF algorithms.

Khan et al. [36] proposed to improve Unmanned Aerial
Vehicle (UAV) performance using a blockchain-based decen-
tralized ML architecture. The UAV’s method for intelligent
decision-making can enhance data storage and integrity. The
authors analyzed the system using CIDS to demonstrate the
viability and efficacy of applying blockchain-based decen-
tralized ML in UAVs and similar applications. They utilized
the KDD99 threat dataset, dividing 10,000 rows over the
active nodes of the blockchain network to cover various attack
techniques, with an accuracy of 99.6%. Liu et al. ( [54] sug-
gested a method that offloads model training to edge devices
as a cooperative IDS. Distributed and federated architec-
ture reduces central server resource use and ensures security
and privacy. Blockchain stores and shares the training data
to secure the aggregate model. KDDCup99 dataset accu-
racy was 86.7%. The implementation focused on the public
Ethereum blockchain consensus mechanism. In [55], the
authors proposed the Deep Blockchain Framework (DBF),
which offers CIDS and blockchain with smart contracts in
the cloud. The intrusion detection method was measured
using the UNSW-NB15 dataset and a BiLSTMDL algorithm
to handle time-series network data. Using the Ethereum
library, intelligent contract mechanisms and privacy-based
blockchain protect distributed IDS. The model’s accuracy
increased from 97.26% to 99.41%.

In [56], the authors proposed a model that utilized DL and
Blockchain to preserve smart power network datasets and
detect assaults. The authors included privacy at two levels;
the first level uses enhanced Proof of Work (ePoW) to verify
data integrity; the second uses a variational autoencoder to
encode and alter data. Two degrees of privacy yielded higher
performance than prior methods and avoided data poison-
ing and inference assaults on smart power network datasets.
The model was trained on the UNSW-NB15 dataset and
achieved a classification Rate of 99.80% and FAR of 0.01.
Liang et al. [57] developed a deep learning IDS that utilized
blockchain for a multi-agent system. The study designed,
implemented and tested an IDS employing a multi-agent
system, blockchain, and DL techniques. The system module
comprises data collection, management, analysis, and reac-
tion. The results reveal a validation accuracy of 98.27%,
a testing accuracy of 83.17%, a precision of 83.50%, a recall
of 84.14%, and F1 Score of 83.94% on the NSL-KDD
dataset.

To the best of the authors’ knowledge, no previous study
has explored the use of a secure and private intrusion detec-
tion scheme with private blockchain technology within a
federated cloud infrastructure. Thus, it has become highly
critical to address this gap, given the benefits of cloud fed-
eration for more effective utilization of computing resources.

III. DESIGN AND IMPLEMENTATION
The proposed architecture and its various components are
presented and discussed in this section. The architecture in

FIGURE 5. Architecture of the proposed SecFedIDM-V1.

FIGURE 6. Architecture of the proposed SecFedIDM-V1 within a federated
cloud infrastructure.

Fig. 5 is that of the proposed model deployed in a single cloud
platform, while Fig. 6 shows the SecFedIDM-V1 deployed
in a Cloud Federation, with each cloud region having the
model deployed as an NIDS (as indicated in the diagram).
The Blockchain technology allows all the region logs to be
automatically replicated in the others securely.

A. DATASET CURATION AND PRE-PROCESSING
As earlier mentioned, we curated the dataset for this work
from the Coburg Intrusion Detection Data Sets (CIDDS)
[41], [42]. Notably, CIDDS was originally generated from an
OpenStack-based cloud platform, which means that models
developed based on it will fit into similar cloud platforms
(such as the FEDGEN Testbed [54], [55]). Table 1 presents
the attributes of CIDDS. The steps for data curation and
pre-processing in this study are hereafter presented.
Step 1: Import the dataset
The CIDDS dataset comes in four (4) Comma Separated

Values (CSV) files. First, a variable holds the location of the
files, and another is created as an empty list that will hold
the imported data files. An iterative procedure is applied to
the paths, the files are appended and then saved into the data
files list.
Step 2: Checking formissing values and inconsistent data

in the dataset
All rows that contain missing values, Not a Number (NaN)

cells, and inconsistent data are dropped from the dataset.
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TABLE 1. Attributes of the cidds dataset.

TABLE 2. Selected features for network training.

Step 3: Encoding categorical data
Machine learning is more adept at learning from numerical

than categorical data. Encoding categorical data is turning
categorical data into an integer format so that the data contain-
ing the converted categorical values can be fed to models to
improve their predictions. TheAttackType and Proto columns
of the dataset were encoded using the one-hot encoding tech-
nique as used in [48].
Step 4: Features Selection
The CIDDS dataset has a total of 14 features. The Pearson

Correlation Coefficient (PCC) was applied to the dataset as
a feature selection method to remove the highly correlated
columns. Afterwards, Seven (7) of the 14 features were
selected as shown in Table 2.
Step 5: Scaling/Normalization of Numerical Data
Scaling/normalization helps to make the flow of gradi-

ent descent seamless and expedites algorithms’ convergence
at a minimal cost function. In this study, minMaxScaler,
expressed in (9), was employed to normalise the dataset.
x represents a feature, xi represents the present value of x and
xnewi is the normalized value.

xnewi =
xi − min(x)

max (x)− min(x)
(9)

TABLE 3. Distribution for training, test, and validation sets.

Step 6: Train, Test and Validation subsets
After pre-processing, the dataset was left with 22,116,202

records. The records were split into three categories for train-
ing, testing and validation respectively. The categories are i)
60%:20%:20%, ii) 70%:15%:15% and iii) 80%:10%:10% as
shown in Table 3.

B. DESIGN OF THE DEEP LEARNING MODELS
Definition 1: Learning in ML or DL can be super-

vised, unsupervised and semi–supervised depending on the
dataset’s structure. CIDDS is a labelled dataset that is suit-
able for supervised learning. The CIDDS dataset is split into
the training, testing, and validation subsets, {(xj,Cj)} with
j∈ {1, . . . ,N } where xj are samples in each of the subsets,
and N is the total samples with an equivalent number of class
labels cj∈ {1, . . . ,m}where the number of classes is m. In this
work, N = 22,116,202 and m = 5 (i.e., normal, port Scan,
DOS, Ping Scan and brute Force).
Definition 2: BiLSTM and GRU networks operate opti-

mally in sequential learning jobs while avoiding gradient
vanishing and explosion challenges that affect RNNs when
learning long-term dependencies [45], [58]. The BiLSTM
and GRU architectures were compared in this study to
determine the appropriate one for implementing the traffic
sequence classification task in the proposed SecFedIDM-V1.
Given x as a timestep input with a 2-dimensional feature
vector, g as the activation function, Was the weight, wo as
the bias, the output ŷ, of the model can be expressed as
represented in (10).

ŷ = g(wo + XTW ) (10)

where X =


x1
x2
.

.

.

xf

 and W =


w1
w2
.

.

.

wf


The GRU and BiLSTM models were implemented using

the same configuration. Both utilize a dropout layer with
0.1 dropouts and a dense layer in the hidden layer, as shown
in Fig. 7 and Fig. 8. The models are multi-class as the classifi-
cation outputs are: ‘normal,’ ’portScan,’ ‘dos,’ ’pingScan,’ or
’bruteForce,’and the SoftMax activation function is suitable
for such. The detailed model configuration used in the model
training phase is given in Table 4. The Rectified Linear Unit
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FIGURE 7. Architecture of the GRU network.

FIGURE 8. Architecture of BiLSTM network.

TABLE 4. Model training configuration.

(ReLU) activation function, as expressed in (11), was used
at the input and hidden layers, while the SoftMax activation
function, expressed in (12), was used at the output.

g (z) = max (0, z) (11)

σ (z⃗)i =
ezi∑K
j=1 e

z
j

(12)

where g is the activation function while z is the sum of
weighted input to the function. The SoftMax function takes
in z as its input, which comprises z0 to zK whereas zi has
an upper limit of 1, a lower limit of 0 and the number of
classes in the classifier is K. The summation of the outputs
using Softmax results in 1.

C. NETWORK MONITORING AND PACKET CAPTURE
The SecFedIDM-V1 is embedded in a cloud-native web
application and deployed on a federated cloud testbed tomon-
itor the network and classify it as either normal or attack. The

TABLE 5. Configured entities.

FIGURE 9. Packet sniffer and SecFedIDM-V1 location in OpenStack.

FEDGEN Testbed [54], which is the experimental federated
cloud platform in this work runs OpenStack as the cloud
operating system. The incoming traffic is captured and sent
to a well-trained sequential network for proper classification
after pre-processing. Fig. 9 shows the location of the Packet
Sniffer, which is connected to Neutron (OpenStack network
service) to monitor and capture the network traffic, which
is then sent to the SecFedIDM-V1 for classification of the
traffic.

D. BLOCKCHAIN COMPONENT OF THE
SECFEDIDM-V1 ARCHITECTURE
Hyperledger fabric was used as a security layer to ensure
that records/logs were safe and secured. The first step is
defining the business network, which entails identifying the
participants, their functions, and their stake in the enterprise.
Users, their responsibilities, and affiliations or departments
must all be created. The hypothetical organizations that were
configured on the FEDGEN Testbed are:

i. FEDGEN Region Alpha (FRA);
ii. FEDGEN Region Bravo (FRB); and
iii. FEDGEN Region Charlie (FRC).

The configuration of the various entities is shown in Table 5.
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TABLE 6. software packages required to implement the hyperledger
fabric.

FIGURE 10. Blockchain network topology.

The table contains the organisation’s role and the Member-
ship Service Providers Identity (MSP ID). The MSP ID is an
arbitrary value that is used in identifying each organisation.

Designing a network topology is a significant step in
implementing blockchain in the enterprise. The network
comprises six peer nodes representing three different orga-
nizations (nodes), as presented in Table 5 and an Orderer
node. The network also depicts a channel that peers will use
to validate and execute transactions. The Orderer node is
responsible for guaranteeing transaction order and delivery.
A channel is created using the Orderer service, allowing for
a common communication infrastructure for peer and client
nodes, The Orderer node is part of the FRA organization
(orderer.fra.com) as shown in Fig. 10.
In Hyperledger Fabric terminology, smart contracts are

called chain codes. It has business functions invoked as part of
transactions to query and update the ledger’s state. The chain
code is termed ’transcc.’ It consists of necessary business
logic methods invoked to carry out the recording of attacks in

a ledger. Chain codes are installed on each peer and run as an
isolated docker container. Every chaincode must implement
two key methods from the Hyperledger Fabric interface. The
init() method is invokedwhen a client application instantiates,
the method handles the initialization of the chaincode with
predefined values while the invoke method handles the inter-
nal method allocation to handle client application requests.

For the deployment of the blockchain, the topology was
set up using Fabric-based tools and commands. The steps for
realising the deployment are hereafter presented.
Step 1: Generating crypto keys and certificates
The first step is to generate keys and certificates for every

organization and its associated entities like peers and orderers
so that they can be used to sign/verify as they communicate
over the network. The ‘cryptogen’ tool is used to generate
the necessary certificates. The ‘cryptogen’ tool reads the
‘crypto-config.yaml’ file to generate the certificates. The
‘crypto-config.yaml’ file depicts the network topology in a
declarative way.
Step 2: Generating transaction configuration
This involves the creation of transaction configuration

artifacts. These are genesis block and channel transaction
configurations. The ‘configtxgen’ tool is used to generate the
artifacts. The said tool reads the ‘configtx.yaml’ file. The
genesis block is the first block in the blockchain, it is the con-
figuration block that initializes the ordering service. The
channel transaction configuration is used to create the chan-
nel to be used by the network.
Step 3: Starting the network
The network is started by spinning up the nodes. Docker

images provided by Fabric runtime are used to start the nodes.
Docker provides a consistent containerised environment to
work with different platforms like MacOS, Linux and Win-
dows.
Step 4: Creating a channel
The channel creation process reads the previously gener-

ated channel transaction configuration artifact to create the
channel. The channel creates command reads the previously
configured artifact ‘channel.tx’ and creates the channel with
the channel name ‘mychannel’. The channel name can how-
ever be any string of choice.
Step 5: Joining peers to the channel
Once the channel is created, the peer nodes should formally

join the channel to participate in the transactions on that
channel. The peer join command is supplied with the channel
block file with the ‘-b’ option to specify the channel block
file. Since there are 6 peer nodes, this command must run
six times and the value of the CORE_PEER_ADDRESS
environment changed to point to the correct peer node address
each time it is run.
Step 6: Installing the chaincode
This step involves the installation of the chaincode file

on every peer node. The peer node endorses and verifies
transactions invoked using the chaincode. The chaincode is
installed in the file system of the peer node. Peer node address
can be specified by setting the CORE_PEER_ADDRESS
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TABLE 7. Precision, recall and F1 scores of BiLSTM and GRU.

FIGURE 11. Sequence diagram for the cloud native web application.

environment variable. Since there are six peer nodes, the code
runs this command six times with each time updating the
environment variable.
Step 7: Instantiating the chaincode
Now, that the chaincode has been installed on each peer, the

7th step involves the instantiation of the chaincode. Instan-
tiating the chaincode means initializing the chaincode by
invoking its init() method. Table 6 shows the various software
packages used to implement the Hyperledger fabric.

Furthermore, a cloud-native web application was built
around the SecFedIDM-V1. Fig. 11 shows the sequence dia-
gram of the web application. The deployment involves the
creation of a docker image from a docker file, which contains
the list of dependencies i.e., the software packages listed in
Table 6. The docker file also contains a list of instructions
that need to be executed in a sequence for the development
environment to be created. The containerised docker image
was then deployed to our OpenStack-based federated cloud
testbed (i.e. FEDGEN Testbed) as a proof of concept. The
image can also be deployed to similar federated cloud plat-
forms or reconfigured based on the peculiarities of any target
platform. With the running application, an administrator can
carry out network monitoring and packet capture to provide
notifications on intrusions.

IV. RESULTS AND DISCUSSION
In this section, the implementation as experimental results for
the different components of SecFedIDM-V1 are presented
and discussed. As earlier established, the processed dataset

FIGURE 12. Attribute values of the PortScan class in CIDDS.

FIGURE 13. Attribute Values of the DoS Class in CIDDS.

TABLE 8. FPR, FNR and TPR of BiLSTM and GRU.

FIGURE 14. Training time for BiLSTM and GRU models.

was split into training, testing, and validation ratios. Fig. 12
shows the output for the PortScan class in the dataset, and
Fig. 13 shows the output for the DoS class. As expected,
the values of corresponding attributes in the two classes
are unique. This is also the case with other classes in the
dataset based on the feature selection procedure that was
implemented at the pre-processing stage. The model training
and testing were done sequentially to avoid overwhelming
the system resources. Table 7 shows the BiLSTM and GRU
classification’s Precision, Recall, and F1 scores. It can be
observed that the BiLSTM network outperformed GRU by
achieving a precision of 0.99624, a recall rate of 0.99906,
and an F1 of 0.99614 for the data partition with a ratio of
80:10:10. Furthermore, Table 7 shows that the 80:10:10 parti-
tion ratio for BiLSTM gave better performance than the other
two partition ratios that were experimented. For instance, the
70:15:15 ratio achieved a precision of 0.99616, a recall rate of
0.99904 and an F1 score of 0.99608 while the 60:20:20 ratio
achieved a precision of 0.98151, a recall rate of 0.99538 and
an F1 score of 0.98137.

Additionally, the models were evaluated based on FPR,
FNR and TPR. An ideal model should have high TPR, low
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FIGURE 15. Sample of a captured packet by scapy.

FIGURE 16. Output of create-artifacts command.

FIGURE 17. Chaincode installed on all peers across the three regions.

FPR, and low FNR. From the results depicted in Table 8, the
BiLSTMperforms better compared toGRUachieving an FPR
of 0.00094, FNR of 0.00395, and TPR of 0.99605. Thus, the
BiLSTM is selected for the traffic sequence classification task
in the proposed SecFedIDM-V1.

Notably, BiLSTM may require longer training time (see
Fig. 14), but due to its architecture, it characteristically can
give better performance than GRU for tasks that capture
complex dependencies in network traffic sequences. Since the
SecFedIDM-V1 is targeted at federated cloud platforms with
sufficient computational resources, the training time does not
pose any disadvantage. Nevertheless, the BiLSTM result in
this study also gives improved performance over the result
obtained in a similar study [53], which utilized a cascade of
Naïve Bayes and Random Forest on the CCIDD dataset, with
an accuracy of 97% and FPR of 0.0021.

Furthermore, the Scapy library, an interactive packet
manipulation library written in Python was used to monitor
network traffic and capture packets at intervals of 90 seconds.

FIGURE 18. Login interface of the SecFedIDM-V1 cloud-native web
application.

FIGURE 19. The SecFedIDM-V1 dashboard.

As illustrated in the SecFedIDM-V1 architecture in Fig. 5,
the captured traffic is pre-processed and classified by the
trained BiLSTM network after the captured packets have
been compared with the records in the blockchain ledger.
Fig. 15 shows the snapshot of a captured IP/TCP packet with
various details that the packet carries, ranging from source IP,
destination IP, Time-to-Live (TTL), protocol type and other
information.

Fig. 16 shows the successful creation of the blockchain
network earlier presented in Fig. 10, the creation of the gen-
esis block, and the transaction channel. In addition, Fig. 17
shows the output of the chaincode/smart contract installation
on each organization’s various peers as earlier presented in
Table 5.
The login page of the Web Application that was imple-

mented based on the SecFedIDM-V1 architecture using the
Django framework is presented in Fig. 18. It provides authen-
tication and authorization to prevent access to sensitive data
on a federated cloud platform by unauthorised persons. The
SecFedIDM-V1 dashboard showing network traffic features
and the classified traffic type is shown in Fig. 19. In order to
carry out deployment/production testing for the SecFedIDM-
V1 based web application, traffic for the different attack
classes were generated using network attack simulation tools
such as low orbit ion cannon, Nmap and John the ripper.
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V. CONCLUSION
In modern times, cloud federation has gained usage among
Cloud Service Providers (CSP) as a means of sharing com-
putational resources for better service delivery. However,
with the increase in malicious activities and cyber-attacks,
the need for secure transactions and communication between
federated entities becomes critical. This study presents a
BiLSTM-based IDS model for a federated cloud platform
named SecFedIDM-V1. Firstly, we developed a cloud feder-
ation testbed using openstack. Secondly, we experimentally
evolved an IDS model using CIDDS dataset with BiLSTM
RNN giving the best performance metrics for intrusion traffic
detection on an OpenStack-based federated cloud testbed.
Thirdly, in order to enhance the security of the proposed
architecture, we integrated a blockchain to serve as a secure
datastore for intrusion signatures. In order to make the model
usable for cloud system administrators, we developed a cloud
native web application that incorporates the proposed BiL-
STM IDS model. As a proof of concept, we illustrated how
different classes of malicious traffic could be detected with
high precision from the cloud application. The web app could
be deployed on other experimental or production-federated
cloud platforms to detect malicious intrusions. In the future,
we hope to extend the architecture as well as the web applica-
tion by covering novel and higher number of network attack
classes.

REFERENCES
[1] M. R. M. Assis and L. F. Bittencourt, ‘‘A survey on cloud feder-

ation architectures: Identifying functional and non-functional proper-
ties,’’ J. Netw. Comput. Appl., vol. 72, pp. 51–71, Sep. 2016, doi:
10.1016/j.jnca.2016.06.014.

[2] O. Alkadi, N. Moustafa, and B. Turnbull, ‘‘A review of intrusion detec-
tion and blockchain applications in the cloud: Approaches, challenges
and solutions,’’ IEEE Access, vol. 8, pp. 104893–104917, 2020, doi:
10.1109/ACCESS.2020.2999715.

[3] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda,
L. Fong, S. M. Sadjadi, and M. Parashar, ‘‘Cloud federation in a layered
service model,’’ J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1330–1344,
Sep. 2012, doi: 10.1016/j.jcss.2011.12.017.

[4] M. J. Molo, J. A. Badejo, E. Adetiba, V. P. Nzanzu, E. Noma-Osaghae,
V. Oguntosin, M. O. Baraka, C. Takenga, S. Suraju, and E. F. Adebiyi,
‘‘A review of evolutionary trends in cloud computing and applications to
the healthcare ecosystem,’’ Appl. Comput. Intell. Soft Comput., vol. 2021,
pp. 1–16, Sep. 2021, doi: 10.1155/2021/1843671.

[5] B. Rochwerger, C. Vázquez, D. Breitgand, D. Hadas, M. Villari,
P. Massonet, E. Levy, A. Galis, I. M. Llorente, R. S. Montero, and
Y. Wolfsthal, ‘‘An architecture for federated cloud computing,’’ in Cloud
Computing—Principles and Paradigms. Hoboken, NJ, USA: Wiley, 2011.

[6] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, andM. Kunze, ‘‘Cloud
federation,’’ in Proc. 2nd Int. Conf. Cloud Comput., GRIDs, Virtualization,
2011, pp. 32–38.

[7] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018, doi: 10.1109/COMST.2017.2771153.

[8] A. Jula, E. Sundararajan, and Z. Othman, ‘‘Cloud computing service
composition: A systematic literature review,’’ Expert Syst. Appl., vol. 41,
no. 8, pp. 3809–3824, Jun. 2014, doi: 10.1016/j.eswa.2013.12.017.

[9] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, ‘‘Intrusion detec-
tion techniques in cloud environment: A survey,’’ J. Netw. Comput. Appl.,
vol. 77, pp. 18–47, Jan. 2017, doi: 10.1016/j.jnca.2016.10.015.

[10] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, ‘‘Survey of
intrusion detection systems: Techniques, datasets and challenges,’’ Cyber-
security, vol. 2, no. 1, p. 20, Dec. 2019, doi: 10.1186/s42400-019-0038-7.

[11] T. Talaei Khoei and N. Kaabouch, ‘‘A comparative analysis of super-
vised and unsupervised models for detecting attacks on the intrusion
detection systems,’’ Information, vol. 14, no. 2, p. 103, Feb. 2023, doi:
10.3390/info14020103.

[12] J. Zhao, M. Chen, and Q. Luo, ‘‘Research of intrusion detec-
tion system based on neural networks,’’ in Proc. IEEE 3rd Int.
Conf. Commun. Softw. Netw. (ICCSN), May 2011, pp. 174–178, doi:
10.1109/ICCSN.2011.6013688.

[13] S. A. R. Shah and B. Issac, ‘‘Performance comparison of intrusion
detection systems and application of machine learning to snort system,’’
Future Gener. Comput. Syst., vol. 80, pp. 157–170, Mar. 2018, doi:
10.1016/j.future.2017.10.016.

[14] H. Hindy, R. Atkinson, C. Tachtatzis, J. N. Colin, E. Bayne, and
X. Bellekens, ‘‘Utilising deep learning techniques for effective zero-
day attack detection,’’ Electronics, vol. 9, no. 10, pp. 1–16, 2020, doi:
10.3390/electronics9101684.

[15] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017, doi: 10.1109/ACCESS.2017.2762418.

[16] K. Dodo, L. T. Jung, M. A. Hashmani, and M. K. Cheong, ‘‘Empirical per-
formance analysis of hyperledger LTS for small and medium enterprises,’’
Sensors, vol. 22, no. 3, pp. 1–17, 2022, doi: 10.3390/s22030915.

[17] M. Hölbl, M. Kompara, A. Kamišalić, and L. N. Zlatolas, ‘‘A systematic
review of the use of blockchain in healthcare,’’ Symmetry, vol. 10, no. 10,
p. 470, Oct. 2018, doi: 10.3390/sym10100470.

[18] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
‘‘Blockchain for 5G and beyond networks: A state of the art sur-
vey,’’ J. Netw. Comput. Appl., vol. 166, Sep. 2020, Art. no. 102693, doi:
10.1016/j.jnca.2020.102693.

[19] N. A. Azeez, T. M. Bada, S. Misra, A. Adewumi, C. Van der Vyver,
and R. Ahuja, ‘‘Intrusion detection and prevention systems: An updated
review,’’ in Data Management, Analytics and Innovation (Advances in
Intelligent Systems and Computing), vol. 1042, 2020, pp. 685–696, doi:
10.1007/978-981-32-9949-8_48.

[20] K. He, D. D. Kim, and M. R. Asghar, ‘‘Adversarial machine learning
for network intrusion detection systems: A comprehensive survey,’’ IEEE
Commun. Surveys Tuts., vol. 25, no. 1, pp. 538–566, 1st Quart., 2023, doi:
10.1109/COMST.2022.3233793.

[21] S. M. Kasongo, ‘‘A deep learning technique for intrusion detection system
using a recurrent neural networks based framework,’’ Comput. Commun.,
vol. 199, pp. 113–125, Feb. 2023, doi: 10.1016/j.comcom.2022.12.010.

[22] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J. Han, ‘‘When
intrusion detection meets blockchain technology: A review,’’ IEEE Access,
vol. 6, pp. 10179–10188, 2018, doi: 10.1109/ACCESS.2018.2799854.

[23] M.Masdari andH. Khezri, ‘‘A survey and taxonomy of the fuzzy signature-
based intrusion detection systems,’’ Appl. Soft Comput., vol. 92, Jul. 2020,
Art. no. 106301, doi: 10.1016/j.asoc.2020.106301.

[24] Z. Chiba, N. Abghour, K. Moussaid, A. E. Omri, and M. Rida,
‘‘A cooperative and hybrid network intrusion detection framework in
cloud computing based on snort and optimized back propagation neu-
ral network,’’ Proc. Comput. Sci., vol. 83, pp. 1200–1206, 2016, doi:
10.1016/j.procs.2016.04.249.

[25] N. A. Dawit, S. S. Mathew, and K. Hayawi, ‘‘Suitability of blockchain
for collaborative intrusion detection systems,’’ in Proc. 12th Annu. Under-
graduate Res. Conf. Appl. Comput. (URC), Apr. 2020, pp. 1–6, doi:
10.1109/URC49805.2020.9099189.

[26] C. Yenugunti and S. S. Yau, ‘‘A blockchain approach to identifying
compromised nodes in collaborative intrusion detection systems,’’ in
Proc. IEEE Int. Conf. Dependable, Autonomic Secure Comput., Int. Conf.
Pervasive Intell. Comput., Int. Conf. Cloud Big Data Comput., Int. Conf.
Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberSciTech),
Aug. 2020, pp. 87–93, doi: 10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00029.

[27] G. Meng, Y. Liu, J. Zhang, A. Pokluda, and R. Boutaba, ‘‘Collaborative
security,’’ ACM Comput. Surv., vol. 48, no. 1, pp. 1–42, Sep. 2015, doi:
10.1145/2785733.

[28] D. Laufenberg, L. Li, H. Shahriar, and M. Han, ‘‘An architecture for
blockchain-enabled collaborative signature-based intrusion detection sys-
tem,’’ in Proc. 20th Annu. SIG Conf. Inf. Technol. Educ., Sep. 2019, p. 169,
doi: 10.1145/3349266.3351389.

[29] W. Meng, W. Li, L. T. Yang, and P. Li, ‘‘Enhancing challenge-based
collaborative intrusion detection networks against insider attacks using
blockchain,’’ Int. J. Inf. Secur., vol. 19, no. 3, pp. 279–290, Jun. 2020, doi:
10.1007/s10207-019-00462-x.

VOLUME 11, 2023 116023

http://dx.doi.org/10.1016/j.jnca.2016.06.014
http://dx.doi.org/10.1109/ACCESS.2020.2999715
http://dx.doi.org/10.1016/j.jcss.2011.12.017
http://dx.doi.org/10.1155/2021/1843671
http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1016/j.eswa.2013.12.017
http://dx.doi.org/10.1016/j.jnca.2016.10.015
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.3390/info14020103
http://dx.doi.org/10.1109/ICCSN.2011.6013688
http://dx.doi.org/10.1016/j.future.2017.10.016
http://dx.doi.org/10.3390/electronics9101684
http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.3390/s22030915
http://dx.doi.org/10.3390/sym10100470
http://dx.doi.org/10.1016/j.jnca.2020.102693
http://dx.doi.org/10.1007/978-981-32-9949-8_48
http://dx.doi.org/10.1109/COMST.2022.3233793
http://dx.doi.org/10.1016/j.comcom.2022.12.010
http://dx.doi.org/10.1109/ACCESS.2018.2799854
http://dx.doi.org/10.1016/j.asoc.2020.106301
http://dx.doi.org/10.1016/j.procs.2016.04.249
http://dx.doi.org/10.1109/URC49805.2020.9099189
http://dx.doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00029
http://dx.doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00029
http://dx.doi.org/10.1145/2785733
http://dx.doi.org/10.1145/3349266.3351389
http://dx.doi.org/10.1007/s10207-019-00462-x


E. B. Mbaya et al.: SecFedIDM-V1: A Secure Federated Intrusion Detection Model

[30] H. Benaddi and K. Ibrahimi, ‘‘A review: Collaborative intrusion detection
for IoT integrating the blockchain technologies,’’ in Proc. 8th Int. Conf.
Wireless Netw. Mobile Commun. (WINCOM), Oct. 2020, pp. 1–6, doi:
10.1109/WINCOM50532.2020.9272464.

[31] E. Androulaki et al., ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th EuroSys Conf., Apr. 2018,
pp. 1–15, doi: 10.1145/3190508.3190538.

[32] M. Conti, E. Sandeep Kumar, C. Lal, and S. Ruj, ‘‘A survey on security
and privacy issues of bitcoin,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3416–3452, 4th Quart., 2018, doi: 10.1109/COMST.2018.2842460.

[33] A. I. Sanka and R. C. C. Cheung, ‘‘A systematic review of
blockchain scalability: Issues, solutions, analysis and future research,’’
J. Netw. Comput. Appl., vol. 195, Dec. 2021, Art. no. 103232, doi:
10.1016/j.jnca.2021.103232.

[34] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
‘‘ProvChain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,’’ in Proc. 17th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2017,
pp. 468–477, doi: 10.1109/CCGRID.2017.8.

[35] M. Kumar and A. K. Singh, ‘‘Distributed intrusion detection system using
blockchain and cloud computing infrastructure,’’ in Proc. 4th Int. Conf.
Trends Electron. Informat. (ICOEI), Jun. 2020, pp. 248–252.

[36] A. A. Khan, M. M. Khan, K. M. Khan, J. Arshad, and F. Ahmad,
‘‘A blockchain-based decentralized machine learning framework for col-
laborative intrusion detection within UAVs,’’ Comput. Netw., vol. 196,
Sep. 2021, Art. no. 108217, doi: 10.1016/j.comnet.2021.108217.

[37] I. Sohn, ‘‘Deep belief network based intrusion detection techniques: A sur-
vey,’’ Expert Syst. Appl., vol. 167, Apr. 2021, Art. no. 114170, doi:
10.1016/j.eswa.2020.114170.

[38] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating
a new intrusion detection dataset and intrusion traffic characterization,’’
in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108–116, doi:
10.5220/0006639801080116.

[39] J. Lee, J. Kim, I. Kim, and K. Han, ‘‘Cyber threat detection based on
artificial neural networks using event profiles,’’ IEEE Access, vol. 7,
pp. 165607–165626, 2019, doi: 10.1109/ACCESS.2019.2953095.

[40] R. Panigrahi and S. Borah, ‘‘A detailed analysis of CICIDS2017 dataset
for designing intrusion detection systems,’’ Int. J. Eng. Technol., vol. 7,
no. 3.24, pp. 479–482, Dec. 2018.

[41] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, ‘‘Creation of
flow-based data sets for intrusion detection,’’ J. Inf. Warf., vol. 16, no. 4,
pp. 41–54, 2017.

[42] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, ‘‘Flow-based
benchmark data sets for intrusion detection,’’ in Proc. Eur. Conf. Inf. Warf.
Secur. (ECCWS), 2017, pp. 361–369.

[43] M. Chattopadhyay, R. Sen, and S. Gupta, ‘‘A comprehensive review and
meta-analysis on applications of machine learning techniques in intrusion
detection,’’ Australas. J. Inf. Syst., vol. 22, pp. 1–27, May 2018, doi:
10.3127/ajis.v22i0.1667.

[44] E. K. Reddy, ‘‘Neural networks for intrusion detection and its applica-
tions,’’ in Proc. World Congr. Eng. (Lecture Notes in Engineering and
Computer Science), vol. 2, Jul. 2013, pp. 1210–1214.

[45] G. Shen, Q. Tan, H. Zhang, P. Zeng, and J. Xu, ‘‘Deep learning with gated
recurrent unit networks for financial sequence predictions,’’ Proc. Comput.
Sci., vol. 131, pp. 895–903, Jan. 2018, doi: 10.1016/j.procs.2018.04.298.

[46] C. Xu, J. Shen, X. Du, and F. Zhang, ‘‘An intrusion detection system using
a deep neural network with gated recurrent units,’’ IEEE Access, vol. 6,
pp. 48697–48707, 2018, doi: 10.1109/ACCESS.2018.2867564.

[47] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, ‘‘Light gated
recurrent units for speech recognition,’’ IEEE Trans. Emerg. Top-
ics Comput. Intell., vol. 2, no. 2, pp. 92–102, Apr. 2018, doi:
10.1109/TETCI.2017.2762739.

[48] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wang, ‘‘Android malware
detection based on a hybrid deep learning model,’’ Secur. Commun. Netw.,
vol. 2020, pp. 1–11, Aug. 2020, doi: 10.1155/2020/8863617.

[49] H. M. Lynn, S. B. Pan, and P. Kim, ‘‘A deep bidirectional GRU network
model for biometric electrocardiogram classification based on recurrent
neural networks,’’ IEEE Access, vol. 7, pp. 145395–145405, 2019, doi:
10.1109/ACCESS.2019.2939947.

[50] B. Cao, C. Li, Y. Song, Y. Qin, and C. Chen, ‘‘Network intrusion detection
model based on CNN and GRU,’’ Appl. Sci., vol. 12, no. 9, p. 4184,
Apr. 2022, doi: 10.3390/app12094184.

[51] O. Alkadi, N. Moustafa, and B. Turnbull, ‘‘A collaborative intrusion
detection system using deep blockchain framework for securing cloud
networks,’’ in Proc. SAI Intell. Syst. Conf., in Advances in Intelligent
Systems and Computing, vol. 1250, 2021, pp. 553–565, doi: 10.1007/978-
3-030-55180-3_41.

[52] A. Alshammari and A. Aldribi, ‘‘Apply machine learning techniques to
detect malicious network traffic in cloud computing,’’ J. Big Data, vol. 8,
no. 1, pp. 1–24, Dec. 2021, doi: 10.1186/s40537-021-00475-1.

[53] A. Borkar, A. Donode, and A. Kumari, ‘‘A survey on intrusion detec-
tion system (IDS) and internal intrusion detection and protection system
(IIDPS),’’ in Proc. Int. Conf. Inventive Comput. Informat. (ICICI),
Nov. 2017, pp. 949–953, doi: 10.1109/ICICI.2017.8365277.

[54] H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang,
‘‘Blockchain and federated learning for collaborative intrusion detection
in vehicular edge computing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 6,
pp. 6073–6084, Jun. 2021, doi: 10.1109/TVT.2021.3076780.

[55] O. Alkadi, N. Moustafa, B. Turnbull, and K. R. Choo, ‘‘A deep blockchain
framework-enabled collaborative intrusion detection for protecting IoT and
cloud networks,’’ IEEE Internet Things J., vol. 8, no. 12, pp. 9463–9472,
Jun. 2021, doi: 10.1109/JIOT.2020.2996590.

[56] M. Keshk, B. Turnbull, N. Moustafa, D. Vatsalan, and K. R. Choo,
‘‘A privacy-preserving-framework-based blockchain and deep learning for
protecting smart power networks,’’ IEEE Trans. Ind. Informat., vol. 16,
no. 8, pp. 5110–5118, Aug. 2020, doi: 10.1109/TII.2019.2957140.

[57] C. Liang, B. Shanmugam, S. Azam, A. Karim, A. Islam, M. Zamani,
S. Kavianpour, and N. B. Idris, ‘‘Intrusion detection system for the Internet
of Things based on blockchain and multi-agent systems,’’ Electronics,
vol. 9, no. 7, pp. 1–27, Jul. 2020, doi: 10.3390/electronics9071120.

[58] B. Yan and G. Han, ‘‘LA-GRU: Building combined intrusion detection
model based on imbalanced learning and gated recurrent unit neural
network,’’ Secur. Commun. Netw., vol. 2018, pp. 1–13, Aug. 2018, doi:
10.1155/2018/6026878.

EMMANUEL BALDWIN MBAYA received the
B.Eng. degree in computer engineering from the
University of Maiduguri, in 2014, and the M.Eng.
degree in information and communication engi-
neering from Covenant University, in 2022. He is
currently a Lecturer with the Department of Com-
puter Science, Federal University, Gashua. He was
a Research Assistant with the Covenant Applied
Informatics and Communication Africa Centre of
Excellence (CApIC-ACE), a World Bank ACE-

IMPACT Centre, Covenant University. His research interests include cloud
computing, machine (deep) learning, blockchain, and network security.

EMMANUEL ADETIBA (Member, IEEE)
received the Ph.D. degree in information and
communication engineering from Covenant Uni-
versity, Ota, Nigeria. He was the Director of
the Center for Systems and Information Ser-
vices (aka ICT Center), Covenant University,
from 2017 to 2019. He is the incumbent Deputy
Director of the Covenant Applied Informatics
and Communication Africa Centre of Excellence
(CApIC-ACE) and a Co-PI of the FEDGENCloud

Computing Research Project at the center (World Bank and AFD funded).
He is the Founder and a Principal Investigator of the Advanced Signal
Processing and Machine Intelligence Research (ASPMIR) Group. He is a
Full Professor and the former Head of the Department of Electrical and Infor-
mation Engineering, Covenant University, from 2021 to 2023. He is also an
Honorary Research Associate (HRA) with the Institute of System Sciences
and a Visiting Research Associate with the KZN e-Skills Co-Laboratory,
Durban University of Technology, Durban, South Africa. He was a recipient
of several past and ongoing scholarly grants from reputable bodies, such as
World Bank; France Development Agency (AFD); Google; U.S. National
Science Foundation; Durban University of Technology, South Africa; Nige-
ria Communications Commission; Rockefeller Foundation; International
Medical Informatics Association (IMIA); and hosts of others. He has
authored/coauthored more than 100 scholarly publications in journals and

116024 VOLUME 11, 2023

http://dx.doi.org/10.1109/WINCOM50532.2020.9272464
http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1109/COMST.2018.2842460
http://dx.doi.org/10.1016/j.jnca.2021.103232
http://dx.doi.org/10.1109/CCGRID.2017.8
http://dx.doi.org/10.1016/j.comnet.2021.108217
http://dx.doi.org/10.1016/j.eswa.2020.114170
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1109/ACCESS.2019.2953095
http://dx.doi.org/10.3127/ajis.v22i0.1667
http://dx.doi.org/10.1016/j.procs.2018.04.298
http://dx.doi.org/10.1109/ACCESS.2018.2867564
http://dx.doi.org/10.1109/TETCI.2017.2762739
http://dx.doi.org/10.1155/2020/8863617
http://dx.doi.org/10.1109/ACCESS.2019.2939947
http://dx.doi.org/10.3390/app12094184
http://dx.doi.org/10.1007/978-3-030-55180-3_41
http://dx.doi.org/10.1007/978-3-030-55180-3_41
http://dx.doi.org/10.1186/s40537-021-00475-1
http://dx.doi.org/10.1109/ICICI.2017.8365277
http://dx.doi.org/10.1109/TVT.2021.3076780
http://dx.doi.org/10.1109/JIOT.2020.2996590
http://dx.doi.org/10.1109/TII.2019.2957140
http://dx.doi.org/10.3390/electronics9071120
http://dx.doi.org/10.1155/2018/6026878


E. B. Mbaya et al.: SecFedIDM-V1: A Secure Federated Intrusion Detection Model

conference proceedings, some of which are indexed in Scopus/ISI/CPCI. His
research interests and experiences include machine intelligence, software-
defined radio, cognitive radio, biomedical signal processing, and cloud
and high performance computing (C&HPC). He is a registered engineer
(R.Engr.) with the Council for the Regulation of Engineering in Nigeria
(COREN) and a member of the Institute of Information Technology Pro-
fessional (IITP), South Africa.

JOKE A. BADEJO (Member, IEEE) received
the Ph.D. degree in computer engineering from
Covenant University, Nigeria, in 2015. She is a
Senior Lecturer and a former Coordinator of the
Computer Engineering Program, Department of
Electrical and Information Engineering, Covenant
University. She is also a Faculty Member of the
Covenant Applied Informatics and Communica-
tion Africa Centre of Excellence (CApIC-ACE),
a World Bank ACE-IMPACT Centre, Covenant

University. She is a Co-Investigator on aWorld Bank ACE-IMPACT Project,
targeted at developing a federated genomics cloud infrastructure for pre-
cision medicine in Africa. She has actively involved with the Covenant
University Data Analytics Cluster (CUDAC), which supports data-driven
decision-making at the university. With more than a decade of comput-
ing research, teaching, and leadership experiences, she has published over
40 papers in reputable journals and conference proceedings. Her broad
research experiences and interests include biometrics and biomedical image
analysis, machine (deep) learning, large-scale data analytics, software engi-
neering, and cloud computing. She is a registered engineer by the Council
for the Regulation of Engineering in Nigeria (COREN). She enjoys being
an academic and loves contributing impactful and cost-effective solutions to
current societal engineering problems in Africa.

JOHN SIMON WEJIN received the M.Sc. degree
in computer engineering from Eastern Mediter-
raneanUniversity, Famagusta, North Cyprus. He is
currently pursuing the Ph.D. degree in computer
engineering with Covenant University, Ota, Nige-
ria. He is a Lecturer with the Department of Com-
puter Science, Taraba State University, Jalingo,
Nigeria. He is also an Intern with the FEDGEN
Cloud Infrastructure Research Project with the
Covenant Applied Informatics and Communica-

tion Centre of Excellence (CApIC-ACE). He has published eight papers
in reputable journals and conferences. His research interests include cloud
federation, computer networks, data communication, intelligent systems,
artificial intelligence, and data analytics. He is a member of the International
Association of Engineers (IAENG).

OLUWADAMILOLA OSHIN (Member, IEEE)
received the Ph.D. degree in information and
communication engineering (with a focus on nano-
electronic biosensing) from Covenant University,
Nigeria, in 2020. She is a Lecturer of infor-
mation and communication engineering with the
Department of Electrical and Information Engi-
neering, Covenant University. She is also a Faculty
Member of the Covenant Applied Informatics
and Communication Africa Centre of Excellence

(CApIC-ACE), a World Bank ACE-IMPACT Centre, Covenant University.
She has published about 30 papers in reputable journals and conference
proceedings. She has broad research experiences and interests including
mobile communications, data analytics, andMEMS-based biosensing. She is
professionally registered with the Council for the Regulation of Engineering
in Nigeria (COREN). She enjoys research and solving health-related issues
using engineering and technology.

OLISAEMEKA ISIFE received the degree in com-
puter engineering from Federal University Oye
Ekiti, in 2018, and the master’s degree in computer
engineering from Covenant University, in 2023.
His major field of study is computer engineer-
ing. Previously, he has published papers in various
areas, such as embedded systems application and
off-grid power solutions utilizing solar energy. His
current research is primarily focused on cyberse-
curity, software development, and deep learning.

SURENDRA COLIN THAKUR is currently an
Associate Professor with the Department of Infor-
mation Technology, Durban University of Tech-
nology (DUT), Durban, South Africa. He is also
the Director of the NEMISA KZN e-Skills Co-
Laboratory, DUT, which is tasked with e-skills
in general, and particularly on the e-enablement
of government services for effective service
delivery, with a focus on e-democracy and e-
participation. He has also conceptualized and

introduced InvoTech, an innovation incubator with DUT, where one of his
patents is being registered. He is an international e-voting expert, an emerg-
ing expert in social media, a national authority on big data, and the Director
of the KZN Digital Co-Laboratory, DUT. His research interests include data
science, e-voting and public participation, and social media. He has served
on many executive forums over the years, such as executive committee
(exco), senate, and faculty board. He was also the National Treasurer of
the Computer Society of South Africa (CSSA) for a year and the Chair
of the KZN Computer Society of South Africa for three years and the
Vice-Chairperson for two years.

SIBUSISO MOYO received the Ph.D. degree
in mathematics with a focus on symmetries of
differential equations and their application from
the University of Natal (currently University
of KwaZulu-Natal), Durban, and the master’s
degree in tertiary education management from
the University of Melbourne. She is currently the
Deputy Vice-Chancellor of research, innovation
and postgraduate studies with Stellenbosch Uni-
versity, South Africa. She has published widely

in the Mathematical Sciences. Her Google profile can be found here:
https://scholar.google.com/citations?user=s04NCusAAAAJ&hl=en.

EZEKIEL F. ADEBIYI is a H3Africa, DFG (aka
German Science Foundation) Projects Principal
Investigator and the Head of the Covenant Uni-
versity Bioinformatics Research (CUBRe) Group.
He was the Centre Leader for the Covenant
Applied Informatics and Communication African
Centre of Excellence (CApIC-ACE), a new World
Bank funded ACE Impact Project, Covenant
University.

VOLUME 11, 2023 116025


