
Received 7 September 2023, accepted 9 October 2023, date of publication 19 October 2023, date of current version 27 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325767

An End-to-End Implementation of a
Service-Oriented Architecture for Data-Driven
Smart Buildings
LASITHA CHAMARI , EKATERINA PETROVA , AND PIETER PAUWELS
Department of the Built Environment, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

Corresponding author: Lasitha Chamari (l.c.rathnayaka.mudiyanselage@tue.nl)

This work was supported by the Dutch Ministry of Economic Affairs and Climate Policy and the Ministry of the Interior and Kingdom
Relations under the MOOI Program through the Brains for Buildings Project.

ABSTRACT Buildings connect with multiple information systems like Building Management Systems
(BMS), Energy Management Systems (EMS), IoT devices, Building Information Models (BIM), the elec-
tricity grid, weather services, etc. Data-driven smart building software demands seamless integration of the
above systems and their data. The lack of a system architecture with well-defined Application Programming
Interfaces (APIs) poses a significant challenge for developing reusable, modular and scalable applications.
This article presents a service-oriented system architecture designed with data-driven smart buildings
in mind. The architecture relies on the Zachman framework and consists of seven service categories:
1) existing business applications, 2) new microservice-based applications, 3) databases, 4) integration
software, 5) infrastructure services, 6) shared services, and 7) user interfaces. It closely resembles the
MACHarchitectural principles:Microservices, API-first, Cloud-based components, andHeadless principles.
This architecture is implemented as a proof-of-concept, including three smart building applications. These
include a Digital Twin application integrating sensor data with a BIM model, a web application merging
real-time sensor data with semantic building graphs, and a data exploration tool using sensor data, the Brick
ontology, and Grafana dashboards. Future implementations include real-time control applications such as
Model Predictive Control (MPC). The proposed architecture and its implementations provide a blueprint for
a reusable, modular, and scalable architecture in the smart building domain.

INDEX TERMS Building InformationModeling, data-driven buildings, data integration, IoT, linked building
data, microservices, reference architecture, REST API, real-time data acquisition, solution architecture.

I. INTRODUCTION
Smart buildings must fulfil various operational objectives
related to energy efficiency, energy flexibility, Indoor Envi-
ronmental Quality (IEQ), occupant comfort and well-being,
etc. Current approaches aiding the fulfilment of these objec-
tives often rely on software programs designed for the
purpose. The latter are commonly referred to as smart
building applications [1], [2], [3] and tend to be data-
driven. Examples of such applications include Demand
Side Management (DSM) using flexible energy sources [4],

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

[5], automated Fault Detection and Diagnosis (FDD) [6],
[7], optimising Heating, Ventilation and Air Conditioning
(HVAC) loads to achieve cost and comfort objectives [5],
[8], [9], Digital Twins [10], [11], [12], etc. Data-driven
applications rely on various components related to training
machine learning models, forecasting energy demand, solv-
ing optimisation problems, and running predictive controllers
such as Model Predictive Control (MPC). These applica-
tions also require supporting services such as data cleaning,
aggregation, extract-transform-load (ETL) tools to gather and
process data from different sources, etc. Since the above
data are heterogeneous, integration is required and essential.
Furthermore, system integration is also needed because the

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 117261

https://orcid.org/0000-0003-2726-1393
https://orcid.org/0000-0002-8651-0671
https://orcid.org/0000-0001-8020-4609
https://orcid.org/0000-0002-3685-3879


L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

systems that produce this data are diverse and use different
technologies. On top of these back-end services are also the
various dashboards and web applications used to visualise
and convey useful information to the end user. When it comes
to novel data-driven smart building applications, buildings
cannot rely only on the limited capabilities of traditional
Building Management Systems (BMS).

Smart building applications rely on operational and con-
textual data from various sources and systems. Operational
time series data constitutes data from IEQ indicators, valve
positions, faults, alarms, event logs, etc. These originate from
systems such as BMS, EMS, weather services, etc., and are
the primary input for any data-driven application. These data
are mostly structured, and the technologies for handling this
type of data such as time series databases, real-time data
streaming engines, and big data frameworks, are mature and
straightforward to implement.

On the other hand, Building Information Models (BIM),
technical drawings, Process and Instrumentation Diagrams
(P&ID), spreadsheets, and manuals contain a lot of infor-
mation about the configurations and relationships between
different systems and their components in a building. These
constitute the contextual building data (metadata). Compared
to operational data, these data are mostly unstructured. There
is a growing interest in using semantic technologies such as
ontologies to effectively manage and utilise these contextual
building data in the architecture engineering and construction
industry [13]. Despite their benefits, the technologies to har-
ness and integrate this contextual data with other data are not
equally mature.

Extracting, labelling, organizing, sharing and integrating
both types of data for various applications is not straightfor-
ward [14]. Furthermore, many applications are developed and
deployed as standalone services without allowing them to be
reused or linked with other applications. The latter is mainly
due to the absence of a well-designed software architecture
andwell-definedApplication Programming Interfaces (APIs)
to access systems, data and services. That has led to the
use of ad-hoc procedures and tools when developing data-
driven applications [15], [16], which have limitations when it
comes to reusability, modularity, and scalability [16]. There-
fore, smart buildings need to rely on a well-defined system
architecture and APIs that enable both the integration of
diverse systems and datasets and the orchestration of various
services.

Each building is unique, given the diversity of the building
stock, system vendors, and technologies. Therefore, devel-
oping a system architecture for each individual building is
impossible. Here, an architectural pattern can be useful to
represent a generic system architecture for a given build-
ing. These common patterns are also defined as a reference
architecture, a blueprint or an architecture pattern. These
patterns can support the creation of suitable instances of sys-
tem architectures for a given domain by introducing reusable
knowledge and best practices.

Examples of such patterns are already widely available
in the software architecture domain. For instance, Fernando
[17] presents such patterns for the transportation, telecommu-
nication, retail, education, automotive, healthcare, power &
energy and hospitality industries. Although some features
of these architectures are common for smart buildings,
they cannot be directly transferred to the smart building
domain. There are few established architectural patterns
available for smart buildings in the literature. Most exist-
ing ones are either too abstract, largely conceptual, do not
follow well-established architecture frameworks or patterns,
not vendor-agnostic or a combination of the above. The
absence of such architecture hinders the development of
reusable, modular and scalable applications for buildings.
In turn, the achievement of the operational objectives remains
challenging.

This article presents an architecture for smart buildings
aiming at developing data-driven applications in a reusable,
modular and scalable manner. Two major focus areas are
data integration and system integration. These are the critical
yet less investigated aspects of smart building architecture.
Data and systems are also unique for the building ecosystem
compared to other domains such as transportation, telecom-
munication, etc. The design of the proposed architecture
relies on three main inputs:

1) Understanding the smart building system architecture
with the help of the Zachman architecture framework
[18].

2) Deriving functional and non-functional requirements
based on interviewswith building stakeholders, a litera-
ture review on smart building applications, and lessons
learned from existing smart building application devel-
opment efforts [19].

3) Investigating already available, well-tested architecture
patterns in the Information Technology (IT) industry
[17], [20].

Based on the above, the article presents a proof-of-concept
implementation of an instance of the proposed architecture in
three smart building applications. As such, the objectives, and
therefore, the novel contribution of this paper is three-fold:
Objective 1: Develop an architecture for data-driven

buildings informed by the Zachman architecture frame-
work, the state-of-the-art in the scientific domain and
existing architecture patterns. This architecture satisfies the
identified functional and non-functional requirements of a
data-driven building. The proposed architecture also aligns
with the MACH architectural principles [21] and relies on
a) Microservices; b) Application Programming Interfaces
(API)-first (exposing functionality via APIs), c) Cloud-based
components, and d) Headless principles (front-end and
back-end logic are decoupled).

The artefacts of the architecture are logically grouped into
seven categories for better understandability and separation
of concerns. The seven categories are 1) existing busi-
ness applications, 2) new microservice-based applications,

117262 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

3) databases, 4) integration software, 5) infrastructure ser-
vices, 6) shared services, and 7) user interfaces. The system
architecture is further developed based on previous results
from integrating BIM, BMS and IoT data on the web [22]
and is continuously updated based on new use cases in smart
buildings.
Objective 2: Demonstrate how to integrate semantic tech-

nologies with the smart building software architecture,
thereby effectively reusing existing ontologies and semantic
technologies for metadata integration.
Objective 3: Implement an instance of the architecture

and demonstrate the implementation in three use cases, thus
providing an end-to-end solution. These three applications
include 1) a Digital Twin application integrating sensor data
with a BIM model, 2) a web application integrating real-time
sensor data with semantic building graphs, and 3) a data
exploratory tool using sensor data, the Brick ontology and
Grafana dashboards.

The remainder of this article is organised as follows.
Section II discusses the background of software architectures
and the related work in software architecture development
for smart buildings. Section III presents the research method
relying on six steps towards designing and implementing
the proposed architecture. Section IV highlights the results
relative to the six methodological steps and includes the
resulting architecture, implementation and use cases. Finally,
Section V concludes the article by discussing the practical
implications and future work.

II. BACKGROUND AND RELATED WORKS
This section investigates the background, terminology and
related works in the software architecture domain. The study
then investigates existing software architectures for smart
buildings. We discuss how the available software architec-
tures are applied to the smart building domain. The section
concludes with the identified research gaps and the main
contributions of the paper.

A. SOFTWARE ARCHITECTURE, ENTERPRISE
ARCHITECTURE, ARCHITECTURE PATTERNS, REFERENCE
ARCHITECTURE AND SOLUTION ARCHITECTURE
The definition of architecture in this context is ‘‘the set of
principal design decisions about the system’’ [23]. Similarly
to how architectural principles in the built environment help
develop complex buildings, software architecture plays a cru-
cial role in developing complex software systems. It provides
a structured approach to designing, planning, and organising
the various components and modules of the software applica-
tion. The architecture is the backbone of a successful software
system [24]. When applied to a broader enterprise scope, it is
referred to as enterprise architecture, which captures both
business stakeholders and technical IT aspects.

Software architectures that are useful and applicable to
specific domains or systems are recognised as architec-
tural patterns and reference architectures that provide the
blueprint for creating a suitable architectural solution [23],

FIGURE 1. Relationship between enterprise architecture and solution
architecture (Fernando [25]). One reference architecture can be the basis
for many solution architectures.

[25], [26]. Fernando [25] defines the implementable version
of an architecture as a ‘‘solution architecture’’, which also
has three components: business, technical, and deployment.
Fig. 1 shows the relationship between an enterprise and a
solution architecture. As such, one enterprise architecture
enables many different solution architectures (n) for different
use cases. According to TOGAF [27], a full-scale enterprise
architecture consists of four types of architectures: business
architecture, data architecture, application architecture and
technology architecture, which are considered subsets of the
overall enterprise architecture. These subsets also become
different viewpoints for the different stakeholders. In prac-
tice, stakeholders (e.g., building owners, engineers) have
different interests, and the different architectural views help
define access rights and reduce inefficiencies and errors [28].

B. ARCHITECTURE FRAMEWORKS
There are various architecture frameworks that guide
the design of a software architecture. ISO/IEC/IEEE
42010 defines an architecture framework as ‘‘conventions,
principles and practices for the description of architectures
established within a specific domain of application and/or
community of stakeholders’’. The two most commonly used
frameworks are the Zachman framework [29] and The Open
Group Architecture Framework (TOGAF) [27].

The Zachman framework, introduced in 1980, provides the
taxonomy for modelling an enterprise. It helps arrange the
requirements and the reasoning behind them from 36 different
perspectives from two dimensions, as shown in Table 1. The
Zachman framework has been used in several academic and
industrial settings, including [30], [31], [32], [33], and [34].
This framework provides a clear image of the needs and
responsibilities of all stakeholders involved in the develop-
ment of an enterprise architecture. Nevertheless, it does not
provide a method for creating an architecture.

TOGAF is another industry standard that assists in accept-
ing, producing, using, and maintaining enterprise architec-
tures. It provides a set of definitions, a process for creating

VOLUME 11, 2023 117263



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

TABLE 1. Zachman architecture framework [29].

an enterprise architecture, and tooling to support the devel-
opment [35]. Examples of using TOGAF as a reference are
demonstrated in [35], [36], [37], and [38].

C. ARCHITECTURE DESCRIPTION
Architecture Description (AD) serves as a means to express
and communicate the system architecture [24]. There are
several established modelling languages for this purpose.
The Unified Modelling Language (UML) [39] is the indus-
try standard for specifying, visualising, constructing, and
documenting software system artefacts. Additionally, Archi-
Mate [40], published by The Open Group, is another notable
language. These visual languages also provide a standard-
ised set of icons that facilitate unambiguous communication
of architectural concepts. Furthermore, various authors also
employ custom icons and languages tailored to their spe-
cific needs. Hence, an architectural language can take many
forms, ranging from informal box-and-line notations to more
formal Architecture Description Languages (ADLs) [41].
Ultimately, the goal is to provide the necessary information
for stakeholders to understand the architecture and enable
effective decision-making [41], [42], [43].

D. CHOOSING AN ARCHITECTURE PATTERN
One way to look at architecture patterns is by domains. These
patterns are available for different domains, e.g., automotive
industry, healthcare, banking, etc., and result from the expe-
rience and best practices of software architects [17]. Patterns
provide a starting point when designing a new architecture
for a given use case. Leveraging or adapting an existing
architecture to suit one’s specific requirements offers numer-
ous advantages. One key benefit is the significant reduction
in time spent reinventing solutions that have already been
thoroughly tested and proven effective in various enterprises.
By doing so, one can utilise a well-tested and fail-safe archi-
tecture that incorporates best practices [17].
Another way to look at architecture patterns is according

to their underlying software technology. As such, Richards
[20] provides two major categories for architecture patterns:

TABLE 2. Comparison of architecture characteristics (adapted from
Richards [20]). One dot means the architecture characteristic is not well
supported, five means it is well-suited.

monolithic (single deployment units) and distributed (multi-
ple deployment units, usually consisting of services). Layered
architecture (n-tier), microkernel architecture, and modular
monolith are considered monolithic architecture patterns,
whereas event-driven, microservices, service-oriented and
space-based (cloud-based) architectures are considered dis-
tributed. Deciding which architectural pattern to use depends
on how each pattern’s strengths and weaknesses will impact
the problem at hand [20]. This can be solved by analysing
the common characteristics of these software architectures.
Table 2 summarises the strengths and weaknesses of software
architecture patterns as expressed by Richards [20].

The definition of the characteristics is as follows:

1) Overall cost: The cost for designing, developing and
running a system architecture.

2) Agility: The capability of a system architecture to adapt
to constantly changing requirements.

3) Simplicity: Avoiding unnecessary complexity by using
fewer components, services and repositories.

4) Scalability: Ability to grow system capacity over time
with the number of users or requests increase.

5) Fault tolerance: Ability of the system to continue func-
tioning in an event of error in a component.

6) Performance: The amount of time it takes for the sys-
tem to process a business request.

7) Extensibility: The ease in which a system can be
extended with additional features and functionality.

117264 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

Table 2 shows that some architecture patterns offer high
scalability, but this comes with an increased overall cost.
Other architecture patterns can be simple to develop but not
scalable or extensible. Most importantly, no single architec-
ture outperforms the rest, and understanding each pattern’s
characteristics, strengths, and weaknesses is necessary to
choose the one that meets specific business needs and goals.
The state-of-the-art in the area generally discusses monolith,
service-oriented (SOA) and microservices-based ones [44],
[45], [46], [47], [48], [49]. A monolithic architecture denotes
the traditional method of creating a software program as
a single, unified entity, functioning independently of other
applications. One notable advantage of a monolithic archi-
tecture is faster development due to its straightforwardness
and a single code base. Furthermore, monolithic architectures
exhibit higher performance, outperforming, e.g., microser-
vices, due to the absence of network communication overhead
between separate services [49]. However, the drawbacks of a
monolithic architecture also become apparent, particularly in
terms of extensibility, agility, fault tolerance, and scalability.

In contrast to monolithic architecture, SOA is a mod-
ern architectural concept that emphasises loose coupling,
reusability, interoperability, agility, and efficiency. The key
principle of SOA involves breaking down each business pro-
cess into smaller, modular blocks of tasks and functions
known as services [50], [51], [52], [53]. To facilitate the
integration of various services, SOA often employs an Enter-
prise Service Bus (ESB) [54]. ESB acts as a central hub,
enabling seamless communication between different services
and providing a standardised approach to message routing,
transformation, and mediation.

The microservice architecture is the newest architecture
pattern. Some studies also consider microservices as a subset
or a successor of SOA [47], [55] with better performance.
Fig. 2 illustrates the basic topology for the microservices
architecture style. It consists of individual, specialised ser-
vices deployed independently and accessed through an API
gateway. As the application grows, microservices can be
updated in an isolated manner and deployed without affecting
the rest of the applications, scoring the highest in agility and
extensibility in Table 2. In this architecture style, each service
is responsible for managing its data. The communication
between services is straightforward and efficient because of
its request-response and event-based message styles [47].
In the microservices architecture, extending functionality is
often a straightforward process that includes creating a new
service, encapsulating it within a container, establishing an
API endpoint, and deploying the service [20]. This makes
horizontal and vertical scaling easier compared to mono-
lith or SOA architecture, which explains the higher score
in scalability and extensibility in Table 2. Due to the large
number of microservices available in a complete solution,
managing the testing, deployment, and monitoring of such
a large number of services are done using containerisation
technologies such as Docker and service orchestration and
management platforms such as Kubernetes. These artefacts

FIGURE 2. The basic topology of the microservices architecture (adapted
from Richards [49]).

make the microservice architecture more agile and scalable
but also reduce the simplicity and performance due to latency
in the communication (network latency, security latency, and
data latency) [49] between remote services as depicted in
Table 2.

E. DATA-DRIVEN BUILDING DOMAIN
Traditionally, there were few software applications besides
a BMS in a building. Therefore, the software architecture
concept was not very prominent in the building domain.
Nowadays, the focus on using data to support the growing
objectives related to energy efficiency, energy flexibility,
IEQ, occupant comfort, well-being, etc., leads to the rapid
development of related software applications.

Smart building applications range from monitoring to
data-driven control of built assets. Some cutting-edge appli-
cations include FDD in HVAC systems [56], [57], MPC for
optimising energy usage in buildings [5], [9], [58], or Digital
Twins which are virtual replicas of the physical assets in a
building [10], [11], [12] providing ample opportunities for
real-time monitoring, identifying and locating faults, etc.

The first requirement for data-driven applications is the
ability to integrate various systems. This is mainly due to two
reasons, i.e., to utilise their data and to establish live com-
munication with the controllers that can execute the optimum
results generated from these data-driven applications. Such
systems may include BMS, EMS, IoT devices, BIM, and
external services for weather and grid price signals. In this

VOLUME 11, 2023 117265



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

regard, various tools aiming to acquire data from hetero-
geneous sources have been proposed in the literature. For
example, Prakash et al. [5] and Zhang et al. [58] demonstrate
the ingestion of time series data from on-premise devices,
such as thermostats, battery storage, and IoT devices, using
‘‘drivers’’ that conform to specific device protocols such
as Modbus or BACnet. These data are then published to a
message queue. Applications communicate with this message
queue to get the needed data. Optimum set points are also
published to the message bus, and the drivers receive the
set points to actuate the necessary changes. Agarwal et al.
[15] utilise ‘‘data connectors’’ - programs that retrieve data
from the sensor network and write data back for actuation.
This approach enables bi-directional communication, which
is essential for data-driven building controls. Based on the lit-
erature, protocol adoption is essential to data ingestion since
no single protocol dominates the implementations. Related
works in [1], [5], [59], [60], [61], and [62] employ different
concepts such as middleware, proxies, or adaptors. Yet, the
concept remains the same and follows a similar logic.

The second requirement is the data integration. With a lot
of operational and contextual data coming from various sys-
tems, the ability to link and integrate them with applications
is crucial. To that end, a large body of recent research explores
the creation and use of domain ontologies. An ontology is a
structured and formalised model representing the knowledge
within a given domain [63]. It involves formalising con-
cepts, relationships, classes, and attributes within the domain.
In an ontology, concepts are represented as nodes in a graph
data structure, while the edges represent the relationships
between them. Ontologies in the building domain such as
the Building Topology Ontology (BOT) [64], [65], Semantic
Sensor Networks (SSN) [66], Sensor-Observation-Sampling-
Actuation (SOSA) [67], Building Automation and Control
Systems (BACS) [68], Brick [2], [69] and Haystack [70] are
used to instantiate a standard semantic description of a given
system such as BMS, BIM and IoT. These ontologies not
only standardise the semantics but also enable linking hetero-
geneous domains. The use of ontologies in the data-driven
building context has been demonstrated in a variety of use
cases, including BIM and IoT integration [22], context-aware
control of mechanical systems [71], [72], automating KPI
calculation for building performance [73], automatic setup of
FDD for BMS [74], etc.

F. SOFTWARE ARCHITECTURES FOR THE SMART
BUILDING DOMAIN
Multiple reference architectures are already available in the
literature for different domains. For instance, the Industrial
Internet Consortium (IIC) presents the Industrial Internet
Reference Architecture (IIRA) [26] for the IoT domain. They
identify five disciplines of a typical IIoT (Industrial IoT):
control, information, operations, application and business
domains. They map the identified disciplines into a three-tier
architecture with an edge, platform and enterprise tier. IIC

also provides four architecture viewpoints, namely business,
usage, functional and implementation viewpoints.

The AIOTI reference model [75] is another high-level
IoT architecture with three layers, including network, IoT
and application layers. Compared to IIRA, AIOTI provides
less use of architecture frameworks and demonstrates a very
high-level representation of the IoT domain. However, IIRA
and AIOTI are reference architectures and do not propose any
solution architecture for the data-driven building domain.

The BDV Reference Model [76] serves as a common
reference framework around big data technologies on the
overall IT stack. Here, the primary source of big data is
sensor data from an IoT context and actuator interaction in
cyber-physical systems. Again, this is a generic high-level
reference architecture that does not provide a solution
architecture.

Within the scope of big data, another existing architec-
ture in the smart buildings context is the MATRYCS [16].
MATRYCS is a reference architecture for building services
utilising six design principles: modularity via microservices,
cloud virtualisation, openness and data sharing, security,
no vendor lock-in, and distributed data ecosystem. This
high-level architecture consists of four layers: i) infrastruc-
ture, ii) governance, iii) processing and iv) analytics. These
layers encompass services such as data ingestion, interop-
erability, data processing, streaming, data harmonisation,
querying, reasoning and sharing. The authors also propose a
solution architecture; however, a demonstration of the appli-
cability of the proposed architecture in a real-world use case
is missing.

Mazzara et al. [77] propose an ICT reference architecture
for smart buildings containing four layers: hardware, net-
work, management and application & service. This is also a
high-level architecture, and a specific solution architecture is
not presented.

The BuildingDepot architecture [15] focuses on enabling
the implementation of portable data-driven applications on
top of the distributed physical resources present in large
commercial buildings. Its main principles are scalable data
storage, ease of data access, fine-grained data sharing, and
access control. The architecture relies on REST APIs for sys-
tem interaction, as demonstrated in the presented use cases.
However, the architecture does not include other essential
aspects such as metadata management, integration of external
services, or user interfaces.

Chevallier et al. [10] proposes an architecture focusing
only on the integration of sensor data with smart building
ontologies. However, this architecture only describes a part
of the smart building ecosystem. Abu-Matar [78] proposes a
data-driven reference architecture for smart cities inspired by
SOA. However, the result is limited to a UML meta-model
for the views, their corresponding elements and relation-
ships. These custom views create ambiguity when expressing
the different artefacts in the architecture, instead of utilis-
ing existing architecture frameworks such as Zachman or
TOGAF.

117266 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

Genkin and McArthur [79] introduce B-SMART, a refer-
ence architecture that facilitates the autonomic optimisation
of smart buildings. B-SMART is also a high-level conceptual
layered architecture, the implementation of which is yet to be
seen.

Bashir et al. [80] proposed the IBDMA reference architec-
ture, which also uses standard drivers to ingest data; however,
it does not include any insight related to data integration or
bi-directional communication. Bashir et al. [81] also provides
a metamodel, which can be considered a taxonomy of the
concepts around big data and IoT. However, this metamodel
does not rely on existing architecture frameworks or semantic
technologies, which can be a limiting factor in terms of
extensibility. Creating new data models instead of reusing
and extending existing ones limits the reusability of the
applications.

Bao et al. [59] propose a microservice architecture for IoT
and the energy domain in smart buildings. Their architecture
includes heterogeneous systems, drivers for protocol adap-
tion, databases, and data-driven applications. They utilised
a message hub to establish communication between the
above services. However, this architecture is also presented
at an abstract level and does not have an implementation in
real-world use cases.

There are also reference architectures provided by com-
mercial parties, which showcase the different products a
service provider can offer to develop an architecture for
a data-driven building. Microsoft Azure provides reference
architectures for various applications. The closest category
to smart buildings is the IoT category, which provides
70 different architectures [82]. AmazonWeb Services (AWS)
also provides 48 reference architectures [83] under the
IoT category. Due to the fully cloud-based nature of these
architectures, they inherently support characteristics like
scalability and fault tolerance. However, these architectures
still need the domain-specific components identified from
the smart building domain, such as drivers for bi-directional
communication, smart building ontologies, etc. Therefore,
they cannot be a direct reference for a data-driven building.

In reality, various systems and services in buildings are
individually installed by different vendors at different times,
and there is no overarching architecture. This fact is not
well-represented in any smart building architectures proposed
in the literature.When adopting architecture patterns from the
software architecture domain to a building, what exists in a
building can be closely represented by the brown-field enter-
prise architecture illustrated by Fernando [25] in Fig. 3. This
kind of mixed enterprise environment (i.e., brown-field or a
blended architecture) [84] is a combination of components
from different architecture patterns [25] utilised to realise
business needs. In fact, according to Fernando [25], what is
mainly observed in many enterprises is a brown-field archi-
tecture rather than a clean architecture (i.e., based entirely on
microservices). It is possible to design a new architecture with
microservice principles in mind (Modern Application Layer
in Fig. 3). However, the existing heterogeneous applications

(top layer in Fig. 3) also need to coexist with the new architec-
ture. A software architecture aims to integrate existing legacy
systems while allowing modern applications to be integrated
following the best practices in software architecture patterns.

G. RESEARCH GAP AND CONTRIBUTION
Based on the performed literature review, the following three
research gaps have been identified:

1) The existing architectures for smart buildings generally
do not consider best practices (e.g., architecture frame-
works) and existing architecture patterns. Achieving
implementable solutions requires an adaptation of the
best practices for the smart building domain, as stated
in Objective 1.

2) Smart building research has demonstrated the value
of semantic technologies to data integration in smart
buildings. However, previous studies have not inte-
grated such technologies as an architectural component
and exhibit limited capabilities using ad-hoc tools.
Metadata integration plays a crucial role in the architec-
ture and should be implemented in the smart building
architecture (Objective 2).

3) Most reference architectures are presented at abstract
levels, and the technical details required for imple-
mentation are scarce. Therefore, it is important to
demonstrate the proposed system architectures with
an end-to-end solution for better understandability and
usability. This study proposes a solution architecture
and provides example implementations in three smart
building use cases, as highlighted in Objective 3.

III. RESEARCH METHOD
This section discusses the six-step research method associ-
ated with designing and implementing the architecture for
smart buildings.

Step 1: The first step is to understand the data-driven
control domain of an existing building ecosystem in terms
of the requirements coming from key stakeholders. This step
builds on previous work investigating the data needs and
requirements for smart buildings [85]. The latter were identi-
fied based on a series of interviews with relevant stakeholders
(building owners and technical solution providers).

This study relies on the Zachman architecture framework
to organise the above information as a guideline for design-
ing a system architecture. Every cell containing the relevant
artefacts helps achieve a comprehensive understanding of
the system from each stakeholder’s viewpoint. For example,
‘‘data’’ for the business owner is the essential information
about the business, while it means physical data models for
the database administrator. Using the Zachman framework
helps establish a clear link between the business requirements
and their corresponding technical implementations.

Step 2 : The next step defines the functional and
non-functional requirements of the system. These require-
ments are informed by the previously performed interviews

VOLUME 11, 2023 117267



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

FIGURE 3. Microservices based architecture for a brown-field enterprise where a combination of existing and new applications co-exists to perform a
business task [25]. Image reproduced with the permission from the original author.

and the state-of-the-art review. Defining a set of func-
tional and non-functional requirements helps determine the
architecture pattern and identify the necessary software com-
ponents of the architecture.

Step 3 : This step entails the selection of an architecture
pattern suitable for the smart building ecosystem identified in
Step 1 and the requirements specified in Step 2. This decision
is strongly influenced by the nature of the smart building
ecosystem, which is identified as brown-field in the literature.
A smart building already has multiple software systems, and
modern applications for data-driven control should be imple-
mented as independently deployed services by connecting
with existing software systems.

Step 4 : The next step defines the components of the archi-
tecture. This is achieved by i) identifying existing systems in
buildings, ii) identifying common components by studying
reference architectures and architecture patterns available in
other domains, and iii) determining which new or unique
components will be needed for the smart building domain
based on the requirements from Step 2 and the architecture
pattern from Step 3.

Step 5 : This step concerns the development of the archi-
tecture. Here, we propose a solution architecture, mainly
focusing on the technical architecture. At this stage, the
definition of the system architecture for a smart building is
complete.

Step 6 : The last step includes the implementation of an
instance of the proposed deployment architecture, which is
an additional step we take to provide a proof-of-concept
for different applications. As seen in the literature review,
designing and implementing an architecture is a non-trivial
process. It involves several stakeholders, software architects,
developers and deployment infrastructure. In this article,
we focus on the technical architecture and demonstrate the
implementation in three smart building applications.

IV. RESULTS
A. STEP 1 : DATA-DRIVEN BUILDING ECOSYSTEM IN THE
ZACHMAN FRAMEWORK
Table 3 illustrates how the data-driven smart building ecosys-
tem is mapped to the Zachman framework. Here, specific
artefacts are described with different purposes for different

117268 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

roles. Since Zachman framework is an enterprise architec-
ture design framework, this mapping takes into account six
viewpoints from six different stakeholders. All three compo-
nents of the solution architecture identified from the literature
(business, technical and deployment) are placed in their
appropriate cell and enclosed in a box. Since the main focus
of this study is the technical architecture, artefacts that are
important for the technical architecture are represented in
Bold.

B. STEP 2 : FUNCTIONAL AND NON-FUNCTIONAL
REQUIREMENTS
In the following section, we present the functional and
non-functional requirements of the system architecture.
Functional requirements describe what the system should do
to support the user actions, while non-functional require-
ments describe how the system should operate.

1) FUNCTIONAL REQUIREMENTS
1) FR1 Ingestion of time series data from heterogeneous

systems.
2) FR2 Gathering, management, and processing of large

volumes of time series data.
3) FR3 Gathering, management, and processing of con-

textual information (metadata) from various data
sources.

4) FR4 Integrating metadata with the operational data of
various devices in a building.

5) FR5 Interoperability among several existing devices,
services, and applications.

6) FR6 Real-time bidirectional communication ability to
automatically or autonomously control facilities within
the smart building.

7) FR7 User-centred interfaces for easy information
access.

2) NON-FUNCTIONAL REQUIREMENTS
Most non-functional requirements are common to a system
architecture regardless of domain or architecture pattern.
These include performance, scalability, extensibility, secu-
rity, reliability, and maintainability. In addition, the smart
building context also demands the following non-functional
requirements:

1) NFR1 Reusability of components and services imple-
mented in the architecture for a wide range of smart
building applications.

2) NFR2 Add new services in a modular way. Each mod-
ule performs a specific and well-defined function, and
thesemodules can be developed, tested, andmaintained
independently.

3) NFR3 Scalability to manage the increasing amount of
devices, data or services in the building.

C. STEP 3 : ARCHITECTURE PATTERN
The aim is to define an architecture for a data-driven smart
building, building upon existing architecture patterns closely
resembling the data-driven building ecosystem. The literature

review identified that the brown-field architecture presented
in Fig. 3 is a good starting point. There is a requirement to
support seamless access to various existing sources and their
data (FR1, 2, 3), and their integration (FR4). Included here
are the new services (NFR2) to be deployed such as data-
driven applications. Multiple services are already available
in a building; the goal is to keep and integrate them with
new services (NFR2). Based on the literature review, the
microservice architecture is more suitable for new appli-
cations because its modular approach facilitates scalability,
reusability and extensibility (NFR1, 2, 3). Furthermore, there
is a need to transport commands and messages between
different services (FR5, 6), and microservice-based archi-
tecture frameworks inherently support this by providing the
necessary transport mechanisms. This inter-service message
transport is essential in sophisticated control strategies such
as MPC to trigger one service (e.g. calculate optimum set
points) based on the output of another service (e.g. building
load forecast). This type of coordination is usually achieved
by using ‘‘event-based messaging’’ in microservices. Further,
in terms of adding new services in a modular way (NFR2),
as previously mentioned, extending the functionality of a
microservice architecture is often a straightforward process
involving creating this service, encapsulating it within a con-
tainer, establishing necessary API endpoint, and deploying
it [20].

D. STEP 4 : IDENTIFYING SOFTWARE COMPONENTS
This section presents the main artefacts that will constitute
the architecture. Some components are derived from Fig. 3
based on the literature review, and the others are specific to
the data-driven building domain. The list of components is as
follows:

1) Existing business applications
2) New microservices-based business applications
3) Databases
4) Integration software
5) Infrastructure services
6) Shared services
7) User interfaces

1) EXISTING BUSINESS APPLICATIONS
Existing business applications can be grouped into three
categories: 1) In-house devices and systems, which includes
the BMS, EMS, IoT devices, etc., 2) external services such
as weather APIs, utility services, e-mobility platforms, IoT
platforms, etc., and 3) other metadata sources such as P&ID
diagrams, BIM models, installation specifications, etc. The
integration of these services with the overall system architec-
ture is discussed in the integration software section.

2) NEW MICROSERVICES-BASED APPLICATIONS
As mentioned, the architecture will rely on the microservice
pattern when introducing new applications. We identified
three types of new applications: 1) drivers/connectors for

VOLUME 11, 2023 117269



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

TABLE 3. Smart data-driven building ecosystem in the Zachman Framework. Different components of the enterprise architecture are places in suitable
cell and highlighted in Blue. Components in Bold are elaborated in the upcoming sections.

new systems (e.g., IoT drivers, BMS drivers, metadata
schema generators), 2) data-driven applications themselves
(e.g., MPC, FDD) and 3) supporting services for data-driven
applications (e.g., data aggregation services, data clean-
ing services, and ETL processes). This ability to integrate
different services when needed is the key to extending
the possible applications that can be implemented atop
the system architecture without disrupting the existing
ones.

3) DATABASES
The proposed system architecture needs to facilitate different
types of data, such as time series data,semantic graphs (usu-
ally based on the Resource Description Framework (RDF)),
object data (such as Industry Foundation Classes (IFC) files,
geometry files, PDFs), and other data, such as user and
project data. These constitutes structured (e.g., CSV, spread-
sheets), semi-structured (e.g., JSON, XML) and unstructured
(e.g., PDF, images) data. According to the data type, several

117270 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

FIGURE 4. Logical data models of a) time series database b) Blob storage c) Document database and d) Graph database.

databases need to be selected to make data storage and query-
ing more efficient. Time series databases are optimised to
store and query time series data, whereas object databases
are suitable for storing files. Object storage can also be used
to store archived large files and sensor data archives, which
can be used for data-hungry applications relying on Machine
Learning. User and project details of different applications
also need to be saved, ideally in a relational or document
database. Semantic graphs of building metadata are stored in
a graph database. As such, the proposed architecture relies on
four types of databases:

1) Time series database
2) Graph database
3) Blob storage
4) Document database
The logical data models for these four databases are shown

in Fig. 4. A logical data model entails the conceptual repre-
sentation of the data without the specific technical details of
the database management system.

4) INTEGRATION SOFTWARE
Integration software allows applications of different vendors
that use different protocols to extract and translate their data
into desirable formats and communicate them to relevant
services. In a microservice–based platform, integration soft-
ware can also be recognised as microservices. Depending on
the three existing business application categories mentioned
above, various drivers need to be in place. Then, standard
interfaces such as HTTP and message queue systems such as
Kafka, RabbitMQ, or NATS [86] can be used for the integra-
tion with the architecture [55]. Five integration software types
essential for the data-driven building domain are identified
below.

a: BMS INTEGRATION SOFTWARE
The BMS driver is the interface between the BMS and the
system architecture. An example scenario is the communica-
tion of the data from a BACnet device to a web service. This

would require a communication gateway (driver) capable of
translating BACnet data into a format suitable for web com-
munication (like JSON) and then communicating them via
HTTP to a remote web service endpoint. Access to the data
and control of the devices of the BMS is essential since many
controllers are connected to the BMS.Usually, the sensor data
are periodically downloaded to a database to use as historical
data. Furthermore, a live communication link with the con-
trollers needs to be established to send control commands to
them based on the optimum results of data-driven building
applications.

b: IoT INTEGRATION SOFTWARE
Although the BMS is typically the main source of sensor
data, many buildings implement IoT devices as a retrofit.
They provide access to streams of real-time sensor data. For
any given building, many such devices and IoT platforms
are available and need to be integrated before utilising their
data for an application. Therefore, IoT integration software
is important, such as the one proposed earlier by the authors
[87], where sensor data acquired from different IoT sources
(Node 1 of Fig. 5) are published into a central message
broker (Node 2 of Fig. 5), and then processed to a uniform
format (Node 3 of Fig. 5). Here, the real-time data can be
accessed through a message broker, such as Mosquitto, using
theMQTTprotocol, a lightweight, publish-subscribe network
protocol that transports messages between devices. MQTT
follows a ‘‘topic’’ and ‘‘payload’’ method to communicate
data. Under one topic, it is possible to communicate multiple
data points. Listing 1 shows the logical data model of the
outgoing IoT payload. This IoT data can also be recorded in
a time series database for later usage.

Listing 1. Logical data model of the uniform IoT payload.

VOLUME 11, 2023 117271



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

FIGURE 5. IoT integration service to acquire and unify payloads
originating from heterogeneous sources [87].

c: BIM INTEGRATION SOFTWARE
BIM models are usually developed using commercial soft-
ware like Revit. These models consist of architecture, struc-
tural and Mechanical Electrical and Plumbing (MEP) models
from the design stage. When integrated into the operational
stage of the building, they can bring huge benefits such as
creating Digital Twins of an operational building. To integrate
these models, one can rely on commercial off-the-shelf prod-
ucts like Autodesk Tandem for creating Digital Twins. The
downside, however, is the vendor-lock-in and less flexibility
and limited extensibility because of their closed APIs. Here,
we propose an alternative approach using emerging openBIM
software. Here, the IFC model, a vendor-neutral format of
BIM used to exchange information, can be used. Standard
libraries such as IFC.js [88] or xeokit [89] then allow creating
front-end web applications to interact with the IFC models,
ultimately enabling interaction with the BIM model via a
web browser. Here, the Global Unique Identifiers (GUID)
of elements in the BIM model can be used to link the BIM
objects with their operational data, which enables the creation
of Digital Twins.

d: METADATA INTEGRATION SOFTWARE
We use smart building ontologies to create an extensible
semantic graph (also called a metadata schema) containing
the contextual information about the building and its data.
The graph carries the physical, logical and virtual assets in
buildings and the relationships between them. Furthermore,
it contains references to external systems such as time series
databases and IFC models, enabling the automatic querying
and retrieval of time series data associated with the instances
in the metadata schema.

Generating this kind of metadata schema requires con-
verting structured or unstructured metadata from various
sources into subject-predicate-object triples that conform to
the desired ontology. Conversion of the available metadata in

different systems like BMS and BIM from different formats
like CSV or IFC into a metadata schema requires a suitable
driver. Here, we show two essential metadata integration
software.

1. IFC to RDF driver: Creating a metadata schema from an
IFC model requires a purpose-built converter to understand
the available resources and map them to a desired ontology.
The converter in [90] transforms the IFC statements into
RDF statements conforming to the PROPS, BOT and MEP
ontologies.

2. BMS and IoT Metadata driver: Semantics are extracted
from various metadata sources like mapping tables, vendor
specifications, etc. to generate a metadata schema [91]. Here,
ontologies such as Brick and SSN can be used to describe the
BMS and IoT domains, respectively. Unique identifiers for
devices or data streams can be used to link these metadata
with their corresponding time series data, for instance using
the ref:hasTimeseriesId relationship. Finally, these
graphs are stored in a graph database and exposed via an API
to interact with other services.

e: API SOFTWARE
The final component of the integration software is the API.
After creating databases and core services, these are exposed
to internal and external services via API software. The API
provides a standardised way of accessing data and services
towards its users, for instance, with REST or GraphQL over
HTTP. In addition, security, access control, and monitoring
are added at API level, avoiding the necessity to implement
these at each service’s individual level.

5) INFRASTRUCTURE SERVICES
These include a software platform’s underlying containerisa-
tion, container orchestration, and infrastructure layers. These
are not domain specific for smart buildings and rely on best
practices. When considering NFR2 (reusability) and NFR2
(modularity), containers are inherently modular and enable
packaging software components and services, making it eas-
ier to reuse them across different smart building applications.
In terms of NFR3 (scalability), as the number of devices,
data sources, or services in the building increases, container
orchestration can efficiently handle the dynamic scaling of
modules or services to accommodate the growing needs.

6) SHARED SERVICES
The functionality common across all services can be imple-
mented as shared services. This includes security, gover-
nance, monitoring, and automation. Again, these are also
not specific to smart buildings and rely on the industry best
practices.

7) USER INTERFACES
Included here are user interfaces such as web or mobile
Digital Twin applications, dashboards, charts, etc., that can

117272 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

provide meaningful ways to interact with the data and the
necessary access to the end user.

E. STEP 5 : SOLUTION ARCHITECTURE
The above software components constitute the solution archi-
tecture. In the literature review, we noted that there are
multiple views for this architecture such as: business, techni-
cal and deployment. However, this study focuses primarily on
the technical architecture. Fig. 6 shows the resulting technical
architecture. This technology architecture can be found in
the third row of the Zachman framework in Table 3. The
seven software components identified above and their internal
services are illustrated here, showing how the services of the
seven components come together to make an overall system
architecture.

F. STEP 6 : IMPLEMENTATION
This section presents the implementation of one possible
instance of the proposed technical architecture and three use
cases as example smart building applications. The use cases
and the corresponding use case buildings (Living Labs) are
as follows:

1) Use Case 1: A Digital Twin application for the
Atlas campus building at Eindhoven University of
Technology. Digital Twin applications involve inte-
grating sensor data (both historical and real-time) with
a digital model of a building [92], [93], [94], [95],
which has rarely been achieved in the existing appli-
cations in a modular and reusable manner. This is
often due to the complexity related to handling het-
erogeneous systems as described earlier. Most of the
demonstrations [96], [97], [98] use Revit and Dynamo
Visual Programming Language for historical sensor
data integration. The downside of using commercial
off-the-shelf software is that it is vendor-specific, so the
reusability and extensibility are limited. In contrast,
we propose a vendor-agnostic method for sensor data
integration with BIM [22]. We use time series storage
to record the historical sensor data. Metadata which
describes BIM and BMS systems is kept in the graph
database. SPARQL Protocol and RDFQuery Language
(SPARQL) queries executed against themetadata graph
provide the necessary relationships (spaces, sensor
IDs) to link the digital BIM model with sensor data.
That enables a modular and reusable approach for cre-
ating Digital Twins.

2) Use Case 2: Integration of real-time sensor data for
the Atlas campus building at Eindhoven University
of Technology.Another essential component of a Digi-
tal Twin is real-time data. For demonstration purposes,
real-time sensor data from multiple IoT sensors such
as IEQ (temperature, humidity, light, TVOC and CO2)
and real-time energy consumption data (power, cur-
rent) are used here. This application aims to integrate
real-time IoT sensor data coming from heterogeneous

sources, enrich themwith semantics and visualise them
in a web application.

3) Use Case 3: Integration of a semantic building
graph with BMS sensor data for Building 33 at
Delft University of Technology. One of the primary
objectives of this use case building is to provide his-
torical and real-time access to BMS sensor data for
the development of data-driven smart building applica-
tions. However, the sensor data and metadata are not
understood properly by users by default because of
ambiguous semantics used by the vendor. To ensure
the understanding of the sensor data, contextual data
was first standardised using smart building ontologies.
This contextual data enables sensor data filtering by
equipment and sensor type. To improve the usability,
we present the integration using Grafana dashboards,
where semantic and time series data can be queried in
combination.

The following section describes the implementation of
various services that belong to the seven categories we pro-
posed, namely, 1) existing business applications, 2) new
microservice-based applications, 3) databases, 4) integration
software, 5) infrastructure services, 6) shared services, and
7) user interfaces.

1) EXISTING BUSINESS APPLICATIONS
We rely on the BMS, BIM and IoT systems for the implemen-
tations. The current purpose of the interaction with the BMS
is only to extract historical data. Existing BIMmodels, devel-
oped using Revit, are used to create Digital Twin applications.
Other source systems include IoT devices which provide
real-time sensor data. To integrate these existing systems,
we usemultiple drivers, which are described in the Integration
Software section.

2) NEW MICROSERVICES-BASED APPLICATIONS
New applications reside primarily in the integration software
and new business applications categories. At this stage, our
services include IoT drivers, BMS drivers, file converters and
ETL tools that provide data to the three use cases. Other
planned services include data-driven applications such as
MPC for DSM in buildings.

3) DATABASES
For the implementation, we rely on the four types of databases
described in Section V. MongoDB time series collection
is used to store time series data, whereas MongoDB docu-
ment collection is used for storing other data regarding users
and projects. GraphDB database stores the semantic graphs
describing metadata of the buildings. As an object storage we
use Minio to store IFC files, converted xkt files, and large
time series data collections, etc. All databases are installed in
the Docker environment.

VOLUME 11, 2023 117273



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

FIGURE 6. Proposed service-oriented software architecture for a data-driven smart building.

Listing 2. A time series data record stored in MongoDB time series
collection.

An example of the physical data model of a MongoDB
document stored in the time series data collection for Use
Case 1 (Digital Twin) is shown in Listing 2:

The physical data model of the project data stored in
MongoDB collection for Use Case 1 (Digital Twin) is shown
in Listing 3:

A part of the semantic building graph in RDF syntax stored
in GraphDB database for Use Case 1 and 2 (Digital Twin
and IoT integration) is shown in Listing 4. This graph utilises

Listing 3. A project data record stored in MongoDB collection.

the Brick ontology version v1.3. The same graph is visually
represented in Fig. 7.

4) INTEGRATION SOFTWARE
a: BMS INTEGRATION
At this stage, we use historical data from the BMS for Use
Case 1 and Use Case 3. An ETL process is used to transform
the incoming data into the MongoDB schema defined in the

117274 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

FIGURE 7. Visual representation of the semantic graph using GraphDB
interface. The graph shows the relationships between spaces and sensors
to enable the Digital Twin and IoT Integration.

Listing 4. A part of the semantic graph stored in RDF format in GraphDB
graph database.

logical data model. Protocol-specific drivers are needed for
future developments to establish the bidirectional communi-
cation required for applications like MPC.

b: IoT INTEGRATION
To demonstrate the IoT integration, we used three types of IoT
devices. The first device is an air quality sensor, the data from
which is accessed in real-time by querying the platform’s
API. The IoT driver for this device fetches sensor data every
10 seconds from the IoT platform and publishes them to the
MQTT broker. The second device is a smart socket. It uses
a proprietary protocol, and therefore, the IoT driver for this
device adapts an already available connector [99] to forward
these messages to an MQTT broker. The third IoT device
is custom-made by the authors and directly communicates

to the MQTT broker. This way, all real-time data becomes
accessible via the single MQTT message broker. Each IoT
device ID (optionally MAC address, if available) is included
in the MQTT topic, and the sensor readings are included
in the MQTT payload. The payload of each IoT device is
processed using the service previously demonstrated in Fig. 5.
The physical data model of the air quality sensor resulting
from the service is shown in Listing 5. This data model is
compatible with many IoT payloads. This unified data is also
recorded in a time series database for later usage.

Listing 5. Logical data model of the processes messages.

c: BIM INTEGRATION
BIM integration is used in Use Case 1 in the Atlas build-
ing. For BIM integration, we rely on the xeokit SDK.
This implementation builds on previous work describing the
implementation of a web application to visualise a web-based
BIM model using xeokit [22]. In this case, another driver
is required to convert IFC files to the web-compatible xkt
format. This conversion is achieved using the conversion
process elaborated in ifc2xkt [89]. The converted files are
stored in an object storage which can be accessed via the API.

d: METADATA INTEGRATION
All use cases described above rely on themetadata integration
service. The goal of the metadata graph is to standardise the
semantics and create a link between different data sources.
The three most critical data sources are the BMS, IoT and
the BIM model, as they contain a large amount of metadata
that enables contextual representations in data-driven appli-
cations. In this regard, two types of metadata drivers were
implemented, one for the IFC-to-RDF conversion and another
for generating a metadata schema based on BMS and IoT
sensors.

Creating a metadata schema from an IFC model requires a
purpose-built converter to understand the available resources
and map them to a desired ontology. This study achieves
this through the implementation of an IFC to RDF driver.
In the IFC-to-RDF conversion, the semantic model of the
building is generated based on the IFC file using an IFC-
to-RDF converter [90]. It transforms the IFC statements into
RDF statements conforming to the PROPS, BOT and MEP
ontologies.

Brick and SSN ontologies are used to describe the BMS
and IoT domains respectively. Semantics are extracted from
the metadata sources like data dictionaries and device spec-
ifications in BMS to create a metadata schema [91]. These
graphs are stored in the GraphDB graph database. Dis-
covering the sensors and observations using their sensor
type, location, or other relationships is realised by executing

VOLUME 11, 2023 117275



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

FIGURE 8. Sample API endpoints shown in openAPI specification, for
interacting with the various services, sensor data and metadata schema
of the building.

SPARQL queries on the graph database via the API. Reusable
SPARQL queries are programmed into the API to improve
the overall reusability of the application. A part of the meta-
data schema with building and sensor semantics of the Atlas
Living Lab is shown in Listing. 4, and a graphical version is
shown in Fig. 7.

e: API
The purpose of the REST API is to facilitate the communi-
cation between the smart building applications and the other
components in the architecture. All three use cases use the
same API. The objective is to keep this API more general and
applicable to any data-driven building, not specific to one use
case building.

The API is implemented in Node.js using Nest.js frame-
work, and sample endpoints in openAPI specification are
shown in Fig. 8. It allows applications to interact with various
services and execute Create-Read-Update-Delete (CRUD)
operations against the available four databases. Time series
data can be accessed via the API by queryingwith the relevant
unique sensor ID. The API also provides endpoints to query
the graphs in the RDF database, the project data stored in the
document database, and the files stored in the Minio storage.
Future developments consider other data-driven services such
as forecasting deployed as a service.

The following section discusses an example interaction
with the API.

The first scenario is querying a sensor’s time series data
using its metadata. The utilised metadata is a known space
identifier (e.g., IFC GUID of a space). In this case, we need
to execute a SPARQL query as shown in Listing 6, which
enables getting the sensors in a particular space. It returns
the identifiers of the sensors contained in a given space using
brick:hasPoint relationship. These Points contain the time

Listing 6. SPARQL query to get all sensors in a space.

Listing 7. Get sensors by GUID of space.

series identifiers used to record the corresponding sensor data
in the time series database.

The execution of these kind of queries are encapsulated
in the API endpoints to improve reusability. For example,
Listing 7 shows an API request that takes the GUID of the
space and returns the sensors in it.

Then, these time series identifiers can be used to retrieve
relevant sensor data from the time series storage as shown in
Listing 8.

5) INFRASTRUCTURE SERVICES
We use Docker as the containerisation environment, as newer
applications, such as IoT drivers, APIs, and databases, run on
Docker.

6) SHARED SERVICES
The functionalities common across all services are recog-
nised as shared services. These include security, governance,
monitoring, and automation. Again, these are also not specific
to smart buildings.

117276 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

Listing 8. Get sensor records by sensor id.

FIGURE 9. Integration of historical CO2 sensor data of the selected space
during April 2021 and May 2021 [22].

7) USER INTERFACES
This section demonstrates the implementations of two web
applications for Use Case 1 and 2, and a Grafana dashboard
for Use Case 3. All applications are developed based on the
proposed and implemented architecture.

The first user interface is developed for Use Case 1 in the
Atlas building using the React front-end framework and the
xeokit SDK. The application allows the user to navigate
through the BIM model using the web browser and see the
sensor data related to its spaces. The REST API connects the
web application to the semantic graph, time series data (both
historical and real-time) and BIM models. Fig. 9 demon-
strates historical sensor data linked to a BIM model and
visualised in the web application [22]. Fig. 9 also shows
how the historical data is retrieved for a CO2 sensor installed
inside a room on the 8th floor of the Atlas building.

Fig. 10 shows the second application developed for Use
Case 2. This application was also developed using the React
front-end framework. The application allows the user to inter-
act with the metadata graph of the Atlas building, explore
its IoT devices and receive their real-time data [87]. This
application relies on the IoT drivers we implemented to unify
the IoT payloads from three heterogeneous sources.

FIGURE 10. Integration of real-time sensor data using metadata
graph [87].

FIGURE 11. BMS time series data exploration using metadata schema
and Grafana dashboards [91].

The third application is developed as a data exploratory and
visualisation tool for BMS data in Use Case 3. We developed
a metadata schema for the BMS and integrated it with the
time series database via a Grafana dashboard using the API,
providing the ability to query time series data efficiently.
That includes the ability to query data by equipment or point
types and gain initial insights about the data through charts.
Users can query the BMS points of interest by selecting the
equipment type from the drop-down list in Fig. 11. This
list contains the equipment types from the BMS, annotated
according to the Brick ontology.

Fig. 11 shows an example of an Air Handling Unit
(AHU) selected as brick:Equipment. Then, a SPARQL query
requests the unique identifiers of the data points related to this
brick:AHU in themetadata schema. The user can select one or
more points from the resulting point list to explore their time
series data. Overall, the architecture enables efficient means
to understand and explore the large amounts of time series
data available from the building.

V. CONCLUSION AND FUTURE WORK
A. CONCLUSION
Ambitious operational objectives related to building energy
efficiency, energy flexibility, IEQ, occupant comfort and
well-being, etc., call for efficient data-driven smart building
applications. These applications demand seamless data

VOLUME 11, 2023 117277



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

linking and integration, and their underlying systems must
also be integrated to exchange information. However, cur-
rent system architectures in the data-driven building domain
are inadequate for smart building applications because they
1) lack the integration of best practices such as architecture
frameworks and mature architecture patterns, 2) do not rely
on semantic technologies as an architectural component and
have showcased limited capabilities using ad-hoc tools, and
3) are largely conceptual and practical implementations are
rare. On the other hand, well-tested architecture patterns
available in other IT domains cannot be directly transferred
to a data-driven building context due to the lack of domain-
specific components.

In response to the above shortcomings, this study proposes
a service-oriented architecture for the data-driven building
domain. The proposed architecture relies on the Zach-
man architecture framework, functional and non-functional
requirements derived by interviewing industry experts and
literature, and already available, well-tested architecture pat-
terns in the IT industry. The study demonstrates notable
improvements in scalability, modularity and reusability
due to the utilised MACH architecture principles and
ontology-based extensible metadata schemes. The imple-
mentation includes specific architectural components for the
data-driven building domain. We also implement multiple
drivers/connectors in response to the diverse information
sources that need to be integrated with new microservices-
based applications. Those drivers include BMS, IoT and
metadata conversion drivers. The new smart building appli-
cations follow a microservice architecture. The proposed
API and message bus establish the communication between
microservices and the other components. The architecture
leverages semantic technologies as an integral part of the
proposed API by programming reusable SPARQL queries
into API endpoints. Furthermore, we show how different data
types should be maintained in different databases (e.g., time
series and graph databases) for efficient querying. The orig-
inal data types are retained in their optimum environments
by choosing appropriate databases. In contrast to custom data
models which are difficult to extend or reuse, we utilise open
metadata models and standards, as well as well-established
ontologies such as Brick, SSN, BOT, etc. This way, the data
models remain flexible and extensible.

Furthermore, the article demonstrates the implementation
of an instance of the architecture and three smart building
applications, validating the reusability and modularity of the
proposed architecture. For example, the presented Digital
Twin application for the Atlas use case building can be eas-
ily extended and used in another building. Having created
a metadata schema and BIM model of the new building,
it can use the same application logic (API) and the services,
and, therefore, no significant additional effort is required
to configure the application. That also applies to the other
two applications demonstrated in the implementation section.
Other applications, such as MPC, are currently under imple-
mentation as new microservices.

Implementing an instance of the proposed architecture and
the three smart building applications reveals the architecture’s
suitability as a blueprint to create similar system architectures
for smart buildings. Besides research, this article is also
relevant for solution architects who want to understand the
building domain, and business executives and owners look-
ing to build solution architectures for smart buildings. This
type of architecture is also useful for service providers who
develop and provide software for smart buildings. For other
service providers, such as energy companies or algorithm
developers, who wish to interact with the smart building,
this software architecture provides a standard API helping
to make the data and systems accessible and avoiding any
ambiguities when implementing new smart building applica-
tions. A building is a complex ecosystem with many different
vendors, protocols, data models, naming conventions, etc.
Therefore, the practical end-to-end implementation of this
software architecture for a fully functional smart building is
non-trivial and involves several stakeholders, software archi-
tects, developers and deployment infrastructure.

B. FUTURE WORK
Implementing DSM applications such as MPC as microserv
ice-based applications using the proposed architecture is
currently under implementation. To that end, additional ser-
vices for data analytics, Machine Learning, forecasting, and
exploratory data analysis tools can also be implemented
as new services. The proposed service-oriented architecture
allows creating services required for MPC as modular and
reusable components. Sophisticated control strategies such
as MPC usually require combining diverse data sources.
The proposed architecture is well-suited for such integration.
These applications can be developed and deployed individ-
ually in containerised environments, relying on the core of
the system architecture, the API and the message broker for
communication.

Utilising semantic technologies as an integral part of the
architecture is essential for adding context to operational data
and creating links between diverse systems. However, gener-
ating a metadata schema from available metadata sources can
be quite a laborious process, especially if the metadata is not
well-documented or not available in structured formats. The
efficient generation of metadata graphs itself is an emerging
research area, which tries to automate the process [14], [100],
and improve the semantic sufficiency of the generated graph
for a particular application [101]. When mature, these ser-
vices should be integrated with the proposed architecture.

Although the three implemented smart building applica-
tions do not rely on a bi-directional communication with the
building controllers, other applications, such as FDD and
MPC, rely on such active bi-directional communication. The
idea is to control the devices and controllers using intelligent
algorithms that send optimal set points and control commands
to the device APIs via relevant drivers. Using an event-
driven architecture [102] that uses events to share information
between decoupled services is most suitable for these types of

117278 VOLUME 11, 2023



L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

coordinated control applications. The current implementation
of the architecture relies on a RESTAPI and amessage broker
for sharing information between systems. An event-driven
service component can also be added to the architecture in the
future. This addition is valuable for continuously monitoring
the devices or services and triggering the relevant services
that rely on those events.

It is also essential to investigate how data can be cate-
gorised into internal, shared and open data since the privacy
and security aspects can differ. A standardised methodol-
ogy for secure and ethical access, use of data (collection,
management and use) and control of devices, is also under
investigation [19].

REFERENCES
[1] P. Arjunan, M. Srivastava, A. Singh, and P. Singh, ‘‘OpenBAN: An open

building analytics middleware for smart buildings,’’ EAI Endorsed Trans.
Scalable Inf. Syst., vol. 2, no. 7, p. e4, Aug. 2015.

[2] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong,
A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal, M. Bergés, D. Culler,
R. K. Gupta, M. Srivastava, and K. Whitehouse, ‘‘Brick: Metadata
schema for portable smart building applications,’’ Appl. Energy, vol. 226,
pp. 1273–1292, Sep. 2018.

[3] X. Gao, P. Pishdad-Bozorgi, D. R. Shelden, and S. Tang, ‘‘Internet of
Things enabled data acquisition framework for smart building appli-
cations,’’ J. Construct. Eng. Manage., vol. 147, no. 2, Feb. 2021,
Art. no. 04020169.

[4] R. Cox, S. Walker, J. van der Velden, P. Nguyen, and W. Zeiler, ‘‘Flat-
tening the electricity demand profile of office buildings for future-proof
smart grids,’’ Energies, vol. 13, no. 9, p. 2357, May 2020.

[5] A. Krishnan Prakash, K. Zhang, P. Gupta, D. Blum, M. Marshall,
G. Fierro, P. Alstone, J. Zoellick, R. Brown, and M. Pritoni, ‘‘Solar+
optimizer: A model predictive control optimization platform for grid
responsive building microgrids,’’ Energies, vol. 13, no. 12, p. 3093,
Jun. 2020.

[6] S. Lazarova-Molnar, H. R. Shaker, andN.Mohamed, ‘‘Fault detection and
diagnosis for smart buildings: State of the art, trends and challenges,’’ in
Proc. 3rd MEC Int. Conf. Big Data Smart City (ICBDSC), Mar. 2016,
pp. 1–7.

[7] M. S. Mirnaghi and F. Haghighat, ‘‘Fault detection and diagnosis of
large-scale HVAC systems in buildings using data-driven methods:
A comprehensive review,’’ Energy Buildings, vol. 229, Dec. 2020,
Art. no. 110492.

[8] M. Bird, C. Daveau, E. O’Dwyer, S. Acha, and N. Shah, ‘‘Real-world
implementation and cost of a cloud-basedMPC retrofit for HVAC control
systems in commercial buildings,’’Energy Buildings, vol. 270, Sep. 2022,
Art. no. 112269.

[9] D. Blum, Z. Wang, C. Weyandt, D. Kim, M. Wetter, T. Hong, and
M. A. Piette, ‘‘Field demonstration and implementation analysis ofmodel
predictive control in an office HVAC system,’’ Appl. Energy, vol. 318,
Jul. 2022, Art. no. 119104.

[10] Z. Chevallier, B. Finance, and B. C. Boulakia, ‘‘A reference architecture
for smart building digital twin,’’ in Proc. SeDiT@ ESWC, 2020, pp. 1–12.

[11] G. B. Ozturk, ‘‘Digital twin research in the AECO-FM industry,’’
J. Building Eng., vol. 40, Aug. 2021, Art. no. 102730.

[12] S. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, ‘‘Digital twin as a service
(DTaaS) in industry 4.0: An architecture reference model,’’ Adv. Eng.
Informat., vol. 47, Jan. 2021, Art. no. 101225.

[13] P. Pauwels, S. Zhang, and Y.-C. Lee, ‘‘Semantic web technologies in AEC
industry: A literature overview,’’Autom. Construct., vol. 73, pp. 145–165,
Jan. 2017.

[14] A. A. Bhattacharya, D. Hong, D. Culler, J. Ortiz, K. Whitehouse, and
E. Wu, ‘‘Automated metadata construction to support portable building
applications,’’ in Proc. 2nd ACM Int. Conf. Embedded Syst. Energy-
Efficient Built Environ.NewYork, NY, USA: ACM, Nov. 2015, pp. 3–12.

[15] Y. Agarwal, R. Gupta, D. Komaki, and T. Weng, ‘‘BuildingDepot,’’
in Proc. 4th ACM Workshop Embedded Sens. Syst. Energy-Efficiency
Buildings, New York, NY, USA, Nov. 2012, pp. 64–71.

[16] M. Pau, P. Kapsalis, Z. Pan, G. Korbakis, D. Pellegrino, and A. Monti,
‘‘MATRYCS—A big data architecture for advanced services in the build-
ing domain,’’ Energies, vol. 15, no. 7, p. 2568, Apr. 2022.

[17] C. Fernando, ‘‘Industry-specific architecture patterns,’’ in Solution Archi-
tecture Patterns for Enterprise: A Guide to Building Enterprise Software
Systems. Berkeley, CA, USA: Apress, 2023, ch. 9, pp. 313–359, doi:
10.1007/978-1-4842-8948-8_9.

[18] J. A. Zachman, ‘‘A framework for information systems architecture,’’ IBM
Syst. J., vol. 38, no. 2, pp. 454–470, 1999.

[19] Work Packages—Brains4buildings. Accessed: Aug. 7, 2023. [Online].
Available: https://brains4buildings.org/work-packages/

[20] M. Richards, Software Architecture Patterns, 2nd ed. Sebastopol,
CA, USA: O’Reilly Media, Inc., 2022. [Online]. Available: https:
//www.oreilly.com/library/view/software-architecture-
patterns/9781491971437

[21] Enterprise MACHified | MACH Alliance. Accessed: Aug. 7, 2023.
[Online]. Available: https://machalliance.org/

[22] L. Chamari, E. Petrova, and P. Pauwels, ‘‘A web-based approach to BMS,
BIM and IoT integration: A case study,’’ in Proc. REHVA 14th HVAC
World Congr., 2022, pp. 1–8.

[23] N. Medvidovic and R. N. Taylor, ‘‘Software architecture: Foundations,
theory, and practice,’’ in Proc. ACM/IEEE 32nd Int. Conf. Softw. Eng.,
vol. 2. New York, NY, USA, May 2010, pp. 471–472.

[24] M. Guessi, V. V. G. Neto, T. Bianchi, K. R. Felizardo, F. Oquendo, and
E. Y. Nakagawa, ‘‘A systematic literature review on the description of
software architectures for systems of systems,’’ in Proc. 30th Annu. ACM
Symp. Appl. Comput., New York, NY, USA, Apr. 2015, pp. 1433–1440.

[25] C. Fernando, ‘‘Introduction to solution architecture,’’ in Solution Archi-
tecture Patterns for Enterprise: A Guide to Building Enterprise Software
Systems. Berkeley, CA, USA: Apress, 2023, ch. 2, pp. 29–61, doi:
10.1007/978-1-4842-8948-8_2.

[26] S. Bhattarai, G. Bleakley, M. Buchheit, C. Byers, A. Chigan, M. Craw-
ford, J. Durand, and A. Karmarkar. (2022). The Industrial Internet Refer-
ence Architecture. Industrial IoT Consortium. [Online]. Available: https:
//www.iiconsortium.org/IIRA/

[27] The Open Group Standard. (2022). The TOGAF Standard. Accessed:
Aug. 28, 2023. [Online]. Available: http://www.opengroup.org/togaf/

[28] K. Smolander, ‘‘What is included in software architecture? A case study
in three software organizations,’’ in Proc. 9th Annu. IEEE Int. Conf.
Workshop Eng. Comput.-Based Syst., 2002, pp. 131–138.

[29] J. A. Zachman, ‘‘The Zachman framework for enterprise architecture,
primer for enterprise engineering and manufacturing,’’ Zachman Int.,
vol. 128, no. 9, p. 15, 2003. [Online]. Available: https://www.dragon1.
com/downloads/ZachmanBookRFIextract.pdf

[30] T. Ylimäki and V. Halttunen, ‘‘Method engineering in practice: A case
of applying the Zachman framework in the context of small enterprise
architecture oriented projects,’’ Inf., Knowl., Syst. Manage., vol. 5, no. 3,
pp. 189–209, 2005.

[31] A. Radwan and M. Aarabi, ‘‘Study of implementing Zachman frame-
work for modeling information systems for manufacturing enterprises
aggregate planning,’’ in Proc. Int. Conf. Ind. Eng. Oper. Manag., 2011,
pp. 9–14.

[32] H. Tannady, J. F. Andry, B. G. Sudarsono, and Y. Krishartanto, ‘‘Enter-
prise architecture using Zachman framework at paint manufacturing
company,’’ Technol. Rep. Kansai Univ., vol. 62, no. 4, pp. 1869–1883,
2020.

[33] J. M. Nogueira, D. Romero, J. Espadas, and A. Molina, ‘‘Leverag-
ing the Zachman framework implementation using action—Research
methodology—A case study: Aligning the enterprise architecture and
the business goals,’’ Enterprise Inf. Syst., vol. 7, no. 1, pp. 100–132,
Feb. 2013.

[34] S. Bondar, J. C. Hsu, A. Pfouga, and J. Stjepandić, ‘‘Agile digital
transformation of system-of-systems architecture models using Zachman
framework,’’ J. Ind. Inf. Integr., vol. 7, pp. 33–43, Sep. 2017.

[35] R. Alm and M. Wißotzki, ‘‘TOGAF adaption for small and medium
enterprises,’’ Lect. Notes Bus. Inf. Process., vol. 160, pp. 112–123, 2013.

[36] S. Kotusev, ‘‘TOGAF-based enterprise architecture practice:
An exploratory case study,’’ Commun. Assoc. Inf. Syst., vol. 43,
no. 1, pp. 321–359, 2018.

[37] B. Anthony, S. A. Petersen, D. Ahlers, J. Krogstie, and K. Livik, ‘‘Big
data-oriented energy prosumption service in smart community districts:
A multi-case study perspective,’’ Energy Informat., vol. 2, no. 1, p. 36,
Dec. 2019.

VOLUME 11, 2023 117279

http://dx.doi.org/10.1007/978-1-4842-8948-8_9
http://dx.doi.org/10.1007/978-1-4842-8948-8_2


L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

[38] W. Engelsman and R. Wieringa, ‘‘Goal-oriented requirements engineer-
ing and enterprise architecture: Two case studies and some lessons
learned,’’ inProc. Int. Work. Conf. Requirement Eng., Found. Softw. Qual-
ity, in Lecture Notes in Computer Science: Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics,
vol. 7195, 2012, pp. 306–320.

[39] OMG. (2017). About the Unified Modeling Language Specification Ver-
sion 2.5.1. Accessed: Jul. 3, 2023. [Online]. Available: https://www.
omg.org/spec/UML

[40] The Open Group Standard. (2017). ArchiMate® 3.2 Specification.
[Online]. Available: https://pubs.opengroup.org/architecture/archimate3-
doc/

[41] M. Lankhorst, ‘‘Viewpoints and visualisation,’’ in Enterprise Architec-
ture at Work. Berlin, Germany: Springer, 2012, ch. 8, pp. 147–188, doi:
10.1007/978-3-662-53933-0_8.

[42] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, ‘‘What
industry needs from architectural languages: A survey,’’ IEEE Trans.
Softw. Eng., vol. 39, no. 6, pp. 869–891, Jun. 2013.

[43] P. B. Kruchten, ‘‘The 4+1 view model of architecture,’’ IEEE Softw.,
vol. 12, no. 6, pp. 42–50, Mar. 1995.

[44] Atlassian. Microservices vs. Monolithic Architecture. Accessed:
Aug. 7, 2023. [Online]. Available: https://www.atlassian.com/micro
services/microservices-architecture/microservices-vs-monolith

[45] A. Kharenko. Monolithic vs. Microservices Architecture. Accessed:
Aug. 7, 2023. [Online]. Available: https://articles.microservices.com/
monolithic-vs-microservices-architecture-5c4848858f59

[46] AWS. What’s the Difference Between Monolithic and Microservices
Architecture? Accessed: Aug. 7, 2023. [Online]. Available: https://aws.
amazon.com/compare/the-difference-between-monolithic-and-
microservices-architecture/

[47] D. Shadija, M. Rezai, and R. Hill, ‘‘Towards an understanding of
microservices,’’ in Proc. 23rd Int. Conf. Autom. Comput. (ICAC),
Sep. 2017, pp. 1–6.

[48] H. Calderón-Gómez, L. Mendoza-Pittí, M. Vargas-Lombardo,
J. M. Gómez-Pulido, D. Rodríguez-Puyol, G. Sención, and
M.-L. Polo-Luque, ‘‘Evaluating service-oriented and microservice
architecture patterns to deploy eHealth applications in cloud computing
environment,’’ Appl. Sci., vol. 11, no. 10, p. 4350, May 2021.

[49] M. Richards, Microservices vs. Service-Oriented Architecture. Berlin,
Heidelberg: O’Reilly Media, 2016. [Online]. Available: https://www.
oreilly.com/library/view/microservices-vs-service-oriented/
9781491975657/

[50] M. P. Papazoglou and W.-J. van den Heuvel, ‘‘Service oriented architec-
tures: Approaches, technologies and research issues,’’ VLDB J., vol. 16,
no. 3, pp. 389–415, Jul. 2007.

[51] R. Perrey and M. Lycett, ‘‘Service-oriented architecture,’’ in Proc. Symp.
Appl. Internet Workshops, 2003, pp. 116–119.

[52] I. Jerstad, S. Dustdar, and D. V. Thanh, ‘‘A service oriented architecture
framework for collaborative services,’’ in Proc. 14th IEEE Int. Workshops
Enabling Technol., Infrastruct. Collaborative Enterprise, Jun. 2005,
pp. 121–125.

[53] M. Rychlý and P. Weiss, ‘‘Modeling of service oriented
architecture—From business process to service realisation,’’ in Proc. 3rd
Int. Conf. Eval. Novel Approaches Softw. Eng., 2008, pp. 140–146.

[54] M. Luo, B. Goldshlager, and L.-J. Zhang, ‘‘Designing and implementing
enterprise service bus (ESB) and SOA solutions,’’ inProc. IEEE Int. Conf.
Services Comput. (SCC), vol. 2, Jul. 2005, pp. 1–2.

[55] C. Fernando, ‘‘Building enterprise software systems with microservice
architecture,’’ in Solution Architecture Patterns for Enterprise: A Guide
to Building Enterprise Software Systems. Berkeley, CA, USA: Apress,
2023, ch. 3, pp. 63–108, doi: 10.1007/978-1-4842-8948-8_3.

[56] S. Katipamula and M. Brambley, ‘‘Review article: Methods for fault
detection, diagnostics, and prognostics for building systems—A review,
Part I,’’ HVAC R Res., vol. 11, no. 1, pp. 3–25, Jan. 2005.

[57] P. Delgoshaei and M. A. Austin, ‘‘Framework for knowledge-based fault
detection and diagnostics (don’t short) in multi-domain systems: Appli-
cation to heating ventilation and air conditioning systems,’’ Int. J. Adv.
Intell. Syst., vol. 10, no. 3, pp. 393–409, 2017.

[58] K. Zhang, A. Prakash, L. Paul, D. Blum, P. Alstone, J. Zoellick, R. Brown,
and M. Pritoni, ‘‘Model predictive control for demand flexibility: Real-
world operation of a commercial building with photovoltaic and battery
systems,’’ Adv. Appl. Energy, vol. 7, Sep. 2022, Art. no. 100099.

[59] K. Bao, I. Mauser, S. Kochanneck, H. Xu, and H. Schmeck, ‘‘A microser-
vice architecture for the intranet of things and energy in smart buildings,’’
in Proc. 1st Int. Workshop Mashups Things APIs, New York, NY, USA,
Dec. 2016, pp. 1–6.

[60] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, ‘‘BOSS: Building operating system services,’’
in Proc. 10th USENIX Symp. Networked Syst. Design Implement., 2013,
pp. 443–457.

[61] M. Jahn, D. Berichter, and M. Jarke, ‘‘Turning smart buildings into
innovation environments,’’ Ph.D. dissertation, Dept. Math., Comput. Sci.
Natural Sci., RWTH Aachen Univ., Aachen, Germany, 2016.

[62] E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto, R. Tomasi,
D. Rabourdin, J. Virgone, and E. Macii, ‘‘Event-driven user-centric
middleware for energy-efficient buildings and public spaces,’’ IEEE Syst.
J., vol. 10, no. 3, pp. 1137–1146, Sep. 2016.

[63] T. R. Gruber, ‘‘A translation approach to portable ontology specifica-
tions,’’ Knowl. Acquisition, vol. 5, no. 2, pp. 199–220, Jun. 1993.

[64] M. H. Rasmussen, M. Lefrançois, G. F. Schneider, and P. Pauwels, ‘‘BOT:
The building topology ontology of the W3C linked building data group,’’
Semantic Web, vol. 12, no. 1, pp. 143–161, Nov. 2020.

[65] Building Topology Ontology. Accessed: Aug. 7, 2023. [Online]. Avail-
able: https://github.com/w3c-lbd-cg/bot

[66] Semantic Sensor Network Ontology. Accessed: Aug. 7, 2023. [Online].
Available: https://www.w3.org/TR/vocab-ssn/

[67] K. Janowicz, A. Haller, S. J. D. Cox, D. Le Phuoc, and M. Lefrançois,
‘‘SOSA: A lightweight ontology for sensors, observations, samples, and
actuators,’’ J. Web Semantics, vol. 56, pp. 1–10, May 2019.

[68] W. Terkaj, G. F. Schneider, and P. Pauwels, ‘‘Reusing domain ontologies
in linked building data: The case of building automation and control,’’ in
Proc. Joint Ontol. Workshops, Tyrolean Autumn Ontol., vol. 2050, 2017.
[Online]. Available: https://ceur-ws.org/Vol-2050/

[69] Home—BrickSchema. Accessed: Aug. 9, 2023. [Online]. Available:
https://brickschema.org/

[70] Home—Project Haystack. Accessed: Aug. 7, 2023. [Online]. Available:
https://project-haystack.org/

[71] P. Delgoshaei, M. Heidarinejad, and M. A. Austin, ‘‘A semantic approach
for building system operations: Knowledge representation and reason-
ing,’’ Sustainability, vol. 14, no. 10, p. 5810, May 2022.

[72] P. Delgoshaei, M. A. Austin, and D. Veronica, ‘‘Semantic models and
rule-based reasoning for fault detection and diagnostics: Applications in
heating, ventilating and air conditioning systems,’’ inProc. 12th Int. Conf.
Syst., 2017, pp. 48–53.

[73] Y.-Y. Zhang, Z.-Z. Hu, J.-R. Lin, and J.-P. Zhang, ‘‘Linking data model
and formula to automate KPI calculation for building performance bench-
marking,’’ Energy Rep., vol. 7, pp. 1326–1337, Nov. 2021.

[74] H. Dibowski, J. Vass, O. Holub, and J. Rojicek, ‘‘Automatic setup of
fault detection algorithms in building and home automation,’’ in Proc.
IEEE 21st Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2016,
pp. 1–6.

[75] O. Topcu and H. Oğuztüzün, ‘‘High level architecture,’’ in Guide to
Distributed Simulation With HLA (Simulation Foundations, Methods and
Applications). Cham, Switzerland: Springer, 2017, ch. 2, pp. 29–78, doi:
10.1007/978-3-319-61267-6_2.

[76] E. Curry, A. Metzger, A. J. Berre, A. Monzón, and A. Boggio-Marzet,
‘‘A reference model for big data technologies,’’ in The Elements of Big
Data Value. Cham, Switzerland: Springer, 2021, pp. 127–151.

[77] M. Mazzara, I. Afanasyev, S. R. Sarangi, S. Distefano, V. Kumar, and
M. Ahmad, ‘‘A reference architecture for smart and software-defined
buildings,’’ in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP),
Jun. 2019, pp. 167–172.

[78] M. Abu-Matar, ‘‘Towards a software defined reference architecture for
smart city ecosystems,’’ in Proc. IEEE Int. Smart Cities Conf., Sep. 2016,
pp. 1–6.

[79] M. Genkin and J. J. McArthur, ‘‘B-SMART: A reference architecture
for autonomic smart buildings,’’ IOP Conf. Ser., Earth Environ. Sci.,
vol. 1101, no. 9, Nov. 2022, Art. no. 092036.

[80] M. R. Bashir, A. Q. Gill, and G. Beydoun, ‘‘A reference architecture for
IoT-enabled smart buildings,’’ Social Netw. Comput. Sci., vol. 3, no. 6,
p. 493, Sep. 2022.

[81] M. R. Bashir, A. Q. Gill, G. Beydoun, and B. Mccusker, ‘‘Big data
management and analytics metamodel for IoT-enabled smart buildings,’’
IEEE Access, vol. 8, pp. 169740–169758, 2020.

117280 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-1-4842-8948-8_3
http://dx.doi.org/10.1007/978-3-319-61267-6_2


L. Chamari et al.: End-to-End Implementation of a Service-Oriented Architecture

[82] Browse Azure Architectures—Azure Architecture Center | Microsoft
Learn. Accessed: Aug. 7, 2023. [Online]. Available: https://learn.
microsoft.com/en-us/azure/architecture/browse/

[83] IoT | AWS Architecture Center. Accessed: Aug. 7, 2022. [Online]. Avail-
able: https://aws.amazon.com/architecture/iot/

[84] S. Kotusev. A Comparison of the Top Four Enterprise-Architecture
Methodologies. Accessed: Oct. 13, 2023. [Online]. Available: https://
www.bcs.org/articles-opinion-and-research/a-comparison-of-the-top-
four-enterprise-architecture-frameworks/

[85] L. Chamari, P. Pauwels, E. Petrova, E. Chochanova, R. Sebastian,
N. Mutsaers, B. Veldhuis, S. Hopkins, N. de Jong, J. van der Velden,
J. W. Dubbeldam, and J. van der Weijden. (2021). Deliverable
D4.03 Study of Data Needs and Requirements in Smart Buildings.
[Online]. Available: https://brains4buildings.org/wp-content/
uploads/2022/05/B4B-WP4-D4.3_Data-Needs-and-Requirements.pdf

[86] Cloud Native, Open Source, High-performance Messaging. Accessed:
Aug. 10, 2023. [Online]. Available: https://nats.io/

[87] L. Chamari, E. Petrova, and P. Pauwels, ‘‘Extensible real-time data
acquisition and management for IoT enabled smart buildings,’’ in Proc.
Eur. Conf. Comput. Construct., Heraklion, Greece, Jul. 2023, doi:
10.1109/ICHR.2006.321337.

[88] IFC.js. Accessed: Aug. 28, 2023. [Online]. Available: https://ifcjs.io/
[89] Home | xeokit-convert. [Online]. Available: https://xeokit.github.

io/xeokit-convert/docs/
[90] IFCtoRDF. Accessed: Aug. 7, 2023. [Online]. Available: https://github.

com/pipauwel/IFCtoRDF
[91] L. Chamari, J. V. D. Weijden, L. Boonstra, and S. Hoekstra, ‘‘metadata

schema generation for data-driven smart buildings,’’ in Proc. 11th Linked
Data Archit. Construct. Workshop, Matera, Italy, Jun. 2023, pp. 136–147.

[92] S. van Gool, D. Yang, and P. Pauwels, ‘‘Integrating sensor- and build-
ing data flows: A case study of the IEQ of an office building in
The Netherlands,’’ in Proc. ECPPM, 2021, pp. 328–333.

[93] G. Desogus, E. Quaquero, G. Rubiu, G. Gatto, and C. Perra, ‘‘BIM
and IoT sensors integration: A framework for consumption and indoor
conditions data monitoring of existing buildings,’’ Sustainability, vol. 13,
no. 8, p. 4496, Apr. 2021.

[94] N. Moretti, X. Xie, J. Merino, J. Brazauskas, and A. K. Parlikad,
‘‘An openBIM approach to IoT integrationwith incomplete as-built data,’’
Appl. Sci., vol. 10, no. 22, pp. 1–17, Nov. 2020.

[95] H. Chen, L. Hou, G. Zhang, and S.Moon, ‘‘Development of BIM, IoT and
AR/VR technologies for fire safety and upskilling,’’ Autom. Construct.,
vol. 125, May 2021, Art. no. 103631.

[96] C. Quinn, A. Z. Shabestari, T. Misic, S. Gilani, M. Litoiu, and
J. J. McArthur, ‘‘Building automation system–BIM integration using
a linked data structure,’’ Autom. Construct., vol. 118, Oct. 2020,
Art. no. 103257.

[97] J. Teizer, M. Wolf, O. Golovina, M. Perschewski, M. Propach, M. Neges,
and M. König, ‘‘Internet of Things (IoT) for integrating environmental
and localization data in building information modeling (BIM),’’ Proc.
34th Int. Symp. Autom. Robot. Construct., Jul. 2017, pp. 603–609.

[98] P. Penna, G. L. Regis, A. Schweigkofler, C. Marcher, and D. Matt, ‘‘From
sensors to BIM: Monitoring comfort conditions of social housing with
the klimakit model,’’ in Proc. Int. Conf. Cooperat. Design, Vis. Eng., in
Lecture Notes in Computer Science: Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 11792,
2019, pp. 108–115.

[99] TheAgentK/Tuya-Mqtt. Accessed: Aug. 7, 2023. [Online]. Available:
https://github.com/TheAgentK/tuya-mqtt

[100] J. Koh, D. Hong, R. Gupta, K. Whitehouse, H. Wang, and Y. Agarwal,
‘‘Plaster,’’ in Proc. 5th Conf. Syst. Built Environ. New York, NY, USA:
ACM, Nov. 2018, pp. 1–10.

[101] G. Fierro, A. Saha, T. Shapinsky,M. Steen, andH. Eslinger, ‘‘Application-
driven creation of building metadata models with semantic sufficiency,’’
in Proc. 9th ACM Int. Conf. Syst. Energy-Efficient Buildings, Cities,
Transp., New York, NY, USA, Nov. 2022, pp. 228–237.

[102] Event-Driven Architecture. Accessed: Aug. 7, 2023. [Online]. Available:
https://aws.amazon.com/event-driven-architecture/

LASITHA CHAMARI received the B.Sc. degree in
engineering (electrical and information engineer-
ing) from the University of Ruhuna, Sri Lanka,
in 2014, and the M.Sc. degree in electrical
installations from the University of Moratuwa,
Sri Lanka, in 2020. She is currently pursuing the
Ph.D. degree with the Information Systems in the
Built Environment Research Group, Department
of the Built Environment, Eindhoven University
of Technology. She is currently working on the

Brains4Buildings Project in the Netherlands. Her current research interests
include developing methods for the integration of heterogeneous data for
data-driven building applications, the IoT, smart buildings, building infor-
mation modeling, semantic web technologies, and digital twins.

EKATERINA PETROVA received the Ph.D. degree
in civil engineering from Aalborg University,
Denmark, in 2019. She was a Visiting Researcher
with the Department of Architecture and Urban
Planning, Ghent University, in 2018. She joined
the Information Systems in the Built Environ-
ment Research Group, Eindhoven University of
Technology, in March 2021. She is currently an
Assistant Professor of artificial intelligence in
construction with the Department of the Built

Environment, Eindhoven University of Technology. Her current research
interests include the integration of various symbolic and statistical artificial
intelligence approaches for decision support in performance-oriented build-
ing design and engineering, artificial intelligence in the built environment,
ambient intelligence, cognitive approaches, smart buildings, building infor-
mation modeling and management, and semantic web technologies. She has
been working on various topics related to the implementation of symbolic
and statistical artificial intelligence approaches for decision support in the
context of sustainable building design, circular buildings, digital twins, and
data-driven smart buildings.

PIETER PAUWELS is currently an Associate
Professor with the Department of the Built Envi-
ronment, Eindhoven University of Technology.
Previously, he was with the Department of Archi-
tecture and Urban Planning, Ghent University,
from 2008 to 2019. With a lot of experience
and knowledge in computer science and soft-
ware development, he is involved in several
industry-oriented research projects on topics affil-
iated with AI in construction, design thinking,

building information modeling (BIM), linked building data (LBD), linked
data in architecture and construction (LDAC), and semantic web technolo-
gies. His current research interests include information system support for the
building life-cycle, such as architectural design, construction, and building
operation.

VOLUME 11, 2023 117281

http://dx.doi.org/10.1109/ICHR.2006.321337

