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ABSTRACT Non-integer order filters can be derived from a generalized structure presented in this work.
More specifically, fractional-order and power-law filters of single- or double-order are special cases of
non-integer order filters with three degrees of freedom and can be implemented using a Current Feedback
Operational Amplifier as the active element. The transfer function is formed as a ratio of two impedances
which can be synthesized using Foster or Cauer RC networks. A curve-fitting based technique is employed
for approximating the magnitude and phase of each impedance. The behavior of the presented structures is
evaluated through simulation results, using the OrCAD design suite and, also, through experimental results.

INDEX TERMS Analog filters, current feedback operational amplifiers, generalized filters, fractional-order
filters, non-integer order filters, power-law filters.

I. INTRODUCTION
Non-integer order filters offer improved design flexibility
due to the extra degrees of freedom resulting from the
multiple non-integer orders. The design flexibility appears
in the scaling of the realized time constants, as well as in
the fine adjustment of the roll-off value in the transition
between the characteristic bands of the filters [1], [2]. There
are two main sub-categories of these filters: a) fractional-
order filters with transfer functions formed by using non-
integer Laplacian operators [3], [4], [5], [6], [7], [8], [9],
[10], [11], and b) power-law filters with transfer functions
derived by raising the conventional integer order transfer
functions to a (non-integer) exponent [12], [13], [14].
Although filters of the first sub-category can be theoretically
implemented using fractional-order capacitors, in practice
this is not possible, as their market availability does not yet
easily exist [15]. Therefore, both filter categories are usu-
ally implemented using suitable approximation techniques
where rational integer-order transfer functions are derived
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and realized through classical filter synthesis techniques.
In order to implement fractional-order filters, well-known
approximation tools, such as the Oustaloup method and the
continued fraction expansion tools, could be employed. These
methods, however, cannot be used for realizing power-law
filters. A solution for overcoming this obstacle is to use
a curve-fitting based method, where both the magnitude
and phase responses of the transfer function are used in
order to derive an equivalent integer-order approximation
function [12], [16]. It must be mentioned at this point that
this method is also applicable in the case of fractional-order
filter functions.

The implementation of the resulting approximate trans-
fer functions can be performed using, for example,
multi-feedback structures based on active elements with
electronically controllable characteristics (e.g., Operational
Transconductance Amplifiers-OTAs) resulting in structures
with electronic tunability of the filter frequency charac-
teristics. However, this solution suffers from the increased
circuit complexity and, consequently, from high power
dissipation [1]. An attractive alternative solution has been
introduced in [17], where the approximation transfer function
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is expressed as a ratio of two impedances which are
generally frequency dependent. This concept was applied for
approximating fractional-order Butterworth and Chebyshev
filter functions, as well as for implementing fractional-order
controllers [18].

The contribution made in this work is the further gener-
alization of this concept in order to derive in a systematic
manner the elementary fractional-order and power-law filter
functions, with minimum active component count. More
specifically, a generalized transfer function with three
degrees of freedom is introduced and its implementation
is performed using only one Current Feedback Operational
Amplifier (CFOA) as the active element. Minimization of
the active component count is achieved by expressing the
approximation transfer function as a ratio of two impedances
and their choice is performed taking into account the
frequency behavior of the Foster/Cauer RC networks [19].
One of the offered features is that the kind of the filter
function (i.e., fractional-order or power-law) is determined by
one of the employed impedances, while the type of the filter
function (i.e., low-pass, high-pass, band-pass) is determined
by the second impedance. Another important feature is
that the corresponding inverse filter functions are easily
implementable simply by interchanging the impedances in
the main core. This evidently provides design flexibility and
versatility in the introduced structure. Finally, the presented
generalized filter structure has a high-impedance input and
a low-impedance output and, consequently, it is cascadable
without requiring extra buffer stages. The only practical
drawback is the absence of on-the-fly adjustability of their
characteristics, in the sense that the whole network must
be re-designed for any different filter function. This is the
price paid for the achieved non-integer order filter and
minimization of the active and passive component count. The
structures which offer electronic tunability suffer from the
increased number of active components.
The paper is organized as follows: a brief description of the
elementary fractional-order and power-law filter functions is
given in Section II, while the generalized transfer functions
of non-integer order filters are given in Section III in
tabular form. The single active element implementation of
the generalized filter is presented in Section IV and the
performances of the resulting special cases of filters are
evaluated in Section V through simulation results using
OrCAD and the model of the Analog Devices AD844 CFOA
device, as well as through experimental results.

II. NON-INTEGER ORDER FILTERS
A. FRACTIONAL-ORDER FILTERS
The transfer function of a fractional-order low-pass filter,
of order 0 < α < 1, is described by the transfer function
given in (1)

HLP,FO(s) = G0
1

(τ s)α + 1
, (1)

where the time constant τ determines the pole frequency (ωp)
according to the formula τ = 1/ωp, and G0 is the gain of the
filter.
Substituting the Laplacian operator by the formula: sα =

ωα[cos(0.5πα)+ j sin(0.5πα)], the gain response of the filter
is the given by

| HLP,FO(ω) |= G0
1[

1 + (ωτ )2α + 2(ωτ )α cos(0.5πα)
]1/2 .

(2)

Defining as knee frequency (ωk ) the frequency where a
specific drop from themaximum gain of the filter occurs, then
using (2), the −3dB knee frequency of the filter is associated
with the pole frequency according to (3)

ωk,LP,FO = ωp

[√
1 + cos2(0.5πα) − cos(0.5πα)

]1/α
.

(3)

Therefore, scaling of the knee frequency can be performed by
using the order of the filter α whereas in the case of integer-
order filters, the pole frequency is always equal to the knee
frequency. The slope of the transition between the pass-band
and the stop-band of the filter is −20α dB/dec., and the range
of the phase response is [0, −απ/2].
Considering a fractional-order high-pass filter with max-

imum gain G0, its transfer function and gain response are
given by (4)–(5), respectively

HHP,FO(s) = G0
(τ s)α

(τ s)α + 1
, (4)

| HHP,FO(ω) | = G0
(ωτ )α[

1 + (ωτ )2α + 2(ωτ )α cos(0.5πα)
]1/2 .

(5)

The expression of the knee frequency is given by

ωk,HP,FO = ωp

[√
1 + cos2(0.5πα) + cos(0.5πα)

]1/α
.

(6)

The knee frequency is located at a relatively higher frequency
than that of the pole frequency, which is the opposite case
when compared to the knee frequency of the low-pass filter.
The transition from the stop-band to the pass-band of the filter
is described by a slope of +20α dB/dec., while the phase is
within the range [απ/2, 0].

An important type of fractional-order function can be
derived by considering that the order of the numerator in (4)
is not equal to the order of its denominator. The resulting
transfer function is given by (7)

HBP,FO(s) = G0
(τ s)β

(τ s)α + 1
, (7)

with 0 < β < α < 1, τ being the time constant, and G0 is
a scaling factor for adjusting the gain of the filter at the peak
frequency in a desired level.
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The gain response of this filter is given by (8)

| HBP,FO(ω) |=
(ωτ)β[

1 + (ωτ )2α + 2(ωτ )α cos(0.5πα)
]1/2 .

(8)

This is actually an asymmetric band-pass filter with a slope
equal to +20β dB/dec., in the low-frequency range, and
equal to -20(α- β) dB/dec., in the high frequency range. The
phase angle lies within the range [+βπ/2,−(α − β)π/2].
Defining as peak frequency (ωpeak ) the frequency where a
maximum/minimum of the frequency response occurs and
by solving the equation d/dω | HBP,FO(ω) |ω=ωpeak= 0,
the associated lower and upper knee frequencies (ωk,l, ωk,h)
can be obtained by solving the following non-linear equation:
| HBP,FO(ω) |ω=ωk,l ,ωk,h=

1
√
2

| HBP,FO(ω) |ω=ωpeak .

The maximum gain (Gmax) is calculated as Gmax =|

HBP,FO(ω) |ω=ωpeak , and the bandwidth of the filter is equal
to ωk,h − ωk,l .

Meanwhile, the transfer functions of the inverse counter-
parts of the aforementioned filters are [20], [21], [22], [23],
[24]

H ′
LP,FO(s) = G0

[
(τ s)α + 1

]
, (9)

H ′
HP,FO(s) = G0

(τ s)α + 1
(τ s)α

. (10)

The knee frequencies (i.e., the frequencies where a+3dB rise
from the minimum gain is observed) are given by (3) and (6),
respectively. The associate gain responses are the inverse ones
of those given by (2) and (5), leading also to slopes which are
the inverse ones of those observed in the cases of low-pass
and high-pass filters. In addition, their phase responses are
the opposite of their non-inverse counterparts.
Also, the inverse band-pass filter is described by the transfer
function in (11)

H ′
BP,FO(s) = G0

(τ s)α + 1
(τ s)β

, (11)

and the peak frequency and the minimum gain of the filter are
calculated under the same conditions previously mentioned,
while the lower and upper knee frequencies (ωk,l, ωk,h) are
calculated by modifying the corresponding condition as: |

HBP−FO(ω) |ω=ωk,l ,ωk,h=
√
2 | HBP−FO(ω) |ω=ωpeak .

The slopes of the transition between the two characteristic
bands of the filters are the opposite ones of those in the
cases of regular filters, while the phase responses have an
inverted sign, lying in the range [0, απ/2] for the inverse low-
pass filter, [−απ/2, 0] for the inverse high-pass filter and
[−βπ/2,+(α − β)π/2] for the band-pass filter.

B. POWER-LAW FILTERS
A power-law low-pass filter, of order 0 < γ < 1, is described
by the transfer function

HLP,PL(s) = G0
1

(τ s+ 1)γ
, (12)

where the variablesG0 and τ have the same meaning as in the
case of fractional-order filters.
Setting s = jω in (12), the expression of the gain becomes

| HLP,PL(ω) |= G0
1[

1 + (ωτ )2
]γ /2 , (13)

leading to the knee frequency of the filter

ωk,LP,PL = ωp

√
21/γ − 1. (14)

Therefore, a scaling of the knee frequency of the filter is also
possible. The values of the slope of the transition between
the two characteristics bands of the filter, as well as the range
of the phase response are respectively -20γ dB/dec. and [0,
−γπ/2].

Meanwhile, a power-law high-pass filter function has a
transfer function given by (15)

HHP,PL(s) = G0

(
τ s

τ s+ 1

)γ

, (15)

with the expressions of the gain response and of the knee
frequency (which is also a scaled version of the pole
frequency) respectively given by

| HHP,PL(ω) | = G0
(ωτ )γ[

1 + (ωτ )2
]γ /2 . (16)

ωk,HP,PL =
ωp

√
21/γ − 1

. (17)

The values of the slope of the transition between the two
characteristic bands of the filter is equal to +20γ dB/dec.,
while the range of the phase response is [+γπ/2, 0].

The transfer function in (18)

HBP,PL(s) = G0

[
(τ s)β

τ s+ 1

]γ

, (18)

represents an asymmetric band-pass filter in the case that
0 < β, γ < 1, and τ is the time constant. The transition
slope is equal to+20βγ dB/dec., in the low-frequency range,
and equal to −20(1 − β)γ dB/dec. in the high frequency
range. The phase angle is within the range [+βγπ/2,−(1−

β)γπ/2].
The corresponding transfer functions for the power-law

inverse low-pass, high-pass and band-pass filters are respec-
tively

H ′
LP,PL(s) = G0(τ s+ 1)γ , (19)

H ′
HP,PL(s) = G0

(
τ s+ 1

τ s

)γ

, (20)

H ′
BP,PL(s) = G0

[
τ s+ 1
(τ s)β

]γ

, (21)

with the knee frequencies of low-pass and high-pass filter
given by (14) and (17). The characteristic frequencies of
the inverse band-pass filter are calculated under the same
conditions as in the case of fractional-order filters.
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III. GENERALIZED NON-INTEGER ORDER FILTERS
FUNCTIONS
Inspecting the transfer functions in (1) and (12), it is readily
obtained that a generalized non-integer order low-pass filter
is described by (22), with 0 < α, γ < 1

HLP(s) = G0

[
1

(τ s)α + 1

]γ

, (22)

with the expression of the gain response being

|HLP(ω)| = G0
1[

1 + (ωτ )2α + 2(ωτ )α cos(0.5πα)
]γ /2 .

(23)

Using (23), the knee frequency of the filter will be given by

ωk,LP = ωp

[√
21/γ − sin2(0.5πα) − cos(0.5πα)

]1/α
.

(24)

The values of the slope of the transition between the two
characteristics bands of the filter, as well as the range of
the phase response are −20αγ dB/dec. and [0, −αγπ/2],
respectively. The transfer function of the associated inverse
filter is given as

H ′
LP(s) = G0[(τ s)α + 1]γ . (25)

In a similar way, the transfer function of a generalized
non-integer order high-pass filter derived from (4) and (15)
becomes

HHP(s) = G0

[
(τ s)α

(τ s)α + 1

]γ

, (26)

and the expression of the gain response is

|HHP(ω)| = G0
(ωτ )αγ[

1 + (ωτ )2α + 2(ωτ )α cos(0.5πα)
]γ /2 .

(27)

The knee frequency of the filter, derived from (27), is given
by

ωk,HP =
ωp[√

21/γ − sin2(0.5πα) − cos(0.5πα)
]1/α . (28)

Therefore, the roll-off of the frequency response is +20αγ

dB/dec. and the range of the frequency response is
[+αγπ/2,0].
The inverse filter function is

H ′
HP(s) = G0

[
(τ s)α + 1
(τ s)α

]γ

. (29)

An important feature offered by the filters in (22), (25), (26)
and (29) is that they have two degrees of freedom α and γ .
As the roll-off of the frequency response is equal to ∓20αγ

dB/dec. and the knee frequency also depends on both orders, it
is possible to independently determine these characteristics of

TABLE 1. Values of orders (α, β, γ ) of the transfer function in (30) for
implementing different types of non-integer order filter functions and
their inverse counterparts starting from (30) or (31), respectively.

the filter. This is not in the case of fractional-order or power-
law filters, because of the existence of only one degree of
freedom [25].

Generalizing (7) and (18), the resulting transfer function is
given by (30)

H (s) = G0

[
(τ s)β

(τ s)α + 1

]γ

, (30)

with β ≤ α, 0 ≤ α, β, γ ≤ 1, and τ being the time constant,
with its inverse counterpart given by (31)

H ′(s) = G0

[
(τ s)α + 1
(τ s)β

]γ

. (31)

The transfer functions in (30) and, accordingly, in (31) are the
most general for describing the behavior of non-integer order
elementary filter functions of various kinds (i.e., fractional-
order, power-law) and types (i.e., low-pass, high-pass, and
band-pass). More specifically,

• The fractional-order low-pass, high-pass, and band-pass
filter transfer functions in (1), (4), (7) are derived from
(30) by setting β = 0 and γ = 1, α = β and γ = 1,
γ = 1, β < α and γ = 1, respectively.

• The power-law filters low-pass, high-pass, and
band-pass filter functions, described by (12), (15), and
(18) are derived from (30) by setting α = 1 and β = 0,
α = 1 and β = 1, α = 1, respectively.

• The generalized non-integer order low-pass and
high-pass filters in (22) and (26) are derived from (30)
by setting β = 0, α = β, respectively.

• The generalized non-integer order band-pass filter is that
described by (30) with β < α.

• The inverse counterparts of all the aforementioned filter
functions are derived by the same conditions, applied
alternatively in the transfer function in (31).

In order to facilitate the reader, the aforementioned findings
are summarized in Table 1.

IV. SINGLE CFOA IMPLEMENTATION OF NON-INTEGER
ORDER FILTERS
A. IMPLEMENTATION OF FRACTIONAL-ORDER FILTERS
Using a CFOA as the active element, the corresponding
filter topologies that implement the transfer functions in (1),
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FIGURE 1. CFOA based realization of fractional-order (a) low-pass,
(b) high-pass and (c) band-pass filters described by (1), (4) and (7).

(4), and (7) are depicted in Fig.1. As the impedance of a
fractional-order capacitor (FOC) of order 0 < α < 1 is given
by Z = 1/Cαsα , the resulting transfer functions implemented
by the topologies in Fig.1 are

HLP,FO(s) =
R1
R2

·
1[

(R1C1,α)1/αs
]

α + 1
, (32)

HHP,FO(s) =
R2
R1

·

[
(R1C1,α)1/αs

]
α[

(R1C1,α)1/αs
]

α + 1
, (33)

HBP,FO(s) =
R3
R2

·

[
(R1C1,β )1/βs

]β[
(R1C1,α)1/αs

]
α + 1

. (34)

Comparing (1), (4), and (7) with (32), (33), and (34)
respectively, the associated design equations are summarized
as

G0 =
R1
R2

τ = (R1C1,α)1/α, (35)

G0 =
R2
R1

τ = (R1C1,α)1/α, (36)

G0 =
R3
R2

τ = (R1C1,α)1/α = (R1C1,β )1/β . (37)

These topologies offer the capability of cascade connection
because of the high-impedance input and low-impedance
output terminals, making use of the built-in CFOA buffer.

For the purpose of completeness, the corresponding imple-
mentations of the inverse filter functions are demonstrated in
Fig.2, where it is readily verified that they are derived just
by interchanging the impedances associated with terminals
X and Z of the CFOA. The realized transfer functions have
the form of (9), (10) and (11) leading to the design equations
(35)–(36) slightly modified as follows: G0 = R2/R1, and
G0 = R1/R2 while (35)–(37) remain unchanged.

B. IMPLEMENTATIONS OF POWER-LAW FILTERS
As the transfer functions in (12) and (15) are not realizable
by fractional-order capacitors because of the absence of pure

FIGURE 2. CFOA based realization of inverse fractional-order (a) low-pass,
(b) high-pass, and (c) band-pass filters described by (9), (10), and (11).

FIGURE 3. CFOA based realization of power-law (a) low-pass,
(b) high-pass and (c) band-pass filters described by (12), (15) and (18).

Laplacian operators raised to a non-integer order, a method
for realizing these functions is by employing appropriate
power-law impedances [17]. The resulting realizations of the
low-pass, high-pass, and band-pass filters are shown in Fig.3,
with Z = R/(τ s + 1)γ (R is an arbitrary value resistance)
and the impedances of the fractional-order capacitors are
given by: Z1,γ = R/G0(τ s)γ and Z1,βγ = R/G0(τ s)βγ ,
respectively. It must be mentioned that these topologies
preserve the cascadability feature observed in the case of the
presented fractional-order filter structures.

The impedances of the fractional-order capacitors are
approximated using the well-known approximation tools,
such as the continued fraction expansion method. Assum-
ing an nth-order of approximation, the resulting rational
integer-order impedance approximation function has the form
in (38)

Zapprox (s) ≃
Bnsn + Bn−1sn−1

+ . . . + B1s+ B0
sn + An−1sn−1 + . . . + A1s+ A0

, (38)
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FIGURE 4. Foster RC networks for approximating non-integer impedances
(a) type-I network, and (b) type-II network.

FIGURE 5. Cauer RC networks for approximating non-integer impedances
(a) type-I network, and (b) type-II network.

with Ai and Bj (i = 0, 1 . . . n− 1 j = 0, 1..n) being positive
and real coefficients.
The impedance function in (38) can be implemented by the
Foster or Cauer networks depicted in Figs.4–5. The design
equations of the Foster type-I and type-II networks in Fig.4
are given by

R0 = Bn Ri =
ri

|pi|
Ci =

1
ri

, (i = 1, 2 . . . n), (39)

R0 =
1
Bn

Ri =
1
ri

Ci =
ri

|pi|
, (i = 1, 2 . . . n), (40)

with ri and pi being the residues and poles of Zapprox (s).
The corresponding design equations of the Cauer type-I and
type-II networks in Fig.5 are summarized in (41) and (42)
respectively.

R0 = q0Ri = qiCj = qj, i = 2, 4 . . . 2n j = 1, 3 . . . 2n− 1,

(41)

R0 =
1
q0
Ri =

1
qi
Cj =

1
qj

, i = 2, 4 . . . 2n j = 1, 3 . . . 2n− 1,

(42)

where qi(j) are the coefficients of the continued fraction
expansion of the Zapprox (s) in (38) [19].
The impedance of the general formR/(τ s+1)γ has a low-pass
filter behavior and can be also implemented by Cauer/Foster

FIGURE 6. CFOA based generalized topology for implementing
non-integer (fractional-order and power-law) order filter functions.

TABLE 2. Values of impedances in Fig.6 for implementing different types
of the non-integer order filter functions (β ≤ α and 0 ≤ α, β, γ ≤ 1).

RC networks. In order to make this clear, let us consider for
example the expression of the impedance of a Foster type-I
network

Z (s) = R0 +

n∑
i=1

Ri
1

τis+ 1
. (43)

The impedance function in (43) has a maximum value at
low-frequencies equal to R0 + R1 + . . . + Rn, while at
high-frequencies it converges to R0. In the intermediate
range it monotonically decreases, providing a low-pass
type frequency response. Therefore, choosing appropriate
values of the knee frequencies, as well as of the frequency
range of interest, this network is efficient towards this
purpose. This will be performed by fitting the magnitude
and phase response of the impedance [17], and the resulting
approximation function will have the form of (38).

C. IMPLEMENTATION OF GENERALIZED NON-INTEGER
ORDER FILTERS
The generalized structure, capable of implementing all the
aforementioned filters functions, is depicted in Fig.6, where
Z1 = R/G0(τ s)αβγ and Z2 = R/[(τ s)α + 1]γ . Employing
the results of Table 1, the expressions of the impedances Z1
and Z2 are summarized in Table 2. In order to implement
the corresponding inverse filter functions, the impedances Z1
and Z2 must be interchanged in Fig.6, keeping their initial
values. Inspecting the expressions in Table 2, it is readily
obtained that the kind of the transfer function is excursively
determined by the expression of the impedance Z2, while the
type of the filter function is determined through Z1. More
specifically:

VOLUME 11, 2023 116851
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FIGURE 7. Generalized single-input multiple-output non-integer order
filter topology.

TABLE 3. Values of passive elements of the foster type-i network in
Fig.4a for implementing fractional-order low-pass (α=0.8, β=0, γ=1, and
G0=1), high-pass (α=0.8, β=0.8, γ=1, and G0=1), and band-pass (α=0.8,
β=0.5, γ=1, and G0 = 1.584) filter functions.

• For Z2 = R/[(τ s)α + 1], fractional-order filter functions
are implemented, while the type of the function (i.e.,
low-pass, high-pass, and band-pass) is determined by the
form of the impedance Z1.

• For Z2 = R/[τ s + 1]γ , power-law filter functions are
implemented, while the type of the function (low-pass or
high-pass) is determined by the form of the impedance
Z1.

• For Z2 = R/[(τ s)α + 1]γ generalized filter functions
are implemented, and the determination of their type is
performed through Z1.

From the above, it is obvious that the generalized structure in
Fig.6 offers design versatility and flexibility.
The topology in Fig.6 can be further enhanced for

implementing a fractional-order single-input multiple-output
(SIMO) filter structure, as demonstrated in Fig.7, where the
realized transfer function is

HSIMO(s) =
Z2Z4
Z1Z3

. (44)

The expressions of impedances Z1, Z2 and Z3, Z4 can be
chosen using the Table 2 for implementing the desired filter
functions at the outputs of the structure.

V. SIMULATION AND EXPERIMENTAL RESULTS
The behavior of the filters is evaluated using the OrCAD
PSpice suite, and the CFOA is simulated using the model
of the AD844 discrete component [26]. The AD844 is
biased at ±10V and the power dissipation of the structure
is 130.1mW.

FIGURE 8. Gain and phase frequency responses of the designed
(a) fractional-order low-pass (α=0.8, β=0, γ =1, and G0=1), high-pass
(α=0.8, β=0.8, γ =1, and G0=1), band-pass (α=0.8, β=0.5, γ =1, and
G0=1.584) filters, and (b) their inverse counterparts.

A. SIMULATION RESULTS
1) FRACTIONAL-ORDER FILTERS
Considering that ωp=1/τ=10krad/s, G0=1, α=0.8,
β={0,0.8,0.5}, γ=1, and R=10k Ω, the values of passive
elements of the Foster type-I network in Fig.4a, for
approximating Z1 and Z2 in the range [102,106]rad/s, are
summarized in Table 3. These values are rounded to the E96
series defined in IEC 60063.

The derived gain and phase responses are demonstrated
in the plots of Fig.8a, accompanied by the theoretical plots
given by dashes. The values of the knee frequency and
of the phase at this frequency are {6.97krad/s, −29.7o}
for the low-pass filter and {14.74krad/s, 27.5o} for the
high-pass filter. The corresponding theoretical predicted
values are {6.84krad/s, −29.7o} and {14.63krad/s, 29.73o},
respectively. With regards to the band-pass filter, the values
of the peak frequency, gain at peak frequency, and bandwidth
are simulated as {14.75krad/s, −0.06dB, 119.76krad/s},
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FIGURE 9. Time-domain behavior of the fractional-order low-pass filter
for 5Vp-p input stimulation at the knee frequency.

FIGURE 10. Monte-Carlo analysis results of (a) the knee frequency of the
low-pass fractional-order filter, and (b) the peak frequency of the
fractional-order band-pass filter.

close to the theoretically predicted ones {15.5krad/s, 0dB,
124.5krad/s}.

The inverse filter transfer functions are realized by
interchanging the impedances associated with the X and Z
terminals of the CFOA. Following this, the derived frequency
responses are depicted in Fig.8b, where the knee frequency
(i.e., the frequency where a +3dB rise of the gain from its
minimum value is observed) and the phase at this frequency
are {7.11krad/s, 30.1o} and {14.5krad/s, −30.6o}, for the
inverse low and high-pass filters, while the corresponding
values expected from the theory are {6.84krad/s, 29.7o} and
{14.62krad/s, -29.73o}, respectively. The simulated values of
the peak frequency, gain at peak frequency, and bandwidth
of the inverse band-pass filter are {14.74krad/s, −0.1dB,
118.45krad/s}, with the associated theoretical values being
{15.5krad/s, 0dB, 124.5krad/s}.

The time-domain behavior of the filters is evaluated in the
case of the low-pass filter, by stimulating it with a sinusoidal
5Vp-p signal at its knee frequency. The observed input and
output waveforms are demonstrated in Fig.9, where the gain

TABLE 4. Values of passive elements of the foster type-i network in
Fig.4a for implementing power-law low-pass (α=1, β=0, γ=0.8, and
G0=1), high-pass (α=1, β=1, γ=0.8, and G0=1), and band-pass (α=1,
β=0.5, γ=0.8, and G0=1.326) filter functions.

is −3dB and the phase difference between the output and
input waveforms is −29.7o. Applying a sinusoidal stimulus
with frequency equal to 0.1ω−3dB and variable amplitude,
the rms value of the input signal for observing 1% Total
Harmonic Distortion (THD) at the output is equal to 4.83V.
Integrating the noise over the pass-band of the filter, the rms
value of the input referred noise is 8.3 μV. According to these
results, the predicted value of the dynamic range of the filter
will be 115.3dB.
Employing the Monte-Carlo analysis, which is available
by the Advanced Analysis tool of the OrCAD PSpice and
considering a random deviation of the passive elements
values from their nominal ones within the range ±5%,
the statistical plots (N=500 runs) associated with the knee
frequency of the low-pass filter and the peak frequency
of the band-pass filter are provided in Fig.10. The values
of the standard deviation are 0.15krad/s and 0.77krad/s,
respectively.

2) POWER-LAW FILTERS
The values of passive elements of the Foster type-I network in
Fig.4 for implementing the frequency dependent impedance
Z2 in the case of power-law filters with α=1, β={1,0.5},
γ=0.8, and ωp = 1/τ=10krad/s, are summarized in Table 4.
It must be mentioned at this point that the values of elements
for implementing Z1 in the case of high-pass filter are the
same as in the case of the corresponding fractional-order
filter.

The simulated gain the phase responses are demonstrated
in the plots of Fig.11a, accompanied by the theoretical plots
given by dashes. The values of the knee frequency and of the
phase at this frequency are {11.98krad/s, -39.6o} for the low-
pass filter and {8.64krad/s, 39.9o} for the high-pass filter. The
corresponding theoretical predicted values are {11.74krad/s,
-39.66o} and {8.52krad/s, 39.65o}, respectively.With regards
to the band-pass filter, the values of the peak frequency,
gain at peak frequency, and bandwidth are simulated as
{9.95krad/s, -0.06dB, 45.7krad/s}, close to the theoretically
predicted ones {10krad/s, 0dB, 43.1krad/s}.
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FIGURE 11. Gain and phase frequency responses of the designed
power-law (a) low-pass (α=1, β=0, γ=0.8, and G0=1), high-pass (α=1,
β=1, γ=0.8, and G0=1), and band-pass (α=1, β=0.5, γ=0.8, and
G0=1.326) filters and (b) their inverse counterparts.

The frequency responses of the inverse filter functions are
depicted in Fig.11b, where the knee frequency and the phase
at this frequency are {11.97krad/s, 39.4o} and {8.29krad/s,
-40o}, for the inverse low and high-pass filters, with the
theoretically predicted values being {11.74krad/s, 39.6o} and
{8.52krad/s, -39.65o}, respectively. The values of the peak
frequency, gain at peak frequency, and bandwidth of the
band-pass filter are {9.95krad/s, -0.1dB, 42.1krad/s}, close to
the theoretically predicted ones {10krad/s, 0dB, 43.1krad/s}.

The time-domain behavior of the low-pass filter is
demonstrated in Fig.12, where the gain is -3dB and the phase
difference between the output and input waveforms is equal to
-39.2o. The rms value of the input signal (0.1ω−3dB,LP) for 1%
THD level is equal to 4.7V. The rms value of the input referred
integrated noise is 6.96 μV and, therefore, the dynamic range
of the filter will be 116.6dB.
The statistical histograms of the knee frequency of the
low-pass filter and the peak frequency of the band-pass filter

FIGURE 12. Time-domain behavior of the power-law low-pass filter for
5Vp-p input stimulation at the knee frequency.

FIGURE 13. Monte-Carlo analysis results of (a) the knee frequency of the
power-law low-pass filter, and (b) the peak frequency of the power-law
band-pass filter.

are provided in Fig.13, where the values of the standard
deviation are 0.31krad/s and 0.26krad/s, respectively.

3) GENERALIZED FILTERS
The values of passive elements of the Foster type-I network in
Fig.4a for implementing the frequency dependent impedance
Z2 in the case of a generalized non-integer order filter with
α=0.8, β={0,0.8,0.5}, γ=0.8, and ωp = 1/τ=10krad/s, are
summarized in Table 5.
The derived gain and phase responses of the low-pass

and high-pass filters are demonstrated in the plots of
Fig.14a, with the knee frequency and phase at this fre-
quency being {7.91krad/s, -29.3o} for the low-pass filter
and {12.85krad/s, 29.9o} for the high-pass filter. The
corresponding theoretically predicted values are {8.82krad/s,
-27.14o} and {11.3krad/s, 27.17o}, respectively.With regards
to the behavior of the band-pass filter, the values of the
peak frequency, gain at peak frequency, and bandwidth are
simulated as {14.1krad/s, -0.11dB, 173.4krad/s}, with the
theoretical valued being {14.9krad/s, 0dB, 181.6krad/s}.
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TABLE 5. Values of passive elements of the foster type-i network in
Fig.4a for implementing generalized low-pass (α=0.8, β=0, γ=0.8, and
G0=1), high-pass (α=0.8, β=0.8, γ=0.8, and G0=1), and band-pass
(α=0.8, β=0.5, γ=0.8, and G0=1.445) filter functions.

FIGURE 14. Gain and phase frequency responses of the designed
generalized (a) low-pass (α=0.8, β=0, γ=0.8, and G0=1), high-pass
(α=0.8, β=0.8, γ=0.8, and G0=1), band-pass (α=0.8, β=0.5, γ=0.8, and
G0=1.445) filters, and (b) of the corresponding inverse filters.

The frequency behavior of the inverse filters is depicted
in Fig.14b, where the knee frequency and the phase at
this frequency being {7.1krad/s, 29.2o} and {14.4krad/s,

FIGURE 15. Time-domain behavior of the generalized low-pass filter for
5Vp-p input stimulation at the knee frequency.

FIGURE 16. Monte-Carlo analysis results of (a) the knee frequency of the
generalized low-pass filter, and (b) the peak frequency of the generalized
band-pass filter.

-29.8o}, for the inverse low and high-pass filters, while
the corresponding values expected from the theory are
{8.82krad/s, 27.14o} and {11.3krad/s, -27.17o}, respectively.
The simulated values of the peak frequency, gain at peak
frequency, and bandwidth of the inverse band-pass filter
are {13.2krad/s, -0.05dB, 178.5krad/s}, with the associated
theoretical values being {14.9krad/s, 0dB, 181.6krad/s}.
In Fig.15 the input and output waveforms in the case of a
low-pass filter are depicted, with the gain being equal to
−3dB and the phase difference between the output and input
waveforms being -29.7o. The linearity performance of the
filter is evaluated under the same conditions as before, and
the rms value of the input signal for level of THD equal to
1% is 4.86V. The input referred integrated noise has rms value
equal to 10.2 μV, resulting a 113.5dB dynamic range.
The statistical results about the knee frequency of the
low-pass filter and the peak frequency of the band-pass
filter are demonstrated in Fig.16, with the values of the
standard deviation being 0.2krad/s for the low-pass filter and
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FIGURE 17. Performance comparison results about the most important
frequency characteristics of the (a) low-pass, (b) high-pass, and (c)
band-pass generalized filters.

0.58krad/s for the band-pass filter, while the associated mean
values are 9.09krad/s and 13.1krad/s, respectively.

The performance of the designed low-pass filters is
evaluated by the charts in Fig.17a, where it is derived that
the fractional-order filter offers the lowest knee frequency
while the power-law offers the highest one among the
filters under consideration. With regards to the phase at the
knee frequency, the power-law filter offers the maximum
change while the fractional-order and the generalized filters
offers comparable changes. Considering the high-pass filters,
then from the charts in Fig.17b it is obtained that the
fractional-order filter offers the highest knee frequency
while the power-law offers the lowest one, whereas for the
phase the same derivation as before is obtained. According
to the charts in Fig.17c, which correspond to the case of
the band-pass filters, it is concluded that the power-law
filter offers the lowest peak frequency, and the fractional-
order and generalized filters offer comparable values of the
peak frequency. The generalized filter offers the maximum
bandwidth, while the lowest one bandwidth is offered by the
power-law filter.

In order to evaluate the effect of the CFOA non-idealities
on the performance of the filters, let us consider the the
macro-model of the AD844 depicted in Fig.18. According

FIGURE 18. CFOA macro-model including the parasitic elements.

FIGURE 19. Gain and phase responses of the error factors in (46)–(47).

to [26], the values of parasitic elements are: rX=50 Ω,
rZ=3M Ω, and CZ=4.5pF. Ignoring the effect of the parasitic
capacitance, the transfer function realized by the topology in
Fig.6 is

Hreal(s) =
Z2rZ

(Z2 + rZ )(Z1 + rX )
. (45)

Using the values in Table 2 and assuming that Z1 ≫ rX , the
transfer function in (45) becomes

Hreal(s) = Hideal(s)
rZ
R {[(τ s)α + 1]} γ

rZ
R {[(τ s)α + 1]} γ + 1

, (46)

with Hideal(s) = Z2/Z1, being the transfer function which
corresponds to the case of an ideal CFOA.
Following a similar procedure in the case of inverse filters,
the resulting transfer function will be

H ′
real(s) = Hideal(s)

G0rZ
R (τ s)βγ

G0rZ
R (τ s)βγ + 1

(47)

Employing in (46)–(47) the parameters values which are
considered in the design examples, the frequency behavior
of the extra scaling factors is demonstrated in Fig.19, where
it is evident that it does not significantly affect the responses
of the filters.
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FIGURE 20. Experimental frequency responses of the designed
generalized (a) low-pass (α=0.8, β=0, γ=0.8, and G0=1), (b) high-pass
(α=0.8, β=0.8, γ=0.8, and G0=1), and (c) band-pass (α=0.8, β=0.5,
γ=0.8, and G0=1.445) filters.

B. EXPERIMENTAL RESULTS
The responses of the generalized low-pass, high-pass, and
band-pass filters obtained through the utilization of the HP
4395ANetwork/Spectrum analyzer are depicted in Figs.20a–
20c, respectively. The knee frequencies of the low-pass and
high-pass filters are 8.86krad/s and 11.6krad/s close to the
theoretical values 8.82krad/s and 11.3krad/s, respectively.
The center frequency and the gain at this frequency of
the band-pass filer are 16.46krad/s and 0.01dB, close
to the theoretically predicted ones values 14.9krad/s and 0dB.

FIGURE 21. Input and output waveforms of the proposed generalized
(a) low-pass, (b) high-pass filters, stimulated at their knee frequency, and
(c) band-pass filter, stimulated at its center frequency.

Also, the measured bandwidth is 178.4krad/s with the value
predicted from the theory being 181.6krad/s.

The filters have been also experimentally tested by stim-
ulating the low-pass and high-pass filter topologies at their
knee frequencies 7.91krad/s and 12.85krad/s, respectively.
The waveforms obtained through an Agilent DSO6034A
oscilloscope are demonstrated in Figs.21a–21b where the
measured values of the gain and phase are {-2.79dB, -25o}
and {-2.99dB, 26o}, close to the theoretically predicted ones
{-3dB, -27.14o} and {-3dB, 27.17o}. In the case of the band-
pass filter, the resulting input and output waveforms for
a stimulation input at the center frequency 14.9krad/s are
depicted in Fig.21c, where the gain and phase are {0dB, 2o}
with those expected by the theory being {0dB, 1.8o}.

VI. CONCLUSION
A CFOA based implementation of a generalized filter struc-
ture which is capable of deriving both the fractional-order
and power-law filter functions, as well of their inverse filter
functions counterparts was proposed offering many attractive
features including cascadability. The presented simulation
and experimental results confirm the proper performance
in terms of accuracy and sensitivity making them attractive
candidates for non-integer order signal processing systems.
As this study is focused on filter functions of orders less
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than one, future research steps include the exploitation
of the applicability of the presented concept in the case
of high-order non-integer filters, as well as their possible
implementation using programmable devices such as a
suitable Field Programmable Analog Array (FPAA) device.
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