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ABSTRACT Cardiovascular neurocristopathy is associated with abnormal migration and development
of neural crest cells, impacting the neural and the human cardiovascular system and leading to diseases
such as cardiomyopathy, aortic disease, and aortic valve dysfunction. With advancements in biomedical
imaging tools, efforts are made to understand the underlying causes of cardiovascular neurocristopathy
and develop new diagnostic methods, especially using machine learning or specifically its sub-branch deep
learning models. This article provides a systematic survey of the literature related to machine/deep learning-
based segmentation of the diseases mentioned above in computer tomography (CT), magnetic resonance
imaging (MRI), X-rays, and echocardiogram (Echos) images. The review identified gaps and provides future
directions, such as the need for better interpretable and explainable Al models, addressing the lack of publicly
available datasets, standardizing the result reporting procedure for better repeatability of the result, and the
development of standard performance measurement metrics. The general conclusion suggests that there is
a need for multimodalities, multimodel, high-quality data sets, and open-source disease-specific dataspaces
that will help develop trustworthy deep learning models that could be implemented in imaging devices/tools
and provide medical-grade segmented outputs that will augment and speed up clinician decision making.

INDEX TERMS Cardiovascular, neurocristopathy, segmentation, neural networks, machine learning, deep
learning, imaging, automation.

I. INTRODUCTION

In recent times, clinical and therapeutic needs have been
increasing. According to the World Health Organization
(WHO) report published in 2020, cardiovascular disease
(CVD) is the leading cause of death in the world, responsible
for 16% (8.9 million) of worldwide deaths.! As cardiovascu-
lar disease continues to be the leading cause of death world-
wide,” the need for a timely and accurate diagnosis has never
been more important [1]. Neurocristopathy is a pathological

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott
1 https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-
of-death
2https://www.(:dc‘gov/globalhealth/healthprotection/ncd/cardiovascular—
diseases.html

disorder that occurs due to an abnormal development and/or
migration of neural crest cells, during embryonic develop-
ment [2]. During embryonic development, the migration,
abnormal specification, differentiation, or death of neural
crest cells results in different neurocristopathies. Various
diseases such as thyroid, skin pigments, heart and craniofacial
abnormalities, tumors, and digestive tract dysfunction are
some examples of neurocristopathies [3]. In this paper,
we will focus on some cardiovascular neurocristopathy , such
as cardiomyopathies, stroke, bicuspid aortic valve diseases
and aortic vessel diseases.

Cardiovascular neurocristopathy is a genetic disorder
that affects the development of the human cardiovascular
system [4]. The formation of many different organs and
tissues, including the heart and blood vessels, is dependent
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on the controlled migration and differentiation of neural crest
cells [5]. Cardiovascular neurocristopathy occurs when gene
mutations cause abnormal deaths of neural crest cells and
reduce the performance of tissues/organs (for example, the
heart) [6].

The aorta is the largest blood vessel and is responsible for
oxygen circulation within the body [7]. Figure 1 shows the
anatomy of the aorta and its branches.’ From the figure we
can see that the aorta gives rise to several branches, including:

1) Ascending Aorta: This portion of the aorta carries
blood upward and then curves to form the aortic arch.

2) Aortic Arch: The aortic arch is a curved segment of
the aorta that gives rise to several major arteries that
supply the head, neck, and upper extremities. These
branches include the brachiocephalic artery (which
further divides into the right subclavian and right
common carotid arteries), the left common carotid
artery, and the left subclavian artery.

3) Descending Aorta: The aorta continues downward as
the descending aorta (region below the left subclavian)
and is divided into the thoracic aorta (supplying the
chest area) and the abdominal aorta (supplying the
abdominal region and lower extremities).

Aorta branches

Right common carotid
Right subclavian
Brachiocephalic

Left subclavian
Left common carotid
Right and left coronary

Celiac trunk

Superior mesenteric
Renal
Gonadal

Inferior mesenteric

Common iliac

FIGURE 1. Aorta and its branches anatomy (image source: Wikimedia
Commons, license: CC BY-SA 3.0).

Efforts are being made to better understand the underlying
causes of cardiovascular neurocristopathy and develop new
approaches to the diagnosis, treatment, and prevention of
such disorders, especially focusing on machine learning and
deep learning models [8], [9], [10]. Untreated cardiovascular

3Mikael Higgstrom, based on work by Edoarado [CC BY-SA 3.0],
via Wikimedia Commons (Aorta. (2023, 12 May). In Wikipedia.
https://en.wikipedia.org/wiki/Aorta)
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neurocristopathy conditions have severe effects on human
health and can cause cardiomyopathy, stroke, aorta, and
aortic valve dysfunction diseases [11]. Each of the mentioned
conditions is defined as follows.

Cardiomyopathy is a disease that affects the shape, thick-
ness, and/or size of the heart muscle [12]. Cardiomyopathy
can be divided into four subtypes [13], which are itemized
below:

1) Dilated cardiomyopathy: where the heart muscle wall
becomes thinner and stretched.

2) Hypertrophic cardiomyopathy: where the heart muscle
wall thickens.

3) Restrictive cardiomyopathy: A set of changes occurs in
the heart that limits its ability to expand or contract to
pump blood into/out of the heart.

4) Arrhythmogenic right Ventricular Cardiomyopathy
(ARVC): In this condition, fatty fibrous tissue replaces
normal heart tissue, causing abnormal heart rhythms.

Stroke may occur due to a blood clot reaching the
brain as a result of a tear in the wall of the large blood
vessel (in the neck), which is known as a dissection of the
cervical artery [14]. Bicuspid aortic valve diseases could be
classified into two classes:

1) Bicuspid aortic disease with aortopathy: where an
aortic valve contains only two cusps (or flaps) instead
of three with a weakened aorta.

2) Bicuspid aortic disease without aortopathy: an aortic
valve that contains only two cusps (or flaps) instead of
three without a weakened aorta.

Whereas, symptoms of the aortic vessel disease include:

1) Aortic dissection: where there is a tear in the inner layer
of the aorta.

2) Aortic aneurysms: where a balloon-shaped bulge is
formed in the aorta.

3) Aortic hematoma: where the pool of clotted blood
forms an organ, tissue, or body space.

Figure 2 illustrates the anatomy of different cardiovascular
neurocristopathy diseases.*

The current literature presents the use of different imaging
and sensory techniques as well as health records for the
diagnosis of these diseases [4], [15], [16], [17]. In imag-
ing, magnetic resonance imaging (MRI) and computerized
tomography (CT) are the most widely used modalities.
The echocardiogram (Echo) is used for the assessment of
associated cardiac abnormalities while X-rays are the most
widely used for screening. The electrocardiogram (ECG) and
the photoplythesmogram (PPG) are included in the sensory
methods. Some studies use electronic health records (EHR)
to collect data or identify those already diagnosed with the
disease. Diagnosis of diseases such as CV neurocristopathies

42a: work by BruceBlaus [CC BY-SA 4.0], via Wikimedia Commons
(Thoracic Aortic Aneurysm. (2023, May 12); 2b: work by Npatchett [CC
BY-SA 4.0], via Wikimedia Commons (Aortic_dissection_types. (2023,
May 12); 2b: work by Drj [CC BY-SA 3.0], via Wikimedia Commons
(Aortic_valve_pathology_CardioNetworks_ ECHOpedia). (2023, 12 May).

VOLUME 11, 2023



T. Igbal et al.: ML Approaches for Segmentation of Cardiovascular Neurocristopathy Related Images

IEEE Access

i

w2 A\
iﬁ )\‘}\

¥ Thoracic Aortic Aneurysm

(a) Aortic aneurysms

Normal Rheumatic

Calcific

Proximal Distal
(Stanford A) (Stanford B)

(b) Aortic dissection
Bicuspid

(c¢) Aortic Valve Dysfunction

FIGURE 2. Anatomy of different cardiovascular neurocristopathy diseases. (a) Aortic aneurysms: where a balloon-shaped bulge is formed
in the aorta. (b) Aortic dissection: where there is a tear in the inner layer of the aorta. (c) Bicuspid aortic disease: where an aortic valve
contains only two cusps (or flaps) instead of three. (image source: Wikimedia Commons, license: CC BY-SA 4.0, 3.0 and 4.0, respectively).

require often history taking, imaging, and bio-markers and it
requires specific criteria to establish the diagnosis. These are
called diagnostic criteria.

This paper focuses on reviewing the available literature on
the segmentation of aforementioned diseases where imaging
data is used as input for analysis.

A. DIFFERENTIATING/COMPARING MODALITIES FROM

A COMPUTER SCIENCE PERSPECTIVE

From the perspective of computer science, each of the imag-
ining modalities is different in terms of sensors providing
different information about the heart.

1) X-ray: An X-ray is a black-and-white image that
captures the outline of the heart and the major blood
vessels. X-rays are useful for the detection of large
structural abnormalities but do not provide details on
heart function [18]. X-rays are the building block
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2)

3)

of the computer tomography image and are usually
not used alone for the detection and segmentation of
cardiovascular diseases [19].

Computer Tomography (CT): Computer tomography is
a 3D image that captures details of the size, shape,
and function of the heart, as well as any narrowing
or blockage of the arteries [20]. CT images provide
accurate information for the diagnosis, segmentation,
and monitoring of cardiovascular diseases. However,
it uses ionizing radiation (X-rays), which is harmful
in high doses and therefore not suitable for certain
vulnerable patients [21].

Magnetic Resonance Imaging (MRI): Magnetic res-
onance imaging is a high-resolution image captured
using a magnetic field, rather than radiation, and a
sophisticated machine to capture information about the
heart and arteries [22]. Magnetic resonance imaging
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FIGURE 3. Overview of image segmentation tasks for different imaging modalities. Adopted from [8].

provides detailed images of the structure and func-
tionality of the heart, including areas of narrowing,
blockage, and leakage in the heart, as well as in the
arteries. However, MRI scans are time-consuming,
expensive and not suitable for patients who are
claustrophobic or who have implants [23].

4) Echocardiography (Echo): An echocardiogram cap-
tures sound waves that bounce off the heart and its
blood vessels to provide information about its structure
and function, including how the heart pumps blood
and the extent of any narrowing or blockages of the
arteries [24]. Echoes are inexpensive, noninvasive,
and can be performed quickly and at the bedside.
The images produced through this method are less
detailed and low-resolution compared to CT and MRI,
therefore, they are only used if continuous monitoring
of vulnerable patients is required [25].

The image quality and information within the images
obtained through each modality are different and have a
significant impact on the development of the segmentation
model. The image quality directly affects the training and
validation accuracy of segmentation algorithms in identifying
and delineating anatomical structures. Higher image quality
enhances precision while lower-quality image introduces
challenges and errors. Furthermore, the information con-
tained within the images also varies across modalities. Some
modalities (such as CT and MRI) provide more detailed
anatomical information while some modalities (X-ray and
Echos) provide only functional/physiological information.

118304

Understanding the different imaging modalities from the
point of view of a computer scientist is essential for the
development of better diagnostic tools and tools that could be
utilized to efficiently analyze and interpret medical images.
Computer scientists must consider the above-mentioned
factors to select appropriate imaging modalities and develop
robust segmentation models that ensure optimal performance
and reliable results.

B. CHALLENGES

The traditional imaging techniques/tools have significant
challenges, which limit the clinical and prognostic ability of
these tools [26], [27], [28]. Some of these challenges are as
follows:

1) Inter- and Intra-observer variability: Interobserver
variability refers to variability in the results when
different doctors/physicians interpret the same image,
whereas intraobserver variability refers to variability in
the results when the same doctor/physician interprets
the same image multiple times. In other words, the
ground-truth information available for training will not
be the same or accurate.

2) Delayed reporting on image results: Time-consuming
exams can delay the diagnosis and treatment of
patients. In some cases, they may have to wait hours
and/or days to receive results, which leads to anxiety
and uncertainty.

3) Suboptimal image quality: The low-quality images
limit the clinical validation of cardiovascular images.
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It is difficult to see certain areas of the heart in low-
quality images, leading to misdiagnoses or inaccurate
assessments of the severity of the disease. The sub-
optimal image quality also hinders the development of
a segmentation model due to limited visual information
for training.

4) Operator fatigue: Performing multiple exams and
long shifts in a day can be physically and mentally
tiring, resulting in possible errors or/and inaccurate
results.

5) Radiation exposure and contrast agents: Repeated
exposure to ionizing radiation over time and the use of
contrast agents to enhance the resolution of a certain
structure could increase the chances of developing
cancer in certain patients. Furthermore, the contrast
levels of the images are also varied for different
devices/machines. Thus, a model trained on a certain
level of contrast images might not work on images
taken through another machine, due to the contrast
difference.

6) Inter-vendor variability: Inter-vendor variability in
certain imaging parameters such as myocardial strain
imaging and perfusion images might limit the gener-
alizability of ML algorithms across all vendors and
scanners.

With continuous technological advancement in the field
of cardiovascular imaging, researchers are motivated to
develop different analysis tools to overcome the chal-
lenges/limitations mentioned above [29], [30], [31], [32],
[33], [34], [35]. This will help doctors/clinicians diagnose
the disease accurately and design better treatment plans for
their patients [36], [37], [38]. The application of artificial
intelligence (AI), especially machine learning (ML) and
deep learning (DL), in the field of medical imaging has
been growing rapidly in recent years [39], [40]. Traditional
ML algorithms are fed manually hand-crafted features, while
DL algorithms automatically learn the same features for
analysis [36].

This work is designed to review the available literature
on the segmentation of the aforementioned diseases using
imaging data with the help of ML and DL methods. The
review covers different aspects of diagnosis using different
imaging techniques and preventive care that no other single
review covers. Table 1 provides a comparison of the proposed
review with other recently published review articles.

The rest of the review article is organized as follows:
Section II describes the search terms, the inclusion criteria,
and the PRISMA flow chart. Section III provides a detailed
review of the available literature on the different method-
ologies used for each disease and the advantages/limitations
of each modality. It also discusses the clinical interpretation
of the data and different ML / DL methods used for the
segmentation of the aforementioned diseases. Section IV
illustrates the findings and shortcomings learned from the
literature review, while conclusions and future directions are
provided in Section V.
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Il. SEARCH METHODOLOGY

This review is in accordance with the PRISMA guide-
lines [45], a preferred reporting process for systematic
reviews and meta-analyses, illustrated in Figure 4. The
literature searches were performed on the following platform:

« PubMed, Google Scholar, IEEE Xplore Digital Library,
Elsevier, ScienceDirect, and Wiley online library.

The search terms were the combination of two primary
terms (machine learning, deep learning, segmentation) and a
maximum of one secondary term (Dilated cardiomyopathy,
Hypertrophic cardiomyopathy, Restrictive cardiomyopathy,
Arrhythmogenic right Ventricular Cardiomyopathy, aortic
dissection, aortic aneurysms, aortic hematoma, bicuspid
aortic valve disease with aortopathy, bicuspid aortic valve
disease without aortopathy and cervical artery dissection).

Initially, 750 studies were identified, including both
journal and conference publications. After reading the title
and abstract, 100 articles were selected. Studies excluded
after full-text evaluation included nonhuman studies, that had
insufficient data or modality used other than MRI, CT, X-rays
and/or Echo. A total of 48 articles were shortlisted for review
after a full-text assessment.

Ill. DEEP LEARNING TOOLS FOR CARDIOVASCULAR
NEUROCRISTOPATHY SEGMENTATION

Deep learning is a sub-branch of machine learning that
utilizes structured and unstructured data to learn abstract
representations [46]. These algorithms/models are advanced
versions of neural networks with specialized layers and
special structures for processing the neurons, allowing them
to handle any data source and extract useful information [47].
Regarding cardiovascular neurocristopathy image process-
ing, the convolutional layers with different numbers of
kernels, play a critical role in the ability of algorithms to
generate various feature maps that can help in identifying
specific/hidden patterns such as edges, colour gradients, and
shapes within the input image/video [48]. Subsequently, these
learned patterns are used to perform segmentation analysis,
that is, to detect specific objects or structures through
pixel-level labelling [49]. Some common algorithms used for
image segmentation include Convolutional Neural Networks
(CNN) and their variants such as U-net, auto-encoders (AE),
and generative adversarial networks (GAN) [50], [51].

The paper although mention both ML and DL, but for
segmentation purpose, mainly the DL models are the focus
because of their automatic nature of learning discriminative
features and recent rapid increase in performance. Table 2
summarizes the performance metrics used in the reviewed
studies along with the rationale and characteristics of each
metric while the most frequently used DL and ML algorithms
for medical imaging segmentation are tabulated in Table 3.

In terms of performance metrics (Table 2), the majority
of reviewed studies used the dice score and the Hausdorff
distance as primary performance measuring metrics along
with a few other supporting metrics, such as sensitivity,
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TABLE 1. Comparison of recent existing review articles with our review article.

. Imaging modality Modalities DL/ML Challenges Cardiovascular
S.NO. | Ref Title Year
CT | MRI | X-rays | Echos | Definition | Implementation | in tool Neurocristopathy diseases
Development and application of ar-
1 [41] | tificial intelligence in cardiac imag-|2020 | v | v X X X X X cardiomyopathy
ing
Deen Learning for Cardiac Image cardiovascular structure and func-
2 [8] Se rlilentation'g ‘A Review & 2020 v | V X v X v X tion (Aorta and Aortic Valve +
g ’ whole heart)
Radiogenomics and Artificial Intel-
ligence Approaches Applied to Car-
diac Computed Tomography An-
3 [42] | giography and Cardiac Magnetic | 2021 | v/ | v X X X X X coronary heart disease (CHD)
Resonance for Precision Medicine
in Coronary Heart Disease: A Sys-
tematic Review
Application of Al in cardiovascular cardiac valvular function and wall
4@ multimodality imaging 2022 v v X v X X X motion abnormalities
5 | [a4p| Artificial Intelligence Applications| | | | x x x X aortic dissection
in Aortic Dissection Imaging
cardiomyopathy (4 types), aor-
Review on Machine and Deep tic dissection, aortic aneurysms,
6 | Our | Learning Approaches for Cardio- 2023 | v | v v v v v v a(.)rtlc hel}mtoma, blcusqu aort.l ¢
vascular Neurocristopathy disease with aortopathy, bicuspid
aortic disease without aortopathy
and cervical artery dissection

Literature search Keywords: Machine leamning. Deep leaming.
Segmentation, Detection, Prediction. and Classification.
Cardiomyopathy (4 types). Aortic dissection., Aortic aneurysms.
Aortic Hematoma, Bicuspid Aortic disease with Aortopathy, Bicuspid
Aortic disease without Aortopathy, and Cervical artery dissection.
Search engines: PubMed. Google Scholar, IEEE Xplore Digital
Library. Elsevier. ScienceDirect, and Wiley online library.

(n=745)

Literature include
from other sources

@=3)
Total number of articles after
eliminating duplicates
(n=750)
Studies screened Excluded after 1':ead|11g title
and abstract
=75
(n="750) (n = 650)
Full text assessment Studies excluded after full-
text assessment
(n=100)
* Not a human studies

i « Insufficient data

¢ Modality used other

Total studies included/shortlisted than selected

(n=48) (n=52)

FIGURE 4. Adopted PRISMA guidelines and papers retrieved in this review.

specificity, Intersection-over-Union (IoU), correlation score, insights into different aspects of the segmentation model’s
and average symmetrical surface distance to determine the performance. The Dice score and IoU evaluate the spatial
efficacy of their segmentation model. These metrics are overlap between ground truth and predicted segmentation,
commonly used in the medical field as they provide valuable which is important for the delineation of the anatomical
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structure [52]. The Hausdorff Distance estimates the maxi-
mum deviation between ground truth and predicted segmen-
tation and is useful in identifying segmentation outliers [53].
The Sensitivity and Specificity metrics help in assessing the
model’s ability to correctly identify positive and negative
cases [54]. The Correlation Score measures the relationship
between the ground truth and predicted segmentation, which
can be informative for quantitative measurements [55].
Finally, the Average Symmetrical Surface Distance quantifies
the average distance between ground truth and predicted
segmentation providing boundary accuracy and smoothness
of segmentation [56].

The table 3 summarizes the modality, performance metrics,
sample size, data availability, and DL / ML algorithms
implemented in 24 reviewed articles. One of the most
significant challenges in segmenting and treating cardiovas-
cular neurocristopathy disorders is the limited availability
of open source publicly accessible data set on the disease,
as evidenced by Table 3. Only one out of 24 studies
(Guo et al. [57]) has provided the data set on which they
worked. Furthermore, nine other studies ( [58], [59], [60],
[61], [62], [63], [64], [65], [66]) have mentioned that the data
set could be provided to researchers on a reasonable request.
All other remaining 18 studies (66.7%) have not noted the
availability of their dataset.

As mentioned in I-A, CT and MRI are 3D imaging
techniques that provide high-resolution, detailed, and sophis-
ticated images, making them the more trustworthy modality
for segmenting cardiovascular diseases. Some studies such
as Asif et al. [63] and Qin et al. [67] used CT images for
segmentation and compared their results with MRI data.
Asif et al. performed segmentation on CT images and
assessed segmentation accuracy using MRI as a reference
standard collected from 84 patients (45 men and 32 women
who underwent CT and MRI scans). The authors reported
an AUC of 0.714 and a segmentation accuracy of 68.9%
for males and 71.9% for female patient images. Qin et al.
performed a semi-automated segmentation on CT and MRI
data collected from 161 patients (2576 segments) with
cardiomyopathy. They calculated 1514 myocardial fibrosis
(MF) features and applied radiomics to the extracted features.
The reported result showed the usefulness of radiomics in
the segmentation and detection of MF using CT images (and
compared to MRI). The authors reported that the AUC for
the training and testing cohorts was 0.81 and 0.78 for the
segment-based analysis, respectively.

Learning models for disease segmentation using medical
images like CT scans, MRI, X-rays, and echocardiograms
present several challenges due to the complexity and
importance of the task. The following subsections summarise
some of the challenges and potential solutions as well
as provide review of different deep/ML algorithms used
for cardiovascular neurocristopathy diseases with individual
image modalities (CT, MRI, X-Rays and Echos) along with
the performance metrics used for their evaluation, the sample
size used, and open-access availability of the dataset.
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TABLE 2. Performance metrics used in the medical domain for
segmentation assessment.

Metric Rationale Features/Characteristics
Dice Score Measures overlap between | - Ranges from O to 1, where 1 indi-
predicted and ground truth | cates perfect overlap and O indicates
segmentation no overlap.
- Useful for assessing spatial agree-
ment between segmentations.
Hausdorff Captures maximum devia- | - Represents the maximum distance
Distance tion between predicted and | between any point in one segmen-
ground truth tation and its nearest point in the
other.
- Identifies outliers or extreme devi-
ations in segmentation.
Sensitivity Evaluates true positive rate |- Measures the proportion of ac-
(TPR) tual positive cases that are correctly
identified by the model.
Specificity Evaluates true negative rate | - Measures the proportion of ac-
(TNR) tual negative cases that are correctly
identified by the model.
Intersection- Measures the ratio of the in- | - Ranges from O to 1, where 1 indi-
over-Union tersection to the union of re- | cates perfect overlap and 0 indicates

gions no overlap.

- Provides a measure of segmenta-
tion accuracy and similarity.
Correlation Score | Assesses the correlation be- | - Indicates the strength and direc-
tween predicted and ground | tion of the linear relationship be-
truth tween the predicted and ground
truth segmentation.

- Useful for tasks involving quanti-
tative measurements.

Quantifies the average sur- |- Measures the average distance be-
face distance between pre- | tween corresponding points on the
dicted and ground truth predicted and ground truth segmen-
tations.

- Provides insights into boundary
accuracy and smoothness of seg-
mentations.

Average
Symmetrical
Surface Distance

A. CHALLENGES AND POTENTIAL SOLUTIONS IN IMAGE
SEGMENTATION

This subsection outlines certain difficulties encountered
when working with medical images and offers insights into
potential solutions aimed at creating an Al-powered clinical-
grade medical image segmentation device for early detection
and prognosis applications. Limited Data: Annotated medical
image datasets can be limited in size due to privacy
concerns and the difficulty of obtaining expert annotations.
To mitigate this challenge, data augmentation techniques
can be employed to generate additional training samples
from the existing data. Transfer learning, where models
pre-trained on large datasets are fine-tuned on medical data,
can also help when data is scarce. Annotation Quality:
Annotations for medical images need to be highly accurate,
and inconsistencies or errors in annotations can lead to
model biases. To address this, expert radiologists should
review and verify annotations to ensure accuracy. Interpatient
Variability: Patients can have significant anatomical and
pathological variations, making it challenging for models to
generalize. To enhance model generalization, data augmenta-
tion techniques that simulate variations can be used. Domain
adaptation methods can also be employed to adapt models
to specific patient populations. Interpretability: Medical
professionals often require models to provide interpretable
results and explanations for their predictions. To meet this
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TABLE 3. Frequently used DL and ML algorithms in the field of cardiovascular neurocristopathy.

S.No. Algorithm Ref | Year Modality Performance metrics Sample Size Dataset Open-access
(s8] | 2022 MRUCMRI Matthew’s correlation coefficient (MCC), accu- 167 patients and 84 On request
1 Artificial Neural Network (ANN) racy, sensitivity, specificity control ques
1681 | 2020 Echo Sensitivity, specificity, PPV and NPV, Fl-score, 146 patients and 58 No
+ve and —ve likelihood ratio control
Sensitivity, PPV, Dice score (DSC), volume
overlap error (VOE), relative volume difference S
(6912021 cT (VD), and average symmetric surface distance 72 patients No
(ASSD)
Recall (sensitivity), precision (positive predic-
2 U-net [70] | 2021 CT tive value [PPV]), and false-positive volume 2319 participants No
(FPV).
1591 | 2022 MRI/CMRI Dice similarity coefficients 08 patients and 27 On request
control
Dice similarity coefficient; mean absolute error .
i 2
Deep Learning (711 | 2022 cr (MAE); intraclass correlation coefficient (ICC) 1715 participants No
[60] | 2022 MRI Matthew’s correlation coefficient (MCC) 39688 participants On request
Dice coefficient (DC), normalized mean abso- L §
[61] | 2022 CT lute error (NMAE), and RMSE 154 patients On request
. . . AUC, sensitivity, specificity, PPV (Positive Pre- .
3 Convolutional Neural Network (CNN) [72] | 2022 Echo dictive Value) and NPV 6825 patients No
4 Extremely Randomized Tree [73] | 2022 MRI/CMRI AUC, sensitivity, specificity 32 p“‘c‘s:::o'”]‘"d 1 No
5 Multilayer Perceptron [74] | 2021 Echo accuracy, sensitivity, and specificity 49 patients No
i Sensitivity, specificity, accuracy, PPV, NPV, -
6 DeeplabV3+ [75] | 2021 MRI/CMRI FPR. FNR and AUC 198 patients No
. Sensitivity, specificity, accuracy, PPV, NPV, .
7 Inception-ResnetV2 model [76] | 2021 MRI/CMRI FPR, FNR and AUC 198 patients No
8 SE-ResNext-50 [62] | 2023 Echo AUC 158 patients On request
9 Deep Convolutional Neural Network (DCNN) | [66] | 2021 Echo AUC, PPV, NPV, sensitivity and specificity 99 patients No
ROC AUC, Precision-recall curve and decision
9 Deep Convolutional Neural Network (DCNN) | [63] | 2021 Echo + CT curve analysis + accuracy, sensitivity and speci- 300 patients On request
ficity
10 ResNet-18 7711 2022 XR Precision, recall, Fl-score, accuracy and visual 3331 . o
7 Rays verification via grad-CAM 3331 patients n request
11 Multi-residual Blocks [64] | 2022 Echo PPV, NPV, sensitivity and specificity, AUC 157 patients No
Sensitivity, PPV, Dice score (DSC), volume
overlap error (VOE), relative volume difference -
12 ENET 1691 2021 cT (VD), and average symmetric surface distance 72 patients No
(ASSD)
Sensitivity, PPV, Dice score (DSC), volume
overlap error (VOE), relative volume difference .
13 ERFNet (691 2021 cT (VD), and average symmetric surface distance 72 patients No
(ASSD)
14 Residual Neural Network-18 651 | 2022 X-Rays Accuracy, precision, recall, and F-1 score and 3331 patients On request
- 4 Visual verification via grad-CAM p 1
[67] | 2021 CT + MRI/CMRI AUC, accuracy, sensitivity, and specificity rates 161 patients No
1781 2020 MRUCMRI Matthew’s correlation coefficient (MCC), accu- 64 patients No
racy, sensitivity, specificity and AUC p i
15 Random Forest (RF) .
[73] | 2022 MRI/CMRI AUC, sensitivity, specificity 32 patients and 11 No
control
ROC AUC, Precision-recall curve and decision
[66] | 2021 Echo + CT curve analysis + accuracy, sensitivity and speci- 300 patients On request
ficity
[74] | 2021 Echo Accuracy, sensitivity, and specificity 49 patients No
[79] | 2022 Echo AUC 13050 patients No
Traditional Machine Learning (58] | 2022 MRI/CMRI Matthew’s correlation coefficient (MCC), accu- 167 patients and 84 On request
racy, sensitivity, specificity control q
16 Naive Bayes (NB) Matthew’ i ficient (MCC)
atthew’s correlation coefficien , accu- .
(781 | 2020 MRUCMRI racy, sensitivity, specificity and AUC 64 patients No
[571 | 2021 CTA AUC, sensitivity, specificity, PPV and NPV 1344 patients Yes
(58] | 2022 MRI/CMRI Matthew’s correlation coefficient (MCC), accu- 167 patients and 84 On request
racy, sensitivity, specificity control 4
17 Support Vector Machine (SVM) Matthew” i ficient (MCC)
atthew’s correlation coefficien , accu- i
(781 | 2020 MRU/CMRI racy, sensitivity, specificity and AUC 64 patients No
ROC AUC, Precision-recall curve and decision
[66] | 2021 Echo + CT curve analysis + accuracy, sensitivity and speci- 300 patients On request
ficity
Matthew’s correlation coefficient (MCC), accu- 167 patients and 84 N
(581 | 2022 MRI/CMRI racy, sensitivity, specificity control On request
18 Logistic Regression (LR) . . _
[57] | 2021 CT + MRI/CMRI AUC, sensitivity, specificity, PPV and NPV 1344 patients Yes
1681 | 2020 Echo Sensitivity, specificity, PPV and NPV, Fl-score, 146 patients and 58 No
- +ve and —ve likelihood ratio control
19 Distance-weighted K-Nearest Neighbor [80] | 2020 Echo + MRI/CMRI AUC, accuracy, sensitivity, and specificity rates 108 patients No
20 Extreme Gradient Boost (XGBoost) [57] | 2021 CT + MRI/CMRI AUC, sensitivity, specificity, PPV and NPV 1344 patients Yes
N o o o .
21 Tree-based Pipeline Optimization Tool (TPOT) | [81] | 2022 MRICMRI AUG, Fl-score, accuracy, Precision, sensitivity, | 91 patients and 44 No
and specificity rates control
22 Least Absolute Shrinkage and Selection Operator | [67] | 2021 CT + MRI/CMRI AUC, accuracy, sensitivity, and specificity rates 161 patients No
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need, models can be developed that generate heatmaps or
attention maps to highlight regions of interest in the images.
Explainable Al techniques, such as LIME or SHAP, can
provide insights into model decisions. Model Validation
and Clinical Trials: Transitioning from research models to
clinical practice requires rigorous validation and testing.
Collaboration with medical professionals and institutions to
conduct clinical trials and validation studies is essential to
demonstrate the model’s effectiveness and safety in real-
world scenarios. Real-time Processing: In a clinical settings,
real-time or near-real-time processing of medical images is
crucial. To achieve real-time performance, models should
be optimized for inference speed, and hardware acceleration
options (e.g., GPUs, FPGAs) can be explored.

Addressing these challenges necessitates a multidisci-
plinary approach involving machine learning experts, med-
ical professionals, data scientists, and regulatory experts
to ensure the safe and effective deployment of disease
segmentation models in clinical practice.

B. LEARNING MODELS FOR DISEASE SEGMENTATION
USING COMPUTER TOMOGRAPHY (CT) IMAGES

In the literature, most studies use Unet models to seg-
ment cardiovascular neurocristopathy diseases using CT.
Of 15 studies, 8 studies implemented UNet models for
segmentation while 2 studies ( [82] and [83]) reported the
use of GANs for segmentation tasks. The review of the
literature indicated that the use of neural networks (especially
convolutional neural networks) is also a popular method,
frequently implemented for disease-related segmentation
tasks.

Regarding performance comparison, no direct comparison
of the model’s segmentation capability could be achieved
because different studies calculated different performance
metrics. The most reliable metrics, as calculated in most
studies, are sensitivity, specificity, dice score, and Hausdorff
distance, along with some other metrics such as accuracy,
the Jaccard index, and the calculation of different error
values.

Figure 5 demonstrates an example of a segmentation
pipeline implemented to segment the true and false lumen
in a CT scan image. (0) is the original source image,
(1) shows the initial step of the segmentation algorithm
that accepts the axial image and performs the localization
of the aorta, (2) the centreline identification algorithm is
used to derive the aortic centerline, (3) then multiplanar
reformations are generated orthogonal to the centerline,
(4) and true lumen, false lumen and background is segmented
using a segmentation algorithm, (5) the segmented lumen is
finally superimposed back on to the axial plane image.

Table 4 summarizes the reviewed literature that performed
CT image segmentation using different DL tools. Only two
studies, [61] and [85], reported the availability/sharing of the
CT image datasets on request.
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FIGURE 5. Computer Tomography segmentation pipeline. Green = aortic
lumen, blue = true lumen, red = false lumen. Image adapted from [84]:
open access.

FIGURE 6. Magnetic resonance imaging; Cardiomyopathy segmentation.
(A) Images acquired in patients without cardiomyopathy (B) Images
acquired in patients with Dilated Cardiomyopathy (DCM) (C) Images
acquired in participants with Hypertrophic cardiomyopathy (HCM). Image
Adapted from [93]: open access.

C. LEARNING MODELS FOR DISEASE SEGMENTATION
USING CARDIAC MAGNETIC RESONANCE IMAGING
(CMRI)

Most studies in the literature use Unet models to segment
cardiovascular neurocristopathy diseases using CMRI/MRIL.
Figure 6 illustrates an example of automatic left ventricle
(LV) segmentation in MRI scans using AIl. The sub-
figures a,b, and ¢ are the MRI scans of patients without
cardiomyopathy, with DCM and with HCM, respectively. The
outer edge of the LV is circled in green colour, the red colour
circle is an intimal contour of the LV while the yellow colour
circle is the intimal contour of the right ventricle.

Table 5 summarizes the reviewed literature on learning
models for the segmentation of cardiovascular neurocristopa-
thy disease using DL models, UNet, CNN, and DeepV3+ on
the MRI dataset. A dataset of MRI scans of three studies (that
is, [59], [60], [94]) could be provided upon reasonable request
to the authors.
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TABLE 4. Learning models for disease segmentation using Computer Tomography (CT) images.

Algorithm

Sample Size Dataset Availability

S.No. | Ref Data Acquired Year Performance Subjects
1 |[84] | Stanford University School of Medicine, USA 2020 CNN Dice similarity coefficient (0.87 +- 0.056) 45 153 No
Chinese PLA General Hospital, the First Affiliated
Hospital of Medical College of Zhejiang University, mean Dice score for segmentation of true lumen
2 |[86] | Xiangya Hospital of Central South University, Qilu [ 2021 CNN R . . 120 809+119.75 No
Hospital of Shandong University, and the Second (0.96), false lumen (0.95) and all branches (0.89)
Peoples Hospital of Yunnan Province, China
3 |187] B'el_]mg {\nzhen Hospital and Fujian Provincial Hos- 2021 UNet Sensitivity score (96%) 154 No
pital, China
Sensitivity (91.63%, 92.69%, 89.01%), positive pre-
dictive value (91.79, 90.67, 88.41), Dice score (91.09,
R . ) 91.22, 88.41), volume overlap error (15.30, 15.22,
4 [69] | University of Palermo, Italy 2021 UNet, ENet, and ERFNet 19.56), relative volume difference (0.12. 2.83, 0.92) 72 - No
and average symmetric surface (5.48, 4.46, 5.48),
resp.
The 2nd Affiliated Hospital of Guangzhou Medical
5 | [85] | University, The First People’s Hospital of Foshan and | 2021 CNN average Dice coefficient (78.2%) 255 - On Request
The 2nd Hospital of Shandong University, China
Sensitivity (83.8%), positive predictive value (88.0%)
6 | [70] | The Rotterdam Study (Database) 2021 Unet and Correlation coefficient: automatic vs manual 1154 2156 No
(0.98)
. . . } L Accuracy, Sensitivity, and Specificity = 0.897, 0.862,
7 |188] gehl::‘g Union Medical College Hospital (PUMCH), |1, Gaussian Naive Bayes and 0.923 (internal test) and 0.730, 0.978 and 0.554| 452 - No
a (external testing) cohort
. . . . . Dice score (0.903 + 0.062), Jaccard Index (0.828 +
8 | [89]|Zhongshan Hospital Fudan University, China 2022 CNN 0.092) and 95% Hausdorff distance (2.209  2.945) 167 463 No
9 |[g2y| Quanzhou First Hospital Affiliated to Fujian Medical | 5, GAN + UNet PSNR (32.98) and SSIM (0.9905) 300 . No
University, China
Mean Absolute Error (Model vs Report): Dataset A
The Massachusetts General Hospital and Brigham (Ascending = 0.39 +- 0.59 and Descending = 0.54
10 |[71] |and Women’s Hospital Center for Clinical Data Sci- | 2022 UNet +- 0.87); Mean Absolute Error (System vs. Report): | 315+1400 - No
ence, USA Dataset B (Ascending = 0.24 +- 0.38 and Descending
=0.67 +1.12)
mean Dice coefficient = aortic root (0.95), right-
11 {[90]| Multiple clinical institution, Japan 2022 Neural Network and UNet coronary cusp (0.70), left-coronary cusp (0.69), and 138 258 No
non-coronary cusp (0.67)
. . . Dice Score (0.86), normalized mean absolute error
12 |o1)|Sun Yatsen Memorial Hospital of Sun Yat-sen Uni- | 5, UNet (7.8 +- 4.71) and root mean square error (0.0098 +- | 154 - On Request
versity, China
0.0097)
Lumen: Dice score (0.95), relative volume error
(0.08), sensitivity (0.97), specificity (1.00), 95%
e R i R . L Hausdorff distance (6.64), surface distance (1.11);
13 {[91] Michigan Technological University and Mayo Clinic, 2023 UNet Intraluminal thrombosis: Dice score (0.80), relative 70 214-2433 No
USA e o
volume error (0.16), sensitivity (0.83), specificity
(0.99), 95% Hausdorff distance (6.17), surface dis-
tance (1.30)
Oxford University and Oxford University Hospitals . L Accuracy (Lumen segmentation) = Cycle-GAN (86.1
1411831 \tional Health Services Foundation Trust, UK 2023\ cycle-and conditional GAN | ") 5 (01 Gitional-GAN (85.7 +- 10.4) 5 11243 No
Sensitivity (88.3%, 98.9%, 98.7%), specificity
TR . (100%, 99.3%, 99.%). accuracy (94.1%, 99.1%,
15 |[9g| Hospital's internal radiology database (mPower Clin-| )3 CNN and VGG-16 99.6%) and area under the curve (0.99,0.99,0.99)| 400 6175 No
ical Analytics; Nuance Communications, Inc), USA . :
for selected, balanced and imbalanced image set,
respectively.
TABLE 5. Learning models for disease segmentation using Magnetic Resonance Imaging (MRI).
Sample Size Dataset
S.No. | Ref Data Acquired Year | Algorithm Performance P Availability
Subjects Sampl
Lurie Children’s Hospital and Northwestern Memo- median Dice score (0.95), Hausdorff distance (2.80
1|95 : P 2020/ CNN (0.95), Hausdol 28001018 - No
rial Hospital, USA and average symmetrical surface distance (0.176)
University of Chinese Academy of Science, China Sensitivity (85.71%), specificity (69.57%), accuracy
2 75 N ’ 2021 | DeepV3+ y ’ 198 - No
(731 (Referral Centre) P (78.43%), and AUC (0.80)
. . Sensitivity (92.31% DCM; 78.05%, HCM), speci-
3 93] | Zhongshan Hospital, China 2022 CNN . g ’ ’ 388 - No
1931 © P ficity (82.96% DCM; 54.07% HCM)
L . average Dice coefficients: left ventricle (96.24% di-
MICCAI 2017 automated cardiac diagnosis challenge . . .
4 |[94] = & 2022 UNet astole, 89.92% systole), right ventricle (92.90% dias- 150 - Yes
(ACDC) dataset
tole, 86.92% systole)
Dice coefficients for the internal cavity (0.96), exter-
Hospital Virgen de la Arrixaca of Murcia and Hospital nal wall (0.89), and trabeculae (0.84); area under the
5 | [o7)| Hospital Virge aca of ! Pal 5022 |  UNet 089 (0.84); area 277 - No
Mesa del Castillo of Murcia, Spain ROC curve (0.94), accuracy (0.87), sensitivity (0.93),
and specificity (0.80)
. . Dice similarity coefficient (0.86 £ 0.05 and 0.74 *
6 | [59]] Tertiary care hospital, Korea 2022 UNet "y ( . 95 - On request
0.17) for native and post T1 maps, respectively
7 |[60] | UK Biobank dataset 2022 UNet Correlation 39688 4.6 million On request
Dice score (0.83 +- 0.05; short-axis, 0.82 +- 0.03; 360
8 |[94] | Royal Brompton Hospital in London, UK 2023 UNet | long-axis) and Hausdorff distance (4.0 +- 1.1 mm; - short-axis; 124 On request
short-axis, 7.9 +- 3.9 mm; long-axis) long-axis
. . . .. IoU (96.27%), Dice score (98.09 + 0.96%) and Haus- 30 slices per
9 98] | University Hospital of Dijon, France 2023 UNet . ’ 73 . On request
18] y P J dorff distance (4.88 +1.70 mm) patients q
roject 2018-A02010-55 (Comite de Protection des Dice Score (0.90 +- 0.02) and Hausdorft distance
10 |[991|Pr ¢ 2023| UNet ( ) 36 - No
Personnes, France) (9.58 +- 4.36 mm)

D. LEARNING MODELS FOR DISEASE SEGMENTATION
USING X-RAYS AND ECHOCARDIOGRAPHY (ECHO)
IMAGES

Limited literature was found on the use of X-rays
and echocardiography images for the segmentation of
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cardiovascular neurocristopathy diseases. One reason could
be that frequent exposure to X-rays is harmful to human
health. Moreover, echos and X-ray images are of low quality
and could only be used for structural segmentation, resulting
in relatively less detailed analysis.
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X-ray: Predicted mask annotated with the cardiothoracic ratio
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FIGURE 7. X-ray: Predicted mask annotated with the cardiothoracic ratio.
The clavicle (collar bone) is shown in red colour, the lungs in blue and the
heart is shown in green colour. Adapted from [100]: open access.
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FIGURE 8. Ultrasound: (a) a TTE image (b) the ground truth (c) the model’s
prediction and (d) the model’s prediction superimposed on the original
image. Red: aortic valve (AV), Blue: right atrium/right ventricle (RA/RV),
Green: left atrium (LA), Purple: right ventricular outflow tract (RVOT) and
Yellow: main pulmonary artery (MPA). Adapted from [101]: open access.

Figure 7 shows the segmentation of the chest anatomy to
calculate the cardiothoracic ratio. (a) shows the original chest
X-ray image, (b) is a segmented image using CardioNet, and
(c) illustrates the calculation of the maximum width of the
heart and thorax using an equation 1.

R = (DL + Dr)/M ey

where R is the cardiothoracic ratio, Dy, is heart distance from
the left while Dy, is heart distance from the right of the central
vertical line. M is the maximum horizontal distance between
the left and right boundary sides of the lungs, as shown
in Figure 7.

Figure 8 shows an example of transesophageal echocar-
diography (TTE) segmentation. The figure shows the seg-
mentation of the aortic valve, right atrium/right ventricle, left
atrium, right ventricular outflow tract and main pulmonary
artery. Subfigure (a) is the original TTE image used as an
input in the Al model, (b) is the annotated ground truth image,
(c) is the model’s predicted labels and (d) is the predicted
annotations overlayed on the original TTE image.

Table 6 summarizes the literature found on x-rays and
echo images for the segmentation of diseases using DL
models. The literature reports results using variants of neural
networks as DL models. The performance metrics used
are accuracy, precision, recall, and Fl-score, while some
used dice score and IoU. Only one out of 6 studies (that
is, [77]) reported the availability of the analyzed dataset on
request.
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E. IMPLEMENTATION OF DEEP LEARNING MODELS
To build an end-to-end DL model, some open-source
informatics resources have been developed, including Keras,
TensorFlow, and PyTorch [106]. Keras is a Python/R library
that provides high-level functions to build a stack of consec-
utive layers to form Theano models. Keras library allows the
user-friendly network definition, optimization, and effective
evaluation of multi-dimensional mathematical expressions.
TensorFlow is also a Python/R library developed by the
Google team. TensorFlow uses data flow graphs for efficient
data processing. Lastly, the PyTorch library, developed by
the Meta Al team, works with Python. It is designed to
improve the model building and overall data processing
speed [43]. Table 7 presents a summarized comparison of
the above-mentioned libraries in terms of their architecture,
script written, dataset sizes, API levels, do they have trained
models, debugging capabilities, and speed performance.
From the reviewed literature, it can be concluded that
CNN and Unet (and their variants) are the most frequently
used deep learning algorithms. Each algorithm, along with
its advantages and limitations, is described as follows:

1) CONVOLUTIONAL NEURAL NETWORKS (CNN)
Convolutional Neural Networks (CNNs) have proven their
versatility in various computer vision tasks, including image
segmentation. The encoder extracts hierarchical features
from the input images through convolutional layers, while
the decoder upscales these features to produce pixel-wise
segmentation maps. Activation functions like ReLU are
common, and loss functions, such as cross-entropy or Dice
loss, are employed to optimize the model. Optimization
techniques such as stochastic gradient descent (SGD), Adam,
RMSprop, or adaptive learning rate algorithms are used for
weight updates. Mini-batch training is preferred for improved
convergence and memory efficiency. Data augmentation,
involving random rotations, flips, and scaling, expands the
training dataset and reduces overfitting.

Other elements in CNNs include batch normalization and
dropout layers to enhance stability. Architectural modifica-
tions like dilated convolutions capture multi-scale features,
crucial for certain segmentation tasks. Transfer learning with
pre-trained CNN models like VGG or ResNet, fine-tuned for
segmentation, has proven effective, especially with limited
data.

Advantages of CNNs for segmentation include their
adaptability, feature learning capabilities, and fast inference
times. However, they may struggle to capture fine details and
require substantial labelled data. Overfitting is also a concern,
necessitating the use of regularization techniques. Finally, the
Interpretability of CNN results can be challenging due to their
complex architectures.

2) UNET AND ITS VARIATIONS
U-Net is a specialized architecture specifically designed for
image segmentation tasks, with a unique encoder-decoder
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TABLE 6. Learning models for disease segmentation using X-rays and Echo-cardiogram (Echo) images.

Dataset
S.No.| Ref Data Acquired Year Modality Algorithm Performance Sample Size Availtl;bll-
Subjects | Samples
Tertiary academic hospitals (Seoul and Accuracy (90.20%), precision (75.00%), re-
L Gyeonggi-do), Korea 2022 X-rays ResNetl8 call (94.44%), and F1-score (83.61%) 3331 3331 | On request
2 |02 Severance Hospital, Yonsei University, Ko- 2022 X-rays EfficientNet Precision, Recall, and F1 score were 0.7563, 38 50 No
rea 0.6922, and 0.7176 for all vessels, resp.
and UNet
Accuracy (99.5%), Precision (86.9%), Re-
3 |[103]|INSTITUT JANTUNG NEGARA, Malaysia | 2020 | Echocardiogram | Unet call (96.2%), Fl-score (0.91) and IoU 58 247 No
(91.1%)
Naval Hospital of Athens, Greece, the First
Department of Cardiology of National and
Kapodistrian University of Athens, Medi- . Accuracy of (97%), sensitivity (94%), speci-
4 \TIO1 1" School, Hippokration General Hospital, | 202! | Eehocardiogram Sﬁg and| ity (98%), ToU (87%) o7 194 No
Greece, and the Cardiology Department of
Hippokration General Hospital, Greece
5 |[104] goﬁalirrl{nad Hoesin Indonesian General 2021 | Echocardiogram |CNN  (Mask- 2257‘7@;0%), Dice coefficient similarity 100 1149 No
ospital RCNN) 1%
6 |[105] Wonju Severance Christian Hospital, Wonju, 2023 | Echocardiogram | DNN with Dice coeftl'm'enl (0.90), IoU (082), recall 9 20 No
Republic of Korea . (0.90), precision (0.90)
attention
mechanism
and  residual
features

TABLE 7. Summary comparison of DL libraries: Keras, TensorFlow, and
PyTorch.

Keras TensorFlow PyTorch
Architecture concise, simple, readable not easy to use complex, less readable
Written In Python Python, C++, CUDA Lua
Datasets smaller datasets large datasets, high performance | large datasets, high performance
API Level high high & low low
Trained Model yes yes yes
Debugging | simple network, no deb needed|  good ing capability | difficult to conduct debugging
Speed slow, low performance fast, high performance fast, high performance

structure featuring skip connections. The encoder captures
high-level features from input images, while the decoder
recovers spatial information. The skip connections, a distinc-
tive feature of U-Net, play a crucial role in preserving spatial
information during the upsampling process, contributing to
accurate segmentation. Common loss functions used for
U-Net and its variants include the Dice coefficient or cross-
entropy, while optimization often involves techniques like
Adam.

U-Net excels in biomedical and general image segmen-
tation tasks, with skip connections enhancing its ability to
capture fine details. Variations of U-Net, such as Attention
U-Net and ResU-Net, have been developed to further improve
performance through attention mechanisms and residual
connections. Nevertheless, U-Net and its variations are
specialized for segmentation and may not perform optimally
in other computer vision tasks. Creating accurate labelled
segmentation masks can be labour-intensive and require
domain expertise. Overfitting remains a concern, particularly
in scenarios with limited data, and complex or noisy images
can challenge U-Net’s segmentation performance.

IV. FINDINGS

Table 3 summarizes the learning models implemented in
the field of cardiovascular neurocristopathy, while Table 4,
Table 5 and Table 6 summarize the learning models
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implemented in the field of cardiovascular neurocristopathy
segmentation using CT, MRI, X-rays and echocardiographic
images, respectively. The findings of this review article are as
follows.

A. STANDARD PERFORMANCE METRICS AND RESULT
INTERPRETABILITY

It can be observed from the tables that some studies imple-
mented the same algorithms but reported the segmentation
performance using different performance metrics. This makes
a fair comparison of these algorithms more complicated,
especially if analysed for shortlisting to the most specific and
sensitive algorithm that could be implemented in the field
of medicine for accurate segmentation purposes. Therefore,
it is necessary to standardize performance metrics for ease of
comparison and to determine the most accurate segmentation
algorithm for each, as well as the most useful imaging
modalities.

B. AVAILABILITY OF OPEN-ACCESS DATASETS,
ANNOTATION, AND INTERPATIENT VARIABILITY

The review also revealed that there is limited access to
publicly available open-access datasets. Only 1 out of
32 studies [57] reported that their data set was open access,
while 6 out of 32 studies [59], [60], [61], [77], [85], [94]
reported that the data is available to researchers on reasonable
request. The limited availability of open-access medical
data is subject to privacy and data security. One of the
solutions could be the development of standards for data
anonymization and following GDPR rules for data sharing
across continents.

C. REPRODUCIBILITY OF RESULTS AND HIGH-QUALITY
DATASET

For reproducibility of the results, the reporting of data
analysis and datasets should also be standardized. Most
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studies lack reporting of meta-information, for example, the
number of sample images within the dataset, preprocessing
steps for data cleaning and data analysis. Furthermore,
the literature also reports the dependence of segmentation
performance on image quality and quantity. For better
segmentation performance, the training algorithm needs big
data of high-quality detailed images, i.e., a large number
of samples per subject and a high number of subjects
within the dataset. The availability of patient follow-up
images could also help in training the algorithm to learn the
pattern of disease progression or regression. Currently, to our
knowledge, no such publicly available datasets have multiple
images of a large number of patients (ideally millions, as in
the UK BioBank [107] which is not free) over the years
(follow-ups).

By combined efforts and taking specific actions, computer
scientists, engineers, and clinicians can address the limita-
tions mentioned above and develop segmentation tools that
are clinically relevant, accurate, and robust.

V. CONCLUSION AND FUTURE DIRECTIONS

Most existing reviews on the topic of cardiovascular neuro-
cristopathy focus on the progression and regression of disease
related to abnormal development or migration of cardiac
neural crest cells to detect and segment such diseases. The
application of machines and DL models in cardiovascular
imaging is rapidly increasing with the aim of a possible
reduction in reporting time with high precision for the
segmentation of cardiovascular neurocristopathy diseases,
such as cardiomyopathy, stroke, aorta, and aortic valve
dysfunction diseases. In this review, the available literature on
the segmentation of cardiovascular neurocristopathy diseases
using imaging modalities, such as CT, MRI, X-ray and Echos,
is analyzed in terms of implemented segmentation algo-
rithm, performance metrics used, meta-information about the
dataset and dataset availability.

From the literature review, it can be concluded and is
evident from Table 3, Table 4, Table 5 and Table 6 that
Computer Tomography (CT) images are the most commonly
used image modality for the segmentation of cardiovascular
neurocristopathy disease, while MRI is the second best. Lim-
ited literature is available on the use of radiographic (X-ray)
and echocardiography (Echo) images for the segmentation
of such diseases. This is an open research topic as better
imaging equipment has been developed that provides a good
quality image that could help in more robust segmentation
using these modalities. In terms of the most frequently
used DL model, the segmentation using UNet, and its
variants, outperform all the other models. UNet is a type of
convolutional neural network (CNN) which has features of
skip connection (to capture high- and low-level features of
image), awareness of spatial context (deals with complex
background), symmetric architecture (to capture fine-grained
details) and data augmentation ability enabling them to be
trained on a smaller dataset. These features make UNet
better than other networks in the image segmentation task.
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TABLE 8. Specific actions required by engineers and clinicians to address
the limitations identified in proposed review.

Problems in Contribution

Help in determining the most relevant metrics to a clinical
L problem, such as dice score, Hausdorff distance or Jaccard
Clinicians |{,jex

Lack of standardised performance

Help in defining criteria/threshold for acceptable perfor-

metrics, results reporting and interpretability L e A
’ mance, such as minimum specificity and sensitivity

Design/develop and implement shortlisted performance
Engineers metrics in the segmentation algorithm

Report the results in standardized formats, such as Medi-
cal Image Segmentation Evaluation Framework (MISE) or
Segmentation Evaluation Package (SEVAL)

Collaborate with engineers to collect and annotate clinical
linici imaging data that represent the problem of cardiovascular
. Clinicians | seyrocristopathies, such as MRI or CT images
Limited open-access datasets,

Establish data-sharing agreements with other consortia,
hospitals and institutions to increase the size and diversity
of the datasets

annotation quality, interpatient variability

Develop data augmentation methods to increase data vari-
Engineers |ability and data set size.

Establish open-access repositories to share the datasets with
other research communities

Collaborate with engineers to establish guidelines for data
annotation and curation to ensure the quality and consis-

Clinicians | iency of the image datasets

High-quality data and

Establish protocols for validation of the results via blind
tests or independent reviews to increase the generalizability
and reproducibility of the segmentation algorithms

reproducibility of results

Provide properly documented and open-source code, to
Engineers | facilitate the replication of the results

Establish reproducible frameworks, such as Reproducible
Experiment Platform for Segmentation (REPS), to ensure
the reproducibility of the results on different software and
hardware platforms

In the literature, Simple CNN is the second most frequently
implemented algorithm. While some studies have used
adversarial generative networks for the image segmentation
task, further investigation into the use of such models is
required to get trustworthy/acceptable results.

The review also identified gaps in developing effective dis-
ease segmentation models using medical images, especially
for critical conditions like cardio-neurocristopathy diseases.
Limited data availability, which stems from privacy concerns
and the scarcity of expert annotations, necessitates innovative
solutions like data augmentation and transfer learning.
Ensuring the accuracy and consistency of annotations is
critical to mitigate model biases. The diverse interpatient vari-
ability in anatomical and pathological aspects underscores
the importance of techniques such as data augmentation
and domain adaptation to enhance model generalization.
Interpretability is crucial for gaining medical professionals’
trust, and the incorporation of explainable Al methods can
facilitate model transparency. The transition from research to
clinical practice involves rigorous validation through collabo-
ration with medical experts and institutions while optimizing
models for real-time processing is essential for timely clinical
decision-making. Addressing these challenges requires the
combined efforts of researchers/engineers and clinicians.
Table 8 summarizes the problems and contributions of each
stakeholder to overcome these shortcomings.

In the future, in conjunction with collaborative efforts, the
use of intravascular ultrasound (IVUS), optical coherence
tomography (OCT), and functional magnetic resonance
imaging (fMRI) techniques for the detection and segmenta-
tion of cardiovascular neurocristopathy disease should also
be investigated. IVUS could be used to identify the loca-
tion and extent of cardiovascular abnormalities associated
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FIGURE 9. Echo-lmage based joint embeddings across 4 different
modalities using ImageBind model.

with neurocristopathy diseases. Brain activities, such as
cognitive deficits, determined by fMRI could be associated
with congenital heart disease, a type of cardiovascular
neurocristopathy. OCT imaging could help visualize the
microstructure of blood vessels within the heart and identify
abnormalities in the cardiovascular system associated with
neurocristopathy diseases. All of these techniques may
not provide direct visualization of abnormalities in the
cardiovascular system, but a correlation can be derived from
their analysis that could help clinicians in the early detection
of cardiovascular neurocristopathy diseases.

Furthermore, Meta AI has proposed an ImageBind
model [108] that capitalizes on image-paired data to create
a unified representation space. An example of such a model
is shown in Figure 9. The ImageBind model learns joint
embeddings across six different modalities which are image,
audio, depth, text, thermal and Inertial Measurement Unit
(IMU) data. Utilizing such a model, a medical data-based
model could be designed in the future that could generate the
cardiac parameters (cardiac rhythm, beat sound) and medical
reports from a single image (CT, MRI, X-ray and/or Echo)
using a few-shot DL approach, reducing the cost of healthcare
and providing an efficient diagnosis.
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